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Abstract—Large-scale computing systems are increasingly us-
ing accelerators such as GPUs to enable peta- and exa-scale
levels of compute to meet the needs of Machine Learning (ML)
and scientific computing applications. Given the widespread and
growing use of ML, including in some scientific applications,
optimizing these clusters for ML workloads is particularly impor-
tant. However, recent work has demonstrated that accelerators
in these clusters can suffer from performance variability and
this variability can lead to resource under-utilization and load
imbalance. In this work we focus on how clusters schedulers,
which are used to share accelerator-rich clusters across many
concurrent ML jobs, can embrace performance variability to
mitigate its effects. Our key insight to address this challenge
is to characterize which applications are more likely to suffer
from performance variability and take that into account while
placing jobs on the cluster. We design a novel cluster scheduler,
PAL, which uses performance variability measurements and
application-specific profiles to improve job performance and
resource utilization. PAL also balances performance variability
with locality to ensure jobs are spread across as few nodes as
possible. Overall, PAL significantly improves GPU-rich cluster
scheduling: across traces for six ML workload applications
spanning image, language, and vision models with a variety of
variability profiles, PAL improves geomean job completion time
by 42 %, cluster utilization by 28%, and makespan by 47% over
existing state-of-the-art schedulers.

Index Terms—GPGPU; Cluster Scheduling; Machine Learn-
ing; Performance Variability; Power Management

I. INTRODUCTION

Artificial intelligence (AI) and machine learning (ML) have
transformed society with significant improvements for a wide
range of tasks [1]. This tremendous transformative effect has
been enabled by a virtuous synergy of (1) better hardware
systems, (2) larger datasets, and (3) improved ML models
(e.g., Transformers) and algorithms that further benefit from
more efficient hardware and larger datasets. ML is also in-
creasingly impacting scientific applications [2]-[4]: ML mod-
els are either replacing or supplementing traditional computing
methods in application domains like molecular dynamics (e.g.,
DeePMD [5], [6]), protein folding (e.g., OpenFold2 [7]), and
scientific AI models (e.g., AuroraGPT [8]).

However, meeting the computing needs of ML applications
introduces new challenges. With the slowing of Moore’s
Law and end of Dennard’s Scaling, large-scale systems are
increasingly turning towards heterogeneous accelerators to
scale performance, especially for ML workloads. For example,
large computing centers including cloud providers [9]-[11]

have deployed large accelerator-rich clusters that provide peta-
or exa-scale levels of compute. These systems often contain
hundreds to tens of thousands of accelerators and are usually
shared between many users. Thus, cluster schedulers need
to handle large, accelerator-heavy ML workloads, while also
aiming to reduce the time-to-solution of individual jobs and
maintaining high resource utilization.

However, achieving high resource utilization for ML work-
loads is challenging in the face of performance variability of
accelerators. Prior studies [12]-[19] have found that large clus-
ters with accelerators like general-purpose GPUs (GPGPUs)
exhibit significant performance variability, both within and
across machines (discussed further in Section II-A). Prior work
found that one of the main variability sources is power man-
agement (PM) in accelerators, which can lead to power and
frequency variations across nodes [18]. Performance variabil-
ity also causes resource under-utilization for multi-GPU jobs
since all of them must wait for the slowest one to complete due
to the bulk synchronous programming (BSP) model used in
data-parallel ML workloads [20]. Consequently, performance
variability makes it challenging for ML workloads to achieve
repeatable, high performance.

To overcome this challenge, our goal is to harness and
embrace performance variability. Specifically, we propose
to redesign scheduling policies for GPU clusters to consider
performance variability. Our key insight for designing a bet-
ter policy comes from the fact that performance variability
is application-specific. For example, prior work found that
compute-intensive workloads such as training a ResNet-50 ML
model had significant variability (22% geomean variability,
max 3.5x). Conversely, memory-intensive workloads such as
PageRank had very low variability (1%) [12], [18]. Thus, we
can create new policies that take into account both the level
of performance variability in a given cluster and how different
applications are impacted by performance variability in that
cluster.

We achieve our goal by (1) characterizing hardware per-
formance variability by running a wide variety of single- and
multi-GPU ML applications on the Texas Advanced Comput-
ing Center’s (TACC) [21] Longhorn and Frontera clusters, (2)
building application-specific performance variability profiles,
and (3) designing new placement policies that utilize (1) and
(2). Specifically, we propose a new job placement policy,
PM-First, which considers PM-induced variability as the



primary factor when assigning GPUs to jobs. Our policy uses
application profiles to give preferred GPUs to applications that
are most sensitive to variability. To ensure our policy can scale
to handle large GPU clusters, we identify which GPUs exhibit
similar performance variability and use K-Means clustering to
group such GPUs together.

While PM-First exclusively focuses on performance vari-
ability to make allocation decisions we find this sometimes
results in sub-optimal schedules. For example, if the acceler-
ators with similar performance variability profiles are widely
distributed across the cluster, scheduling to minimize or reduce
performance variability may lead to significant overhead from
inter-node communication (e.g., when weights are updated at
the end of ML training epochs). To address this challenge,
we extend PM-First’s algorithm to consider both performance
variability and locality when making its scheduling decisions.
We call this second approach PAL (Performance Variability
& Locality) since it aims to balance both concerns when
scheduling multi-GPU jobs in the cluster. PAL co-optimizes
for both locality and variability by estimating the combined
effect of both for every possible GPU allocation for a given
job. However, selecting the best allocation considering both
factors can be expensive for a large cluster. Thus, we propose
an efficient mechanism where we construct and traverse a
locality-variability matrix (LxV matrix). The LxV-matrix is
succinct and its size is bound by the number of locality levels
in the cluster (i.e., the network topology hierarchy) and the
number of K-Means clusters used for grouping PM scores. We
show that this allows PAL to behave the same as PM-First for
variability-sensitive jobs, and make locality-first allocations for
jobs that need to prioritize network communication.

Given the importance of ML workloads running in large-
scale clusters, prior work has also examined scheduling poli-
cies for ML workloads [22]-[25]. However, almost all of
these scheduler designs are agnostic to GPU variability and
assume that iso-architecture GPUs deliver equal performance.
One notable exception is Gavel [26], which considers per-
formance heterogeneity but only across different accelerator
architectures in heterogeneous clusters. Thus, to the best of
our knowledge, our work is the first to make cluster schedulers
aware of iso-architecture GPU performance variability. We
discuss this and other related work further in Section VL.

To evaluate the efficacy of PM-First and PAL, we integrated
them into Blox [27], a state-of-the-art toolkit that supports
many modern scheduling and placement schemes for ML
workloads. While our policies can potentially also benefit
other types of workloads such as scientific computing, their
evaluation is left for future work. We compare our PM-
First and PAL placement policies with widely used locality-
based placement policies from Tiresias [23] and Gandiva [28],
which perform job packing. We also evaluate our placement
with different scheduling policies, including FIFO, LAS, and
SRTEF. Overall, PM-First and PAL significantly improve cluster
scheduling for a variety of ML workload traces from prior
work [29], [30]. For example, PM-First improves geomean
99th percentile job completion time (JCT) by 40%, average

JCT by 40%, utilization by 26%, and makespan by 44% over
Tiresias. Moreover, by balancing both performance variability
and locality, PAL further improves on PM-First. Compared to
Tiresias, PAL improves geomean 99th percentile JCT by 41%,
average JCT by 42%, and makespan by 47%. PM-First and
PAL benefits are especially large when workloads have a large
proportion of multi-GPU jobs — the increasingly common case
as ML model sizes continue growing. Thus PAL’s benefits are
likely to scale further with future workloads. Finally, we also
validate our approach using a 64-GPU TACC Frontera cluster
and find that PAL outperforms Tiresias by 24% in terms of
average JCT.

II. BACKGROUND
A. GPU Performance Variability

GPUs in large clusters such as datacenters and supercomput-
ers exhibit variability in performance, despite having the same
underlying architecture and being similarly configured. Prior
studies [12]-[14], [16]-[18] have examined and characterized
performance, power, and temperature variability among GPUs
at scale. For example, Sinha, et al. profiled 5 large, GPU-
rich clusters with 400—27000 identical GPUs and identified
significant performance variability, both within and across
machines. Similar to prior work [12], they found that different
applications exhibit different extents of performance variability
at scale. In particular, compute-bound workloads like ResNet-
50 see much more variation (22% geomean, up to 3.5x) than
memory-intensive workloads like PageRank (1% geomean).

Performance variability occurs for a number of reasons in
these systems. Static effects at the hardware level such as
process variation and die binning cause inherent manufacturing
variability among GPUs, while power and temperature limits
and associated PM algorithms cause dynamic variation. In
HPC systems, non-uniformity in cooling across nodes can
also cause thermal throttling, increasing performance vari-
ability [31]. This variability is not transient either: perfor-
mance variability is consistent over time, and ill-performing
GPUs are consistently ill-performing [18]. Moreover, not all
the performance variability can be explained by temperature
differences or cooling sources, and the variability is consistent
across different days of the week, times of day, and GPU
vendors. Moreover, as discussed in Section I massively parallel
workloads that synchronously utilize multiple GPUs are bot-
tlenecked by the worst-performing GPU — reducing cluster un-
derutilization and load imbalance, hurting overall throughput
and efficiency of these large-scale systems. Consequently, this
application-specific performance variability affects application
performance across runs on the same cluster [13], [18] and is
a growing problem for accelerator-rich systems.

B. Cluster Scheduling

ML workloads are increasingly being run on shared, GPU-
rich clusters. Thus, efficient scheduling is necessary to mini-
mize ML training time and efficiently utilize cluster resources.
Collectively, the cluster scheduler must decide which job(s) to
schedule at a given time and what resources they should be
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Fig. 1: Modular view of Blox job scheduling.
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Fig. 2: Variability-aware scheduling overview.

given, respectively. The architecture of most cluster schedulers
can be broken up into modules that determine job admission,
job selection, and resource allocation [27].

Figure 1 provides a broad overview of these modules. All
incoming jobs are put into a queue and admitted based on
an admission control policy. Schedulers typically admit jobs
that do not adversely impact the performance of currently
running jobs and do not violate resource constraints [23], [29].
The scheduling policy receives these accepted, active jobs to
schedule in each epoch or scheduling round. The active jobs
are then assigned priorities and reordered appropriately by the
scheduling policy, as per the scheduling objective. Finally, this
ordered job queue is forwarded to the placement policy, which
determines what resources (e.g., GPU(s)) should be allocated
to a job based on the state of the cluster that the scheduler
actively monitors. While the scheduling policy selects which
jobs to run at a given epoch, the placement policy determines
which GPUs to run them on. Job selection is largely orthogonal
to our work, since we are focused on incorporating GPU
performance variability into allocation decisions. Thus we
focus on the scheduler’s placement policy. As discussed further
in Section VI, current state-of-the-art placement policies are
agnostic to GPU performance variability. When allocating
GPU resources to jobs, they assume that iso-architecture GPUs
deliver equal performance. Therefore, GPU placement policy
designs that harness GPU performance variability information
when making allocation decisions are needed.

III. DESIGN

We propose placement algorithms that make GPU variabil-
ity a first-class citizen when determining GPU job allocations.
We leverage a key insight from previous work [12], [18]:
GPU variability is application-specific; e.g., compute-bound
workloads exhibit higher variability than memory-bound ones.
This implies that memory-bound jobs can use GPUs that
widely vary for compute-intensive jobs without significant
performance loss, and allow compute-intensive jobs to utilize
GPUs with similar variability.

Figure 2 provides an overview of our approach. We perform
offline profiling to gather variability profiles from the target
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Fig. 3: Classification of applications using 2-dimensional
clustering over the Utilpram X max(Utilpy) space.

cluster and pass this information to our placement policy
@. Since performance variability is application-specific, we
create and use an application classifier (Section III-A) that
groups similarly behaving applications into a small number
of classes, based on compute intensity @ Figure 2 shows
various jobs grouped into three classes, A, B, and C, with A
representing the most compute-intensive, and C representing
the most memory-bound applications. Section III-A further
discusses the classifier. Arriving jobs are put into the job
queue @ and the classifier tags these applications with a
suitable class @ The scheduler receives active jobs and
assigns them priorities based on its scheduling objective. This
sorted queue of jobs is forwarded to the placement policy,
which determines what resources should be allocated to a job.
Our placement policy receives the job’s performance class @,
allowing it to make application-specific decisions; and profiled
variability data @ which it uses to make variability-aware
allocations @ We propose two algorithms for placement:
PM-First (Section III-B) and PAL (Section III-C).

A. Classification Layer

GPU clusters concurrently run multiple jobs, and new ones
arrive frequently. Moreover, new applications, particularly ML
models, are emerging frequently and often change the footprint
of workloads run on the cluster [10], [32]-[34]. It is infeasible
to profile such a large range of applications, especially at scale,
to measure performance variability across thousands of GPUs.
To reduce the number of required application profiles, we use
a classifier that groups similarly behaving applications into a
small number of classes. This significantly reduces the amount
of profiling data we need to collect.

To classify the variability of the applications we study
(Section IV-B) we leverage prior work’s application classi-
fication scheme [35], [36]. Like Guerreiro, et al. [36], we
use nsight compute [37] to measure workloads’ DRAM
utilization (Utilpram) and Peak Functional Unit utilization
(max(Utilgy)). Each workload corresponds to a point in the 2-
dimensional Utilpgram x max (Utilpy) space. Figure 3 shows the
applications we consider in this 2D space. Then we perform
K-Means clustering to obtain ordered classes. K can be
appropriately set to choose the number of classes for the
classifier. For example, by setting K = 3 in Figure 2 jobs
are assigned one of three classes: A, B, or C, where A is
the most sensitive to variability and C is the least sensitive
to variability. For a new application or an application with
different input parameters/datasets, we profile the application
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Fig. 4: PM-First Placement Policy with job queue reordering
based on placement priority.

and assign it to the cluster it is closest to in the 2D space. We
retain this three-class example to illustrate the design of our
policies in subsequent sections.

B. PM-First Placement Policy

PM-First gives PM-induced variability first-order prece-
dence when assigning GPUs to jobs. To carry out PM-First
allocations, we associate a PM-Score with each GPU, which
indicates how slow or fast the GPU is relative to the median
GPU in the cluster. The PM-Scores for a GPU are computed
for each job class since each class has a different variability
profile. We perform application-specific variability profiling by
running an application on each GPU to collect performance
metrics and use these profiled performance values normalized
to the median GPU on the cluster. For example, a PM-Score
of 1.5 for a GPU g means that a job’s iteration time will
be slowed down by 50% running on g compared to the
median performing GPU. Since the PM-Score values for a
GPU correspond to normalized execution time on the GPU,
we refer to GPUs with lower PM-Scores as well-performing
GPUs.

Since class A applications are most sensitive to variability,
we assign class A jobs the highest placement priority, then
class B, and so on. PM-First placement follows a greedy
algorithm where the GPUs with the lowest PM-Scores are
assigned to jobs with the highest placement priority. This
placement priority is different from the scheduling priority
produced by the scheduling policy. Figure 4 shows an example
of a 6-job queue sorted by the scheduling policy and sent
to our placement policy for GPU assignment. The class A
jobs in the queue have higher placement priority since we
want to provide a larger set of well-performing GPUs to these
jobs. However, we must respect the scheduling priorities set
by the scheduling policy. To ensure this we mark the job
queue when the sum of GPU demands of jobs in the queue
exceeds the cluster size. In Figure 4, the GPU demand exceeds
cluster size after the first 5 jobs. Thus, the scheduling policy
must guarantee that these 5 jobs be scheduled in this round.
Therefore, we only sort this truncated queue by job class,
allowing compute-intensive class A jobs to select GPUs first,
then class B, and so on. This prevents an incoming class A
job (marked green in Figure 4) from getting dispatched out of
turn. By separating scheduling priority and placement priority,
we honor the scheduling policy’s guarantee of which jobs to
service in a given round, while still allowing GPU allocations
to be done using a class-based priority.

Algorithm 1: GET_PMFIRST_GPUS
PMFirst Selection Algorithm

Input: Free GPU List G fce
Job Class C;
Job GPU Demand N
Variability Profile V.o 7i1e
Output: GPU Allocation Alloc
1 Function GET_PMFIRST_GPUS (G free, CjNj, Vprofite) *

2 // Get per-GPU PM-Scores V; corresponding to
job class

3 foreach gpu i € Gfre. do

4 Vi < ComputePMscore (Vprotites Cj)

5

end

6 // Sort free GPU list by PM-Score, from best
to worst

7 G free < Sort (Gyree, Vi, descending);

8 // Select the top AG number of GPUs

9 Alloc <+ G greel:Njl;

10 // Remove from free GPU list

11 MarkGPUsInUse ();

12 return allocation;

GPUID
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Fig. 5: Example showing clustering on a 128-GPU cluster for
a class A application. A blue cross marks each bin’s centroid.

Algorithm 1 shows how PM-First allocates resources for a
given job j with a GPU demand N;. We compute the PM-
Scores V; for each GPU i using the variability profile for job
J’s class (ComputePMScore). Then we sort the free list of
available GPUs by their PM-Scores, from best to worst. The
policy picks the first N; GPUs to satisfy the GPU demand
for job j. This process continues for the next job(s) in the
modified job schedule.

Using fine-grained variability information when scheduling
a large-scale system with thousands of GPUs could be ex-
pensive. For instance, Oak Ridge National Lab’s (ORNL’s)
Summit supercomputer has over 27000 GPUs, and assigning
a PM-Score to each of these GPUs and tracking them during
run time adds significant overhead to the scheduler. Thus, we
use K-Means clustering for each class to bin GPU variability
values into a set of PM-Scores.

Figure 5 shows our clustering method employed on the
variability profile of a compute-intensive application, ResNet-
50, for a 128-GPU cluster. The x-axis shows average iteration
time normalized to the median GPU of the cluster. Most
GPUs belong to the first 2 clusters close to the median, while
some outliers are more than 2.5x slower than the median. We
associate the PM-score for all GPUs in a given bin with the
PM-score of the centroid. For example, in Figure 5 all GPUs
of the gray cluster get assigned a PM-Score of 0.99.



If we pick very small values for K (the number of bins
produced by clustering), we lose fine-grained variability in-
formation, and PM-First cannot differentiate between GPUs
that deliver different performances. Conversely, very high K
values overestimate the impact of variability, making PM-First
more selective in picking GPUs than necessary. Thus, we need
to determine optimal K values for each class. We select the op-
timal K -value using the standard silhouette score method [38].
However, since the variability data has some extreme outliers,
particularly for compute-intensive applications, this adversely
impacts silhouette coefficients. We separate > 30 outliers
when computing silhouette scores and sweeping through K
from 2 to 11. We select the K value that gives silhouette scores
as close to +1 as possible for all bins so that we get distinct
and relatively well-separated bins. We similarly determine an
optimal K value for the set of outliers. Note the placement
policy does not ignore > 3¢ outliers; they are only removed
for the silhouette score analysis. These extreme outliers are
assigned their own PM-score equal to the GPU’s normalized
performance.

C. PAL Placement Policy

While the PM-First policy factors variability into its
decision-making, it ignores communication overheads that
may occur due to ineffective packing. Thus, PM-First works
well for applications that are sensitive to variability (e.g., class
A), but not for those that are less impacted by variability
(typically class C). Accordingly, our PAL placement policy
co-optimizes for locality and variability by observing their
combined effects, ensuring that PAL prioritizes either packing
or variability depending on what is more important.

1) Combined Slowdown and L' xV Matrix: Large-scale sys-
tems typically have a flat network topology without much over-
subscription. For example, TACC Frontera uses a Mellanox
interconnect in a fat tree topology with an oversubscription
of 22/18 [21]. For such systems, where there is no complex
routing or multiple hops between nodes of the same layer,
we use a simplified locality model. A multi-GPU job incurs
a performance penalty L,.0ss if its allocation spills across
nodes and suffers no performance degradation if the allocation
is within a node (L;thin = 1.0). If a job is running with a
set of GPUs G and the GPUs are spread across more than one
node, then the job’s modified iteration time is:

titer = Lacross X IIleaé((Vg) X tf[ezrg (1)
g

where t;/'? is the job’s original iteration time, as specified

in Section II, Vj is the variability or PM-Score of the gth
GPU and L,r0ss 1s the inter-node locality penalty. Section IV
provides more details on estimating a cluster’s locality penalty.

To get better performance for jobs, we need to minimize
the combined slowdown due to both variability and locality
penalties. We denote this as the LV-Product:

min LV-Product = min(L; x max V)
geG

To minimize this product, we construct an L x V' matrix for
each job class at design time based on the profiled variability

and the locality penalty. For example, consider the following
L x V matrix with 4 bins for PM-Scores V; = 0.89, 1, =
0.94,V3 = 1.06, and V4 = 2.55, and a constant inter-node
locality penalty Lgcross = 1.5.

Vi(0.89) V2(0.94) V3(1.06)  Vi(2.55)
7 089 0.94 1.06 2.55 Lyitin (1)
LxV= [ 1.34 1.41 1.59 3.88 ] Lacross (1.5)

The matrix entries represent the LV-Product we want to
minimize. Each entry corresponds to a possible allocation
scenario. We “traverse” this matrix from smallest LV-Product
to largest, making job allocations to minimize the LV-product
(Algorithm 2, line 3). In this example, the L x V matrix
traversal order would be: (1,0.89) — (1,0.94) — (1,1.06) —
(1.5,1.34) — (1.5,1.41) — (1.5,1.59) — (1.5,3.88). In
other words, unlike PM-First, PAL allows non-packed allo-
cations only if the first three variability bins cannot provide a
packed allocation to service this job. However, PAL prefers a
distributed allocation over allocating GPUs from bin 4 which
has a very high PM-Score (V4 = 2.55). Moreover, since the
L <V matrix is class specific traversal orders are often unique
per-class. This allows PAL to make PM-First decisions for
variability-sensitive jobs, and make locality-first allocations for
jobs that need to prioritize packing.

Algorithm 2 details the steps to perform this L x V' traversal.
For a job requesting IN;-GPUs on a cluster size N, there are
NC ~; possible GPU allocations. Our inter-node cost model for
locality allows us to reduce this search space, since jobs with
GPU demand N; > NUM_GPUS_PER_NODE must request
multiple nodes and pay the inter-node locality penalty of split-
ting across nodes. PAL schedules all such jobs using the PM-
First policy (Algorithm 2, lines 23-25). A job j requesting N;
GPUs, where 1 < N; < NUM_GPUS_PER_NODE, traverses
the allocation in two ways:

1) (Lwithin, V) allocations: PAL needs to prioritize pack-
ing while making sure that PM-Score for the allocation
is < V;. We filter out the free list of GPUs with V' < V;
and then try to enumerate strictly packed (within-node)
allocations within this free list by enumerating all pos-
sible packed V;-sets of GPUs and finding the set with
the least variability.

2) (Lacross, Vi) allocations: we filter out the free list of
GPUs with PM-Score < V; and sort them by PM-Score.
Since locality cost is acceptable to incur in this state,
we pick the first N; GPUs from this sorted list.

This L x V matrix traversal only occurs for jobs that require
NUM_GPUS_PER_NODE or fewer number of GPUs.

IV. METHODOLOGY

A. System

We run experiments on both a physical cluster and in
simulation. All experiments use Blox [27], an open-source
modular toolkit that uses Python and gRPC [39] to support
scheduler implementation and testing. The physical cluster



Algorithm 2: PAT_PLACEMENT
PAL Selection Algorithm

Input: Free GPU List G f/.ce,
Job Class C;
Job GPU Demand N
L X V matrix
Output: GPU Allocation Alloc
1 Function PAL_PLACEMENT (Gfree, Cj, Nj, L X V)2

2 if 1< Nj < NUM_GPUS_PER_NODE then
3 for (L;,V;)in traverse (L x V) do
4 if L; = Lyithin then
5 // Filter GPUs with PM Scores
better or equal to V;
6 Gfilt <~ Gf’r'ee[v < Vil
7 // Enumerate potential packed
allocations
8 n < FindValidNodes (G, Nj);
9 PackAlloc <+ GenerateCombos("C'k);
10 // Return one with lowest PM Score
11 Alloc < GetMinV (PackAlloc) ;
12 return Alloc;
13
end
14 else if L; = Lycross then
15 // PM-First allocation
16 G i < f£ilt (free_gpu_list, V < V;);
17 Alloc <+ G gi[:Nj];
18 return Alloc;
19
end
20
end
21
end
22 else
23 // PM-First allocation
24 Alloc <+ getPMFirstGPUs ();
25 return Alloc;
end
TABLE I: List of experiments used in evaluation.
Workload Cluster Size E . " Eval.
Trace (NumGPUs) Xperimen Section
Sia-Cluster [29] 64 Testbed Evaluation V-A
. . Baseline Simulation
Sia-Philly [29], [40] 64 Varying Locality Penalty V-B
Synergy [30] 256 Varying Job Load V.C

Varying Schedulers

experiments are performed on TACC’s Frontera supercom-
puter [21]. Frontera is a mineral-oil cooled GPU subsystem
with 360 NVIDIA Quadro RTX 5000 GPUs. Each node has
4 GPUs, with 16GB memory per GPU. We run physical
cluster experiments on an 16 node (64 GPU) testbed. We also
use larger trace-based simulations to evaluate the behavior of
our policies with varying cluster sizes, traces, and scheduling
policies. Table I summarizes the key experiments and system
details.

1) Baseline Placement Policies: We evaluate PM-First and
PAL’s performance relative to two baselines: (1) Packed or
soft-consolidated placement tries to minimize the number of
nodes a job is packed on to reduce communication; and (2)
Random or Scattered placement samples a random subset from

the free list of GPUs in order to prevent thermal hotspots
through unbalanced GPU usage, increase device lifespan,
and prioritize performance of CPU-to-GPU communication.
However, random placement can sacrifice performance for
workloads sensitive to GPU-to-GPU communication.

We further consider two flavors of each of these policies —
Sticky and Non-Sticky. In Sticky placement, active jobs cannot
be migrated to a different allocation and must continue to run
with the same (“sticky”) set of GPUs they first get assigned,
until the jobs either complete or get preempted through priority
lowering. Thus, the Sticky placement policy only re-allocates
GPUs to a job once the job moves from suspended to active
state. Sticky allocations minimize checkpointing overheads
that occur due to migration, but these are typically negligible
relative to the overall job run-time. We chose these as our
baselines because most state-of-the-art schedulers use one of
them. Specifically, we compare against the following config-
urations:

1) Tiresias [23]: performs Packed-Sticky placement

2) Gandiva [28]: performs Packed-Non-Sticky placement
3) Random-Sticky

4) Random-Non-Sticky

Other schedulers also use some variants of these policies.
For example, Themis [41] also uses Packed placement, while
Amaral, et al. and HotGauge use Random placement [42],
[43]. In the remainder of this paper we use Tiresias to mean
Packed-Sticky placement and Gandiva to mean Packed-Non-
Sticky placement.

Our PAL and PM-First placement policies are both Non-
Sticky to ensure jobs can migrate to better GPUs in each
scheduling round.

2) Scheduling Policies: We evaluate three schedulers PM-
First and PAL placement can be attached to:
First-In-First-Out (FIFO) scheduler: a well-known greedy
approach that prioritizes jobs in order of arrival.
Tiresias/Least Attained Service (LAS): implements LAS
scheduling with two-level priority queuing [23].

Shortest Remaining Time First (SRTF): performs preemp-
tive shortest job first scheduling.

While we present simulation results with all three schedul-
ing policies, we use Tiresias for the TACC Frontera cluster
runs. Section V-C compares how the behavior of our placement
policy changes when the scheduler is varied.

B. Workloads and Cluster Configuration

1) Simulations: To compare our placement policies against
the baselines (Section IV-Al) in simulation we use two sets
of workload traces:

Sia-Philly workloads [29] sample jobs from Microsoft’s
publicly available Philly cluster production traces [40]. Sia
derives eight traces of 160 jobs each, submitted over an 8
hour window at a job arrival rate of 20 jobs/hr. We use these
traces in the same cluster configuration Sia used: a simulated
16 node system with 4 GPUs per node (64 GPUs). 40% of
Sia trace jobs are single-GPU jobs, and the largest multi-GPU
jobs request up to 48 GPUs. We report average metrics such as



TABLE II: Models used in real cluster evaluation.

Task Model Dataset ISEa tch Class
ize

Image PointNet [44] ShapeNet [45] 32 Class C
Image vggl9 [46] ImageNet2012 [47] 32 Class A
Vision DCGAN [48] LSUN [49] 128 Class A
Language  BERT [50], [51]  WikiText [52] 64 Class B
Image ResNet-50 [53] ImageNet2012 [47] 32 Class A
Language  GPT2 [51] Wikitext [52] 128 Class B

TABLE III: Applications profiled for PM penalty estimation

Benchmark Input Size gll,llss::::d
Train. Set: 1.2M images  Longhorn
ResNetS0 [54] oo size: 64 Frontera
Train. Set: 30K words Longhorn
BERT [55] Batch size: 64 Frontera
643994 x 643994 Longhorn
PageRank [56] 659033 x 659033 Frontera

Job Completion Time (JCT) across these 160 jobs, consistent
with prior work that used these traces [24], [29].
Synergy workloads preserve the Philly trace’s [40] GPU
demand and use a Poisson distribution of arrival times to vary
job arrival rate. Synergy traces have a higher proportion of
single-GPU jobs (> 80%) than Sia-Philly traces. To evaluate
Synergy’s steady state benefits, like prior work we simulate
Synergy on a larger 64 node, 4-GPU per node cluster (256
GPUs) and report average metrics for job IDs 2000 to 3000.
2) Cluster Evaluation on TACC Frontera: Table II lists the
jobs we run for our real cluster experiments on the TACC
Frontera cluster. As with the Sia simulations, we track average
JCT metrics across all 160 jobs.

C. Estimating PM penalty

We perform variability profiling to estimate per-GPU, per-
class PM penalties. We use two sets of variability profiles
from different systems, one from TACC’s Longhorn clus-
ter (NVIDIA V100 GPUs), used for simulations, and one
from TACC’s Frontera cluster (NVIDIA Quadro RTX 5000
GPUs) used in both simulation and cluster experiments. These
profiles are generated by running the same benchmark on
all GPUs of the cluster and collecting metrics for kernel
duration/iteration runtime. As discussed in Section III-A, we
profile one representative application for each class. We used
NVIDIA’s nsight compute [37] to collect performance
metrics in milliseconds (ms) for these applications. Since
nsight compute can only provide 1 sample every ms, we
configured our input sizes to ensure that kernel durations were
larger than 1ms on the respective GPUs. Table III summarizes
the applications we ran and their input configurations on each
cluster. Figure 6 and Figure 7 show each application’s GPU
performance normalized to the application’s median observed
duration on the cluster. When simulating an N-GPU cluster,
we discretely, randomly sample this profiling data without
repetition to obtain N PM penalty values for each class and
assign them to each GPUs.
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TABLE IV: Physical cluster & simulation results.

Avg JCT (hours)

Placement Policy Cluster-to-Sim Diff

Cluster  Simulation
Tiresias 1.76 1.56 11%
PAL 1.35 1.16 14%
% Improvement 24% 26%

For the Frontera testbed implementation, we index into
the variability profile using GPU UUID obtained from
nvidia-smi [57] to get the exact PM penalty value from
the variability profiling data. Profiling for a large number of
GPUs could be time-consuming, so our variability profiles are
static — they are generated at design time and remain constant
throughout.

D. Locality Penalty

We estimated the inter-node locality penalty Lgcross DY
profiling the iteration time for a 4-GPU ResNet-50 [53] job
with a batch size of 64 run on all 4 GPUs of a single node
versus an 8 GPU ResNet-50 job with a batch size of 128
running on two nodes. The ratio of the average iteration
time aggregated from the two profiles gives us an estimate
for locality penalty. Using this method we initially estimated
a locality penalty to be 1.7 on TACC Frontera. We use
this locality penalty in our Synergy simulations, but study
different locality penalty values to evaluate how our policies
fare in other systems with different costs of distributing jobs
across nodes. Our physical experiments showed that inter-node
communication costs are not as high on Frontera, and are
also model-dependent. Hence, we estimate per-model locality
penalties from our physical cluster experiments, and use these
in simulation experiments in Sections V-A and V-B.
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V. EVALUATION
A. Real Cluster Experiments

To ensure our reported gains from Blox (Sections V-B-
V-C) are representative and realistic, we first compare PAL to
Tiresias, the best performing baseline, on a physical 64-GPU
cluster. Figure 8 shows the variability profile of this 64-GPU
test-bed. Since we are running these experiments on a real
cluster, we use the exact PM penalties for the 64 GPUs that
we used in our experiments.

Figure 9 shows the cumulative distribution of JCTs for the
physical cluster experiments as well as this corresponding
simulation (Sections V-B-V-C) for the same trace. Broadly, the
cluster CDF aligns fairly well with that of simulation for both
policies. Overall, PAL reduces average JCT and makespan by
24% and 27%, respectively, over Tiresias’ placement policy,
whereas simulation predicts a 28% benefit given the variability
and locality penalties of the testbed. These results demonstrate
the benefit of our approach; even over the best performing
baseline PAL’s ability to effectively exploit both locality and
variability improves performance. Moreover, Table IV sum-
marizes PAL and Tiresias’s real cluster average JCT results.
The difference between the average JCT metric in real and
simulated clusters is less than 14% for both policies. This
difference can be attributed to per-application estimation of
locality penalty in simulation. Overall, given the relatively low
error between real and simulated clusters, and Figure 9’s close
correlation between the JCTs on the cluster and those obtained
in simulation, these results demonstrate Blox’s fidelity.

Figure 8 shows the observed variability of the 64 GPU
subset of Frontera that formed our testbed. Specifically, the
64 GPUs we ran on have 6%, 2.3% and 0.9% variability for
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Fig. 10: Physical cluster and simulated Tiresias and PAL JCT
boxplots.

ResNet-50 (class A), BERT (class B), and PageRank (class C)
respectively. Even though the testbed exhibits lower variability
compared to the overall Frontera profile in Figure 6, our results
demonstrate that PAL still significantly improves average JCT
over Tiresias. These results both demonstrate the viability of
our technique on real GPU clusters and the fidelity of our
simulator, which we next utilize to evaluate a wider range of
configurations in simulation.

B. Sia-Philly Simulations

Next we evaluate Sia-Philly traces in a simulated 64-
GPU cluster with FIFO scheduling using PM penalty profiles
from TACC’s Longhorn cluster. Further configuration details
were described in Section IV-B1, IV-D, and IV-C. Figure 11
compares the average Job Completion Time (JCT), normalized
to Tiresias or Packed-Sticky placement.

Random & Packed Policies: Since random selection increases
the likelihood that the allocated GPUs are ill-performing in
terms of variability and/or packing, the Random baseline
policies often suffer in terms of performance (e.g., workloads
1, 2, 3, 6, and geomean JCT results). Conversely, the packed
baselines, namely Tiresias and Gandiva, improve perfor-
mance by minimizing the number of nodes a job is packed
on, thereby reducing the inter-node locality cost for multi-
GPU jobs.

Sticky & Non-Sticky Variants: For most workloads (1, 2,
4, 5, 6, geomean), Tiresias’ sticky placement outperforms
Gandiva’s non-sticky GPU selection. This happens because
non-sticky placement picks GPUs every scheduling round,
increasing the likelihood of jobs picking GPUs with worse
PM-Scores for some rounds during their runtime. With Sticky
placement jobs that pick GPUs with high PM-Scores get con-
sistent slowdowns throughout their runtime. However, because
Sticky placement keeps the same GPUs throughout execution,
there are fewer such jobs compared to Non-Sticky placement.
PM-First & PAL: Overall, both PM-First and PAL both
outperform the baseline placement policies: PM-First improves
average JCT by 40% geomean (min 5%, max 59%) while
PAL improves average JCT by 43% geomean (mix 21%, max
59%) compared to Tiresias. PM-First and PAL also improve
makespan by 44% and 47% respectively over Tiresias. To
better understand PM-First’s and PAL’s range of benefits, we
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examined the GPU demand distribution for workload traces 3
and 5, which provide the best and the worst improvements,
respectively, over Tiresias. Both workloads have nearly 40%
single-GPU jobs, but workload 5 also has some very large
multi-GPU jobs — e.g., up to 48 GPU jobs that occupy 75%
of the cluster when they are scheduled and increase the waiting
times for subsequent, queued jobs (unsurprisingly, workload 5
has longer wait times in Figure 12). Consequently, workload
5’s wait times generally increase for subsequent jobs, as
expected with a FIFO scheduler. For example, in workload 5
an ImageNet job that requests 48 GPUs arrives early (job ID
19) and blocks subsequent jobs from getting sufficient cluster
resources, significantly increasing waiting times. Thus, despite
high contention, PAL and PM-First policies more efficiently
manage resource allocation and drain the job queue faster than
Tiresias, reducing waiting time and providing much larger
benefits for workload 5. Conversely, in workload 3 long-
running jobs with large GPU demands only arrive later on
(e.g., job ID 60 in a 160 job trace). As a result, workload 3’s
jobs have lower wait times, reducing PAL’s benefits.

1) Varying Locality Penalty: Figure 13 shows how various
inter-node locality penalty values affect our policies for the
Sia-Philly workloads. As the locality penalty increases, the

cost of allocating GPUs across nodes starts to dominate and
the placement policies that prioritize packing (Tiresias and
Gandiva) start winning over the Random variants.

As the locality penalty increases, the best-performing base-
line (Tiresias) improves its average JCT and approaches PM-
First’s and PAL’s performance. For example, PM-First’s
average JCT improvement over Tiresias decreases from 30%
to 9% as the locality penalty increases from 1.0 to 3.0.
Unsurprisingly, this demonstrates that PM-First does well
when locality penalty is low and Tiresias does well when
locality penalty increases. Nevertheless, even with a large
locality penalty, PM-First still outperforms Tiresias, showing
the value in harnessing performance variability. However, by
prioritizing both locality and performance variability for multi-
GPU jobs (Section III), PAL outperforms both PM-First and
Tiresias: as locality penalty is increased from 1.0 to 3.0,
PAL’s benefits over Tiresias only decrease from from 30%
to 20% geomean.'

C. Synergy Trace Simulations

With the Synergy traces we vary the job load or arrival
rate (jobs/hour) and measure JCTs to evaluate the performance
of our policies under varying levels of cluster contention.
Figure 14 compares the average JCT at different job loads
with various placement policies on a 256-GPU simulated
cluster, a constant locality penalty of 1.7, and variability
profiles drawn from TACC’s Longhorn cluster (Figure 7). Un-
surprisingly, Tiresias placement again outperforms the other
baselines because packing helps avoid paying the high inter-
node locality cost for multi-GPU jobs. Comparatively, PM-
First sees lower improvements with Synergy versus Sia: since
Synergy has more single GPU jobs (Section IV-B1), these jobs
do not need to be packed. However, unlike PM-First, PAL
successfully prioritizes packed allocations for multi-GPU jobs,
where spilling across nodes is prohibitively expensive, and
makes PM-First allocations for single GPU jobs that need not
be packed. Thus, PAL still provides the best overall JCT.

Overall, with FIFO scheduling, PAL improves the average
JCT from 4% to 9% over Tiresias as job load varies from
4 jobs/hr to 12 jobs/hr, before benefits stabilize around 8%.
These benefits happen despite Synergy having ~80% short
running, single-GPU jobs. For Synergy’s multi-GPU alloca-
tions, the effect of variability is more pronounced — since these
multi-GPU jobs must periodically synchronize across GPUs,
their execution is bound by the slowest GPU in their allocation.
Thus, PAL improves the average JCT of multi-GPU jobs by
5% to 31% over Tiresias as job load varies from 4 to 12
jobs/hour. At job loads > 12 jobs/hour, multi-GPU jobs see
22% average JCT benefits with PAL.

Figure 15 shows the number of GPUs in use at every
scheduling epoch. For job loads under 8 jobs/hour, there is
low contention and the cluster remains under-utilized, as seen
in the utilization dip at around 1.5 x 10%s. For 10 jobs/hour,

'We see similar results when sweeping locality penalty for Synergy
simulations, not shown due to space constraints.
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the cluster gets saturated early (at around 0.7 x 10%s) and
all 256 GPUs are consistently busy thereafter. We observe
a similar wait time cascading effect as with the Sia traces,
where small execution time improvements enable PM-First
and PAL to drain the job queue faster, reducing wait times
significantly for subsequent jobs. This can be seen in PAL’s
utilization pattern, where PAL’s utilization “runs ahead” of
Tiresias (Figure 15) and frees up resources earlier. At low
contention levels, queuing time for jobs is low. PAL and PM-
First provide execution time benefits here, but the wait time
benefits are limited since most jobs get resources immediately
on arrival regardless of placement policy, except for jobs
between time 1 x 10° to 1.5 x 10,
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Fig. 18: Placement overheads for PAL policy with varying
cluster sizes.

Finally, to estimate PAL and PM-First’s additional over-
heads, we measured the time each placement policy takes at
every scheduling epoch for different cluster sizes. Figure 18
shows the distribution of policy computation time over all
scheduling epochs, for varying cluster sizes. For a 256-GPU
cluster, PAL’s worst-case scheduling time is 4 seconds (for
the very first scheduling epoch) with a median of 2.8 seconds.
PM-First’s worst-case computation time is 2 seconds, also for
the first epoch. Thus, both PAL and PM-First complete an
epoch’s GPU assignments within 4 seconds — much smaller
than the 300 second epoch duration.

1) Varying Scheduling Policies: SRTF & LAS: Figures 16
and 17 show variation of average JCT as job loads increase
from 8 to 14 jobs/hour for LAS and SRTF schedulers re-
spectively. With LAS, the absolute values of JCTs are higher
because of higher wait times compared to FIFO. Nevertheless,
PAL provides up to 15% improvement over Tiresias. With
SRTF, PAL provides up to 10% improvement in average JCT
over Tiresias. These improvements are higher than FIFO’s,
and can be attributed to differences in wait time patterns
between these scheduling policies.

Figure 19 compares wait times with epochs for the three dif-
ferent schedulers. For LAS, incoming jobs get higher priority
than running jobs since they have no attained service — de-
creasing wait time for successive jobs. The extent of decrease
depends on cluster contention levels. Figure 19(a) shows this
decrease at 8.0 jobs/hr — wait times go down to O for jobs later
in the trace. Moreover, the absolute values of wait times are
large enough to dominate the overall JCT for these jobs. PAL
often reduces wait time for these long queued jobs, due to its
aforementioned run-ahead effect (Section V-C). Conversely,
SRTF has fewer wait time spikes than LAS (Figure 19(b))
but still gets some wait time benefits with PAL over Tiresias.
With FIFO scheduling, wait times progressively increase over
time. Thus, its magnitude of wait times is comparatively lower
than either SRTF or LAS. As a result, PAL correspondingly
achieves lower wait time benefits over Tiresias with FIFO
scheduling.

VI. RELATED WORK

CPU Variability: CPU-based systems have proposed and
adopted several solutions to handle variability, but largely
focus on different aspects or scales than ours, making them
complementary to our proposed approaches. Dynamic load
balancing algorithms [58]-[60] use adaptive runtime systems
that estimate a task’s completion time if it is moved from one
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processor to another for single CPU experiments. Speed-aware
solutions identify overloaded nodes as ones with throttled
core frequencies [59] while thermal-aware solutions identify
hotspots [58], [60]. Conversely, we profile and directly use
performance variability for single- and multi-GPU jobs, which
requires managing placement and locality across multiple de-
vices for a given job. Other solutions [61] minimize variability
within a NUMA node using a runtime-guided search for
thread and task socket assignments. However, this does not
scale to GPUs with thousands of threads or larger systems
with hundreds/thousands of GPUs. Some solutions estimate
total consumed power when scheduling jobs to stay within
a system-wide power budget. To estimate power variability,
jobs either use static profiling tables [62] or power prediction
models [61]. While these solutions are power variability aware,
neither consider it in their placement policies.

GPU Performance Variability: Prior VLSI and architecture
works have developed hardware-level techniques and opti-
mizations to mitigate or tolerate process variation either within
a single GPU or components of a single GPU such as compute
units, memories, or the register file [17], [63], [64]. However,
these solutions are local to the GPU and do not extend to multi-
GPU systems. Moreover, they also focus on process variation
and do not address dynamic variability due to PM and the
overall effect of variability on application performance like
our work.

Cluster Schedulers: Unlike batch scheduling mechanisms
such as SLURM [65], ML cluster schedulers for GPU-rich sys-
tems are tailored towards the unique demands and constraints
imposed by ML training, such as checkpointing and periodic
job migration. In this work, we specifically focus on such
round-based, preemptive schedulers for ML training in large-
scale GPU clusters. These schedulers make GPU allocation
decisions for competing ML jobs with specific scheduling
objectives. Scheduling is an extremely active area of research,
with over 23 schedulers proposed for ML training on GPU dat-
acenters since 2022. Thus, there are numerous prior works, as
comprehensively summarized by Gao et al. [22]. However, the
most relevant ones to our work have developed schedulers to
optimize for different objectives, such as JCT, utilization, cost,
fairness, and deadlines [23]-[26], [29], [41], [66]. However,
unlike PAL, these works are either performance variability
agnostic or, like Gavel [26], only consider variability across
different GPUs from the same vendor in an HPC system.
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In comparison, PM-First enables fine-grained iso-architecture
variability that allows them to make variability-informed de-
cisions. Moreover, PAL co-optimizes variability with packing
to further improve performance.

Placement Policies: Jeon et al. [40] recommended that multi-
tenant GPU cluster schedulers should prioritize locality to
reduce distributed communication costs for long-running jobs.
Accordingly, several schedulers try to pack jobs onto fewer
nodes [23], [26], [29], [41]. For example, Tiresias profiles a
job to identify its sensitivity to placement and performs packed
placement for jobs with high communication overheads [23].
However, all these schedulers are agnostic to GPU variability,
which we show in Section V causes PAL to outperform them.
Gavel [26] and Sia [29] consider different accelerator archi-
tectures on heterogeneous clusters, while Amaral et al. [42]
consider heterogeneity in GPU interconnect topology. These
solutions also assume that all GPUs of a given architecture
deliver equal performance. Thus, to the best of our knowledge,
our work is the first to create cluster schedulers aware of
performance variability among GPUs in HPC systems with the
same architecture and make scheduling decisions informed by
this variability.

VII. CONCLUSION

GPU-rich clusters are becoming increasingly prevalent to
meet the computing needs of large-scale ML workloads.
However, performance variability can significantly affect their
cluster performance, utilization, and load balance — trends that
are likely to worsen as ML algorithms continue to scale. Thus,
ML schedulers in large scale systems must embrace and har-
ness this variability. Accordingly, we propose PAL, which uses
application-specific variability characterization to intelligently
perform variability-aware GPU allocation. Moreover, PAL co-
optimizes job placement for both variability and locality to
reduce communication overheads. Overall, across a mix of
ML workloads, our evaluation shows that PAL improves on
state-of-the-art ML cluster schedulers across a number of
metrics. Moreover, we expect HPC and HPC+ML workloads
will exhibit similar benefits.
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