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A B S T R A C T   

Failure analysis and defect detection are crucial processes in industries, governments, and societies to mitigate 
the risks associated with defective microelectronics. The accurate identification of faulty parts is vital for pre-
venting potential damages. However, traditional manual and automated defect detection approaches face 
challenges due to the scarcity of ground truth data from defective parts. This limitation hampers the effectiveness 
of subject matter experts and machine learning models in recognizing and classifying new instances of defects. To 
address this issue, we propose a synthetic data augmentation workflow that generates virtual defective parts, 
effectively overcoming the data scarcity problem and enabling the creation of large datasets at a low cost. Our 
approach enhances defect detection capabilities, empowering industries and governments to improve the quality 
and reliability of electronic devices.   

1. Introduction 

The semiconductor industry heavily relies on failure analysis and 
defect detection to ensure high-quality electronic devices [1,2]. Tradi-
tional approaches involve capturing 2D and 3D images of components, 
which are subsequently examined either by experts or through auto-
mated processes [3,20–29]. X-ray imaging, particularly X-ray tomog-
raphy, offers a valuable non-destructive and high-resolution method for 
failure analysis in the industry. 

However, traditional manual inspection methods present challenges 
due to subjectivity, time consumption, and susceptibility to human 
error. To address these limitations, there is a growing interest in utilizing 
machine learning and computer vision techniques to automate and 
enhance defect detection. Despite advancements in imaging and failure 
analysis [4], X-ray tomography remains resource-intensive and costly, 
and the scarcity of defective parts hinders the acquisition of diverse 
datasets covering potential defects, complicated further by logistical 
challenges. 

Training subject matter specialists to accurately identify and detect 
defects in microelectronics faces challenges due to limited exposure to 
real cases and comprehensive datasets. Augmenting training with syn-
thetic datasets offers a potential solution by employing generative 

models and simulation techniques to create supplementary training 
examples, enhancing specialists’ understanding and detection 
capabilities. 

Automated defect detection is crucial to reduce reliance on human 
cognition in manual inspection, as it faces challenges in availability of 
trained personnel, security clearance, and subjective analysis leading to 
false positives and missed defects. However, the effectiveness of ma-
chine learning algorithms in defect assessment heavily relies on large 
training datasets. Data scarcity is a significant challenge in acquiring 
annotated datasets, primarily due to the rarity of suitable defective 
samples and labor-intensive annotation process with large datasets. 

To address these challenges, researchers and industry practitioners 
have explored alternative approaches to dataset creation, such as data 
augmentation and synthetic data generation techniques. Synthetic 
datasets can be generated using computer simulations and modeling, 
overcoming the scarcity of annotated samples. By synthesizing various 
defect types under different conditions, datasets encompassing a wide 
range of defect scenarios can be created. Synthetic datasets, when 
combined with real-world annotated data, offer a more comprehensive 
and diverse training set for automated defect detection systems. 

Previous studies have investigated the application of deep learning 
for fault detection in electronic and microelectronic parts [5–8]. Some 
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studies relied on existing datasets, some attempted traditional 
augmentation methods, while others automated the annotation process 
for specific applications. In response to the data scarcity challenge, re-
searchers have made efforts to create synthetic datasets [9–12]. To 
generate synthetic datasets, generative adversarial networks [13] have 
been widely employed, requiring careful training and validation to 
ensure fidelity to real defects. 

In this study, we propose a data augmentation workflow to overcome 
the shortage of real data in defect identification. Synthetic data is 
generated by introducing defects into flawless 3D CAD models of mi-
croelectronic components, and images are simulated from these defec-
tive instances. Each image is labeled with defect information, providing 
an inherently labeled training dataset crucial for machine learning ap-
plications. This method empowers both the workforce and machine 
learning algorithms for defect identification, finding applications in 
various industries and governments. 

2. Materials and methods 

2.1. Overview of the method 

We propose an in-silico method to generate training data for mi-
croelectronic defect detection. The process involves: (1) constructing a 
3D model of the microelectronic part through imaging-enabled reverse 
engineering; (2) generating a large number of instances of the part’s 3D 
model; (3) introducing known defects with specific characteristics into 
the 3D models to obtain a population of defective parts in silico; and (4) 
obtaining X-ray images of the defective parts using state-of-the-art X-ray 
CT simulation software. The resulting X-ray images and information 
about the virtual part’s defects are compiled into a dataset for training 

supervised learning algorithms and workforce training for manual in-
vestigations. Fig. 1 illustrates the proposed workflow. 

2.2. Image acquisition 

To generate synthetic training data in two or three dimensions, the 
reconstructed 3D images of microelectronic chips are required to extract 
the CAD model. Thus, in our method, we use the last step of acquiring 3D 
images as the source for generating the synthetic dataset. The CAD 
model is manually segmented into two categories: electrical parts and 
packaging. 

2.3. Reverse engineering and CAD extraction 

The generated synthetic dataset can be both in two dimensions and 
three dimensions, based on the need. However, as the CAD model of the 
chip is needed for generating the synthetic images, whether 2D or 3D, in 
our method, the reconstructed 3D images of the chip is acquired. This 3D 
image is segmented manually using a 3D image analysis tool. For our 
purpose in this paper, the CAD model is mainly segmented into two 
categories: the electrical parts and the packaging. 

2.4. Image simulation 

To simulate X-ray imaging, we used gVirtualXRay [14] and the CAD 
model extracted from real images. We chose appropriate materials for 
each type of CAD to have the correct attenuation coefficient for X-ray 
imaging. Then, the image was simulated from the desired spatial angle 
of the CAD. 

2.5. Noise addition 

Adding the right noise to the synthesized image is critical for effec-
tive use of the dataset in training a deep learning model. X-ray and CT 
imaging systems use X radiation to capture images, which are usually 
corrupted by noise following a Poisson distribution [15]. Although 
modern noise reduction algorithms are applied, there are still noises 
present in the final image. While Monte Carlo simulation of X-ray 
[16–19] can account for some of these noise effects, it is time-consuming 
and impractical for generating a large dataset. Therefore, using a ray 
tracing approach and noise addition is necessary. 

We propose a novel noise addition protocol that involves taking two 
consecutive images with the X-ray system, from just the air or an arbi-
trary sample. As these images are of the same thing, they should be 
identical except for the noise introduced. Subtracting these images and 
dividing the result by two produces a good approximation of the noise 
profile of the imaging system, which is then multiplied by a random real 
number and added to the synthesized images. 

In our experiments, we observed that the introduction of artificially 
added Poisson, white, and salt and pepper noises to the images did not 
effectively train the deep learning network to perform well on real data. 
Despite this, we found that this method of simulating noise successfully 
served our intended purpose. 

Fig. 2 displays two X-ray images of air, along with the accompanying 
noise profile obtained from their subtraction. A noticeable effect known 
as vignetting is apparent in the air images, where the intensity gradually 
decreases as we move away from the center. In contrast, the noise 
profile, generated by computing the difference between the two images, 
demonstrates a consistent texture throughout the entire image. To 
improve clarity, the histogram of the noise image has been adjusted to 
enhance visibility and facilitate the observation of the noise profile. 

3. Results and discussion 

To demonstrate the effectiveness of our proposed workflow, we 
applied it to an integrated circuit (IC) sample. First, an X-ray CT scan 

Fig. 1. Workflow for synthesizing training data for workforce training and 
training of machine learning algorithms. 
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was performed on the IC, and the resulting 3D image was used to 
generate two STL files: one for the electronic parts and one for the 
packaging (Fig. 3). 

These STL files, along with the assigned materials, were then used in 
the image simulation algorithm to generate 2D X-ray projections of the 
sample. Fig. 4 shows the process of generating the synthetic X-ray image 
using gVirtualXRay. The synthesized image is shown in Fig. 5 after 
adding noise along with a real 2D X-ray projection of the device. The two 
images are highly similar, indicating that the simulated images are 
realistic and suitable for the intended purposes described in this paper. 

To quantify the similarity between the synthesized and real X-ray 
images, the mean absolute error (MAE), mean squared error (MSE), and 
normalized mean absolute error (NMAE) were employed as performance 
metrics. If there are total n pixels in the images, xi is the pixel value of 
the real image, and yi is the pixel value of the synthetic image, 

MAE =
∑n

i=1|yi − xi|
n ,

(a) 

(b) 

(c) 
Fig. 2. (a, b) Two different X-ray images of air and (c) the normalized resulted 
noise profile. 

(a) 

(b) 
Fig. 3. CADs of (a) the electronic parts and (b) packaging.  
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MSE =
∑n

i=1(yi − xi)2

n ,

NMAE =
∑n

i=1|yi − xi|∑n
i=1xi

.

The MAE measures the average absolute difference between corre-
sponding pixels in the two images, MSE measures the average of the 
squares of the difference between corresponding pixels, and NMAE 
normalizes MAE by the mean intensity of the real image. The normalized 
MAE accounts for intensity variations and allows for a more meaningful 
dissimilarity quantification. 

In our analysis, an MAE value of 0.046, MSE value of 0.004, and 
NMAE value of 0.074 were obtained, indicating a relatively low error 
between the synthesized and real images. Although it should be noted 
that all these metrics are sensitive to translation, meaning that even 
slight shifts in the position of the synthesized image can affect the 
calculated values. Despite not aligning and registering the two images, 
the obtained metric values were remarkably low. 

Another IC was subjected to X-ray CT imaging, and its CAD model 
was intentionally modified to produce a missing bond wire and dented 
packaging. Fig. 6 displays the CADs and a synthetic 2D X-ray projection 
having these defects. The defects can range from flaws in the micro-
electronic parts, such as broken or overlapping bond wires, to flaws in 
the packaging, such as voids or dents. 

In the presented case study, the defects were manually applied. 
However, it is important to highlight that the proposed approach has the 
potential to be extended and automated. By annotating CAD parts and 
devising rules, it is possible to streamline the process of applying defects 
in an automated fashion. This would eliminate the need for manual 
manipulations and enable a more efficient and scalable approach to 
generate synthetic images of defects. 

4. Limitations 

While our approach demonstrates the capability to create synthetic 
X-ray images with rare defects, it is important to acknowledge certain 
limitations that should be considered. These limitations pertain to the 
requirement of having or extracting CAD models of the part and the need 
for expertise in understanding the types of defects. 

One notable limitation is the reliance on the availability of CAD 
models for the target part. The CAD models serve as the foundation for 
generating the synthetic X-ray images and simulating the defects. 
Therefore, if CAD models are not readily accessible or if they are 
incomplete or inaccurate, it may pose challenges in applying our 
approach effectively. 

An additional limitation of the method is its dependence on the 
specific noise profile of the X-ray system used. Since the noise profile is 
inherently tied to the characteristics of a particular system, including the 
source, optics, and detector components, the generated dataset may be 
less applicable for use with other X-ray systems. As a result, the effec-
tiveness of our approach with different X-ray systems remains unex-
plored and requires further investigation. 

5. Conclusion 

The detection of defective microelectronics is crucial for various 
industries, governments, and societies to prevent potential damages. 
This paper presented a novel workflow to address the challenge of 
limited ground truth data for detecting defects through imaging. The 
proposed data augmentation workflow can generate large datasets of 
virtual defective parts inexpensively. The effectiveness of the method 
was demonstrated through multiple examples. This workflow can be 
used to enhance the accuracy of defect detection models and ultimately 
reduce the risk of faulty microelectronics. 

Fig. 4. The X-ray simulation from the CADs using gVirtualXRay.  

(a) 

(b) 

Fig. 5. (a) A real X-ray image and (b) synthetic image.  
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