

What we should learn from pandemic publishing

Satyaki Sikdar, Sara Venturini, Marie-Laure Charpignon, Sagar Kumar, Francesco Rinaldi, Francesco Tudisco, Santo Fortunato & Maimuna S. Majumder

Authors of COVID-19 papers produced during the pandemic were overwhelmingly not subject matter experts. Such a massive inflow of scholars from different expertise areas is both an asset and a potential problem. Domain-informed scientific collaboration is the key to preparing for future crises.

Since the emergence of COVID-19, discussions of ongoing pandemic-related research have accounted for an unprecedented share of media coverage and debate in the public sphere¹. The urgency of the pandemic forced researchers to operate on an accelerated timeline, as both policymakers and the public relied on the most current evidence to guide their decisions and behaviours. With high demand for rapid pandemic-related insights and lower barriers to entry via preprint servers, the volume of COVID-19 articles skyrocketed². The pressing need for research triggered the participation of many researchers with expertise in the science of infectious disease outbreaks ('outbreak scientists'), who were joined by researchers from other disciplines ('bellwethers') and more junior researchers still in training ('newcomers') with the common goal of advancing the frontiers of pandemic science and informing policy decisions³ (details of this taxonomy are in Box 1).

Collaborative efforts against COVID-19

The response of the scientific community to the COVID-19 pandemic was a highly collaborative effort⁴. This reality prompted us to investigate the allocation of human capital within and between outbreak scientists, bellwethers and newcomers over time. We envision the ideal scenario as one in which bellwethers can easily interact with outbreak scientists and engage in domain-informed collaboration. Therefore, we were particularly interested in quantifying the propensity for bellwethers to work with outbreak scientists during the COVID-19 pandemic.

The first two years of the pandemic were characterized by a rapid growth in the number of publications, followed by sustained scientific production at approximately 13,000 COVID-19-related papers per month. We used publication data from the OpenAlex database⁵ to determine the composition of the authoring team of each paper according to our taxonomy (that is, outbreak scientist, bellwether or newcomer). Outbreak scientists predominantly emanated from medicine (48%), whereas bellwethers had more diverse backgrounds including computer science (12%), psychology (8%) and business (3.4%).

BOX 1

Defining author groups

We define three groups of authors.

- Outbreak scientists are researchers who belong to the outbreak science community (that is, who specialize in outbreaks and infectious disease epidemiology)
- Bellwethers are researchers from fields other than outbreak science and infectious disease epidemiology
- Newcomers are junior researchers who are still in training

The status of researchers was ascertained on the basis of the papers they published during the pre-pandemic period (2015–2019). During the pandemic (2020–2022), the status of authors is treated as static.

- Outbreak scientists are those who have authored at least one paper on outbreaks or infectious disease epidemiology in the pre-pandemic period
- Bellwethers are those who have written at least one paper in the pre-pandemic period but none on outbreaks or infectious disease epidemiology
- Newcomers are those who did not write any papers during the pre-pandemic period

Contributions by outbreak scientists

Between 2020 and 2022, only 7.7% of COVID-19 authors were outbreak scientists, and only 38.7% of works were contributed by teams with at least one outbreak scientist (Table 1). In the first six months, outbreak scientists accounted for 21% of all authors and contributed to 51% of papers (Fig. 1). However, their participation rapidly dwindled as bellwethers and newcomers joined the fold. Starting in January 2021, nearly two-thirds of COVID-19 papers were authored by teams in which not a single author had previous experience in outbreak science. This finding may signal the risk of misguided scientific practices during crises, as underscored by an unprecedented number of paper retractions in 2023 (ref. 6). Although authors from other disciplines certainly bring fresh perspectives to the fore, domain-informed collaborations that include subject matter experts yield better situated and more creative research⁷.

Comparing COVID-19 with H1N1 and MERS

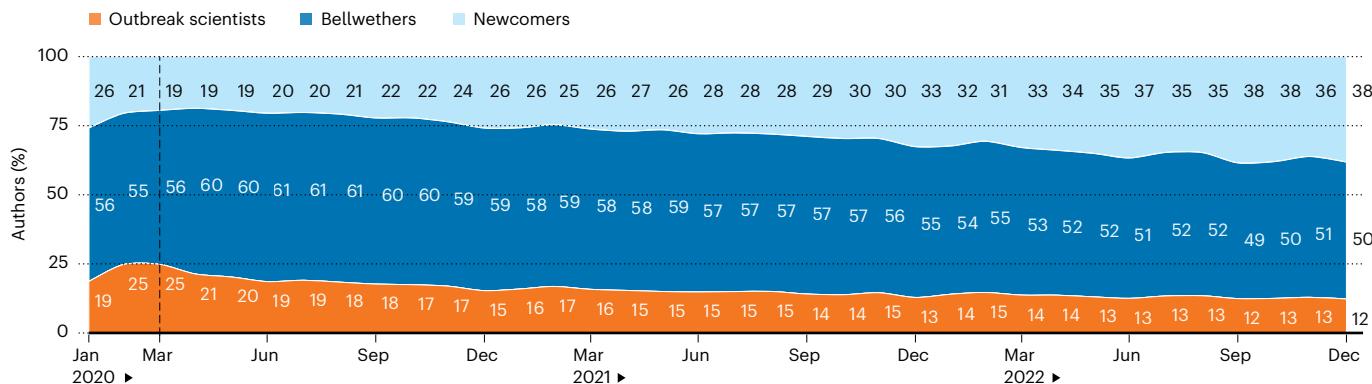
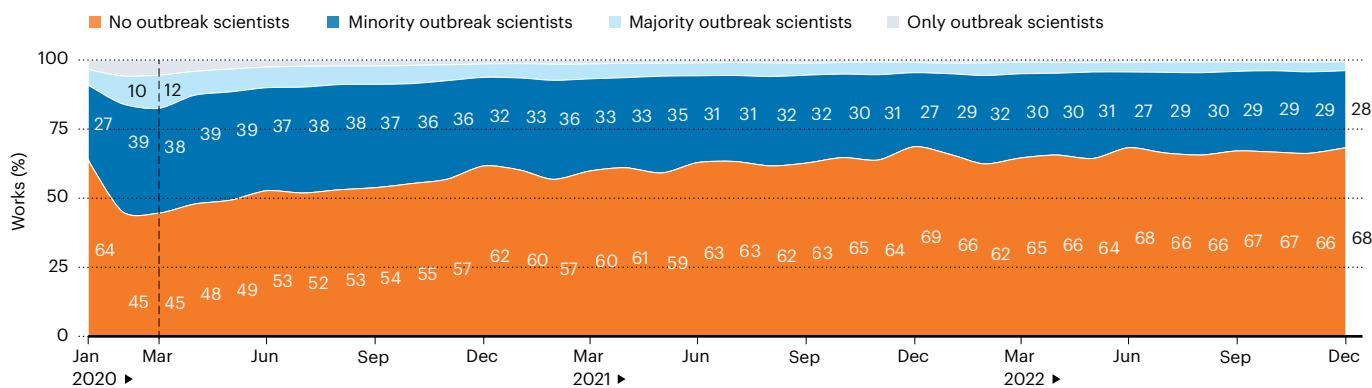

We also examined authorship of scientific papers on two previous infectious disease crises: H1N1 influenza in 2009–2010 and Middle East respiratory syndrome (MERS) in 2012. In both cases, newcomers and bellwethers contributed to a substantially smaller fraction of

Table 1 | Authorship statistics of COVID-19-related works


	Outbreak scientists	Bellwethers	Newcomers	Total
No. of authors	100,736 (7.71%)	679,424 (52.01%)	526,070 (40.27%)	1,306,230
No. of works	175,794 (38.70%)	408,937 (90.03%)	301,184 (66.30%)	454,242

No. of authors refers to the number of distinct authors by group; no. of works refers to the number of works with at least one author from the considered group. A work can count towards multiple groups (for example, if one of the authors belongs to the group of outbreak scientists and another author is a newcomer).

a

b

Fig. 1 | The COVID-19 research landscape. **a**, Fraction of authors in the three categories (outbreak scientists, bellwethers and newcomers) during the observation window (2020–2022). **b**, Fraction of COVID-19 papers authored by teams with a proportion of outbreak scientists (OS) ranging from 0%

(no outbreak scientists) through 1–50% (minority outbreak scientists) to 51–99% (majority outbreak scientists) and 100% (only outbreak scientists). Vertical dashed lines in the panels mark when the WHO declared COVID-19 a pandemic. For clarity, only percentages of $\geq 10\%$ are annotated in the area plots.

articles than for COVID-19. This dissimilarity may partly be owing to the profound, direct effect of COVID-19 on people's daily lives, in excess of that associated with H1N1 and MERS. The emergence of COVID-19 was also marked by (1) limited freedom in research topic choices, because funding agencies and governments prioritized the financing of COVID-19-related research, (2) substantial barriers to the conventional execution of science (for example, access to laboratory spaces and availability of supplies) and (3) changes in publishing incentive structures and manuscript review prioritization that probably favoured COVID-19 research over other topics⁸.

Fostering interdisciplinary research

Given these data, we suggest that the COVID-19 crisis prompted many scientists to partially pivot their research activity towards topics related

to the pandemic. Owing in part to disciplinary and institutional siloes and in part to high demand on the time of outbreak scientists tasked to address the pandemic, bellwethers and newcomers may not have had sufficient access to subject matter experts – thus undermining opportunities for domain-informed collaboration. Therefore, analysing the phenotypes of COVID-19 research contributors in more depth may help to inform the formation and composition of interdisciplinary scientific committees and outbreak response teams in the future. To better prepare for forthcoming crises, including those beyond the realm of infectious diseases, we must make concrete investments in democratizing interdisciplinary collaboration.

We call for a concerted effort from all actors involved across various stages of the scientific ecosystem – scientists who conceive new ideas, publishers who provide platforms for knowledge dissemination,

and policymakers who influence the general research agenda by controlling the allocation of resources to federal funding agencies.

For scientists. We encourage established researchers to connect with potential collaborators in infectious disease modelling and outbreak science, and contribute their expertise to better prepare for future pandemics. Tools such as [NIH Reporter](#) can help to identify investigators with active grants, and platforms such as [Google Scholar](#), [ResearchGate](#), and [LinkedIn](#) can help to establish new collaborations.

We also encourage researchers in training, such as doctoral and postdoctoral scholars, to leverage academic and professional mentorship opportunities at events hosted by organizations such as the [Society for Epidemiologic Research](#), the [Interdisciplinary Association for Population Health Sciences](#) and [Machine Learning for Health](#). However, we recognize that financial and immigration constraints often limit participation, and disproportionately affect those from underrepresented groups.

To address these concerns, we are currently developing a free, not-for-profit, open-access platform for researchers to connect across disciplines. Our proposed 'connection recommendation' system will offer mentorship opportunities to link trainees with mentors from diverse backgrounds and career stages. This system will also help scientists to position themselves within the research collaboration ecosystem and showcase their expertise, connections and contributions to the broader scientific network. Most importantly, by situating itself entirely online, our platform will reduce the cost of networking for underrepresented scholars – thus fostering diversity in research.

For publishers. In parallel, we call on publishers to introduce a mandatory 'author expertise statement' in which authors would list their respective areas of expertise pertaining to the paper's subject matter, perhaps as an extension to the existing author contribution statement. Such a mandate has ample precedent; for example, federal funding mechanisms require the inclusion of subject matter experts in investigation [teams](#). We view this solution as complementary to the database referenced above. If journals were to require an explicit statement regarding which authors contributed which skills, then researchers would be incentivized to leverage our proposed database when expertise in a given area is lacking. Ultimately, we believe that adopting these tools and practices would stimulate domain-informed collaborations, bridge existing knowledge siloes and lead to more transparent science.

For policymakers. Interdisciplinary scholars are uniquely positioned to function as knowledge brokers. Unfortunately, they must often overcome challenges at the beginning of their careers due to the initially lower impact of their publications⁹. However, identifying and supporting these promising talents early on manifests in a greater return-on-investment for funders in the long term compared to their more siloed counterparts⁹. More than a decade ago, the National Institutes of Health ([NIH](#)) launched a visionary plan named the Common Fund to change academic culture, encourage interdisciplinary approaches and foster team science that spans multiple biomedical and behavioural sciences. In parallel, the National Science Foundation ([NSF](#)) has prioritized interdisciplinary science through solicited and unsolicited programmes. The patterns of pandemic publishing indicate that these early efforts must now be expanded to stimulate, sustain and support interdisciplinary research. This objective can be achieved by adopting long-term policy reforms and creating new research programmes that foster team science across disciplines. We

also call for enhanced support for scientometric research such as the NSF/NIH's 'A Science of Science Approach to Analyzing and Innovating the Biomedical Research Enterprise' ([SoS:BIO](#)), which will help to identify systemic inefficiencies and inequities and promote healthy scientific practices instead.

Conclusion

Amid rising concerns about reproducibility¹⁰ and retractions⁶, knowledge transfer between subject matter experts and non-experts is essential to ensure the quality and relevance of publications – particularly during crises such as the COVID-19 pandemic. Especially as bellwethers foray into disciplines that are new to them, access to researchers with prior knowledge can improve their chances of making a meaningful contribution. When access to subject matter experts is limited, the quality of research may be undermined due to the authors' overreliance on incomplete domain knowledge or the adoption of unethical scientific practices driven by pressures to publish. Such behaviours can, in turn, cause the public to cast doubt on the validity of scientific findings, which possibly adds unnecessary barriers to their practical implementation and even diminishes the credibility of scientific institutions. Going forward, we hope the combination of scientist-led initiatives, technology-based solutions, editorial policies and funding initiatives proposed here will encourage interdisciplinary research collaborations and help to rebuild trust – both within the scientific community and with the public.

Data availability

All data, code and materials used in the analysis are hosted on [OSF](#). Source data are provided with this paper.

Satyaki Sikdar , **Sara Venturini** , **Marie-Laure Charpignon** , **Sagar Kumar** , **Francesco Rinaldi** , **Francesco Tudisco** , **Santo Fortunato** & **Maimuna S. Majumder**

¹Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA. ²Department of Computer Science, Loyola University Chicago, Chicago, IL, USA. ³Senseable City Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA. ⁴Department of Mathematics "Tullio Levi-Civita", University of Padova, Padova, Italy. ⁵Institute for Data, Systems, and Society; Massachusetts Institute of Technology, Cambridge, MA, USA. ⁶Network Science Institute, Northeastern University, Boston, MA, USA.

⁷School of Mathematics, The University of Edinburgh, Edinburgh, UK.

⁸School of Mathematics, Gran Sasso Science Institute, L'Aquila, Italy.

⁹Department of Pediatrics, Harvard Medical School, Boston, MA, USA. ¹⁰Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA. ¹¹These authors contributed equally: Satyaki Sikdar, Sara Venturini.

 e-mail: santo@iu.edu; maimuna.majumder@childrens.harvard.edu

Published online: 09 September 2024

References

1. Weingart, P., Joubert, M. & Connoway, K. *PLoS ONE* **16**, e0254201 (2021).
2. Callaway, E. *Nature* **582**, 167–168 (2020).
3. Majumder, M. S. & Mandl, K. D. *Lancet Glob. Health* **8**, E627–E630 (2020).
4. Duan, D. & Xia, Q. *Learn. Publ.* **34**, 429–441 (2021).
5. Sikdar, S. et al. OSF <https://doi.org/10.17605/OSF.IO/KC2PN> (2024).
6. Van Noorden, R. *Nature* **624**, 479–481 (2023).
7. Baer, J. *Rooper Rev.* **37**, 165–178 (2015).
8. Palayew, A. et al. *Nat. Hum. Behav.* **4**, 666–669 (2020).

9. Sun, Y., Livan, G., Ma, A. & Latora, V. *Commun. Phys.* **4**, 263 (2021).
10. Baker, M. *Nature* **533**, 452–454 (2016).

Acknowledgements

This research was supported in part by Lilly Endowment, Inc., through its support for the Indiana University Pervasive Technology Institute. The authors were supported in part by the following grants. S.S.: no. FA9550-19-1-0354, US Air Force Office of Scientific Research (AFOSR); S.V.: no. 1927425, no. 1927418, US National Science Foundation (NSF); S.K.: no. SES2200228 (NSF); S.F.: no. 1927425 (NSF), no. 1927418 (NSF) and no. FA9550-19-1-0354 (AFOSR); M.S.M.: no. R35GM146974, National Institute of

General Medical Sciences, National Institutes of Health. M.C. was supported by a doctoral fellowship from the Eric & Wendy Schmidt Center of the MIT-Harvard Broad Institute.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at <https://doi.org/10.1038/s41562-024-01969-7>.