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Fast and Scaled Counting-Based Stochastic
Computing Divider Design

Yibo Liu

Abstract—This article presents novel designs for stochastic
computing (SC)-based dividers, which promise low latency, high
energy efficiency, as well as high accuracy for error-tolerant
arithmetic operations. We first introduce CBDIV, which is
based on the recently proposed counter-based SC concept and
correlation-based SC to perform division. Then, we introduce
FSCDIV, which further improves the accuracy of CBDIV by
applying a scaling strategy and mitigating the latency by
optimizing the counting scheme. The FSCDIV will equally scale
up the divider and dividend before the division process, and
thereby avoid large relative error when both input values of
the divider and dividend are small. The proposed fast counting
method accelerates FSCDIV by counting new bit pair (0-1 pair)
among only half of the stochastic number bitstream instead of
the entire bitstream, resulting in almost half of the counting
latency and one-fourth of the overall division operation latency.
The experimental results demonstrate that the proposed CBDIV,
implemented in a 32-nm technology node, outperforms state-of-
the-art works by 77.8% in accuracy, 37.1% in delay, 21.5% in
area, 50.6% in area delay product (ADP), and 25.9% in power
consumption. Compared to the fixed-point division baseline,
CBDIYV also achieves a 31.9% reduction in energy consumption
and is more energy efficient than existing SC-based dividers for
binary inputs and outputs required in efficient image process-
ing implementations. Moreover, we demonstrate that FSCDIV
improves delay by 56.4%, ADP by 16.0%, energy consumption
by 45.0%, and accuracy by 61.2%. We also evaluate CBDIV and
FSCDIV designs in a contrast stretch image processing workload,
and the results show that the proposed designs can improve the
image quality by up to 18.3 dB on average when compared to
state-of-the-art works.

Index Terms—Approximate computing, arithmetic circuit
design, division, stochastic circuit design, stochastic computing
(SO).

I. INTRODUCTION

TOCHASTIC computing (SC) has emerged as a potential
S alternative to traditional binary computing, offering an
inexpensive and error-tolerant solution. SC’s superior error
resilience, its more balanced performance tradeoffs, includ-
ing accuracy, energy, and its economical implementation
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of intricate arithmetic tasks, provide it a clear edge over
binary designs. SC’s simplicity allows numerous arithmetic
tasks, like multiplication, to be implemented using merely an
AND operation, or an XNOR gate for bipolar cases. These
characteristics have paved the way for its use in various
error-resistant workloads, such as error-correcting codes [1],
image processing applications [2], and deep neural networks
(DNNs) [3], [4], [5], [6], [7], [8], [9]. Furthermore, some
recent research extended SC applications. For instance, [10]
applied SC to numerical simulation, [11] integrated SC to
sound source localization system, and [12] applied SC to build
energy-efficient Bayesian neural networks.

Despite these advantages, the ease of SC’s hardware imple-
mentation is not without challenges: for starters, conventional
SC requires 2V cycles to manage N-bit precision binary
inputs, a potentially lengthy process particularly for large N,
making SC more fitting for applications that can tolerate
lower precision. Second, the precision of SC tasks hinges on
the randomness of two bitstreams (ideally uncorrelated) in
conjunction with the length of the bitstream. Consequently,
a substantial body of research has been initiated to devise
top-tier random number generators (RNGs) showcasing min-
imal or zero correlation, such as low-discrepancy (LD)
sequences [13], [14] and bit scrambling methods [15], [16].

More recently, an advanced and precision-oriented SC
multiplier has been introduced to address the two issues
mentioned above in the traditional SC [5]. This new multiplier,
instead of resorting to an AND gate for multiplying two
bitstreams, essentially keeps track of the “1”’s in one multipli-
cand bitstream based on the value of the other multiplicand
bitstream. The bitstream that is counted can be determinis-
tically created based on a finite state machine (FSM). Thus,
the overall design boils down to two counters coupled with
a simple bitstream generator. We have named this design
the counting-based SC multiplier (CBSC-Multiplier). The
CBSC-Multiplier comes with two vital advantages: first, it
eliminates the need for bitstream randomness without any
accuracy compromise, proving highly compatible with the
correlation demands of existing SC-based methods. Second,
it potentially outperforms the traditional SC due to its ability
to execute early termination (partial counting), a feature not
readily achievable in the conventional SC methods. Although
Wu et al. [17] proposed normalized stability, a universe
measurement metric to evaluate the circuit’s potential for early
termination, it is not optimized for specific SC operation
design.
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In the realm of division operations underpinned by stochas-
tic computing (SC), current research suggests that the tasks
can be conducted considerably more effectively when the
two input bitstreams exhibit a high degree of correlation,
as division can be approximated by calculating the condi-
tional probability of the two streams [18], [19]. To reconcile
the distinct correlation prerequisites between traditional SC
divisions, a translation module, referred to as a skewed
synchronizer, was presented, albeit at the expense of increased
area overheads [19]. Chu et al. [20] applied a JK flip flop-
based SC divider, which has some hardware improvement in
certain applications. Asadi et al. [21] proposed an LD SC
method to reduce the hardware cost and improve the accuracy.
Shaowei et al. [22] proposed to exploit the maximally corre-
lated input bitstreams to improve the accuracy with almost no
extra hardware cost.

Inspired by the aforementioned correlated division and
FSM-based deterministic bitstream generation, in this article,
we propose novel SC-based division designs, our main key
contributions are as follows.

1) We first introduce CBDIV design, which takes advantage
of both the correlation stipulation inherent to established
SC-based division approaches and the more efficient
counting-based SC (CBSC) framework, resulting in a
much more efficient partial counting process.

2) Then, we introduce FSCDIV design, which further
extends CBDIV by introducing three new ideas—a new
scaling method for both the divisor and dividend to
improve accuracy, reducing half of the counting latency
by counting bit pairs (0—1 pair), and a new selective
counting strategy.

3) The experimental results demonstrate that the proposed
CBDIV design, implemented in a 32-nm technology
node, outperforms state-of-the-art SC dividers in terms
of delay (by 37.1%), area (by 21.5%), area delay product
(ADP) (by 50.6%), and power (by 25.9%). CBDIV also
reduces energy consumption by 31.9% when compared
to the fixed-point division design. To evaluate the error
behavior of CBDIV, we use root-mean-square error
(RMSE) and compare it with state-of-the-art works
and the fixed-point divider. Our numerical results show
that CBDIV outperforms state-of-the-art works by at
least 77.8% on average. Furthermore, CBDIV with 5-bit
precision can outperform state-of-the-art works with
7-bit precision in accuracy by 15.4%. Upon improving
CBDIV, FSCDIV further enhances delay (by 56.4%),
ADP (by 16.0%), energy consumption (by 45.0%), and
accuracy (by 61.2%) over the CBDIV design. We also
evaluate the CBDIV and the FSCDIV in a contrast
stretch image processing workload, demonstrating that
the proposed designs improve image quality by an aver-
age of 20.6 and 23.5 dB, respectively, when compared
to state-of-the-art works baseline.

The proposed CBSC-based division design can be extrap-
olated to additional nonlinear arithmetic tasks, paving the
way for more extensive CBSC. The CBDIV and FSCDIV
can integrate effortlessly with CBSC multiplication, rendering
them suitable for hybrid computing in scenarios where both
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binary and SC bitstreams are essential to optimize different
arithmetic operations for efficiency.

This article is organized as follows. Section II reviews some
recently proposed SC division methods and a state-of-the-art
work as preliminary knowledge. Sections III and IV present
the proposed CBDIV and FSCDIV design. Experimental
results for the hardware performance, error metrics of FSCDIV
design and the comparison with other SC dividers, fixed-
point dividers, and a state-of-the-art work are summarized in
Section V. Section VI concludes this article.

II. REVIEW OF RELATED WORK

This section provides an overview of several pertinent stud-
ies that are relevant to the newly proposed division designs.

A. Traditional SC-Based Division Design

Conventional SC division adheres to Gaines’s model [23],
which employs an up—down counter to achieve a state of
equilibrium when the values of two stochastic numbers (SNs),
x1,snv and xp sy - pz.sn, are equal, where p, sy equals to xj sy
divided by x; sn. Therefore, it necessitates SC multiplication
for xo sy - prsy. Gaines’s design was found to require
an extended period to converge [18], and it mandated that
both the dividend and the divisor be uncorrelated. A recent
development by Temenos and Sotiriadis [24] addressed these
shortcomings through the implementation of a deterministic
FSM-based stochastic division design (DFSMDIV), which dis-
pelled the need for independence between the input divisor and
dividend SN bitstreams. Nevertheless, DFSMDIV demands an
average of at least 2 orders of magnitude (10%) clock cycles
to converge and fails to yield any notable improvements in
accuracy.

Another strategy involves establishing the correlation
between the divisor and the dividend in the SC bitstream.
Chen and Hayes [18] introduced CORDIV, uncovering that
division could be conceptualized as the conditional probability
of two SN numbers: Px,|x,. The corresponding formula can
be simplified as follows:

Px,1X, = Pxy,x2/Pxy = X1,SN/X2,5N- )]

When x; and x, share a strong correlation, py, represents
the event of xp, and py, , stands for the joint event of xj
and x;. Consequently, the output probability Pguotient can be
articulated by the ratio of the number of “1” bits in the divi-
dend and divisor SN bitstreams: Nll)ividend /Nll)ivisor‘ Therefore,
CORDIV necessitates that the divisor always surpasses the
dividend to prevent the quotient from exceeding one. This
research substantiated that, when fed with highly correlated
input SN bitstreams, CORDIV could yield significantly more
precise results in comparison with Gaines’ design [23].

However, the precision of the CORDIV method is con-
tingent upon the quality of the input SN bitstreams. The
framework of the CORDIV design is shown in Fig. I.
Furthermore, the SN generator (SNG) shown in Fig. 1 [18]
was proposed to mitigate this problem. However, the accuracy
still depends on the distribution of bit “I1” in input SN
bitstreams, shown in Fig. 2, which illustrates that the position
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Fig. 2. CORDIV method input SN bitstreams with different bit distribution.
(a) Quotient result with appropriate bit distribution. (b) Quotient result with
extreme bit distribution.

of bit “1” in the divisor can significantly influence the accuracy
of the quotient.

Specifically, the two input probabilities are 3/16 and 5/16,
respectively, with an exact quotient result of 0.6. Based on
Fig. 1, when the comparator outputs of the dividend and
divisor pair are 0-0 or 1-0, the quotient will output the
previous value. When the pair is 1-1, the quotient output will
be “1” and when the pair is 0-1, the output will be “0.”
Based on this observation, given the two different bitstreams of
dividends and divisors as shown in Fig. 2, the final results can
be quite different. Specifically for the Fig. 2(b) case, with an
extreme bit “1” distribution, where too many 0-0 pairs appear
between a 1-0 pair and the following 1-1 pair, CORDIV
computes Z,, = 5/16 = 0.3125, which is a significant deviation
from the exact result.

Adding a skewed synchronizer could have improve the
accuracy, but still not enough, especially in certain output
value ranges [19]. Moreover, all these SC-based division
designs encounter issues of accuracy variation across different
output value ranges and latency issues, with an N-bit binary
input requiring 2V cycles to complete the computation process,
a characteristic drawback of SC implementation. Additionally,
energy consumption escalates when the inputs and outputs
are in binary form, necessitating an extra interface with
other computational components typically found in image
processing applications [25].

B. Counter-Based SC Multiplication

Counter-based SC was basically proposed to mitigate sev-
eral shortcomings of traditional SC methods by avoiding the
random bitstream.

Assuming the precision is n-bit for the two provided binary
numbers (BNs) x and w, which both lie in the range of
[0, 1], the traditional SC multiplier using an AND gate (for
unipolar encoding) will take 2", equivalent to the length of the
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Fig. 3. (a) CBSC-based SNG which generates SN bitstream in a deterministic
way. (b) CBSC concept. (c) CBSC multiplication method.

SN bitstream, cycles to complete the task. To enhance this,
Sim and Lee [5] presented a CBSC multiplier design with
remarkable accuracy. The multiplier encompasses two counters
and an FSM-based SNG, as demonstrated in Fig. 3(c). The
SNG is utilized to generate an LD SN bitstream of x.
The authors proposed a deterministic method for this. The
technique evenly distributes bit x;—1, which is the ith bit of x,
based on its binary weight 2i=1 For instance, if i = 3, then
x> will appear four times in the resultant SN, as depicted in
Fig. 3(a). This type of SN generation can be simplified and
implemented by an FSM and a MUX as shown in Fig. 3(a).
The FSM generates a specific bitstream for the given binary
values of the data, which is 1101 in the figure. The output SN
bitstream is generated by copying the bit values of the input
BN with the order of X3 X2 X3 X1 - X3 X2 X3 X0 - X3 X2
X3 X1 - X3 X2 X3 0, and the FSM will generate the value
sequence of 3231-3230-3231-323.

Since SC multiplication is merely an AND operation, if
the SN bitstream for w is arranged to be a sequence of
“1”s followed by several “0”s, as illustrated in Fig. 3(b), the
multiplication merely requires counting the first w - 2" bits
of the bitstream, corresponding to those bits “1,” and does
not need to count the other half of the output bitstream,
corresponding to those bits “0.”

Therefore, the entire counting operation demands only the
same latency to complete, significantly reducing computing
time. The authors employed a down counter to materialize this
concept. Using w - 2" as the starting value, the down counter
decreases by one in each clock cycle. Once it hits “zero,”
the process concludes. Consequently, this design is more
straightforward than a conventional SNG (typically utilizing
Linear Feedback Shift Registers) and replaces AND gates with
a down counter, which proves to be much more cost-effective
than an SNG.

C. Scaled CBSC-Based Multiplication

One long-standing problem for SC multiplication is that
when two numbers are small, the relative error of the multi-
plication result can be very significant. To mitigate this issue,
a scaled CBSC-Multiplier has been proposed recently in [7].
In the scaled-CBSC multiplication method, an N-bit BN is
represented by a “scaled-binary” 2-tuple {M, N}. Here, the
scaling term has M bits, and the original data is then divided
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into 2¥ partitions. To make the binary data larger, we then
left shift it by N/2¥ bits or one partition at a time and we
try to make the scaled number to be larger than 0.5 for both
numbers so that the accuracy can be significantly improved
compared to no-scaled SC multiplication.

III. COUNTING-BASED SC DI1VISION DESIGN: CBDIV

In this section, we try to improve the current SC division
method from two main issues. The first issue is that the divi-
sion result varies when SN bitstreams are generated differently,
which is shown in Fig. 2. The second issue is that the current
SC division has a large operation latency.

To address these issues, we first present a novel divi-
sion method named CBDIV, standing for Counting-Based
Division. The central concept of CBDIV is to generate the
SN bitstream in a deterministic pattern to prevent the quotient
value from fluctuating across different SN bitstreams. Contrary
to CORDIV [18] or ISCBDIV [19], we do not need a
synchronizer or an expensive RNG-comparator structure to
ensure a strong correlation between two input SN bitstreams.
Instead, SN generation in CBDIV adopts a deterministic
pattern depicted in Fig. 3(a), which is immune to random
fluctuations. Similar to CORDIV [18], we assume the input
dividend is smaller than the divisor.

With the SN bitstream generated under a deterministic
pattern, the location of bit “1” is fixed. We can efficiently
arrange the dividend SN bitstream to promote as many and
quick 1-1, 0-0 pairs as possible, as the location of bit “1”
in the dividend SN bitstream is entirely determined according
to the divisor SN. This implies if a bit in divisor SN is “1,”
the bit in dividend SN at the corresponding location will also
be set to “1” to ensure all the 1-1 pairs are continuously
found. Hence, before Spividend €xhausts all bit “1”’s in the SN
bitstream, Spividend €ntirely mirrors Spiyisor- In simpler terms,
the appearance of the first 1-0 pair indicates that the dividend
(which is less than the divisor by design) has already exhausted
all the bit “1” and no more 1-1 pair remains. This can be
depicted in an example shown in the first two rows in Fig. 4(a)
Here, the value of the dividend SN Spividend and the divisor
SN Spivisor are 6/16 and 9/16, respectively.

As observable, the right parts of Spiyisor and Spividend i
the blue dash line block in Fig. 4(a) are identical after the
arrangement. Then, according to the CORDIV method [11],
the quotient SN bitstream SqQuotient Simply gains all its bit “1”s
in the right half at the third row in Fig. 4(a). A counter that
increases by 1 in every clock cycle suffices to procure the
binary form value, as shown in the 4th row in Fig. 4(a). It is
worth noting that the remaining bits outside the blue frame in
SQuotient are all bit “0.” As a result, we do not need to continue
counting and can terminate the process, thereby reducing the
computation time. The result now counts 10/16 = 0.625, which
is a reasonable approximation to the exact result 9/13=0.692.

The CBDIV method that we have developed essentially
requires three counters to complete the division process: two
up counters and one down counter, as depicted in Fig. 4(b).
One up counter is utilized as an FSM to generate the divisor
SN bitstream. This bitstream follows a similar low discrepancy
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Fig. 4. (a) New CBDIV concept. (b) New CBDIV hardware design.
(c) Optimized CBDIV design.

distribution as proposed in [5]. Since the two input bitstreams,
Shividend and Spivisor, are identical before the division process
concludes, we only need to generate one SN bitstream, Spivisor-
The other SN bitstream, Spividend, 1S copied from Spjyisor- The
second up counter is employed to convert the quotient SN
bitstream, Squotient, to binary form. It simply increments by
one in each clock cycle as the bits in Squotient are always “1”
before the division process concludes.

The down counter, with an initial value of Spividend - 2,
determines when to end the process. The enable signal “EN”
of the down counter is connected to the Spiyisorsignal, meaning
the down counter will decrement by one whenever a bit “1”
appears in Spivisor-

Upon observing the fourth and fifth rows in Fig. 4(a), we
notice that the FSM output is always one less than the output
quotient value before the process ends. This implies that we
can deduce the quotient from the FSM output value even
without a counter. Therefore, we combine the two up counters.
In light of the Spivisor generation, we retain the up counter used
as the FSM. When the division process finishes, we simply
increment the output of the FSM by one to obtain the quotient.
Now, we only require two counters to form our CBDIV design.
The optimized CBDIV design is shown in Fig. 4(c).

Note that in this work we use unipolar encoded SN.
The proposed divider can handle negative numbers by using
an extra sign bit comparison part and keeping the division
operation part unchanged. In future work, we would like to
explore the divider architecture for bipolar encoded SN to
further improve the robustness and error-tolerance.
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Fig. 5. (a) Error statistics for the original CBDIV method. (b) Error statistics
for FSCDIV on the same zoomed area.

IV. FURTHER EFFICIENCY ENHANCEMENT DESIGN:
FSCDIV

In this section, we present three innovative schemes of
the FSCDIV that further improve both the accuracy and the
latency of the CBDIV method. The method consists of a new
coordinated scaling scheme, a simple half bitstream reduction
scheme, and a novel selective counting method.

A. New Coordinated Scaling for Accuracy Improvement

As we mentioned, due to the natural intrinsic of SN
bitstream-based computing, the conventional SC computing
has a very large relative error when both input numbers
are small. Inspired by the scaling method that improves the
accuracy of SC multiplication in [7], we propose to scale up
the original small dividend and divisor, ahead of the original
SC division.

Different than the scaling process in SC multiplication,
which sacrifices latency for higher accuracy, the scaling SC
division will not only significantly improve accuracy, but
also benefit from latency reduction. This is because the
scaling scheme in SC division is different than that in SC
multiplication. This will be illustrated by two new schemes
introduced in Sections IV-B and IV-C, which leverages the
new scaling SC division to further reduce the latency without
a negative impact on accuracy.

For SC division, similar to the SC multiplication, when two
small numbers are involved, the resultant relative error can be
significant. Fig. 5(a) displays the error statistics of state-of-
the-art SC-based division, CBDIV method, with 7-bit inputs.
Assuming the dividend is always smaller than the divisor, only
the down right triangle area surrounded by the black dash
line (margin included) is meaningful. To show the area with a
large relative error more clearly, we zoom in on the marginal
area marked with a red block and show it on the right side
in Fig. 5(a). As we can see, CBDIV method suffers a large
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Fig. 6. Scaling block design to promise the divisor to be large enough.

relative error with a small divisor, especially when the divisor
is smaller than 0.5. Such error patterns also exist for existing
SC-based divisions. Because when two input values are small,
the number of “1” bits among the SN is rare, one bit counting
error can therefore cause a larger relative error.

To mitigate this issue, we introduce a scaling scheme to
scale the divisor and the dividend with the same ratio to avoid
a small divisor, which is illustrated in Fig. 6. We call this
coordinated scaling. Before introducing the detail of the new
scheme, we first show the relative error for FSCDIV on the
same zoomed area in Fig. 5(b). As we can see errors have
been substantially reduced across those areas.

The coordinated scaling process is carried out before the SC
division kernel. To determine whether the divisor is “small”
and how many times the divisor is required to be scaled
up, a leading one detector (LOD) is introduced to detect the
location of the first bit “1” (also called leading bit “1”) in the
divisor binary bitstream. Then depending on the location of
the leading bit “1,” we equally left shift both the divisor and
the dividend binary bitstream until the divisor’s leading bit “1”
is shifted to the first bit of the bitstream. It is obvious that after
scaling, the divisor is promised to be > 0.5. Then, the LD
bitstream of the divisor will start with a bit “1,” which means
even with the same counting strategy, the improved CBDIV
method now avoids the extra relative error no matter whether
the divisor is “small” or “large.”

Notice that by scaling the divisor and the dividend with a
same ratio «, as expressed in

Q = dividend/divisor = (dividend - ) /(divisor - @) (2)

the scaling related work is only an extra step conducted ahead
of SC division kernel. Such scaling has no influence on the
division quotient Q, which means no extra “scaling factor” is
needed, making the SC divisor easy to interface with other
binary computations. This is fundamentally different from the
scaling SC multiplication, in which the scaling scheme com-
plexes the SN number to a two-tuple of scalingfactor, SN. The
extra scaling factor in scaling multiplication has to be stored
and computed both before and after the SN multiplication
kernel.

We note that the proposed scaling method is different from
the scaling scheme proposed for the multiplication in [7] as
we do not have a special scaling item first. Specifically, the
scaled SC multiplication will scale up the input before the
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multiplication and then scale back/down the result. So there
are two scaling operations in the scaled SC multiplication, and
the data are stored in “scaled-binary” 2-tuple {M, N}, where
M is the scaling term. In contrast, the proposed scaled SC
division scales both dividend and divisor at the same time (so
called coordinated scaling) before the division operation. As
the scaling ratio is cancelled in the division operation, there
is no need for a second scaling to the division output.

B. New Half Bitstream Reduction Counting Strategy

The second idea is based on the observation that the
SN bitstream of the scaled divisor and dividend have fixed
patterns of bit “1” distribution, which can be leveraged by only
counting half the length of the bitstream instead of the entire
bitstream when computing the quotient.

Specifically, as mentioned in Section III, the quotient count-
ing value equals to Q - 2V for N-bit inputs. This value can be
also expressed as

0-2V=2N-—(1-0) 2" 3)

By observing Fig. 4(a), as the value Q - 2V actually equals to
the number of cycles in the right half of the bitstreams; the
value (1 — Q) - 2V equals to the number of cycles in the left
half. So calculating the value 2V — (1 — Q) -2V is equivalent to
doing down counting of the left half bitstreams with an initial
value of 2V,

Since the dividend SN stream is generated by copying the
right half of the divisor SN stream, the divisor and dividend SN
streams are completely the same in the right half. As proved
in Section III, all the 1-1 pairs will appear in the right half,
meaning that all the 1-0 pairs will occur in the left half of the
bit-steams. The termination conditions of the CBDIV method
can be written as: 1) start counting from the right side; 2) all
the 1-1 pairs have been used up; and 3) meet a 1-0 pair when
doing counting. The first 1-0 pair [when counting from the
right side, marked with a red circle in Fig. 4(a)] can be treated
as the boundary of two halves of the bitstreams. Alternatively,
we count from the left side and finish the quotient counting
when using up all the 1-0 pairs in the left half bitstreams.
The termination condition of the CBDIV method now can be
simplified to: doing down counting with an initial value of 2V
until the last 1-0 pair is counted.

We show the new counting scheme of the CBSC division in
Fig. 7. Note that the FSCDIV is counting 1-0 pairs in a left-
to-right order, thus the time flow direction in Fig. 7 is opposite
to the previous conventional right-to-left 1-1 pair counting
methods. Since the new counting scheme actually just counts
the bitstream from an opposite direction. The average latency
keeps the same (2¥~1), which can be expressed as

LatOrig =0- 2N
Latnew = (1 — Q) - 2V 4

where Latorig and Latnew represent the latency of the original
CBDIV method and the new counting scheme, respectively.
From (4), it is easy to derive that when Q > 0.5, Latyey will
be smaller than the average, outperforming Latore (shown in
case (i) in Fig. 7); while when Q < 0.5, Latney Will be worse
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Fig. 7. Counting strategy for the fast and scaled CBSC division.

than Latoyig, shown in case (ii) in Fig. 7. Since when Q < 0.5,
the first 2Y~! cycles which marked with gray color in case (ii)
in Fig. 7 are always promised to be counted. To accelerate the
counting, we can directly start from the middle point, which
will save 2V~1 cycles. Now, the latency of the new counting
strategy can be expressed as

Lat.  — 1-0 -2V >05)
New = 1 (0.5 - Q) - 2Y(0 < 0.5)

which will further be reduced to half of Latoyig.

To quickly determine whether the Q value is greater or less
than 0.5, we compute the difference between the divisor and
dividend via a binary subtraction, which is cheap. If the first
(most significant) bit of the difference is “1” then its equivalent
to the Q will be greater than 0.5. In this way, the hardware
cost for such a comparison should be marginal.

(&)

C. New Selective Counting Strategy

It turns out that the counting process can be further
improved. As mentioned in Section IV-A, by introducing the
scaling scheme, the divisor now is promised to be > 0.5.
According to the fixed bitstream pattern in the counter-based
SC design, the most significant binary bit xy_; (N-bit data)
will appear once every two cycles, so the 1-0 pair will occur
once every two cycles as shown in Fig. 7. As a result, we do
not need to count the xy_; bit in the bitstream. What we need
is just to count the other bit (x;, i 2 N — 1) in the adjacent
two cycles (marked with a blue square frame in each case in
Fig. 7). The reduced value for the down counting (this is a
special counter) in each cycle now is based on the value of a
2-bit data d (d[1:0])

d=xy_1+xG(#AN—-1)=1Ubl+xG£N—-1). (6)

Also, since xy—_; is promised to be “1,” it is no longer
needed to be generated in the divisor bitstream (marked
with gray color in Fig. 7). The FSM now only requires the
remaining N-7-bit (x[N-2:0]) data as the input, which will be
demonstrated in Fig. 8. We note that the stop condition for the
new counting process also requires to be adjusted. Since the
reduced value d can either be one or two in each cycle now,
after the last counting cycle, the remaining number of 1-0
pairs can either be one or zero. We show examples for each of
these two possibilities in Fig. 7. When the remaining number
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Fig. 8. Fast and scaled CBSC division design.

of 1-0 pairs is zero, shown in case (ii), we do not change the
quotient value and simply terminate the process. While when
the remaining number of 1-0 pairs is one [shown in case (i)]
as xy—_1 is promised to be “1” and no longer generated due to
the aforementioned selective counting strategy, the 1-0 pair in
the red circle in case (i) will not be counted. In these cases, we
terminate the process when the down counting value equals to
one, and further subtract one from the quotient value for the
compensation.

D. Hardware Design for the Proposed FSCDIV

We show the architecture of the fast and scaled CBSC
division design in Fig. 8. By comparing Fig. 8 with Fig. 4(b),
the down counter used for counting the remaining 1-1 pairs
in the original CBDIV design is now replaced with a specially
designed down counter to count the remaining 1-0 pairs with
an initial value of divisor - 2V — dividend - 2V, since we can
easily prove that

Ni; = dividend - 2V
Nio = divisor - Pl N1t
= divisor - 2V — dividend - 2V

—A-B (7)

where N11/Ng is the total number of the 1-1/1-0 pairs in the
bitstreams. For convenience, we set A = divisor - 2V, B =
dividend - 2V, A’ and B’ are the scaled inputs of the division
process. The specially designed down counter decreases one
or two depending on the input data of the “DEC” port, which
is represented by ddp. With the scaling block, A’ (scaled
divisor) is promised to be > 0.5 - 2¥. So the MSB (most
significant bit) of A’ (represented by a_,) is promised to
be “1,” which is no need to generate with the LD bitstream
generator (SNG) as mentioned before in Section IV-C. The
input of the SNG then is set to be N-I-bit. According to the
simplified counting scheme illustrated in Section IV-B, the
select signal [“SEL” in Fig. 4(b)] for the MUX, which is the
output of the FSM block (a down counter decrease one in each
cycle with an initial value of 2¥=! — 1/2¥=2, depending on
whether Q is larger or smaller than 0.5). Since there are only
two possible cases for the binary form of didy: 2°b10/2°b01,
we use an AND gate and a NAND gate with the inputs of
a;\,_l and the LD SN bit to obtain d; and dy, respectively.
And based on the improved counting scheme illustrated in
Section IV-C, the specially designed down counter will stop
counting until the counting value equals to one or zero. To
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save the resource, similar to the original CBDIV design, we
share the down counter which is the FSM block in the SNG to
obtain the quotient value Qgc. As the output value of the FSM
block actually is only half of the quotient value, we do 1-bit
left shifting operation. Also as mentioned in Section IV-C,
when we do selective counting, the remaining 1-0 pairs can
either be zero or one. Thus, we need further do a subtraction
operation of the shifted FSM output value by the counting
value (“CNT” port) of the specially designed down counter
after the termination of the SC division counting process to
obtain the quotient value.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we evaluate the proposed Counting-based
SC Divider, CBDIV as well as the Scaled Counting-based SC
Divider, FSCDIV in three aspects. We also compare CBDIV
against the binary logic baseline and state-of-the-art works.

A. Experimental Setup

In order to asses the performance of the proposed CBDIV
design, our work compared its error behavior and hardware
performance to a fixed-point divider that uses a long division
algorithm. The hardware performance of CBDIV was eval-
uated by measuring area, critical path, average latency (in
clock cycles), average delay, the ADP, power, and total energy
consumption. Additionally, CBDIV was compared to several
state-of-the-art works, such as the DFSMDIV (SC division
with deterministic FSMs) [24], CORDIV [18], JKSSDIV [20],
and ISCBDIV [19], all utilizing BN inputs with 7-bit precision
(corresponding to a 128-bit length bitstream).

The next step we evaluate the further improved proposed
FSCDIV design. We show the improvements of the error
behavior and the hardware performance of FSCDIV compared
to the CBDIV. We also compare with a fixed-point divider
using long division algorithm.

The dividers were implemented in Verilog and synthesized
with Synopsys Design Compiler using EDK 32-nm standard
cell library [26]. To ensure a reasonable comparison, all
dividers have binary inputs and outputs. For the in-stream
SC-based division designs, SNGs were added to generate SN
bitstreams, and a counter was included to count the value of
the resultant SN bitstream. The hardware evaluation is demon-
strated in Table I. To ensure a justified power and energy
comparison, all dividers share a fixed 100-MHz frequency
input clock. Energy consumption was evaluated according to
the overall execution time and the power consumed by the
divider during the entire division process.

We use RMSE to evaluate the error behavior. The behavioral
emulation result for all the SC-based dividers is listed in
Table 1. In MATLAB, we use the uniform random generator to
obtain the dividend in the range of [0, 0.5], and the divisor in
the range of [0.5, 1] for over 100000 iterations and compute
the RMSE.

B. Hardware Performance

1) Hardware Performance Analysis for CBDIV: Assessing
the second column from Table I, it is noticeable that our
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TABLE I
HARDWARE PERFORMANCE FOR SC AND FIXED-POINT DIVIDERS

Dividers Area (um?) | Critical Path (ns) | Avg. Latency (cycles) | Avg. Delay (ns) | ADP | Power (uW) | Avg. Energy (pJ)
Fixed-Point 1090 3.16 17 53.72 58555 41.4 7.038
DFSMDIV [24] 520 1.24 128 158.72 82534 22.3 28.544
CORDIV [138] 381 0.94 128 120.32 45842 14.7 18.765
JKSSDIV [20] 285 1.22 128 156.16 44506 11.8 15.040
ISCBDIV [19] 394 0.98 128 125.44 49423 15.8 20.211
CBDIV (proposed) 299 1.72 64 110.08 32914 10.9 6.976
FSCDIV (proposed) 576 3.00 16 48.00 27648 24.0 3.837
TABLE 11

HARDWARE PERFORMANCE OF FSCDIV AND FIXED-POINT DIVIDERS OVER DIFFERENT BITS

introduced stochastic divider, CBDIV [27], excels in area
efficiency among all present stochastic dividers. It achieves
a reduction in area by 72.6% when juxtaposed with the
fixed-point divider (binary logic) baseline and surpasses the
performance of current leading stochastic dividers by a
minimum of 21.5%. Since the CBDIV design’s latency is
influenced by the dividend value, as illustrated in Section III,
it exhibits variable latency based on input data. This is a
departure from the fixed latency observed in prior SC division
designs at a given precision level. Therefore, in Table I, we
utilize Avg.Latency and Avg.Delay to quantify the average
computation time for CBDIV, and these metrics are compared
against preceding work. Column 4 shows that CBDIV reduces
average latency by 65.6%, and column 5 reveals that the
Avg.Delay of CBDIV stands at 75.68 ns, exceeding the
performance of other contemporary works by at least 37.1%.
While the latency of CBDIV is 40.9% greater than that of
the fixed-point divider, the ADP is significantly lower (61.4%
less), and shows a minimum improvement of 50.6% compared
to past studies, as demonstrated in column 6.

Reviewing the final two columns of Table I, it is apparent
that CBDIV surpasses all other listed division designs in terms
of power and energy consumption. When it comes to power
consumption, CBDIV is superior to current leading designs by
25.9%.

For the energy consumption aspect, we note that in-stream
SC-based division designs will cost even more energy than
the fixed-point divider when SNGs and the counter are taken
into consideration. CBDIV design has solved this problem by
improving the computing latency, achieving a 31.9% energy
reduction compared to the fixed-point divider baseline.

In Table II, we evaluate the hardware performance of the
proposed FSCDIV over fixed-point divider on various bit-
widths. As we can see that FSCDIV is superior to the
fixed-point divider in area, delay, ADP, power, and energy
through 6-8 bit, at a very small cost of accuracy. But we also
observe that these advantage or benefits will become smaller as
the bit-width increases, and will eventually vanish at a further
higher bit-width, which is typical for SC.

Dividers Area (um?) | Critical Path (ns) | Avg. Latency (cycles) | Avg. Delay (ns) | ADP | Power (uW) | Avg. Energy (pJ)
Fixed-Point 6bits 990 3.14 14 43.96 43520 34.77 4.87
Fixed-Point 7bits 1090 3.16 17 53.72 58555 41.40 7.038
Fixed-Point 8bits 1249 3.66 19 69.54 86855 46.73 8.87

FSCDIV (proposed) 6bits 465 2.88 8 23.04 10713 17.03 1.36

FSCDIV (proposed) 7bits 576 3.00 16 48.00 27648 24.0 3.837

FSCDIV (proposed) 8bits 683 3.30 32 105.6 72124 25.42 8.134
TABLE III

DIFFERENT OPTIMIZATION EFFECTS ON LATENCY

Applied Strategies Avg.Latency(cycles)
None (CBDIV) (baseline) 63.8
Coordinated scaling scheme 49.8
Coordinated scaling scheme; Selective counting 32.17
Coordinated scaling scheme; Half bitstream reduction 25.35
All (FSCDIV) 16.14

2) Hardware Performance Analysis for FSCDIV: As the
further improved FSCDIV design ameliorates the latency
and the error behavior from CBDIV approach by adding
and replacing some components, it will inevitably introduce
hardware resource overheads. However, by observing the
fourth and fifth columns in Table I, we notice that FSCDIV
can significantly reduce 75.0% latency and 56.4% delay when
compared with the CBDIV. The most important point is
that for the ADP aspect, FSCDIV outperforms the CBDIV
baseline by 16.0%, which means the proposed FSCDIV design
performs much better on the overall hardware performance
evaluation. The FSCDIV even shows a smaller computing
latency and delay when compared to the fixed-point divider,
and improves the area and the ADP by 47.2% and 52.8%,
respectively.

From the last two columns in Table I, we observe that
FSCDIV though does not perform the best in power consump-
tion among all the listed dividers, it has the lowest total energy
consumption among all the listed dividers in Table I, improv-
ing 45.0% energy consumption when compared to the CBDIV
baseline. Furthermore, we separately evaluate the impact of
the three proposed FSCDIV optimization strategies on latency
in Table III. The baseline will be the original CBDIV without
optimizations. As we add the three optimization strategies one
by one, we can see the average latency is mitigated from 63.8
cycles to 16.14 cycles.

C. Error Behavior Analysis and Comparison

Figs. 10 and 11(a) and (b) show the accuracy compari-
son among the proposed CBDIV and the further improved
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Fig. 11.  Error behavior of the proposed SC dividers compare with other
SOTA SC dividers as well as the fixed-point divider under 7-bit. (a) Error
behavior of the proposed CBDIV under 4-8 bit. (b) Error behavior of the
proposed FSCDIV under 4-8 bit.

FSCDIV methods with the baseline fixed-point divider
and existing approaches: CORDIV [18], JKSSDIV [20],
ISCBDIV [19], and DFSMDIV [24]. Linear feedback shift
register (LFSR) is utilized to generate SN bitstreams for
binary inputs in state-of-the-art approaches for comparison.
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The floating-point output quotient is used as the “golden”
result. We show the results over five nonoverlapped output
value ranges as well as the average RMSE value obtained from
100 000 computations for all the algorithms, all possible input
operand values are equally taken into account.

1) Error Behavior of CBDIV: An examination of Fig. 10
reveals CBDIV surpasses other contemporary works across all
five nonoverlapping output value domains. When contrasted
with DFSM-DIV, which possesses the smallest average RMSE
value, CBDIV demonstrates an improvement of 77.8%. To add
further context, it is worth mentioning that in Fig. 10, CBDIV
exhibits comparable RMSE values across varied output value
domains, a characteristic that sets it apart from the results
achieved by existing work. This discrepancy can be attributed
to the inherent attributes of distinct SC division methodologies.
Moreover, Fig. 11(a)provides a comparison of CBDIV’s error
behavior against the fixed-point baseline and other leading
works, particularly with respect to varying bitstream lengths
(precision). From Fig. 11(a), it can be observed that even at
a 5-bit precision, CBDIV’s average RMSE value outperforms
DFSMDIV’s 7-bit precision by 15.4%.

2) Error Behavior of FSCDIV: From Fig. 11(b), the fur-
ther improved FSCDIV method ameliorating 61.2% accuracy
when compared to the CBDIV. The FSCDIV method even
demonstrates a very small gap between the fixed-point design
on average RMSE.

D. Comparison in Digital Image Processing Application

We implement the proposed CBDIV and further enhanced
FSCDIV method for a digital image process application,
Contrast Stretch to compare the performance against the
baseline design and state of art works in a real application
scenario.

The input binary precision of the proposed FSCDIV,
CBDIV, as well as state-of-the-art ISCBDIV [19] and
DFSMDIV [24] division methods are all 8-bit, as the pixels
of the JPEG format are in 8-bit binary precision. Thus, the SC
bitstream length in this application will be 256-bit.

The contrast-stretched pixel G(x,y) of an arbitrary input
image pixel /(x, y) can be calculated as

_ I(x,y) — Imin

G(x,y) = - 255. ®)

Imax — Imin

Imax and Iy, represent the largest and smallest pixel values
in image I(x,y). It is important to notice that we initially
carry out the division of ([/(x, ¥) — Iminl/[Imax — Imin]), as SC
dividers invariably necessitate the dividend to be smaller than
the divisor. Additionally, we employ the CBSC method for
multiplication as detailed in Section II-B. The number 255
is conceptualized as 255/256 - 28, leading to a w value of
255/256 in the CBSC multiplier and the operation will require
255 clock cycles for completion. Owing to the deterministic
pattern utilized in the CBSC method, all bit “1”s in the
divisor ([1(x,y) — Iminl/[Imax — Imin]) bitstream materialize
within these 255 clock cycles, which implies we only need
to tally the number of bit “1”s in the divisor bitstream. For
CBDIV and FSCDI1V, the counting procedure concludes syn-
chronously with the termination of the corresponding divider.
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TABLE IV
PSNR FOR CONTRAST STRETCH APPLICATION USING SC DIVIDERS

PSNR (dB)
ISCBDIV | DFSMDIV | CBDIV (proposed) | FSCDIV (proposed) | Fixed-Point
Lena 26.39 24.18 41.78 46.46 59.08
Portrait 24.85 27.33 41.73 42.81 58.56
‘Woman 27.64 25.79 37.22 43.85 58.80
Map 26.84 36.35 49.67 49.81 58.73

Fig. 12. Example of the original image and contrast stretch results operated
by various dividers. (a) Original image. (b) Fixed-point divider. (c) ISCBDIV.
(d) DFSMDIV. (e) CBDIV. (f) FSCDIV.

No further action is mandated and we directly output the
CBDIV or FSCDIV result as the G(x, y) value. However, as
ISCBDIV and DFSMDIV produce SN bitstreams, we simply
append a counter to procure G(x, y).

We apply the contrast stretch operation to a number of input
images and use peak signal-to-noise ratio (PSNR) defined
in (9) to assess the output image quality. Image processing
results subjected to the contrast stretching with a floating-point
divider are used as the baseline. Table IV presents the PSNR
values for all tested images using different SC dividers. It is
observable that the proposed CBDIV method surpasses the
two leading SC dividers in all tested images, and it enhances
the image quality by an average of 15.18 dB

Ir211ax (9)
MSE(Gbaselinev Gtarget) '

The further enhanced FSCDIV ameliorates the output image

quality with extra 3.13 dB from the proposed CBDIV method.

PSNR = 10 - logy,

VI. CONCLUSION

In this article, we proposed two novel SC divider designs,
CBDIV and FSCDIV, improving SC division in both speed
and accuracy. CBDIV generated SNs in a deterministic
pattern, resulting in higher accuracy and utilizing CBSC’s
efficiency to perform division. FSCDIV further improved
CBDIV by reducing the overall latency to one-fourth and
improved accuracy through a new scaling method and selective
counting strategy. Our experimental results demonstrated that
the proposed CBDIV, implemented in 32-nm technology,
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outperformed state-of-the-art works by 77.8% in accuracy,
37.1% in delay, 21.5% in area, 50.6% in ADP, and 25.9% in
power. Additionally, CBDIV reduced energy consumption by
31.9% when compared to the fixed-point division baseline and
was significantly more energy-efficient than existing SC-based
dividers for binary inputs and outputs required in efficient
image processing implementations. (Note: this information
may require updating based on more recent technology nodes
or advances in the field.) Moreover, we demonstrated that
FSCDIV could improve delay by 56.4%, ADP by 16.0%,
energy consumption by 45.0%, and accuracy by 61.2%. We
also evaluated the proposed CBDIV and FSCDIV designs
in a contrast stretch image processing workload and showed
that it improved image quality by 18.3 dB on average when
compared to state-of-the-art works.
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