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Abstract—This article presents novel designs for stochastic
computing (SC)-based dividers, which promise low latency, high
energy efficiency, as well as high accuracy for error-tolerant
arithmetic operations. We first introduce CBDIV, which is
based on the recently proposed counter-based SC concept and
correlation-based SC to perform division. Then, we introduce
FSCDIV, which further improves the accuracy of CBDIV by
applying a scaling strategy and mitigating the latency by
optimizing the counting scheme. The FSCDIV will equally scale
up the divider and dividend before the division process, and
thereby avoid large relative error when both input values of
the divider and dividend are small. The proposed fast counting
method accelerates FSCDIV by counting new bit pair (0–1 pair)
among only half of the stochastic number bitstream instead of
the entire bitstream, resulting in almost half of the counting
latency and one-fourth of the overall division operation latency.
The experimental results demonstrate that the proposed CBDIV,
implemented in a 32-nm technology node, outperforms state-of-
the-art works by 77.8% in accuracy, 37.1% in delay, 21.5% in
area, 50.6% in area delay product (ADP), and 25.9% in power
consumption. Compared to the fixed-point division baseline,
CBDIV also achieves a 31.9% reduction in energy consumption
and is more energy efficient than existing SC-based dividers for
binary inputs and outputs required in efficient image process-
ing implementations. Moreover, we demonstrate that FSCDIV
improves delay by 56.4%, ADP by 16.0%, energy consumption
by 45.0%, and accuracy by 61.2%. We also evaluate CBDIV and
FSCDIV designs in a contrast stretch image processing workload,
and the results show that the proposed designs can improve the
image quality by up to 18.3 dB on average when compared to
state-of-the-art works.

Index Terms—Approximate computing, arithmetic circuit
design, division, stochastic circuit design, stochastic computing
(SC).

I. INTRODUCTION

S
TOCHASTIC computing (SC) has emerged as a potential

alternative to traditional binary computing, offering an

inexpensive and error-tolerant solution. SC’s superior error

resilience, its more balanced performance tradeoffs, includ-

ing accuracy, energy, and its economical implementation
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of intricate arithmetic tasks, provide it a clear edge over

binary designs. SC’s simplicity allows numerous arithmetic

tasks, like multiplication, to be implemented using merely an

AND operation, or an XNOR gate for bipolar cases. These

characteristics have paved the way for its use in various

error-resistant workloads, such as error-correcting codes [1],

image processing applications [2], and deep neural networks

(DNNs) [3], [4], [5], [6], [7], [8], [9]. Furthermore, some

recent research extended SC applications. For instance, [10]

applied SC to numerical simulation, [11] integrated SC to

sound source localization system, and [12] applied SC to build

energy-efficient Bayesian neural networks.

Despite these advantages, the ease of SC’s hardware imple-

mentation is not without challenges: for starters, conventional

SC requires 2N cycles to manage N-bit precision binary

inputs, a potentially lengthy process particularly for large N,

making SC more fitting for applications that can tolerate

lower precision. Second, the precision of SC tasks hinges on

the randomness of two bitstreams (ideally uncorrelated) in

conjunction with the length of the bitstream. Consequently,

a substantial body of research has been initiated to devise

top-tier random number generators (RNGs) showcasing min-

imal or zero correlation, such as low-discrepancy (LD)

sequences [13], [14] and bit scrambling methods [15], [16].

More recently, an advanced and precision-oriented SC

multiplier has been introduced to address the two issues

mentioned above in the traditional SC [5]. This new multiplier,

instead of resorting to an AND gate for multiplying two

bitstreams, essentially keeps track of the “1”s in one multipli-

cand bitstream based on the value of the other multiplicand

bitstream. The bitstream that is counted can be determinis-

tically created based on a finite state machine (FSM). Thus,

the overall design boils down to two counters coupled with

a simple bitstream generator. We have named this design

the counting-based SC multiplier (CBSC-Multiplier). The

CBSC-Multiplier comes with two vital advantages: first, it

eliminates the need for bitstream randomness without any

accuracy compromise, proving highly compatible with the

correlation demands of existing SC-based methods. Second,

it potentially outperforms the traditional SC due to its ability

to execute early termination (partial counting), a feature not

readily achievable in the conventional SC methods. Although

Wu et al. [17] proposed normalized stability, a universe

measurement metric to evaluate the circuit’s potential for early

termination, it is not optimized for specific SC operation

design.
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In the realm of division operations underpinned by stochas-

tic computing (SC), current research suggests that the tasks

can be conducted considerably more effectively when the

two input bitstreams exhibit a high degree of correlation,

as division can be approximated by calculating the condi-

tional probability of the two streams [18], [19]. To reconcile

the distinct correlation prerequisites between traditional SC

divisions, a translation module, referred to as a skewed

synchronizer, was presented, albeit at the expense of increased

area overheads [19]. Chu et al. [20] applied a JK flip flop-

based SC divider, which has some hardware improvement in

certain applications. Asadi et al. [21] proposed an LD SC

method to reduce the hardware cost and improve the accuracy.

Shaowei et al. [22] proposed to exploit the maximally corre-

lated input bitstreams to improve the accuracy with almost no

extra hardware cost.

Inspired by the aforementioned correlated division and

FSM-based deterministic bitstream generation, in this article,

we propose novel SC-based division designs, our main key

contributions are as follows.

1) We first introduce CBDIV design, which takes advantage

of both the correlation stipulation inherent to established

SC-based division approaches and the more efficient

counting-based SC (CBSC) framework, resulting in a

much more efficient partial counting process.

2) Then, we introduce FSCDIV design, which further

extends CBDIV by introducing three new ideas—a new

scaling method for both the divisor and dividend to

improve accuracy, reducing half of the counting latency

by counting bit pairs (0–1 pair), and a new selective

counting strategy.

3) The experimental results demonstrate that the proposed

CBDIV design, implemented in a 32-nm technology

node, outperforms state-of-the-art SC dividers in terms

of delay (by 37.1%), area (by 21.5%), area delay product

(ADP) (by 50.6%), and power (by 25.9%). CBDIV also

reduces energy consumption by 31.9% when compared

to the fixed-point division design. To evaluate the error

behavior of CBDIV, we use root-mean-square error

(RMSE) and compare it with state-of-the-art works

and the fixed-point divider. Our numerical results show

that CBDIV outperforms state-of-the-art works by at

least 77.8% on average. Furthermore, CBDIV with 5-bit

precision can outperform state-of-the-art works with

7-bit precision in accuracy by 15.4%. Upon improving

CBDIV, FSCDIV further enhances delay (by 56.4%),

ADP (by 16.0%), energy consumption (by 45.0%), and

accuracy (by 61.2%) over the CBDIV design. We also

evaluate the CBDIV and the FSCDIV in a contrast

stretch image processing workload, demonstrating that

the proposed designs improve image quality by an aver-

age of 20.6 and 23.5 dB, respectively, when compared

to state-of-the-art works baseline.

The proposed CBSC-based division design can be extrap-

olated to additional nonlinear arithmetic tasks, paving the

way for more extensive CBSC. The CBDIV and FSCDIV

can integrate effortlessly with CBSC multiplication, rendering

them suitable for hybrid computing in scenarios where both

binary and SC bitstreams are essential to optimize different

arithmetic operations for efficiency.

This article is organized as follows. Section II reviews some

recently proposed SC division methods and a state-of-the-art

work as preliminary knowledge. Sections III and IV present

the proposed CBDIV and FSCDIV design. Experimental

results for the hardware performance, error metrics of FSCDIV

design and the comparison with other SC dividers, fixed-

point dividers, and a state-of-the-art work are summarized in

Section V. Section VI concludes this article.

II. REVIEW OF RELATED WORK

This section provides an overview of several pertinent stud-

ies that are relevant to the newly proposed division designs.

A. Traditional SC-Based Division Design

Conventional SC division adheres to Gaines’s model [23],

which employs an up–down counter to achieve a state of

equilibrium when the values of two stochastic numbers (SNs),

x1,SN and x2,SN · pz,SN , are equal, where pz,SN equals to x1,SN

divided by x2,SN . Therefore, it necessitates SC multiplication

for x2,SN · pz,SN . Gaines’s design was found to require

an extended period to converge [18], and it mandated that

both the dividend and the divisor be uncorrelated. A recent

development by Temenos and Sotiriadis [24] addressed these

shortcomings through the implementation of a deterministic

FSM-based stochastic division design (DFSMDIV), which dis-

pelled the need for independence between the input divisor and

dividend SN bitstreams. Nevertheless, DFSMDIV demands an

average of at least 2 orders of magnitude (102) clock cycles

to converge and fails to yield any notable improvements in

accuracy.

Another strategy involves establishing the correlation

between the divisor and the dividend in the SC bitstream.

Chen and Hayes [18] introduced CORDIV, uncovering that

division could be conceptualized as the conditional probability

of two SN numbers: PX1|X2
. The corresponding formula can

be simplified as follows:

PX1|X2
= px1,x2

/px2
= x1,SN/x2,SN . (1)

When x1 and x2 share a strong correlation, px2
represents

the event of x2, and px1,x2
stands for the joint event of x1

and x2. Consequently, the output probability PQuotient can be

articulated by the ratio of the number of “1” bits in the divi-

dend and divisor SN bitstreams: N1
Dividend/N1

Divisor. Therefore,

CORDIV necessitates that the divisor always surpasses the

dividend to prevent the quotient from exceeding one. This

research substantiated that, when fed with highly correlated

input SN bitstreams, CORDIV could yield significantly more

precise results in comparison with Gaines’ design [23].

However, the precision of the CORDIV method is con-

tingent upon the quality of the input SN bitstreams. The

framework of the CORDIV design is shown in Fig. 1.

Furthermore, the SN generator (SNG) shown in Fig. 1 [18]

was proposed to mitigate this problem. However, the accuracy

still depends on the distribution of bit “1” in input SN

bitstreams, shown in Fig. 2, which illustrates that the position
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Fig. 1. CORDIV design diagram.

Fig. 2. CORDIV method input SN bitstreams with different bit distribution.
(a) Quotient result with appropriate bit distribution. (b) Quotient result with
extreme bit distribution.

of bit “1” in the divisor can significantly influence the accuracy

of the quotient.

Specifically, the two input probabilities are 3/16 and 5/16,

respectively, with an exact quotient result of 0.6. Based on

Fig. 1, when the comparator outputs of the dividend and

divisor pair are 0–0 or 1–0, the quotient will output the

previous value. When the pair is 1–1, the quotient output will

be “1” and when the pair is 0–1, the output will be “0.”

Based on this observation, given the two different bitstreams of

dividends and divisors as shown in Fig. 2, the final results can

be quite different. Specifically for the Fig. 2(b) case, with an

extreme bit “1” distribution, where too many 0–0 pairs appear

between a 1–0 pair and the following 1–1 pair, CORDIV

computes Zw = 5/16 = 0.3125, which is a significant deviation

from the exact result.

Adding a skewed synchronizer could have improve the

accuracy, but still not enough, especially in certain output

value ranges [19]. Moreover, all these SC-based division

designs encounter issues of accuracy variation across different

output value ranges and latency issues, with an N-bit binary

input requiring 2N cycles to complete the computation process,

a characteristic drawback of SC implementation. Additionally,

energy consumption escalates when the inputs and outputs

are in binary form, necessitating an extra interface with

other computational components typically found in image

processing applications [25].

B. Counter-Based SC Multiplication

Counter-based SC was basically proposed to mitigate sev-

eral shortcomings of traditional SC methods by avoiding the

random bitstream.

Assuming the precision is n-bit for the two provided binary

numbers (BNs) x and w, which both lie in the range of

[0, 1], the traditional SC multiplier using an AND gate (for

unipolar encoding) will take 2n, equivalent to the length of the

Fig. 3. (a) CBSC-based SNG which generates SN bitstream in a deterministic
way. (b) CBSC concept. (c) CBSC multiplication method.

SN bitstream, cycles to complete the task. To enhance this,

Sim and Lee [5] presented a CBSC multiplier design with

remarkable accuracy. The multiplier encompasses two counters

and an FSM-based SNG, as demonstrated in Fig. 3(c). The

SNG is utilized to generate an LD SN bitstream of x.

The authors proposed a deterministic method for this. The

technique evenly distributes bit xi−1, which is the ith bit of x,

based on its binary weight 2i−1. For instance, if i = 3, then

x2 will appear four times in the resultant SN, as depicted in

Fig. 3(a). This type of SN generation can be simplified and

implemented by an FSM and a MUX as shown in Fig. 3(a).

The FSM generates a specific bitstream for the given binary

values of the data, which is 1101 in the figure. The output SN

bitstream is generated by copying the bit values of the input

BN with the order of X3 X2 X3 X1 - X3 X2 X3 X0 - X3 X2

X3 X1 - X3 X2 X3 0, and the FSM will generate the value

sequence of 3 2 3 1 - 3 2 3 0 - 3 2 3 1 - 3 2 3.

Since SC multiplication is merely an AND operation, if

the SN bitstream for w is arranged to be a sequence of

“1”s followed by several “0”s, as illustrated in Fig. 3(b), the

multiplication merely requires counting the first w · 2n bits

of the bitstream, corresponding to those bits “1,” and does

not need to count the other half of the output bitstream,

corresponding to those bits “0.”

Therefore, the entire counting operation demands only the

same latency to complete, significantly reducing computing

time. The authors employed a down counter to materialize this

concept. Using w · 2n as the starting value, the down counter

decreases by one in each clock cycle. Once it hits “zero,”

the process concludes. Consequently, this design is more

straightforward than a conventional SNG (typically utilizing

Linear Feedback Shift Registers) and replaces AND gates with

a down counter, which proves to be much more cost-effective

than an SNG.

C. Scaled CBSC-Based Multiplication

One long-standing problem for SC multiplication is that

when two numbers are small, the relative error of the multi-

plication result can be very significant. To mitigate this issue,

a scaled CBSC-Multiplier has been proposed recently in [7].

In the scaled-CBSC multiplication method, an N-bit BN is

represented by a “scaled-binary” 2-tuple {M, N}. Here, the

scaling term has M bits, and the original data is then divided
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into 2M partitions. To make the binary data larger, we then

left shift it by N/2M bits or one partition at a time and we

try to make the scaled number to be larger than 0.5 for both

numbers so that the accuracy can be significantly improved

compared to no-scaled SC multiplication.

III. COUNTING-BASED SC DIVISION DESIGN: CBDIV

In this section, we try to improve the current SC division

method from two main issues. The first issue is that the divi-

sion result varies when SN bitstreams are generated differently,

which is shown in Fig. 2. The second issue is that the current

SC division has a large operation latency.

To address these issues, we first present a novel divi-

sion method named CBDIV, standing for Counting-Based

Division. The central concept of CBDIV is to generate the

SN bitstream in a deterministic pattern to prevent the quotient

value from fluctuating across different SN bitstreams. Contrary

to CORDIV [18] or ISCBDIV [19], we do not need a

synchronizer or an expensive RNG-comparator structure to

ensure a strong correlation between two input SN bitstreams.

Instead, SN generation in CBDIV adopts a deterministic

pattern depicted in Fig. 3(a), which is immune to random

fluctuations. Similar to CORDIV [18], we assume the input

dividend is smaller than the divisor.

With the SN bitstream generated under a deterministic

pattern, the location of bit “1” is fixed. We can efficiently

arrange the dividend SN bitstream to promote as many and

quick 1–1, 0–0 pairs as possible, as the location of bit “1”

in the dividend SN bitstream is entirely determined according

to the divisor SN. This implies if a bit in divisor SN is “1,”

the bit in dividend SN at the corresponding location will also

be set to “1” to ensure all the 1–1 pairs are continuously

found. Hence, before SDividend exhausts all bit “1”s in the SN

bitstream, SDividend entirely mirrors SDivisor. In simpler terms,

the appearance of the first 1–0 pair indicates that the dividend

(which is less than the divisor by design) has already exhausted

all the bit “1” and no more 1–1 pair remains. This can be

depicted in an example shown in the first two rows in Fig. 4(a)

Here, the value of the dividend SN SDividend and the divisor

SN SDivisor are 6/16 and 9/16, respectively.

As observable, the right parts of SDivisor and SDividend in

the blue dash line block in Fig. 4(a) are identical after the

arrangement. Then, according to the CORDIV method [11],

the quotient SN bitstream SQuotient simply gains all its bit “1”s

in the right half at the third row in Fig. 4(a). A counter that

increases by 1 in every clock cycle suffices to procure the

binary form value, as shown in the 4th row in Fig. 4(a). It is

worth noting that the remaining bits outside the blue frame in

SQuotient are all bit “0.” As a result, we do not need to continue

counting and can terminate the process, thereby reducing the

computation time. The result now counts 10/16 = 0.625, which

is a reasonable approximation to the exact result 9/13=0.692.

The CBDIV method that we have developed essentially

requires three counters to complete the division process: two

up counters and one down counter, as depicted in Fig. 4(b).

One up counter is utilized as an FSM to generate the divisor

SN bitstream. This bitstream follows a similar low discrepancy

(a)

(b)

(c)

Fig. 4. (a) New CBDIV concept. (b) New CBDIV hardware design.
(c) Optimized CBDIV design.

distribution as proposed in [5]. Since the two input bitstreams,

SDividend and SDivisor, are identical before the division process

concludes, we only need to generate one SN bitstream, SDivisor.

The other SN bitstream, SDividend, is copied from SDivisor. The

second up counter is employed to convert the quotient SN

bitstream, SQuotient, to binary form. It simply increments by

one in each clock cycle as the bits in SQuotient are always “1”

before the division process concludes.

The down counter, with an initial value of SDividend · 2N ,

determines when to end the process. The enable signal “EN”

of the down counter is connected to the SDivisorsignal, meaning

the down counter will decrement by one whenever a bit “1”

appears in SDivisor.

Upon observing the fourth and fifth rows in Fig. 4(a), we

notice that the FSM output is always one less than the output

quotient value before the process ends. This implies that we

can deduce the quotient from the FSM output value even

without a counter. Therefore, we combine the two up counters.

In light of the SDivisor generation, we retain the up counter used

as the FSM. When the division process finishes, we simply

increment the output of the FSM by one to obtain the quotient.

Now, we only require two counters to form our CBDIV design.

The optimized CBDIV design is shown in Fig. 4(c).

Note that in this work we use unipolar encoded SN.

The proposed divider can handle negative numbers by using

an extra sign bit comparison part and keeping the division

operation part unchanged. In future work, we would like to

explore the divider architecture for bipolar encoded SN to

further improve the robustness and error-tolerance.
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(a)

(b)

Fig. 5. (a) Error statistics for the original CBDIV method. (b) Error statistics
for FSCDIV on the same zoomed area.

IV. FURTHER EFFICIENCY ENHANCEMENT DESIGN:

FSCDIV

In this section, we present three innovative schemes of

the FSCDIV that further improve both the accuracy and the

latency of the CBDIV method. The method consists of a new

coordinated scaling scheme, a simple half bitstream reduction

scheme, and a novel selective counting method.

A. New Coordinated Scaling for Accuracy Improvement

As we mentioned, due to the natural intrinsic of SN

bitstream-based computing, the conventional SC computing

has a very large relative error when both input numbers

are small. Inspired by the scaling method that improves the

accuracy of SC multiplication in [7], we propose to scale up

the original small dividend and divisor, ahead of the original

SC division.

Different than the scaling process in SC multiplication,

which sacrifices latency for higher accuracy, the scaling SC

division will not only significantly improve accuracy, but

also benefit from latency reduction. This is because the

scaling scheme in SC division is different than that in SC

multiplication. This will be illustrated by two new schemes

introduced in Sections IV-B and IV-C, which leverages the

new scaling SC division to further reduce the latency without

a negative impact on accuracy.

For SC division, similar to the SC multiplication, when two

small numbers are involved, the resultant relative error can be

significant. Fig. 5(a) displays the error statistics of state-of-

the-art SC-based division, CBDIV method, with 7-bit inputs.

Assuming the dividend is always smaller than the divisor, only

the down right triangle area surrounded by the black dash

line (margin included) is meaningful. To show the area with a

large relative error more clearly, we zoom in on the marginal

area marked with a red block and show it on the right side

in Fig. 5(a). As we can see, CBDIV method suffers a large

Fig. 6. Scaling block design to promise the divisor to be large enough.

relative error with a small divisor, especially when the divisor

is smaller than 0.5. Such error patterns also exist for existing

SC-based divisions. Because when two input values are small,

the number of “1” bits among the SN is rare, one bit counting

error can therefore cause a larger relative error.

To mitigate this issue, we introduce a scaling scheme to

scale the divisor and the dividend with the same ratio to avoid

a small divisor, which is illustrated in Fig. 6. We call this

coordinated scaling. Before introducing the detail of the new

scheme, we first show the relative error for FSCDIV on the

same zoomed area in Fig. 5(b). As we can see errors have

been substantially reduced across those areas.

The coordinated scaling process is carried out before the SC

division kernel. To determine whether the divisor is “small”

and how many times the divisor is required to be scaled

up, a leading one detector (LOD) is introduced to detect the

location of the first bit “1” (also called leading bit “1”) in the

divisor binary bitstream. Then depending on the location of

the leading bit “1,” we equally left shift both the divisor and

the dividend binary bitstream until the divisor’s leading bit “1”

is shifted to the first bit of the bitstream. It is obvious that after

scaling, the divisor is promised to be ≥ 0.5. Then, the LD

bitstream of the divisor will start with a bit “1,” which means

even with the same counting strategy, the improved CBDIV

method now avoids the extra relative error no matter whether

the divisor is “small” or “large.”

Notice that by scaling the divisor and the dividend with a

same ratio α, as expressed in

Q = dividend/divisor = (dividend · α)/(divisor · α) (2)

the scaling related work is only an extra step conducted ahead

of SC division kernel. Such scaling has no influence on the

division quotient Q, which means no extra “scaling factor” is

needed, making the SC divisor easy to interface with other

binary computations. This is fundamentally different from the

scaling SC multiplication, in which the scaling scheme com-

plexes the SN number to a two-tuple of scalingfactor, SN. The

extra scaling factor in scaling multiplication has to be stored

and computed both before and after the SN multiplication

kernel.

We note that the proposed scaling method is different from

the scaling scheme proposed for the multiplication in [7] as

we do not have a special scaling item first. Specifically, the

scaled SC multiplication will scale up the input before the
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multiplication and then scale back/down the result. So there

are two scaling operations in the scaled SC multiplication, and

the data are stored in “scaled-binary” 2-tuple {M, N}, where

M is the scaling term. In contrast, the proposed scaled SC

division scales both dividend and divisor at the same time (so

called coordinated scaling) before the division operation. As

the scaling ratio is cancelled in the division operation, there

is no need for a second scaling to the division output.

B. New Half Bitstream Reduction Counting Strategy

The second idea is based on the observation that the

SN bitstream of the scaled divisor and dividend have fixed

patterns of bit “1” distribution, which can be leveraged by only

counting half the length of the bitstream instead of the entire

bitstream when computing the quotient.

Specifically, as mentioned in Section III, the quotient count-

ing value equals to Q · 2N for N-bit inputs. This value can be

also expressed as

Q · 2N = 2N − (1 − Q) · 2N . (3)

By observing Fig. 4(a), as the value Q · 2N actually equals to

the number of cycles in the right half of the bitstreams; the

value (1 − Q) · 2N equals to the number of cycles in the left

half. So calculating the value 2N − (1−Q) ·2N is equivalent to

doing down counting of the left half bitstreams with an initial

value of 2N .

Since the dividend SN stream is generated by copying the

right half of the divisor SN stream, the divisor and dividend SN

streams are completely the same in the right half. As proved

in Section III, all the 1–1 pairs will appear in the right half,

meaning that all the 1–0 pairs will occur in the left half of the

bit-steams. The termination conditions of the CBDIV method

can be written as: 1) start counting from the right side; 2) all

the 1–1 pairs have been used up; and 3) meet a 1–0 pair when

doing counting. The first 1–0 pair [when counting from the

right side, marked with a red circle in Fig. 4(a)] can be treated

as the boundary of two halves of the bitstreams. Alternatively,

we count from the left side and finish the quotient counting

when using up all the 1–0 pairs in the left half bitstreams.

The termination condition of the CBDIV method now can be

simplified to: doing down counting with an initial value of 2N

until the last 1–0 pair is counted.

We show the new counting scheme of the CBSC division in

Fig. 7. Note that the FSCDIV is counting 1–0 pairs in a left-

to-right order, thus the time flow direction in Fig. 7 is opposite

to the previous conventional right-to-left 1–1 pair counting

methods. Since the new counting scheme actually just counts

the bitstream from an opposite direction. The average latency

keeps the same (2N−1), which can be expressed as

LatOrig = Q · 2N

LatNew = (1 − Q) · 2N (4)

where LatOrig and LatNew represent the latency of the original

CBDIV method and the new counting scheme, respectively.

From (4), it is easy to derive that when Q ≥ 0.5, LatNew will

be smaller than the average, outperforming LatOrig (shown in

case (i) in Fig. 7); while when Q < 0.5, LatNew will be worse

Fig. 7. Counting strategy for the fast and scaled CBSC division.

than LatOrig, shown in case (ii) in Fig. 7. Since when Q < 0.5,

the first 2N−1 cycles which marked with gray color in case (ii)

in Fig. 7 are always promised to be counted. To accelerate the

counting, we can directly start from the middle point, which

will save 2N−1 cycles. Now, the latency of the new counting

strategy can be expressed as

Lat′New =

{

(1 − Q) · 2N(Q ≥ 0.5)

(0.5 − Q) · 2N(Q < 0.5)
(5)

which will further be reduced to half of LatOrig.

To quickly determine whether the Q value is greater or less

than 0.5, we compute the difference between the divisor and

dividend via a binary subtraction, which is cheap. If the first

(most significant) bit of the difference is “1” then its equivalent

to the Q will be greater than 0.5. In this way, the hardware

cost for such a comparison should be marginal.

C. New Selective Counting Strategy

It turns out that the counting process can be further

improved. As mentioned in Section IV-A, by introducing the

scaling scheme, the divisor now is promised to be ≥ 0.5.

According to the fixed bitstream pattern in the counter-based

SC design, the most significant binary bit xN−1 (N-bit data)

will appear once every two cycles, so the 1–0 pair will occur

once every two cycles as shown in Fig. 7. As a result, we do

not need to count the xN−1 bit in the bitstream. What we need

is just to count the other bit (xi, i �= N − 1) in the adjacent

two cycles (marked with a blue square frame in each case in

Fig. 7). The reduced value for the down counting (this is a

special counter) in each cycle now is based on the value of a

2-bit data d (d[1:0])

d = xN−1 + xi(i �= N − 1) = 1′b1 + xi(i �= N − 1). (6)

Also, since xN−1 is promised to be “1,” it is no longer

needed to be generated in the divisor bitstream (marked

with gray color in Fig. 7). The FSM now only requires the

remaining N-1-bit (x[N-2:0]) data as the input, which will be

demonstrated in Fig. 8. We note that the stop condition for the

new counting process also requires to be adjusted. Since the

reduced value d can either be one or two in each cycle now,

after the last counting cycle, the remaining number of 1–0

pairs can either be one or zero. We show examples for each of

these two possibilities in Fig. 7. When the remaining number
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Fig. 8. Fast and scaled CBSC division design.

of 1–0 pairs is zero, shown in case (ii), we do not change the

quotient value and simply terminate the process. While when

the remaining number of 1–0 pairs is one [shown in case (i)]

as xN−1 is promised to be “1” and no longer generated due to

the aforementioned selective counting strategy, the 1–0 pair in

the red circle in case (i) will not be counted. In these cases, we

terminate the process when the down counting value equals to

one, and further subtract one from the quotient value for the

compensation.

D. Hardware Design for the Proposed FSCDIV

We show the architecture of the fast and scaled CBSC

division design in Fig. 8. By comparing Fig. 8 with Fig. 4(b),

the down counter used for counting the remaining 1–1 pairs

in the original CBDIV design is now replaced with a specially

designed down counter to count the remaining 1–0 pairs with

an initial value of divisor · 2N − dividend · 2N , since we can

easily prove that

N11 = dividend · 2N

N10 = divisor · 2N − N11

= divisor · 2N − dividend · 2N

= A − B (7)

where N11/N10 is the total number of the 1–1/1–0 pairs in the

bitstreams. For convenience, we set A = divisor · 2N , B =

dividend · 2N , A’ and B’ are the scaled inputs of the division

process. The specially designed down counter decreases one

or two depending on the input data of the “DEC” port, which

is represented by d1d0. With the scaling block, A’ (scaled

divisor) is promised to be ≥ 0.5 · 2N . So the MSB (most

significant bit) of A’ (represented by a′
N−1) is promised to

be “1,” which is no need to generate with the LD bitstream

generator (SNG) as mentioned before in Section IV-C. The

input of the SNG then is set to be N-1-bit. According to the

simplified counting scheme illustrated in Section IV-B, the

select signal [“SEL” in Fig. 4(b)] for the MUX, which is the

output of the FSM block (a down counter decrease one in each

cycle with an initial value of 2N−1 − 1/2N−2, depending on

whether Q is larger or smaller than 0.5). Since there are only

two possible cases for the binary form of d1d0: 2’b10/2’b01,

we use an AND gate and a NAND gate with the inputs of

a′
N−1 and the LD SN bit to obtain d1 and d0, respectively.

And based on the improved counting scheme illustrated in

Section IV-C, the specially designed down counter will stop

counting until the counting value equals to one or zero. To

save the resource, similar to the original CBDIV design, we

share the down counter which is the FSM block in the SNG to

obtain the quotient value QSC. As the output value of the FSM

block actually is only half of the quotient value, we do 1-bit

left shifting operation. Also as mentioned in Section IV-C,

when we do selective counting, the remaining 1–0 pairs can

either be zero or one. Thus, we need further do a subtraction

operation of the shifted FSM output value by the counting

value (“CNT” port) of the specially designed down counter

after the termination of the SC division counting process to

obtain the quotient value.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we evaluate the proposed Counting-based

SC Divider, CBDIV as well as the Scaled Counting-based SC

Divider, FSCDIV in three aspects. We also compare CBDIV

against the binary logic baseline and state-of-the-art works.

A. Experimental Setup

In order to asses the performance of the proposed CBDIV

design, our work compared its error behavior and hardware

performance to a fixed-point divider that uses a long division

algorithm. The hardware performance of CBDIV was eval-

uated by measuring area, critical path, average latency (in

clock cycles), average delay, the ADP, power, and total energy

consumption. Additionally, CBDIV was compared to several

state-of-the-art works, such as the DFSMDIV (SC division

with deterministic FSMs) [24], CORDIV [18], JKSSDIV [20],

and ISCBDIV [19], all utilizing BN inputs with 7-bit precision

(corresponding to a 128-bit length bitstream).

The next step we evaluate the further improved proposed

FSCDIV design. We show the improvements of the error

behavior and the hardware performance of FSCDIV compared

to the CBDIV. We also compare with a fixed-point divider

using long division algorithm.

The dividers were implemented in Verilog and synthesized

with Synopsys Design Compiler using EDK 32-nm standard

cell library [26]. To ensure a reasonable comparison, all

dividers have binary inputs and outputs. For the in-stream

SC-based division designs, SNGs were added to generate SN

bitstreams, and a counter was included to count the value of

the resultant SN bitstream. The hardware evaluation is demon-

strated in Table I. To ensure a justified power and energy

comparison, all dividers share a fixed 100-MHz frequency

input clock. Energy consumption was evaluated according to

the overall execution time and the power consumed by the

divider during the entire division process.

We use RMSE to evaluate the error behavior. The behavioral

emulation result for all the SC-based dividers is listed in

Table I. In MATLAB, we use the uniform random generator to

obtain the dividend in the range of [0, 0.5], and the divisor in

the range of [0.5, 1] for over 100 000 iterations and compute

the RMSE.

B. Hardware Performance

1) Hardware Performance Analysis for CBDIV: Assessing

the second column from Table I, it is noticeable that our
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TABLE I
HARDWARE PERFORMANCE FOR SC AND FIXED-POINT DIVIDERS

TABLE II
HARDWARE PERFORMANCE OF FSCDIV AND FIXED-POINT DIVIDERS OVER DIFFERENT BITS

introduced stochastic divider, CBDIV [27], excels in area

efficiency among all present stochastic dividers. It achieves

a reduction in area by 72.6% when juxtaposed with the

fixed-point divider (binary logic) baseline and surpasses the

performance of current leading stochastic dividers by a

minimum of 21.5%. Since the CBDIV design’s latency is

influenced by the dividend value, as illustrated in Section III,

it exhibits variable latency based on input data. This is a

departure from the fixed latency observed in prior SC division

designs at a given precision level. Therefore, in Table I, we

utilize Avg.Latency and Avg.Delay to quantify the average

computation time for CBDIV, and these metrics are compared

against preceding work. Column 4 shows that CBDIV reduces

average latency by 65.6%, and column 5 reveals that the

Avg.Delay of CBDIV stands at 75.68 ns, exceeding the

performance of other contemporary works by at least 37.1%.

While the latency of CBDIV is 40.9% greater than that of

the fixed-point divider, the ADP is significantly lower (61.4%

less), and shows a minimum improvement of 50.6% compared

to past studies, as demonstrated in column 6.

Reviewing the final two columns of Table I, it is apparent

that CBDIV surpasses all other listed division designs in terms

of power and energy consumption. When it comes to power

consumption, CBDIV is superior to current leading designs by

25.9%.

For the energy consumption aspect, we note that in-stream

SC-based division designs will cost even more energy than

the fixed-point divider when SNGs and the counter are taken

into consideration. CBDIV design has solved this problem by

improving the computing latency, achieving a 31.9% energy

reduction compared to the fixed-point divider baseline.

In Table II, we evaluate the hardware performance of the

proposed FSCDIV over fixed-point divider on various bit-

widths. As we can see that FSCDIV is superior to the

fixed-point divider in area, delay, ADP, power, and energy

through 6–8 bit, at a very small cost of accuracy. But we also

observe that these advantage or benefits will become smaller as

the bit-width increases, and will eventually vanish at a further

higher bit-width, which is typical for SC.

TABLE III
DIFFERENT OPTIMIZATION EFFECTS ON LATENCY

2) Hardware Performance Analysis for FSCDIV: As the

further improved FSCDIV design ameliorates the latency

and the error behavior from CBDIV approach by adding

and replacing some components, it will inevitably introduce

hardware resource overheads. However, by observing the

fourth and fifth columns in Table I, we notice that FSCDIV

can significantly reduce 75.0% latency and 56.4% delay when

compared with the CBDIV. The most important point is

that for the ADP aspect, FSCDIV outperforms the CBDIV

baseline by 16.0%, which means the proposed FSCDIV design

performs much better on the overall hardware performance

evaluation. The FSCDIV even shows a smaller computing

latency and delay when compared to the fixed-point divider,

and improves the area and the ADP by 47.2% and 52.8%,

respectively.

From the last two columns in Table I, we observe that

FSCDIV though does not perform the best in power consump-

tion among all the listed dividers, it has the lowest total energy

consumption among all the listed dividers in Table I, improv-

ing 45.0% energy consumption when compared to the CBDIV

baseline. Furthermore, we separately evaluate the impact of

the three proposed FSCDIV optimization strategies on latency

in Table III. The baseline will be the original CBDIV without

optimizations. As we add the three optimization strategies one

by one, we can see the average latency is mitigated from 63.8

cycles to 16.14 cycles.

C. Error Behavior Analysis and Comparison

Figs. 10 and 11(a) and (b) show the accuracy compari-

son among the proposed CBDIV and the further improved
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Fig. 9. Latency of CBDIV and FSCDIV regarding to quotient values.

Fig. 10. Error behavior of CBDIV, FSCDIV, and other dividers with different
output value ranges (7-bit precision).

(a)

(b)

Fig. 11. Error behavior of the proposed SC dividers compare with other
SOTA SC dividers as well as the fixed-point divider under 7-bit. (a) Error
behavior of the proposed CBDIV under 4–8 bit. (b) Error behavior of the
proposed FSCDIV under 4–8 bit.

FSCDIV methods with the baseline fixed-point divider

and existing approaches: CORDIV [18], JKSSDIV [20],

ISCBDIV [19], and DFSMDIV [24]. Linear feedback shift

register (LFSR) is utilized to generate SN bitstreams for

binary inputs in state-of-the-art approaches for comparison.

The floating-point output quotient is used as the “golden”

result. We show the results over five nonoverlapped output

value ranges as well as the average RMSE value obtained from

100 000 computations for all the algorithms, all possible input

operand values are equally taken into account.

1) Error Behavior of CBDIV: An examination of Fig. 10

reveals CBDIV surpasses other contemporary works across all

five nonoverlapping output value domains. When contrasted

with DFSM-DIV, which possesses the smallest average RMSE

value, CBDIV demonstrates an improvement of 77.8%. To add

further context, it is worth mentioning that in Fig. 10, CBDIV

exhibits comparable RMSE values across varied output value

domains, a characteristic that sets it apart from the results

achieved by existing work. This discrepancy can be attributed

to the inherent attributes of distinct SC division methodologies.

Moreover, Fig. 11(a)provides a comparison of CBDIV’s error

behavior against the fixed-point baseline and other leading

works, particularly with respect to varying bitstream lengths

(precision). From Fig. 11(a), it can be observed that even at

a 5-bit precision, CBDIV’s average RMSE value outperforms

DFSMDIV’s 7-bit precision by 15.4%.

2) Error Behavior of FSCDIV: From Fig. 11(b), the fur-

ther improved FSCDIV method ameliorating 61.2% accuracy

when compared to the CBDIV. The FSCDIV method even

demonstrates a very small gap between the fixed-point design

on average RMSE.

D. Comparison in Digital Image Processing Application

We implement the proposed CBDIV and further enhanced

FSCDIV method for a digital image process application,

Contrast Stretch to compare the performance against the

baseline design and state of art works in a real application

scenario.

The input binary precision of the proposed FSCDIV,

CBDIV, as well as state-of-the-art ISCBDIV [19] and

DFSMDIV [24] division methods are all 8-bit, as the pixels

of the JPEG format are in 8-bit binary precision. Thus, the SC

bitstream length in this application will be 256-bit.

The contrast-stretched pixel G(x, y) of an arbitrary input

image pixel I(x, y) can be calculated as

G(x, y) =
I(x, y) − Imin

Imax − Imin
· 255. (8)

Imax and Imin represent the largest and smallest pixel values

in image I(x, y). It is important to notice that we initially

carry out the division of ([I(x, y) − Imin]/[Imax − Imin]), as SC

dividers invariably necessitate the dividend to be smaller than

the divisor. Additionally, we employ the CBSC method for

multiplication as detailed in Section II-B. The number 255

is conceptualized as 255/256 · 28, leading to a w value of

255/256 in the CBSC multiplier and the operation will require

255 clock cycles for completion. Owing to the deterministic

pattern utilized in the CBSC method, all bit “1”s in the

divisor ([I(x, y) − Imin]/[Imax − Imin]) bitstream materialize

within these 255 clock cycles, which implies we only need

to tally the number of bit “1”s in the divisor bitstream. For

CBDIV and FSCDIV, the counting procedure concludes syn-

chronously with the termination of the corresponding divider.
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TABLE IV
PSNR FOR CONTRAST STRETCH APPLICATION USING SC DIVIDERS

(a) (b) (c)

(d) (e) (f)

Fig. 12. Example of the original image and contrast stretch results operated
by various dividers. (a) Original image. (b) Fixed-point divider. (c) ISCBDIV.
(d) DFSMDIV. (e) CBDIV. (f) FSCDIV.

No further action is mandated and we directly output the

CBDIV or FSCDIV result as the G(x, y) value. However, as

ISCBDIV and DFSMDIV produce SN bitstreams, we simply

append a counter to procure G(x, y).

We apply the contrast stretch operation to a number of input

images and use peak signal-to-noise ratio (PSNR) defined

in (9) to assess the output image quality. Image processing

results subjected to the contrast stretching with a floating-point

divider are used as the baseline. Table IV presents the PSNR

values for all tested images using different SC dividers. It is

observable that the proposed CBDIV method surpasses the

two leading SC dividers in all tested images, and it enhances

the image quality by an average of 15.18 dB

PSNR = 10 · log10

I2
max

MSE
(

Gbaseline, Gtarget

) . (9)

The further enhanced FSCDIV ameliorates the output image

quality with extra 3.13 dB from the proposed CBDIV method.

VI. CONCLUSION

In this article, we proposed two novel SC divider designs,

CBDIV and FSCDIV, improving SC division in both speed

and accuracy. CBDIV generated SNs in a deterministic

pattern, resulting in higher accuracy and utilizing CBSC’s

efficiency to perform division. FSCDIV further improved

CBDIV by reducing the overall latency to one-fourth and

improved accuracy through a new scaling method and selective

counting strategy. Our experimental results demonstrated that

the proposed CBDIV, implemented in 32-nm technology,

outperformed state-of-the-art works by 77.8% in accuracy,

37.1% in delay, 21.5% in area, 50.6% in ADP, and 25.9% in

power. Additionally, CBDIV reduced energy consumption by

31.9% when compared to the fixed-point division baseline and

was significantly more energy-efficient than existing SC-based

dividers for binary inputs and outputs required in efficient

image processing implementations. (Note: this information

may require updating based on more recent technology nodes

or advances in the field.) Moreover, we demonstrated that

FSCDIV could improve delay by 56.4%, ADP by 16.0%,

energy consumption by 45.0%, and accuracy by 61.2%. We

also evaluated the proposed CBDIV and FSCDIV designs

in a contrast stretch image processing workload and showed

that it improved image quality by 18.3 dB on average when

compared to state-of-the-art works.
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