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A B S T R A C T

Discrete Hadamard transform (DHT) is a signal processing tool that decomposes an arbitrary input vector into a
superposition of Walsh functions. Due to its wide range of applications in processing big data, a fast and energy-
efficient hardware design for DHT with high throughput capability is essential. Processing in memory (PIM)
allows the in-place computation to reduce the data traffic, which is a major speed bottleneck in the existing
computing. In this work, we propose an efficient hybrid parallel PIM-based computation for DHT. Our proposed
method explores the recursive computation of DHT and is based on the memristor-aided logic (MAGIC) gates
in which the arithmetic operations are carried out via simple logic NOR operation. We propose two in-memory
computing methods for the DHT encoding process. At the arithmetic level, to improve efficiency, we propose
to share the intermediate results between addition and subtraction in DHT in the first method called MAGIC-
DHT-1D which provides an average speedup of 1.12× over the recently proposed DigitalPIM for 1D DHT.
Furthermore,MAGIC-DHT-1D also outperforms SIMPLER in terms of energy and energy density in average. We
also propose a second method, called MAGIC-DHT-2D, to share the carrier independent computation cycles
among multi-bit parallel addition and subtraction. At the algorithm level, we also explore both row and column-
based PIM NOR computing in the same crossbar to avoid the transposition operation required in the 2D DHT
process. MAGIC-DHT-2D provides an average speedup of 4.84× and 7.25× over two state-of-the-art methods
DigitalPIM and SIMPLER, respectively for each complete set of 2D DHT computing cycles. Our numerical
results further show that our proposed optimized methods can lead up to 56.19× and 6.90× speed-up, as
well as 57.84× and 5.96× higher throughput over NVIDIA RTX Titan GPU to compute 1D DHT and 2D DHT,
respectively.

1. Introduction

The Discrete Hadamard Transform (DHT) is a special type of dis-
crete Fourier transform that is widely used in signal processing. It
decomposes an input vector into a superposition of Walsh functions,
consisting of only −1 and 1 values. Due to its simplicity in compu-
tation, it is a suitable choice for many communication applications
that require fast and efficient encoding of signal data. The Walsh3
Hadamard transform-based Code Division Multiplexing (WHCDM) pro-
tocol has been proposed to reduce inter-code interference and improve
the bit-error rate [1]. DHT also has various applications in image,
video, and audio processing, such as image segmentation [2], mo-
tion detection [3], and video shot boundary detection [4]. A wide
range of efficient signal processing algorithms such as dyadic convo-
lution [5], adaptive filtering [6], and low-energy convolution neural
networks [7,8] are connected to the Walsh3Hadamard Transform. With
the increasing demand for encoding large data, such as audio, image,
video, and communication channel signals, there is a need for fast
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and energy-efficient hardware design for DHT with high throughput

capability. Over the years, tools, libraries, and mathematical software

have been developed for both CPU [9,10] and GPU [11,12] to address

the efficiency of Walsh3Hadamard transform.

With the increase of big data from smart devices and systems,

processing in memory (PIM) has emerged as a promising comput-

ing platform to address the data movement issue by implementing

computing logic within or near memory [13315]. Traditional von-

Neumann architecture requires large data movement between CPU and

memory, and this can lead to the well-known memory-wall bottleneck.

To overcome this challenge, recent effort tries to bring the processing

unit to data in memory instead of moving the data to the processor. PIM

is enabled by the emergence of new non-volatile memory technologies

such as memristors, where the logic state of memories depends on the

resistance of the devices, which is controlled by the currents flowing
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through them. The high density, low power consumption, fast switch-
ing, and CMOS compatibility make memristor a promising candidate
for lower power main memory with processing capability [16].

In this work, we explore the use of MAGIC-based digital PIM for
DHT. Unlike the fast Fourier transform, DHT can be computed without
general multiplication as the transformation matrix only involves 1 and
−1 and does not depend on special basis functions. This simple and
recursive computation algorithm results in a low ratio of arithmetic
operations to memory transfers when computing DHT over large data,
making it more suitable for digital PIM computing for data-intensive
applications. We propose a hybrid solution that exploits both arith-
metic/logic level parallelism as done in previous works [17,18] and
algorithm level parallelism. Our key contributions are as follows:

1. First, we propose the in-memory computing architecture and a
hybrid computing scheme for DHT computing process, which is
based on existing NOR-based MAGIC architecture [19]. At the
arithmetic level, to improve efficiency, we propose to share the
intermediate results between addition and subtraction in DHT
in the first method, called MAGIC-DHT-1D, which provides an
average speed-up of 1.12× over the recently proposed DigitalPIM
for computing 1D DHT. Furthermore, MAGIC-DHT-1D also out-
performs SIMPLER in terms of energy and energy density by
0.3% and 7% respectively.

2. To improve the efficiency of 2D DHT computing, we propose
MAGIC-DHT-2D that computes the independent results with the
same carrier among multi-bit addition and subtraction in par-
allel, and further reduces the cycles required for addition and
subtraction operations in DHT. Furthermore, at the algorithm
level, we explore both row and column-based MAGIC NOR
computing to avoid the transposition operation required in the
2D DHT operation. This can lead to substantial communication
savings compared to simple two 1D DHT operations in either
row-only or column-only based method.

We compared the proposed MAGIC-DHT methods against two PIM
frameworks, DigitalPIM [20] and SIMPLER [21] as well as the GPU
implementation on NVIDIA RTX Titan GPU.

Our numerical results show that MAGIC-DHT can provide 1.12×

and 15.75× average speed-up over DigitalPIM for computing 1D and 2D
Ċ-point DHT, respectively. The average speedup of MAGIC-DHT over
SIMPLER is 0.97×, 0.41×, for 1D and 2D DHT, respectively. Although,
MAGIC-DHT has higher latency than SIMPLER, on average, the hard-
ware resource consumption in MAGIC-DHT improves significantly over
SIMPLER for both 1D and 2D DHT computation. MAGIC-DHT can lead
to 1.07× and 3.18× less energy density over SIMPLER for computing 1D
and 2D DHT, respectively.

Furthermore, we show that the proposed PIM-based methodMAGIC-
DHT-1D can provide up to 56.19× speed-up and 57.84× higher through-
put over NVIDIA RTX Titan GPU to compute 1D DHT. The proposed
MAGIC-DHT-2D can provide up to 6.9× speedup and 5.96× higher
throughput over NVIDIA RTX Titan GPU to compute 2D DHT.

This paper is organized as follows: Section 2 reviews the PIM
concept and basic formula and operations in the Discrete Hadamard
transform process. Section 3 presents the proposed digital in-memory
Hadamard encoder architecture and the hardware implementation de-
tails. Numerical results and discussion are presented in Section 4.
Finally, Section 5 concludes this paper.

2. Review of related works

2.1. Processing in memory

PIM has been applied to a number of applications ranging from
imaging process to the neural network processing [22327]. Existing
PIM can be roughly classified into two classes: (1) analog based PIM

for arithmetic operations in which analog voltage solutions are com-
puted via currents flowing through PIM resistance networks [25328],
(2) Digital logic operations enabled in PIM, where the additions and
multiplications are performed using basic logic operations like NOR in
multiple clock cycles, such as MAGIC [19] and FELIX [16] frameworks.
The analog PIM is very fast, but it still suffers the low accuracy issues
and a large area footprints for required analog to digital converter
(ADC) and digital to analog converter (DAC) interface modules [20,29].
On the other hand, digital based PIM is much more accurate but
has larger latency as many clock cycles are required for computation,
especially for the multiplications. But one can exploit the inherent
parallelism in the application algorithms to speed up the computation
process.

Memristor aided logic gate (MAGIC) is based on the NOR logic oper-
ation and can implement only one single-cycle Boolean logic (NOR) in
memory. The rest of the logic operations such as XOR, NAND, OR etc.
require multiple cycles with NOR gates in memory. FELIX [16] resolves
this issue by exploiting the memristors with non-binary states (addi-
tional intermediate states between ĎĄ and ĎĈ) and multi-level logic
voltage driver. Some logic synthesis and optimization methods were
also proposed to map logic functions into the PIM processors based on
the BDD [17] and mathematical programming [18]. However, those
methods mainly focus on the logic gate level optimization to reduce
the clock cycles for both logic NOR operations and data movement for
specific crossbar PIM structures. In this work, we mainly focus on the
algorithmic level latency optimization and data movement reduction.
Moreover, our proposed method is actually orthogonal to those gate
level PIM optimization techniques.

In a digital memristive crossbar array, the state of a memristor
only changes when a current beyond a minimum threshold (ąĈăĉăĊ or
ąĉăĊ) passes through the device from a particular direction as shown in
Fig. 1(a). This property can be exploited to implement several Boolean
logic such as NOR, NAND, XOR, etc. by connecting multiple memristors
in series/parallel. As an example, Fig. 1(b) shows the 2-input NOR
gate implementation in memory by connecting the input memristors
in parallel with each other and the output memristor in series from the
opposite polarity. The output memristor is pre-programmed to logic ‘1’
(ĎĈ) before a voltage ĒĂ is applied to the input terminals. If at least
one of the input memristors is storing logic ‘1’ (ĎĈ), a current greater
than ąĈăĉăĊ will pass through the output memristor, and the state of the
output memristor will switch to logic ‘0’ (ĎĄ ) as shown in Fig. 1(c). If
both input memristors are at logic ‘0’ (ĎĄ ), the current passing through
the output memristor will not be enough to change the state as shown
in Fig. 1(d). ĒĂ should be large enough such that the state of output
is switched only when at least one of the input memristors is at a low
resistance state. However, ĒĂ should not be larger than the minimum
voltage required to switch any input memristors in the state ĎĄ to state
ĎĈ as shown in (1) [30]:

2 × |ĒĐ ,ąĄĄ | d ĒĂ d |ĒĐ ,ąĄ| × (1 +
2ĎĈ

ĎĄ

) (1)

2.2. Review of discrete Hadamard transform

Mathematically, 1D Ċ-point Discrete Hadamard Transform (N-
DHT) ėĊ of the sequence ĖĊ = [Ď1 Ď2 Ď3 & ĎĊ ]Đ can be defined as
follows:

ėĊ = ĄĊĖĊ (2)

Here, ĄĊ is anĊ×Ċ Hadamard matrix and can be iteratively computed
as

ĄĊ =

[
ĄĊ∕2 ĄĊ∕2

ĄĊ∕2 −ĄĊ∕2

]
= ĄĊ∕2 �Ą2; Ą2 =

[
1 1

1 −1

]
(3)

where, ‘�’ represents Kronecker operation. Based on (2) and (3), Ċ
point DHT of vector ĖĊ , can be computed from ć = Ăąą2(Ċ) number
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Fig. 1. (a) Resistance state change in memristor. Red: High Resistance, Green: Low Resistance, Black: Arbitrary State; (b) Connection of input and output memristor for 2-input
NOR; (c)3(d) Two-input NOR operation in memristor for different input combination: (1 + Ď)2 = 0 and (0 + 0)2 = 1.

of iterative computation of 2-point DHT over Ėą
Ċ
and Ėă

Ċ
, which are

defined as below:

xą
Ċ

=
[
Ď1 Ď3 Ď5 ... ĎĊ−1

]
(4a)

xă
Ċ

=
[
Ď2 Ď4 Ď6 ... ĎĊ

]
(4b)

H2

[
Ď1
Ď2

]
=

[
Ď1 + Ď2
Ď1 − Ď2

]
(4c)

where the Ėą
Ċ
/Ėă

Ċ
takes the odd/even elements from ĖĊ . Note that

for (4c), we can perform such 2-point DHT operation on a matrix block
level. In the following, we illustrate the recursive calculation of discrete
8-point Hadamard transform ė8 from 2-point DHT operation over input
Ė8 in (5)

ė2 = Ą2

[
Ėą
8

Ėă
8

]
=

[
Ėą
8
+ Ėă

8

Ėą
8
− Ėă

8

]

2×4

(5a)

ė4 =

[
ėą
2
+ ėă

2

ėą
2
− ėă

2

]

4×2

(5b)

ė8 =

[
ėą
4
+ ėă

4

ėą
4
− ėă

4

]

8×1

(5c)

where,

Ė8
ċ =

[
Ď1 Ď3 Ď5 Ď7

]
1×4

; Ėă
8
=
[
Ď2 Ď4 Ď6 Ď8

]
1×4

ė2
ċ =

[
Ď1 + Ď2 Ď5 + Ď6
Ď1 − Ď2 Ď5 − Ď6

]

2×2

; ėă
2
=

[
Ď3 + Ď4 Ď7 + Ď8
Ď3 − Ď4 Ď7 − Ď8

]

2×2

ė4
ċ =

⎡⎢⎢⎢⎢⎣

Ď1 + Ď2 + Ď3 + Ď4
Ď1 − Ď2 + Ď3 − Ď4
Ď1 + Ď2 − Ď3 − Ď4
Ď1 − Ď2 − Ď3 + Ď4

⎤⎥⎥⎥⎥⎦4×1

; ėă
4
=

⎡⎢⎢⎢⎢⎣

Ď5 + Ď6 + Ď7 + Ď8
Ď5 − Ď6 + Ď7 − Ď8
Ď5 + Ď6 − Ď7 − Ď8
Ď5 − Ď6 − Ď7 + Ď8

⎤⎥⎥⎥⎥⎦4×1

(5d)

We observe that in every recursive step, we perform element-wise
addition and subtraction of two matrices or vectors. As a result, we can
exploit such combined addition and subtraction in our PIM computing
as shown in the next section.

2D ĉ ×Ċ discrete Hadamard transform of data matrix Ĕĉ×Ċ can
be computed by passing Ĕĉ×Ċ through 1D Hadamard transformer
twice. First, Ċ point 1D Hadamard transform ėĊ of ĉ row vectors
are calculated based on recursive formula in (5). Then M-point DHT of
Ċ column vectors of resulting matrix ĕĉ×Ċ is calculated to get final
ĉ ×Ċ DHT encoded matrix Ėĉ×Ċ as shown in (6).

Ėĉ×Ċ = ĄĉĕĐ
ĉ×Ċ

= Ąĉ (ĄĊĔĐ
ĉ×Ċ

)Đ (6)

In total, (Ċ × (Ăąą2ĉ) × (ĉ∕2) +ĉ × (Ăąą2Ċ) × (Ċ∕2)) iterative 2-point
DHT computation is required to encode data matrix Ĕĉ×Ċ with 2D
discrete Hadamard transform.

Several conventional VLSI and recent FPGA-based architectures
for discrete Hadamard transform have been proposed in numerous
literature. A recursive sparse-matrix factorization for the Hadamard
matrix in terms of the Kronecker products of 2 × 2 Hadamard and
identity matrices of consecutively lower orders have been proposed
in [31] that simplified fast Hadamard transform algorithm. A chip for a
systolic array of the Hadamard transform was proposed in [32] which
requires 2 ç (Ċ − 1) clock cycles for computation while its latency is
Ċ cycles. To improve the efficiency of computation, a fully-pipelined
hardware design for DHT-calculator has been realized in [33] where

four different pipelined modular designs for transform length Ċ = 4
from kernel matrix of HT have been derived. Three different structures,
namely the transposition-free structure, the folded structure and the
pipeline structure have been proposed in [34] to implement 2D DHT
encoder. Among these three proposed structures, the pipeline structure
involves least area-delay product (ADP) and energy per sample (EPS)
according to the ASIC synthesis result. To improve the marginal bit-
saving and truncation error associated with the fixed-width structures
of DHT based on the conventional approach, a decimation-in-frequency
(DIF) generator for DHT has been proposed in [35]. Their proposed
model comprising of pre-truncation and post-truncation phases, as well
as a logic optimized addition3subtraction design customized for DHT
structure, achieved higher bit-saving with relatively less truncation
error for both 1D and 2D models.

Earlier architectures focused on optimizing the throughput of sys-
tolic array-based DHT computation. However, the optimization of
throughput and efficiency is still limited by the maximum number of
computational units available in the processor as well as the maximum
transfer rate of data-bus from memory to processing unit. Therefore,
a highly parallel computing platform such as PIM, which signifi-
cantly reduces in the memory traffic, can provide a fast and effi-
cient computation of both 1D and 2D DHT with significantly higher
throughput.

We remark that in this work, we focus on the digital PIM based
computing without using analog based PIM. Analog based PIM is an
excellent candidate for large scale parallel computation without the
necessity to tackle issues with memory traffic. Also, analog PIM has the
scope of archiving massive acceleration by bringing down the latency
of complex arithmetic operation such as addition/multiplication to
practically single cycle. However, analog PIM suffers from low accuracy
issues as they operates directly on the voltage or current levels. Also,
large nonuniform analog resistance for undetermined states contributes
to building up error. Furthermore, analog PIM, specially those based on
current ReRAM technology has the disadvantage of requiring complex
ADC/DAC block as well as multi level voltage converter in each cross-
bar peripheries. This results in increasing area and power consumption
in crossbar peripherals. In fact, studies shows that ADC/DAC block in
analog ReRAM tile occupies around 98% of total area and consumes
around 89% of total power [29]. Furthermore, they have low scalability
issue. Digital based in memory computation simplifies this peripheral
architecture by removing the ADC/DAC block. Also computation in
ReRAM crossbar based on digital logic states (ĎĄ = 0 and ĎĈ = 1) are
less prone to signal corruption that usually results from noise such as
leakage current in sneaky path, thermal noise, device parameter varia-
tion etc. In next section, we exploit these advantages of ReRAM crossbar
in digital domain and propose a digital based PIM implementation of
discrete Hadamard transformer.

3. Proposed digital in-memory Hadamard encoder architecture

In this section, we present the novel MAGIC-based processing in
memory of digital data for optimized discrete Hadamard transform.
First, we discuss a straightforward implementation of DHT in DigitalPIM
which is a digital-based PIM platform capable of accelerating basic
arithmetic operation as proposed in [20]. Next, we propose our opti-
mized one dimensional DHT encoding algorithm, called MAGIC-DHT-
1D and two dimensional DHT encoding called MAGIC-DHT-2D, which
recursively computes Ċ-point DHT from 2-point DHT in memory.
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Fig. 2. (a) Column-wise NOR (parallel in rows). (b) Row-wise NOR (parallel in columns). (c) Left shift operation: Stage 1- Left shift 2nd row while reading into read3write buffer;
Stage 2- write back to 3rd row from read3write buffer.

3.1. Logic and memory operation cycle

Before we present our algorithms, we first review the logic oper-
ations in the PIM. For logic operation in memory, all the memristors
of output row/column are set to logic ‘1’ at the first cycle. During
column-wise logic operation, the column driver provides high voltage
to input bit-lines (Ē ā_ÿĄ) and low voltage (Ē ā_ąċĊ) to output bit-line,
as shown in Fig. 2(a). Thus, in each row of a crossbar, a column-
wise NOR operation is performed in parallel within a single cycle. A
voltage of Ē Ĉ_ĉĂăăĆ can be provided to a particular range of wordline
so that the respective rows are excluded from the parallel computation
cycle if required. Here, Ē ā_ÿĄ − Ē ā_ąċĊ = ĒĂ is selected in compliance
with (1). Ē Ĉ_ĉĂăăĆ is chosen carefully so that none of the memristor
cells in the excluded row changes their states. During row-wise logic
operation, the row driver provides low voltage to input word-lines
(Ē Ĉ_ÿĄ) and high voltage (Ē Ĉ_ąċĊ) to output wordline as shown in
Fig. 2(b). Again, Ē Ĉ_ąċĊ − Ē Ĉ_ÿĄ = ĒĂ is selected in compliance with
(1). Similar to column-wise logic operation, a carefully selected sleep
voltage of Ē ā_ĉĂăăĆ can be provided to any particular column to exclude
it from the parallel logic operation.

During the read operation, the row buffer is activated and a read
voltage is applied to the specified row. The read voltage (Ē Ĉ_ĈăÿĂ)
is selected carefully so that any memory cell with the state ĎĈ does
not switch to the state ĎĄ . To write data into memory cells, all the
memristors in the selected row are reset to a high resistance state
ĎĄ . In the next cycle, the wordline of the target row is connected
to voltage Ē Ĉ_čĈÿĊă by the row driver, and the multiplexer output of
Ē č = Ē Ĉ_čĈÿĊă is selected by the read3write buffer and is applied
to the bit-line if the buffer is storing logic ‘0’ in that particular bit
position. Otherwise, voltage Ē č + Ē ĉăĊ is applied to the bit-line if the
buffer stores ‘1’. Here, Ē ĉăĊ is the voltage required to set a memristor
to logic state ‘1’. Thus, writing to memristor cells requires two cycles to

complete. The read/write buffer can also be used as a shifter as depicted
in Fig. 2(c).

Furthermore, one row of a crossbar can be left/right-shifted by one
bit within two stages. As shown in Fig. 2(c), In the first stage, 010 from
the second row is read first and then is left-shifted as 100 and stored in
the read3write buffer. Then, the shifted data (100) from the buffer is
written back to the target row (third row) in the next stage. As a result,
the parallel shift of a row in a memristor crossbar requires three cycles
to complete.

By default, the logic NOR operation is column-wise, which means
that NOR is performed between columns, where multi-bit binary num-
bers of an input row-vector are stored in a single row with the typical
row-wise storage format (see Fig. 2(a)). The two dimensional input
matrix is stored as multiple row vectors, each stored in one row of the
crossbar. In general, a ĉ ×Ċ matrix of w-bit binary numbers is stored
in ĉ ×Ċč cells of a crossbar memory.

3.2. DigitalPIM method

Now let us take 1-bit addition operation as an example. Their
Boolean operations in terms of NOR can be shown in (7) where Ďÿ and
ďÿ are two input bits, āÿ−1 is carry in and āÿ is carry out, ÿÿ is addition
result, Āÿ is borrow out, ĉÿ is subtraction result.

āÿ = (Ďÿ + ďÿ) + (Ďÿ + āÿ−1) + (ďÿ + āÿ−1) (7a)

ÿÿ = (Ď2
ÿ
+ ď2

ÿ
+ ā2

ÿ−1
) + (Ďÿ + ďÿ + āÿ−1) + āÿ (7b)

Āÿ = (Ďÿ + ď2
ÿ
) + (Ďÿ + Āÿ−1) + (ď2

ÿ
+ Āÿ−1) (7c)

ĉÿ = (Ď2
ÿ
+ ďÿ + Ā2

ÿ−1
) + (Ďÿ + ď2

ÿ
+ Āÿ−1) + Āÿ (7d)
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Fig. 3. Computing in memory with sequential cycle of MAGIC-NOR: (a) 1 bit full
addition, (b) 1 bit full subtraction, (c) 1 bit MAGIC-DHT-1D and shared intermediates
between addition and subtraction.

DigitalPIM, as proposed in [20], can implement addition using NOR
(single cycle) operation as shown in (7a) and (7b). As we can see,
computing sum (ÿÿ) and carry-out (āÿ) of 3 inputs (Ďÿ, ďÿ, āÿ−1) require
9 NOR cycles with additional one cycle to preset output memristors.
Fig. 3(a) shows the 9 NOR operations that start from second cycle in
order to calculate one bit full addition in memory. The first cycle is used
to set all the output memristors to ĎĈ state before logic NOR operation
can take place. The columns in pink indicate intermediate results and
the columns in orange indicate the inputs and final results. This can
further be extended to calculate binary borrow-out (Āÿ) and subtraction
(ĉÿ) using 2’s complemented binary numbers as (7c) and (7d) which
is shown in Fig. 3(b). Thus, calculating 2-point Hadamard transform
in DigitalPIM involves addition and subtraction of two č-bit binary
numbers that can be calculated with 19č MAGIC NOR cycles (21č
cycles in total). The total memory footprint to perform full addition
and subtraction of w bit inputs is 15č cells using this method.

3.3. MAGIC-DHT-1D method

The 2-point DHT computation in memory requires separate addition
and subtraction of two č-bit numbers where each bit requires 21 cycles
(19 cycles for NOR operation and 2 cycles for re-initialization of output
memristors) to compute addition (ÿÿ), subtraction (ĉÿ), carry-out (āÿ)
and borrow-out (Āÿ) in DigitalPIM architecture. We observe that some
intermediate results generated in (7) during computation of addition
and subtraction are the same. Therefore, they can be reused to reduce
computational cycles. As a result, we propose a new algorithm that
simultaneously computes the full addition and subtraction of each bit
by reusing those intermediate results as in (8). The resulting computing
sequence, called MAGIC-DHT-1D, is shown in Fig. 3(c) in which cycles
3 and 5 − 7 are shared between addition and subtraction operation. As
a result, only 17č column-wise NOR cycles are required to compute
the full addition and subtraction of each bit in the proposed architec-
ture, versus 19č column-wise NOR cycles required in DigitalPIM. Also,

Fig. 4. Accelerated computing for multiple-bit addition and subtraction for inputs Ĕ

and ĕ for č = 5. (a) 9 NOR operations independent of carry and borrow. (b) carry and
borrow calculation with (4č − 1) NOR operations and 2č left shift operations (shown
here: ÿ0, þ0, ÿ3, þ3.). (c-d) final (8 NOR + 2 write) cycles to compute (Ĕ + ĕ ) and
(Ĕ − ĕ ) respectively. Ĉÿ and āÿ denotes row number from ÿ = 1,& , 24 and column
number from ÿ = 1,& , č(ĀÿĊčÿĂĊℎ), respectively.

memory footprint (in terms of number of intermediate cells utilized)
reduces from 15č cells in DigitalPIM to 13č cells in MAGIC-DHT-1D
method. Note that, the number of cells for inputs (Ăÿ) and outputs (Ĉÿ) is
same in all methods. Therefore, they are not significant in comparative
analyses of these methods in Fig. 3.

Ċÿ = (Ďÿ + ďÿ) + Ďÿ + (Ďÿ + ďÿ) + ďÿ (8a)

āÿ = (Ďÿ + ďÿ) + (Ċÿ + āÿ−1) (8b)

Āÿ = (Ďÿ + ď2
ÿ
) + (Ċ2

ÿ
+ Āÿ−1) (8c)

ÿÿ = (Ċÿ + āÿ−1) + Ċÿ + (Ċÿ + āÿ−1) + āÿ−1; (8d)

ĉÿ = (Ċ2
ÿ
+ Āÿ−1) + Ċ2

ÿ
+ (Ċ2

ÿ
+ Āÿ−1) + Āÿ−1 (8e)

3.4. MAGIC-DHT-2D method

Now, we discuss the 2D DHT operation using the NOR-based com-
putation in memory. In the DigitalPIM and MAGIC-DHT-1D method we
have just proposed, we always perform the column-wise NOR operation
sequentially to add/subtract multiple-bit numbers. One observation is
that for arithmetic operation over multiple-bit data, there are some
common intermediate results in add-sub operation. These intermediate
results are independent of carry-out or borrow-out of previous bits and
hence can be computed in parallel. As shown in Fig. 4, the first 9 NOR
cycles for each bit of a binary number can be computed in parallel as
they are independent of carry-out or borrow-out from the previous bit.
As a result, we can use additional rows to compute and store those
intermediate results as shown in Fig. 4 to enable parallel computing.
After that, the carry-out and borrow-out of each bit are computed and
shifted to the next bit position with (4č − 1) NOR cycles and 2č left
shift cycles, where č is the bit-width of a binary number. Note that,
in Fig. 4(b), we have shown the computation steps for ÿ0, ÿ3, þ0, þ3.
Here, ÿÿ and þÿ are carry-out and borrow-out of bit-position ÿ. The state
of columns in row Ĉ13, Ĉ14, Ĉ17 changes during computation of ÿ1 and
ÿ2. The computational steps for ÿ1, ÿ2 are same as that for ÿ3 and
the computational steps for þ1, þ2 are same as that for þ3. Two write
operations are required to reset column ā0 in row Ĉ13 to ‘0’ (carry in
for LSB) and set column Ā0 in row Ĉ14 to ‘1’ (borrow-in for LSB). Once
all carry and borrow bits are ready, the final add-sub results can be
calculated with 8 additional NOR cycles. As a result, we can further
reduce the number of the required cycles as shown in Fig. 4.
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Fig. 5. Parallel computation of 4 × 4 point 2D-DHT in of 4 sets of data matrix Ĕý, Ĕþ , Ĕÿ , ĔĀ (each matrix is 4 × 4) with MAGIC-DHT-2D for č = 9. (a) Organization of data
in memory; (b) Stage 1: 2-point DHT with MAGIC-DHT-1D to computes the sum ÿÿĀ and subtraction ĉÿĀ from ĎÿĀ in each row. (c) Stage2: 2-point DHT with MAGIC-DHT-1D over
ÿÿĀ and ĉÿĀ to computes ĕý; (d) Stage 3: 2-point DHT with multi-bit add-sub over ďÿĀ in each column to compute ÿÿĀ and ĉÿĀ ; (e) Stage 4: 2-point DHT with column-wise multi-bit
add-sub computes Ėý from ÿÿĀ and ĉÿĀ .

The second improvement is that now we can leverage the column-
wise and row-based NOR computing to naturally avoid matrix trans-
position operation in the 2D DHT. Specifically, as shown in (6), the
2D ĉ × Ċ-point Hadamard transform can be simply performed by
computing two 1D DHT with bit-serial add-sub operation as in either
DigitalPIM or MAGIC-DHT-1D. After computing the first 1D Ċ-point
DHT on ĉ row vectors via column-based NOR operations, the matrix
is transposed. Then, another 1D DHT is performed on all ĉ-element
vectors stored in Ċ rows. However, as memristors have large write
latency, the matrix transpose operation can be computationally ex-
pensive. A possible alternate method is to store the 2D data matrix
by converting it into a 1D data vector with the row-major algorithm.
However, this method requires a crossbar with a large column size as
Ċ or ĉ increases and therefore, may not be achievable with practical
memristor devices.

To mitigate this problem, we propose a combined row and column-
based 1D DHT for ĉ × Ċ-point 2D DHT as demonstrated in Fig. 5.
In this figure, the input data are organized as four tiles Ĕý, Ĕþ , Ĕÿ

and ĔĀ (each of them are 4 × 4 matrix). Each small square has nine
memristor cells arranged horizontally and it stores an input number in
9-bit binary 2’s complemented format. The upper block represents the
ĕ = ĄĉĔ operation. In the first phase, ĕý and ĕÿ are computed in
parallel via column-wise operation. This parallel computation consists
of two stages of computing the addition and subtraction among Ĕ

based on the DHT rule. These 2-point DHT computation stages (denoted
as DH2) are broken down into four SAS (9-bit serial addition and
subtraction) steps as in Fig. 5(b3c). Each stage takes 189 + 189 = 378

cycles to finish as we have 9-bit data and each bit takes 21 cycles to
finish in column-wise MAGIC-DHT-1D. Then ĕþ and ĕĀ are computed
in the next 378 cycles using the same method.

In the second phase, the bottom-right block represents the Ė =

Ąĉĕ Đ operation. In this case, row-wise NOR operations are performed,
which also consists of two stages of multi-bit parallel addition and
subtraction computing for Ėý and Ėþ and another two stages for Ėÿ

and ĖĀ. These 2-point DHT computation stages are broken down into
four PAS (9-bit parallel addition and subtraction) steps as in Fig. 5(d3
e). Each stage takes 158 + 158 = 316 cycles to finish using multi-bit

parallel computing as mentioned earlier. In total, four 4 × 4 2D data
matrix can be encoded with 4 × 4 2D DHT in crossbar memory within
378 × 2 + 316 × 2 = 1388 cycles. As a result, no matrix transpose is
required for full 2D DHT computation in MAGIC-DHT-2D, which leads
to the saving and speedup as shown in our numerical result sections.

3.5. Memory organization

Fig. 6 shows the memory organization for the proposed Hadamard
encoder in MAGIC-DHT system. In this design, blocks of the crossbar
memory array are arranged into Đ tiles. Each tile contains þ×þ blocks,
where each block has one crossbar array of size ÿ×ÿ along with a set of
pass transistors for shift/copy operations, sense amplifiers for reading,
and finally, a set of read3write buffers with multiplexers for writing. In
the proposed design, a tile with 16 × 16 blocks (þ = 16) is selected, with
each block having a crossbar array of size 1Mb (ÿ = 1024). The read3
write buffer is designed to read data from both the crossbar and global
data bus, and is connected to a write multiplexer to provide appropriate
voltage across the crossbar bitlines for writing data stored in the buffer
to the selected row of the crossbar. Each wordline of a crossbar array
is connected to an output signal line of a row driver. One end of each
bit-line is connected to a column driver. The other end of each bit-lines
is connected to a sense amplifier and read3write buffer through pass
transistors for copy or shift operation.

The crossbar is controlled by a memory controller unit, which
includes a control module, row and column drivers, decoders, and
block selectors. The input to the memory controller consists of control
signals and five address ports. The outputs of the control module is the
selector signals for row and column driver-multiplexer and activation
signal for sense amplifiers, buffers, and blocks. The control bus has
a three-bit input-type port, named operation, that specifies whether
memory operations (such as shift/copy/write) or logic operations (such
as NOR/INV/set/reset) will be performed in the crossbar. The row_col’
port specifies the direction of the logic operation, while the sl_sr’ port
specifies the direction of shifting during the shift operation. During shift
operation, sl_sr’ is set to one for left shifting and it is reset to zero for
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Fig. 6. Memory architecture for proposed in-memory Hadamard encoder: (a) Đ Tiles of crossbar memory where each tile contains þ ×þ number of crossbars and each crossbar is
1024 × 1024 in size; (b) Organization of memory controller unit for wordline & bitline driver & decoder, sense amplifier, and buffer and block selector; (c) Top-right 4 × 4 cells
in a 1024 crossbar; (d) Bottom peripherals circuits connected to signal line (ďĈ[ÿ] in (c)) with shifter, sense amplifier, and read∕write buffer.

right shifting the specified wordline before storing it into the read3
write buffer. The active_ColumnBlock and active_RowBlock ports
are þ bits each and denote which blocks in a tile will be activated
for parallel operation. For example, active_ColumnBlock = [0111
1000 0000 000] and active_rowBlock = [1110 0000 0000 000], then
second, third, fourth and fifth blocks of first 3 rows will be activated
for that particular operation. Other than these 12 blocks, the rest of the
blocks in the tile will be deactivated.

The address bus consists of five ports, each Ăąą2ÿ bits long. During
a logic operation, the in1 port denotes the wordline/bitline address of
the first (only) input of the NOR (INV) operation, while in2 denotes
the address of the second input of the Boolean NOR operation. During
a memory operation, in1 denotes the address of the row to be read
to or written from the read3write buffer. The port named the out
port denotes the address of the output wordline/bitline of the logic
operation. The range_start and range_stop ports are used to activate
only a selective part of the crossbar for parallel operation instead of
activating the entire crossbar during two-dimensional DHT computa-
tion in memory. The memory-logic controller controls the bitlines by
connecting them to either the column/bitline driver for logic operations
or the sense amplifier-buffer for memory operations.

We remark that the proposed PIM DHT computation can compute
DHT for large Ċ due to its inherent recursive nature. With multiple
crossbars, each crossbar can compute up to thirty 32 × 32 DHTs in
parallel. The computed output matrix from different crossbar within a
tile can then be properly transferred among/within these crossbars with
proper read/write peripherals and data-bus interconnection among
crossbar blocks. The latency of such memory transfer will be according
to the global read3write and interconnection scheme among crossbars
in memory tile. After proper transfer of data among multiple crossbar
within a tile of memory, the computed 32 × 32-point DHT outputs

can be passed through similar consecutive cycles of 2-point DHT, and
complete the computation of DHT for large Ċ . Thus our proposed
architecture is suitable for recursive computation of DHT for any large
value of Ċ by utilizing proper data transfer among multi-crossbar.

4. Experimental results and discussions

4.1. Experimental setup

In this section, we present the experimental results. We have im-
plemented the crossbar memory array in CADENCE Virtuoso. The
memristor cells of the crossbar was designed with VTEAM model in
Verilog-A which has relatively high accuracy (below 1.5% RMS error)
and is computationally more efficient as compared with existing mem-
ristor models [36]. The parameters of the memristors are chosen to
produce a switching time of 1.1 ns for a voltage pulse of 1.5 V for RESET
and 2.5 V for SET. The memory peripherals circuits including shifter,
sense amplifier, buffer and write-multiplexer was implemented using
FinFET 15 nm technology. We have designed a memory tile of 16 × 16
crossbar array controlled by a single memory controller as in [29].
The MAGIC-DHT crossbar design parameters are given in Table 1. The
memory controller was designed and synthesized with Synopsys Design
Compiler.

We have further verified the functionality of the ReRAM cross-
bar as both a processing and memory element by simulating several
consecutive read, write, Boolean NOR and Boolean NOT operation in
Cadence Virtuoso ADE. After each such operations, the respective row
was read back into the read-buffer in bottom peripheral circuit with
proper voltage applied to word/bit lines and peripherals. We have
also measured the current through and voltage across both active and
inactive memristors to verify the impact of leakage current on state
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Fig. 7. Performance comparison for 1D DHT (a) # of cycle to compute single Ċ-point DHT to encode 1.125Ċ kilobytes of data in memory (b) Time to encode all input data
stored 1Mb crossbar. (c) Time to encode USC-SIPI-misc dataset. (d) Throughput normalized to GPU.

Table 1
MAGIC-DHT design parameter.

Memristor design parameter MAGIC-DHT design parameter

āąĄ −216.2 ms−1 Crossbar block size 1024 × 1024 memristor
āąĄĄ 91 ms−1 Tile size 16 × 16 Blocks
ÿąĄ 4 ĒĉăĊ 2.5 V
ÿąĄ 4 ĒĈăĉăĊ 1.5 V
ĎąĄ 0 nm ĒĉℎÿĄ Ċ 3 V
ĎąĄĄ 3 nm ĒĈ∕ā,ÿĄ 1.7 V
ĒĐ ,ąĄ −1.5 V ĒĈ∕ā,ąċĊ 0.1 V
ĒĐ ,ąĄĄ 0.3 V Ēā∕Ĉ,ĉĂăăĆ 0.3 V
ĎąĄ 1 k¬ ĒĈ,ĈăÿĂ 3 V
ĎąĄĄ 300 k¬ ĒĈ,čĈÿĊă 3.5 V

of memory cells. We have observed a very small distortion in the
state of inactive cells over several cycles. However, in digital ReRAM
the binary states are further apart from each other (ĎċĊ l ĎċĂĂ ).
Therefore, such small change of resistive state will be able switch digital
state of the memristors only after a very long period of processing.
The column-wise logic operation was performed with 25%, 50%, and
100% wordlines activated while the rest of the wordlines were given
the voltage ĒĉĂăăĆ and the average energy and latency of parallel logic
operation in each case were calculated. Tables 2 and 3 show the
execution time and energy consumption for each basic memory and
logic operation in crossbar block for our simulation.

4.2. Implementation and comparison methods

We have designed a Python-based simulator that generates appro-
priate control word for memory controller in each cycle to calculate
both 1Ā and 2Ā N-point DHT and calculates the state of memristor
cells in crossbar given various configurations of control voltages from
memory controller. The simulator also calculates the total number of
logic and memory cycles, as well as energy and cell area, occupied in
each crossbar memory block for parallel encoding of the stored data
with N-point DHT. We have implemented both MAGIC-DHT-1D and
MAGIC-DHT-2D as well as DigitalPIM [20] for comparison. Further-
more, we also compare the proposed method with the SIMPLER MAGIC
or SIMPLER [21] method, which is the PIM optimizer for general logic
functions based on mathematical programming. In SIMPLER method,

we have first implemented the N-point 1D DHT and Ċ × Ċ-point
2D DHT encoder in Verilog HDL and provided that to SIMPLER tool.
The SIMPLER tool provides a synthesized netlist for crossbar memory
optimized with both shared intermediate cycles with fused addition3
subtraction similar to our proposed method, and memory mapping.
However, algorithm for the memory mapping and reuse of intermediate
cells are different in SIMPLER from our proposed method. In SIMPLER
method, the cells to be reset and reused in a single cycle are not
structured to be consecutive and hence, it requires more complex
peripheral architecture and memory controller unit. Therefore, our
numerical results show the difference in latency, area and energy
consumption between our proposed method optimized for both 1D
and 2D DHT and SIMPLER method. Furthermore, in SIMPLER method,
the 2D DHT matrix is rolled out as row vector and stored in single
row for DHT computation. This requires significantly large row-size for
crossbar memory forĊ > 4 which is not practical for current memristor
technology. We have simulated the theoretically correct latency, area
and energy for a crossbar architecture for SIMPLER with the row size
of minimum required cell usage for Ċ × Ċ-point DHT and a column
size of such that the total size of the crossbar remains one megabit.

4.3. Digital DHT implementation in GPU

We also compare the performance of our proposed architecture for
in-memory Hadamard encoder with that of NVIDIA RTX Titan X GPU
with 24 GB memory. For our GPU based implementation, we have
modeled our kernels for calculatingĊ-point DHT according to [37]. We
have programmed a host code to arrange the dataset of multiple two
dimensional images into an array of greyscale pixel values arranged in
the row-major order. The array has the dimension of 1 × ą.Č 2, where ą

is the number of images in the dataset and Č 2 is the number of pixels
of each image. After that, the GPU kernel is launched that calculates
one dimensional Ċ-point DHT over the entire input dataset. Note that,
the input data array is virtually divided into multiple subsets, and the
number of subsets for Hadamard transform will vary with the value
of Ċ and the dimension of transformation employed. For example, an

image of size Č × Č is divided into Č 2

Ċ
subsets for computing Ċ-point

1D DHT. We have calculated the execution time of the kernel as the
latency of computing 1DĊ-point DHT in GPU. The 2DĊ×Ċ point DHT
is computed in GPU by launching the kernel for 1D DHT computation
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Table 2
Execution time for basic operation in crossbar.

Row-parallel NOR Column-parallel NOR Write Read/Copy Shift Set Reset

1.1 ns 1.1 ns 2.5 ns 1.1 ns 4 ns 1.1 ns 1.1 ns

Table 3
Energy consumption for basic operation in crossbar.

Active area 2-input NOR INV Write Read Reset Set

Total
(pJ)

Per cell
area (fJ)

Total
(pJ)

Per cell
area (fJ)

Total
(nJ)

Per cell
area (fJ)

Total
(nJ)

Per cell
area (fJ)

Total
(nJ)

Per cell
area (fJ)

Total
(nJ)

Per cell
area (fJ)

25% 3.07 2.99 3.52 3.43 18.24 15354.17 24 37229 6.96 26.55 8.192 31.25
50% 7.68 7.5 10.24 10 17.92 14797.67 26.24 37583 14.44 27.35 15.97 30.5
100% 19.84 19.34 25.6 25 16 13125 27.2 37 396 37.27 35.55 43 41

Table 4
Size of input data stored in each crossbar memory to be encoded with DHT
(kilobytes).

N 2 4 8 16

1D
SIMPLER 58.5 54 45 36
DigitalPIM 56.25 54 54 36
MAGIC-DHT-1D 56.25 54 54 36

2D
SIMPLER 54 36 31.64 32.34
DigitalPIM 27.36 23.78 16.88 16.88
MAGIC-DHT-2D 27.36 23.78 16.88 16.88

twice. First, a 1D Ċ-point DHT is computed in GPU kernel over the
entire input array that has been arranged in the row-major order. Then,
a matrix transpose operation is performed in CPU by rearranging the 1D
DHT transformed array of pixels in the column-major order. After that,
another 1D Ċ-point DHT is computed in GPU kernel over the newly
arranged input array. In order to compare the latency of computing
2D DHT between GPU and PIM based architectures, only the execution
time of two GPU kernels are calculated. Thus, the time for matrix
transposition performed in CPU or any other data movement between
GPU device and CPU host is ignored while we compute the latency of
DHT encoding in GPU. The GPU kernels for computing DHT in the
CUDA source code [37] is optimized for large value of Ċ and the
latency of computation largely depends on size of data vector/matrix.
Since the size of dataset is same for all values of Ċ in our experiment,
the latency does not changes for value of Ċ < 1011. The throughput of
computing both 1D (2D) Ċ-point (Ċ × Ċ-point) Hadamard transform
is also calculated by dividing the kernel execution time by number of
subsets of input data array over which the transformation has been
performed.

4.4. Dataset comparison

To further evaluate our design we have encoded 22 greyscale images
of different resolutions from USC-SIPI-misc dataset [38] inMAGIC-DHT,
SIMPLER [21], DigitalPIM and NVIDIA Titan-X GPU. Each pixel is repre-
sented as an 8-bit signed integer ranging from −127 to 127. The image
data is stored in the memristive array in 22ĉ complemented format and
extended to a total of 9 bits to accommodate for correct computation
of carry-out and borrow-out in MSB. So the default bit-width is 9-bit in
the following experiments.

4.5. Latency and throughput comparison

4.5.1. One-dimensional DHT comparison
Fig. 7(a) shows the number of cycle to compute single N-point

one-dimensional Hadamard transform for č = 9-bit width data in
MAGIC-DHT-1D, SIMPLER [21] and DigitalPIM [20]. As shown in the
figure, both MAGIC-DHT-1D which is optimized with intermediate data
sharing and SIMPLER which is optimized for minimum latency and
maximum throughput, require fewer cycle than DigitalPIM to compute

a single set of 1D Ċ point DHT in memory for Ċ = 2, 4, 8 or 16. In
each crossbar the number of input data vectors stored in each row
is ďĈąč(Ċ) = + (1024−ÿĄĊăĈăăĂÿÿĊă āăĂĂĉ)

Ċ(2č+ĂąąĊ
2
)

,. Therefore, ďĈąč(Ċ) number of 1D

Ċ-point 1D DHT is performed sequentially in a single crossbar. The
number of required intermediate cells increases with Ċ and they are
reused for each set of data-vector. The size of input data stored and
encoded with 1D DHT for each value of N, and for each method is
shown in Table 4. As before data stored in all 1024 rows is encoded
in parallel in all three methods. Fig. 7(b) shows the time to encode
1.125ďĈąč(Ċ) ×Ċ kilobytes of data in a 1024 × 1024 crossbar. Latency
for 1D DHT computation in a single memory block is low in MAGIC-
DHT-1D which is on average 1.12× and 0.97× faster than DigitalPIM
and SIMPLER. As SIMPLER applies similar optimized data and logic
mapping in crossbar memory, the latency of computing a single 1D DHT
vector in MAGIC-DHT-1D is very close to that in SIMPLER

Fig. 7(c) shows the time to encode the USC-SIPI-misc dataset of
greyscale images in crossbar memory blocks. The images are stored
across 256 blocks of memory in a single tile. We also include the time
from our GPU implementation. As we can see, the proposed MAGIC-
DHT-1D provides around 56.19×, 30.86×, 24.25× and 16.67× speed up
over GPU for 2-point, 4-point, 8-point and 16-point 1D DHT operations
respectively.

Fig. 7(d) shows the normalized throughput of in-memory Hadamard
encoding in the proposed architecture compared to that in GPU. The
throughput has been calculated for 256 blocks of 1024 × 1024 crossbar
memory operating in parallel in a single tile with maximum hardware
utilization. All methods for in-memory DHT computation provide sig-
nificant improvement in terms of throughput compared to GPU. On
average MAGIC-DHT-1D has 1.37×, 0.96× and 57.84× higher throughput
over DigitalPIM, SIMPLER and GPU for 1D Hadamard encoding of data.

4.5.2. Two-dimensional DHT comparison
The number of cycles required to compute a single 2D Ċ ×Ċ-point

DHT using three in-memory computation methods, namely MAGIC-
DHT-2D, SIMPLER, and DigitalPIM, are shown in Fig. 8(a). MAGIC-
DHT-2D has the lowest computation cycles for any value of Ċ and
provides a significant improvement over other processing-in-memory
(PIM) methods. This speed-up is due to the multi-bit parallel arithmetic
operations between rows and bit-serial arithmetic operations between
columns performed in MAGIC-DHT-2D as explained in Section 3.4.
In DigitalPIM, the Ċ × Ċ-point DHT is computed through recursive
computation of 2-point DHT, where bit-serial addition and subtraction
is performed on each pair in both directions. On average, MAGIC-DHT-
2D provides speed-up of 7.18× and 4.85× over DigitalPIM and SIMPLER
respectively, to encode 1.125Ċ2 bytes of data in memory.

The number of input data matrix stored in MAGIC-DHT-2D and Digi-
talPIM crossbar for 2D DHT encoding can be formulated as
+ 1024−ăăĊÿĈąč

2Ċ
,×+ 1024−ăăĊÿāąĂċăĄ

Ċ(2č+logĊ
2
)

,, where the number of required interme-
diate cells (also known as metacolumn/metarow/metacells) increases
with the value of Ċ . Thus, the amount of input data that can be stored
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Fig. 8. Performance comparison for 2D DHT (a) # of cycle to encode single data matrix with Ċ ×Ċ-point 2D DHT. (b) Time to encode data in 1Mb memory block. (c) Time to
encode USC-SIPI-misc image-set. (d)Throughput normalized to GPU.

and encoded in each crossbar block decreases in general as the value
of Ċ increases, as shown in Table 4.

We have simulated the 2D Ċ-point DHT in SIMPLER and found that
the cell area required for Ċ > 4 is much higher than 1024, as the 2D
data matrix is rolled out into a 1D vector with the row-major algorithm.
The required minimum column size in SIMPLER is not physically possi-
ble to achieve with current memristor technology without facing severe
distortion in signal. However, in order to compare the throughput of
2D DHT with our proposed architecture (which has been designed to
optimally compute 2D DHT in 1024 × 1024 crossbar for values of
Ċ up to 32), we have assumed a theoretical design of crossbar for
SIMPLER where the column size is equal to the minimum area required
to compute Ċ-point 2D DHT (calculated with the SIMPLER tool) and
the row size is (1024×1024)

(āąĂċăĄ ĉÿĐă)
.

The latency of computing the 2D Ċ × Ċ-point DHT over all data
stored in a one megabits of memory block is shown in Fig. 8(b). On
average, MAGIC-DHT-2D has 15.75× and 0.41× lower latency compared
to DigitalPIM and SIMPLER model, respectively, while computing 2D
DHT in memory. The amount of data encoded in parallel is higher
in SIMPLER as shown in Table 4. This leads to a relatively lower
improvement in the throughput of MAGIC-DHT-2D over SIMPLER.

On average, MAGIC-DHT-2D provides around 5.96× higher through-
put than DigitalPIM. Fig. 8(c) shows the time to encode the USC-SIPI-
misc dataset with 2D Ċ-point Hadamard transform both in memory
and in GPU. Again, as expected, MAGIC-DHT-2D can encode the entire
dataset 6.90× faster than GPU. However, as the value of Ċ increases
exponentially, the 2D DHT encoding time in all PIM-based architectures
also increases accordingly. But the execution time of DHT encoder
kernels in GPU almost remains constant for any value of Ċ < 211. The
slow change in the execution time of GPU kernel is due to the optimized
design to handle large datasets. Hence, the GPU kernel execution time
depends mainly on the size of the input dataset, rather than the value
of Ċ . Therefore, the PIM architectures become slower than GPU while
encoding data with 2D DHT as the value of Ċ increases. Although
MAGIC-DHT is still faster than GPU, the speedup of DHT encoding in
MAGIC-DHT over GPU reduces with the increased value of Ċ

The throughput of encoding data with Ċ × Ċ-point 2D DHT in
MAGIC-DHT-2D, DigitalPIM and SIMPLER normalized to that in GPU
are shown in Fig. 8(d). In general, the proposed MAGIC-DHT-2D can

provide up to 5.96× improvement over GPU in terms of 2D DHT
throughput.

In general, that the proposed MAGIC-DHT architecture has better
performance in terms of cycle count, latency, encoding time, and
throughput compared to the other methods. In particular, the latency
of the MAGIC-DHT is faster than DigitalPIM, and it is close to SIMPLER.
The encoding time of MAGIC-DHT is much faster than the GPU imple-
mentation for various DHT operations. The throughput of MAGIC-DHT
is also mostly higher than the other methods, including the GPU.

4.6. Area and energy comparison

The performance of MAGIC-DHT compared to that of SIMPLER is
further evaluated by computing energy density (energy per unit cell
area), area delay product (where ADP is defined as # of cell × latency
of each DHT in the crossbar), energy-delay product (where EDP is
defined as energy× latency of each DHT in crossbar) in both methods.
The optimization method employed during the implementation of the
DHT encoder in the ReRAM crossbar is shown in Column 3 of Table 5.
For each value of N, a 1D and 2D DHT encoder is designed with two
optimization algorithms in both SIMPLER and MAGIC-DHT. The first
algorithm minimizes the cell area occupied, while the second minimizes
latency. Note that, the number of cell area can be reduced with expense
of increased latency and vice versa in both method. To compare the
performance of MAGIC-DHT and SIMPLER, the latency, area, energy,
EDP, and ADP of SIMPLER are divided by those of MAGIC-DHT-1D.
On average, MAGIC-DHT provides a speedup of 0.99× over SIMPLER
with a maximum speedup of 1.01× for 1D-DHT. The mean cell area
occupied by SIMPLER is 0.98× to that of MAGIC-DHT-1D, while the
energy consumption of SIMPLER is 1.003× to that of MAGIC-DHT-1D.
This results in a 1.07× higher energy density in SIMPLER over that
inMAGIC-DHT.

Similarly, the latency, area, energy, EDP, and ADP of SIMPLER are
divided by those of MAGIC-DHT-2D to compare their performance for
2D DHT. On average, MAGIC-DHT provides a speedup of 7.25× over
SIMPLER, with a maximum speedup of 15.04× for 16-point 2D DHT. The
mean cell area occupied by SIMPLER is 0.32× that of MAGIC-DHT-2D,
but the energy density of MAGIC-DHT is 3.18× better than SIMPLER.
Also note that, the entire cell area of SIMPLER is the minimum row size
of crossbar required for 2D DHT calculation which is very high for DHT
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Table 5
Comparison between MAGIG-DHT and SIMPLER [21] for computing single N-point DHT in crossbar.

N Optimization Latency (Cycle) Area (# of cell) Energy Improvement

SIMPLER [21] MAGIC-DHT SIMPLER [21] MAGIC-DHT SIMPLER [21] MAGIC-DHT Latency Area Energy Energy density ADP EDP

1D DHT

2
Min area 161 160 59 66 0.88 0.90 1.01 0.89 0.98 1.09 0.90 0.98
Min latency 148 151 100 166 0.91 0.90 0.98 0.60 1.00 1.67 0.59 0.98

4
Min area 621 627 140 144 3.49 3.56 0.99 0.97 0.98 1.01 0.96 0.97
Min latency 580 594 200 244 3.53 3.56 0.98 0.82 0.99 1.21 0.80 0.97

8
Min area 1853 1868 315 272 10.73 10.63 0.99 1.16 1.01 0.87 1.15 1.00
Min latency 1786 1771 350 368 11.17 10.63 1.01 0.95 1.05 1.10 0.96 1.06

16
Min area 4941 5061 628 528 28.84 28.86 0.98 1.19 1.00 0.84 1.16 0.98
Min latency 4784 4804 800 624 29.06 28.86 1.00 1.28 1.01 0.79 1.28 1.00

Average improvement over SIMPLER [23] 0.99 0.98 1.003 1.07 0.97 0.99

2D DHT

2
Min area 621 280 140 620 3.78 3.51 2.22 0.23 1.08 4.77 0.50 2.39
Min latency 580 271 200 820 3.78 3.55 2.14 0.24 1.07 4.38 0.52 2.28

4
Min area 4941 1105 628 1960 30.11 27.91 4.47 0.32 1.08 3.37 1.43 4.82
Min latency 4784 1069 800 2360 30.11 28.11 4.48 0.34 1.07 3.16 1.52 4.79

8
Min area 24 543 3299 2279 6416 149.54 167.03 7.44 0.36 0.90 2.52 2.64 6.66
Min latency 24397 3192 2325 7216 149.54 168.60 7.64 0.32 0.89 2.75 2.46 6.78

16
Min area 129459 8873 9191 23008 788.78 899.43 14.59 0.40 0.88 2.20 5.83 12.80
Min latency 129175 8588 9300 24608 788.78 911.32 15.04 0.38 0.87 2.29 5.68 13.02

Average improvement over SIMPLER [23] 7.25 0.32 0.98 3.18 2.57 6.69

beyond Ċ = 4, and not practical to achieve without major performance
degradation in the crossbar. On the other hand, the cell area reported
by MAGIC-DHT-2D for each 2D-DHT is distributed over several rows
and columns. For example, for 16-point 2D DHT, the maximum row and
column size required in MAGIC-DHT-2D is 66 and 639, respectively.
Furthermore, the average improvement of ADP and EDP provided by
MAGIC-DHT-2D is around 2.57× and 6.69×, respectively. On average
MAGIC-DHT significantly improves over SIMPLER in terms of hardware
resource consumption for 2D DHT computation.

5. Conclusion

In this project, we have developed an architecture for the par-
allel in-memory computation of discrete Hadamard transform with
our MAGIC-DHT method, which is based on the recently proposed
MAGIC digital in memory computing framework. To optimize the one
dimensional DHT computation, we have introduced MAGIC-DHT-1D,
which exploits the shared intermediate results and provides 1.12×

speed-up over DigitalPIM and 0.97× over SIMPLER. We have also pro-
posed MAGIC-DHT-2D, which accelerates the two dimensional DHT
calculation by sharing the intermediate results with the same carrier
among multi-bit add-subtraction operation and row and column based
NOR computing. This method can provide up to 15.75× speed-up over
DigitalPIM method. We have compared the cell area utilization and
energy consumption of our proposed methods with those of SIMPLER.
Our numerical results show that the average hardware resource con-
sumption in MAGIC-DHT improves significantly over SIMPLER for 2D
DHT computation. The energy density in MAGIC-DHT is on average
1.07× and 3.18× less than SIMPLER while computing 1D and 2D DHT,
respectively. Furthermore,MAGIC-DHT-2D can provide an average EDP
improvement of 6.69× over SIMPLER for computing 2D DHT. Finally,
we have compared the performance of our proposed methods with that
of the NVIDIA RTX Titan GPU. Our proposed MAGIC-DHT-1D for 1D
Hadamard transform can lead to 56.19× speed-up and 57.84× higher
throughput over the GPU. For two dimensional DHT, our proposed
MAGIC-DHT-2D outperforms the GPU with up to 6.90× speed-up and
5.96× higher throughput.
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