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Abstract—Large-scale computing systems are increasingly us-
ing accelerators such as GPUs to enable peta- and exa-scale
levels of compute to meet the needs of Machine Learning (ML)
and scientific computing applications. Given the widespread and
growing use of ML, including in some scientific applications,
optimizing these clusters for ML workloads is particularly impor-
tant. However, recent work has demonstrated that accelerators
in these clusters can suffer from performance variability and
this variability can lead to resource under-utilization and load
imbalance. In this work we focus on how clusters schedulers,
which are used to share accelerator-rich clusters across many
concurrent ML jobs, can embrace performance variability to
mitigate its effects. Our key insight to address this challenge
is to characterize which applications are more likely to suffer
from performance variability and take that into account while
placing jobs on the cluster. We design a novel cluster scheduler,
PAL, which uses performance variability measurements and
application-specific profiles to improve job performance and
resource utilization. PAL also balances performance variability
with locality to ensure jobs are spread across as few nodes as
possible. Overall, PAL significantly improves GPU-rich cluster
scheduling: across traces for six ML workload applications
spanning image, language, and vision models with a variety of
variability profiles, PAL improves geomean job completion time
by 42%, cluster utilization by 28%, and makespan by 47% over
existing state-of-the-art schedulers.

Index Terms—GPGPU; Cluster Scheduling; Machine Learn-
ing; Performance Variability; Power Management

I. INTRODUCTION

Artificial intelligence (AI) and machine learning (ML) have

transformed society with significant improvements for a wide

range of tasks [1]. This tremendous transformative effect has

been enabled by a virtuous synergy of (1) better hardware

systems, (2) larger datasets, and (3) improved ML models

(e.g., Transformers) and algorithms that further benefit from

more efficient hardware and larger datasets. ML is also in-

creasingly impacting scientific applications [2]–[4]: ML mod-

els are either replacing or supplementing traditional computing

methods in application domains like molecular dynamics (e.g.,

DeePMD [5], [6]), protein folding (e.g., OpenFold2 [7]), and

scientific AI models (e.g., AuroraGPT [8]).

However, meeting the computing needs of ML applications

introduces new challenges. With the slowing of Moore’s

Law and end of Dennard’s Scaling, large-scale systems are

increasingly turning towards heterogeneous accelerators to

scale performance, especially for ML workloads. For example,

large computing centers including cloud providers [9]–[11]

have deployed large accelerator-rich clusters that provide peta-

or exa-scale levels of compute. These systems often contain

hundreds to tens of thousands of accelerators and are usually

shared between many users. Thus, cluster schedulers need

to handle large, accelerator-heavy ML workloads, while also

aiming to reduce the time-to-solution of individual jobs and

maintaining high resource utilization.

However, achieving high resource utilization for ML work-

loads is challenging in the face of performance variability of

accelerators. Prior studies [12]–[19] have found that large clus-

ters with accelerators like general-purpose GPUs (GPGPUs)

exhibit significant performance variability, both within and

across machines (discussed further in Section II-A). Prior work

found that one of the main variability sources is power man-

agement (PM) in accelerators, which can lead to power and

frequency variations across nodes [18]. Performance variabil-

ity also causes resource under-utilization for multi-GPU jobs

since all of them must wait for the slowest one to complete due

to the bulk synchronous programming (BSP) model used in

data-parallel ML workloads [20]. Consequently, performance

variability makes it challenging for ML workloads to achieve

repeatable, high performance.

To overcome this challenge, our goal is to harness and

embrace performance variability. Specifically, we propose

to redesign scheduling policies for GPU clusters to consider

performance variability. Our key insight for designing a bet-

ter policy comes from the fact that performance variability

is application-specific. For example, prior work found that

compute-intensive workloads such as training a ResNet-50 ML

model had significant variability (22% geomean variability,

max 3.5×). Conversely, memory-intensive workloads such as

PageRank had very low variability (1%) [12], [18]. Thus, we

can create new policies that take into account both the level

of performance variability in a given cluster and how different

applications are impacted by performance variability in that

cluster.

We achieve our goal by (1) characterizing hardware per-

formance variability by running a wide variety of single- and

multi-GPU ML applications on the Texas Advanced Comput-

ing Center’s (TACC) [21] Longhorn and Frontera clusters, (2)

building application-specific performance variability profiles,

and (3) designing new placement policies that utilize (1) and

(2). Specifically, we propose a new job placement policy,

PM-First, which considers PM-induced variability as the



primary factor when assigning GPUs to jobs. Our policy uses

application profiles to give preferred GPUs to applications that

are most sensitive to variability. To ensure our policy can scale

to handle large GPU clusters, we identify which GPUs exhibit

similar performance variability and use K-Means clustering to

group such GPUs together.

While PM-First exclusively focuses on performance vari-

ability to make allocation decisions we find this sometimes

results in sub-optimal schedules. For example, if the acceler-

ators with similar performance variability profiles are widely

distributed across the cluster, scheduling to minimize or reduce

performance variability may lead to significant overhead from

inter-node communication (e.g., when weights are updated at

the end of ML training epochs). To address this challenge,

we extend PM-First’s algorithm to consider both performance

variability and locality when making its scheduling decisions.

We call this second approach PAL (Performance Variability

& Locality) since it aims to balance both concerns when

scheduling multi-GPU jobs in the cluster. PAL co-optimizes

for both locality and variability by estimating the combined

effect of both for every possible GPU allocation for a given

job. However, selecting the best allocation considering both

factors can be expensive for a large cluster. Thus, we propose

an efficient mechanism where we construct and traverse a

locality-variability matrix (L×V matrix). The L×V-matrix is

succinct and its size is bound by the number of locality levels

in the cluster (i.e., the network topology hierarchy) and the

number of K-Means clusters used for grouping PM scores. We

show that this allows PAL to behave the same as PM-First for

variability-sensitive jobs, and make locality-first allocations for

jobs that need to prioritize network communication.

Given the importance of ML workloads running in large-

scale clusters, prior work has also examined scheduling poli-

cies for ML workloads [22]–[25]. However, almost all of

these scheduler designs are agnostic to GPU variability and

assume that iso-architecture GPUs deliver equal performance.

One notable exception is Gavel [26], which considers per-

formance heterogeneity but only across different accelerator

architectures in heterogeneous clusters. Thus, to the best of

our knowledge, our work is the first to make cluster schedulers

aware of iso-architecture GPU performance variability. We

discuss this and other related work further in Section VI.

To evaluate the efficacy of PM-First and PAL, we integrated

them into Blox [27], a state-of-the-art toolkit that supports

many modern scheduling and placement schemes for ML

workloads. While our policies can potentially also benefit

other types of workloads such as scientific computing, their

evaluation is left for future work. We compare our PM-

First and PAL placement policies with widely used locality-

based placement policies from Tiresias [23] and Gandiva [28],

which perform job packing. We also evaluate our placement

with different scheduling policies, including FIFO, LAS, and

SRTF. Overall, PM-First and PAL significantly improve cluster

scheduling for a variety of ML workload traces from prior

work [29], [30]. For example, PM-First improves geomean

99th percentile job completion time (JCT) by 40%, average

JCT by 40%, utilization by 26%, and makespan by 44% over

Tiresias. Moreover, by balancing both performance variability

and locality, PAL further improves on PM-First. Compared to

Tiresias, PAL improves geomean 99th percentile JCT by 41%,

average JCT by 42%, and makespan by 47%. PM-First and

PAL benefits are especially large when workloads have a large

proportion of multi-GPU jobs – the increasingly common case

as ML model sizes continue growing. Thus PAL’s benefits are

likely to scale further with future workloads. Finally, we also

validate our approach using a 64-GPU TACC Frontera cluster

and find that PAL outperforms Tiresias by 24% in terms of

average JCT.

II. BACKGROUND

A. GPU Performance Variability

GPUs in large clusters such as datacenters and supercomput-

ers exhibit variability in performance, despite having the same

underlying architecture and being similarly configured. Prior

studies [12]–[14], [16]–[18] have examined and characterized

performance, power, and temperature variability among GPUs

at scale. For example, Sinha, et al. profiled 5 large, GPU-

rich clusters with 400−27000 identical GPUs and identified

significant performance variability, both within and across

machines. Similar to prior work [12], they found that different

applications exhibit different extents of performance variability

at scale. In particular, compute-bound workloads like ResNet-

50 see much more variation (22% geomean, up to 3.5×) than

memory-intensive workloads like PageRank (1% geomean).

Performance variability occurs for a number of reasons in

these systems. Static effects at the hardware level such as

process variation and die binning cause inherent manufacturing

variability among GPUs, while power and temperature limits

and associated PM algorithms cause dynamic variation. In

HPC systems, non-uniformity in cooling across nodes can

also cause thermal throttling, increasing performance vari-

ability [31]. This variability is not transient either: perfor-

mance variability is consistent over time, and ill-performing

GPUs are consistently ill-performing [18]. Moreover, not all

the performance variability can be explained by temperature

differences or cooling sources, and the variability is consistent

across different days of the week, times of day, and GPU

vendors. Moreover, as discussed in Section I massively parallel

workloads that synchronously utilize multiple GPUs are bot-

tlenecked by the worst-performing GPU – reducing cluster un-

derutilization and load imbalance, hurting overall throughput

and efficiency of these large-scale systems. Consequently, this

application-specific performance variability affects application

performance across runs on the same cluster [13], [18] and is

a growing problem for accelerator-rich systems.

B. Cluster Scheduling

ML workloads are increasingly being run on shared, GPU-

rich clusters. Thus, efficient scheduling is necessary to mini-

mize ML training time and efficiently utilize cluster resources.

Collectively, the cluster scheduler must decide which job(s) to

schedule at a given time and what resources they should be
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If we pick very small values for K (the number of bins

produced by clustering), we lose fine-grained variability in-

formation, and PM-First cannot differentiate between GPUs

that deliver different performances. Conversely, very high K

values overestimate the impact of variability, making PM-First

more selective in picking GPUs than necessary. Thus, we need

to determine optimal K values for each class. We select the op-

timal K-value using the standard silhouette score method [38].

However, since the variability data has some extreme outliers,

particularly for compute-intensive applications, this adversely

impacts silhouette coefficients. We separate > 3σ outliers

when computing silhouette scores and sweeping through K

from 2 to 11. We select the K value that gives silhouette scores

as close to +1 as possible for all bins so that we get distinct

and relatively well-separated bins. We similarly determine an

optimal K value for the set of outliers. Note the placement

policy does not ignore > 3σ outliers; they are only removed

for the silhouette score analysis. These extreme outliers are

assigned their own PM-score equal to the GPU’s normalized

performance.

C. PAL Placement Policy

While the PM-First policy factors variability into its

decision-making, it ignores communication overheads that

may occur due to ineffective packing. Thus, PM-First works

well for applications that are sensitive to variability (e.g., class

A), but not for those that are less impacted by variability

(typically class C). Accordingly, our PAL placement policy

co-optimizes for locality and variability by observing their

combined effects, ensuring that PAL prioritizes either packing

or variability depending on what is more important.
1) Combined Slowdown and L×V Matrix: Large-scale sys-

tems typically have a flat network topology without much over-

subscription. For example, TACC Frontera uses a Mellanox

interconnect in a fat tree topology with an oversubscription

of 22/18 [21]. For such systems, where there is no complex

routing or multiple hops between nodes of the same layer,

we use a simplified locality model. A multi-GPU job incurs

a performance penalty Lacross if its allocation spills across

nodes and suffers no performance degradation if the allocation

is within a node (Lwithin = 1.0). If a job is running with a

set of GPUs G and the GPUs are spread across more than one

node, then the job’s modified iteration time is:

titer = Lacross ×max
g∈G

(Vg)× t
orig
iter (1)

where t
orig
iter is the job’s original iteration time, as specified

in Section II, Vg is the variability or PM-Score of the gth

GPU and Lacross is the inter-node locality penalty. Section IV

provides more details on estimating a cluster’s locality penalty.

To get better performance for jobs, we need to minimize

the combined slowdown due to both variability and locality

penalties. We denote this as the LV-Product:

minLV-Product = min(L1 ×max
g∈G

Vg)

To minimize this product, we construct an L×V matrix for

each job class at design time based on the profiled variability

and the locality penalty. For example, consider the following

L × V matrix with 4 bins for PM-Scores V1 = 0.89, V2 =
0.94, V3 = 1.06, and V4 = 2.55, and a constant inter-node

locality penalty Lacross = 1.5.

L×V =

V1(0.89) V2(0.94) V3(1.06) V4(2.55)
[ ]

0.89 0.94 1.06 2.55 Lwithin(1)
1.34 1.41 1.59 3.88 Lacross(1.5)

The matrix entries represent the LV-Product we want to

minimize. Each entry corresponds to a possible allocation

scenario. We “traverse” this matrix from smallest LV-Product

to largest, making job allocations to minimize the LV-product

(Algorithm 2, line 3). In this example, the L × V matrix

traversal order would be: (1, 0.89) → (1, 0.94) → (1, 1.06) →
(1.5, 1.34) → (1.5, 1.41) → (1.5, 1.59) → (1.5, 3.88). In

other words, unlike PM-First, PAL allows non-packed allo-

cations only if the first three variability bins cannot provide a

packed allocation to service this job. However, PAL prefers a

distributed allocation over allocating GPUs from bin 4 which

has a very high PM-Score (V4 = 2.55). Moreover, since the

L×V matrix is class specific traversal orders are often unique

per-class. This allows PAL to make PM-First decisions for

variability-sensitive jobs, and make locality-first allocations for

jobs that need to prioritize packing.

Algorithm 2 details the steps to perform this L×V traversal.

For a job requesting Nj-GPUs on a cluster size N , there are
NCNj

possible GPU allocations. Our inter-node cost model for

locality allows us to reduce this search space, since jobs with

GPU demand Nj > NUM_GPUS_PER_NODE must request

multiple nodes and pay the inter-node locality penalty of split-

ting across nodes. PAL schedules all such jobs using the PM-

First policy (Algorithm 2, lines 23-25). A job j requesting Nj

GPUs, where 1 < Nj ≤ NUM_GPUS_PER_NODE, traverses

the allocation in two ways:

1) (Lwithin, Vi) allocations: PAL needs to prioritize pack-

ing while making sure that PM-Score for the allocation

is ≤ Vi. We filter out the free list of GPUs with V ≤ Vi

and then try to enumerate strictly packed (within-node)

allocations within this free list by enumerating all pos-

sible packed Nj-sets of GPUs and finding the set with

the least variability.

2) (Lacross, Vi) allocations: we filter out the free list of

GPUs with PM-Score ≤ Vi and sort them by PM-Score.

Since locality cost is acceptable to incur in this state,

we pick the first Nj GPUs from this sorted list.

This L×V matrix traversal only occurs for jobs that require

NUM_GPUS_PER_NODE or fewer number of GPUs.

IV. METHODOLOGY

A. System

We run experiments on both a physical cluster and in

simulation. All experiments use Blox [27], an open-source

modular toolkit that uses Python and gRPC [39] to support

scheduler implementation and testing. The physical cluster
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Algorithm 2: PAL_PLACEMENT

PAL Selection Algorithm

Input: Free GPU List Gfree,
Job Class Cj

Job GPU Demand Nj

L× V matrix
Output: GPU Allocation Alloc

1 Function PAL_PLACEMENT(Gfree, Cj , Nj , L× V ):

2 if 1 < Nj ≤ NUM_GPUS_PER_NODE then

3 for (Li, Vi) in traverse(L× V ) do

4 if Li = Lwithin then

5 // Filter GPUs with PM Scores

better or equal to Vi

6 Gfilt ← Gfree[V ≤ Vi];
7 // Enumerate potential packed

allocations

8 n ← FindValidNodes (Gfilt, Nj );
9 PackAlloc ← GenerateCombos(nCK );

10 // Return one with lowest PM Score

11 Alloc ← GetMinV(PackAlloc);
12 return Alloc;
13

end

14 else if Li = Lacross then

15 // PM-First allocation

16 Gfilt ← filt(free gpu list, V ≤ Vi);
17 Alloc ← Gfilt[:Nj ];
18 return Alloc;
19

end

20

end

21

end

22 else
23 // PM-First allocation

24 Alloc ← getPMFirstGPUs();
25 return Alloc;

end

TABLE I: List of experiments used in evaluation.

Workload

Trace

Cluster Size

(NumGPUs)
Experiment

Eval.

Section

Sia-Cluster [29] 64 Testbed Evaluation V-A

Sia-Philly [29], [40] 64
Baseline Simulation
Varying Locality Penalty

V-B

Synergy [30] 256
Varying Job Load
Varying Schedulers

V-C

experiments are performed on TACC’s Frontera supercom-

puter [21]. Frontera is a mineral-oil cooled GPU subsystem

with 360 NVIDIA Quadro RTX 5000 GPUs. Each node has

4 GPUs, with 16GB memory per GPU. We run physical

cluster experiments on an 16 node (64 GPU) testbed. We also

use larger trace-based simulations to evaluate the behavior of

our policies with varying cluster sizes, traces, and scheduling

policies. Table I summarizes the key experiments and system

details.

1) Baseline Placement Policies: We evaluate PM-First and

PAL’s performance relative to two baselines: (1) Packed or

soft-consolidated placement tries to minimize the number of

nodes a job is packed on to reduce communication; and (2)

Random or Scattered placement samples a random subset from

the free list of GPUs in order to prevent thermal hotspots

through unbalanced GPU usage, increase device lifespan,

and prioritize performance of CPU-to-GPU communication.

However, random placement can sacrifice performance for

workloads sensitive to GPU-to-GPU communication.

We further consider two flavors of each of these policies –

Sticky and Non-Sticky. In Sticky placement, active jobs cannot

be migrated to a different allocation and must continue to run

with the same (“sticky”) set of GPUs they first get assigned,

until the jobs either complete or get preempted through priority

lowering. Thus, the Sticky placement policy only re-allocates

GPUs to a job once the job moves from suspended to active

state. Sticky allocations minimize checkpointing overheads

that occur due to migration, but these are typically negligible

relative to the overall job run-time. We chose these as our

baselines because most state-of-the-art schedulers use one of

them. Specifically, we compare against the following config-

urations:

1) Tiresias [23]: performs Packed-Sticky placement

2) Gandiva [28]: performs Packed-Non-Sticky placement

3) Random-Sticky

4) Random-Non-Sticky

Other schedulers also use some variants of these policies.

For example, Themis [41] also uses Packed placement, while

Amaral, et al. and HotGauge use Random placement [42],

[43]. In the remainder of this paper we use Tiresias to mean

Packed-Sticky placement and Gandiva to mean Packed-Non-

Sticky placement.

Our PAL and PM-First placement policies are both Non-

Sticky to ensure jobs can migrate to better GPUs in each

scheduling round.

2) Scheduling Policies: We evaluate three schedulers PM-

First and PAL placement can be attached to:

First-In-First-Out (FIFO) scheduler: a well-known greedy

approach that prioritizes jobs in order of arrival.

Tiresias/Least Attained Service (LAS): implements LAS

scheduling with two-level priority queuing [23].

Shortest Remaining Time First (SRTF): performs preemp-

tive shortest job first scheduling.

While we present simulation results with all three schedul-

ing policies, we use Tiresias for the TACC Frontera cluster

runs. Section V-C compares how the behavior of our placement

policy changes when the scheduler is varied.

B. Workloads and Cluster Configuration

1) Simulations: To compare our placement policies against

the baselines (Section IV-A1) in simulation we use two sets

of workload traces:

Sia-Philly workloads [29] sample jobs from Microsoft’s

publicly available Philly cluster production traces [40]. Sia

derives eight traces of 160 jobs each, submitted over an 8

hour window at a job arrival rate of 20 jobs/hr. We use these

traces in the same cluster configuration Sia used: a simulated

16 node system with 4 GPUs per node (64 GPUs). 40% of

Sia trace jobs are single-GPU jobs, and the largest multi-GPU

jobs request up to 48 GPUs. We report average metrics such as
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