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Abstract—False data injection attacks based on synchrophasor
measurement data pose a serious threat to the safe and stable
operation of power systems. To mitigate this issue, a rapid
monitoring and defense approach is proposed to defend against
cyber attacks. First, the Time and Frequency based Convolutional
neural Network (TFCN) is proposed to detect different types of
attacks. In TFCN, the spectrum layer extracts the frequency
information of the input data, and then the time-frequency
block can be formed. Next, a comprehensive defense strategy
is developed for multiple cyber attacks to ensure the stability
and resilience of the power system. To verify the effectiveness of
the proposed approach, the high-speed frequency measurements
collected from the wide-area monitoring system are used. The
results demonstrate that the cyber attack detection performance
can reach 95.57% compared with traditional neural networks.
The defense strategy is conducted and verified in a modified
IEEE 39 bus system as well, which shows better performance in
faster stability restoration.

Index Terms—Cyber attacks, time and frequency-based con-
volutional neural networks, comprehensive defense strategy, syn-
chrophasor measurement

I. INTRODUCTION

In recent decades, the potential False Data Injection Attacks
(FDIAs) have drawn much attention due to their invisibility
and high secretiveness [1]. This malicious impact has pene-
trated into the power system, automated vehicles, as well as the
industrial Internet of Things [2]. For instance, the supervisory
control and data acquisition system of Ukraine was hacked in
2015, causing power outages for roughly 6 hours [3]. Besides,
765 trunk line of Venezuela’s national grid was attacked,
resulting in blackouts in 11 states in 2020 [4]. To enhance the
cybersecurity of the power system, it is of great significance
to rapidly detect and recover from the adverse effects of cyber
attack issues in power system operations.

To detect these attacks, two main methods are used: model-
based and model-free approaches. Model-based methods com-
bine the measurements and the power system parameters
to find the states and predict the response [5]. Then the
abnormal attack phenomenon can be identified by comparing
the predicted and actual results. For example, a square-root
unscented Kalman filter-based state estimation is constructed
to detect the FDIAs in the distribution networks [6]. And
an effective and low-cost moving target defense defensive
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mechanism is developed in [7] to thwart FDIAs. Meanwhile,
the minimum number of required distributed flexible AC
transmission system devices to protect a specific set of buses
is also analyzed. However, obtaining detailed power system
parameters and topology poses a significant challenge to the
practicality of model-based methods.

In contrast, model-free methods use signal processing tech-
niques for real-time synchrophasor measurements to extract
features. Then the traditional machine learning and deep
learning methods are used to identify the FDIAs, e.g. robust
linear regression and matrix reconstruction [8], [9]. In [10],
the mathematical morphological decomposition and multi-
weighted deep stacking forest are proposed to achieve accurate
source authentication. Next, by exploring the multi-fractal
coupling correlations of the synchrophasor measurements, the
cost-effective source authentication is conducted [11], which
requires the additional procedure of exploring the correlations
between the measurements from Phasor Measurement Units
(PMUs). Besides, the time-frequency information from the
synchrophasor data is extracted first and the effectiveness of
the time-frequency information has been verified through the
signal processing methods such as synchrosqueezed wavelet
transforms and the Hilbert-Huang transform [12], [13]. Then
the classifiers are designed to identify the FDIAs, such as the
ensemble deep learning [14] and recurrent neural network [15].
Although the FDIAs can be accurately detected by combining
signal processing and data-driven-based methods, it is much
more time-consuming to optimally select parameters of signal
processing methods to extract sufficiently effective features.

So far, some control strategies have already been utilized
in modern power systems to defend the potential cyber at-
tacks, most of which focus on the detection algorithms when
gathering measurement signals [16], [17]. With the increase of
power system complexity, the Wide-area Measurement System
(WAMS), taking advantage of the PMUs, requires higher
attention due to vulnerable communication and transmission
routes. In [18], a time-frequency-based cyber attack defense
framework is proposed to achieve fast frequency reserve in
a WAMS. Based on the PMU development, the situation
is even worse in the distributed energy resource and High
Voltage Direct Current (HVDC) systems that are equipped
with auxiliary frequency or voltage regulations. Typical so-
lutions can be summarized as control parameter update and
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power reallocation after the detection of cyber attack [19],
[20]. Nevertheless, improper control adjustment may have a
negative impact on the system’s stability and resilience.

To address the above-mentioned limitations, this paper pro-
poses a rapid monitoring and defense approach to improving
the resilience of the power grid. The contributions of this paper
can be summarized as follows:

1) To achieve the rapid identification of cyber attacks,
Time and Frequency-based Convolutional neural Net-
works (TFCN) is developed, which can achieve the fusion
of both the time and frequency domain information
without additional spectrum analysis methods.

2) To reduce the impact of cyber attacks, a comprehensive
defense strategy is proposed. The cyber attacks are fur-
ther classified into three categories with corresponding
strategies to maintain stability and resilience in power
systems.

3) By combining the monitoring and defense approaches,
multiple experiments are conducted based on the simula-
tion and actual collected data. Results demonstrate accu-
rate identification of cyber attacks and a high reduction
of the negative impact.

II. PROPOSED RAPID MONITORING APPROACH OF POWER
GRID CYBER SECURITY

A. Proposed TFCN model

To achieve rapid monitoring and improve the resilience of
the power grid, the TFCN is designed firstly, whose structure
is demonstrated in Fig. 1. Compared with the traditionally
convolutional neural networks, the model has the ability to
fuse the frequency domain information directly, and it does
not require the additional frequency domain transform such as
wavelet transform and Hilbert-Huang transform.

Denoting the input synchrophasor measurements as x(n),
a bandpass filter will first filter out the DC component to
remove the redundant information. Then it will pass the first
convolutional layer to get the deep features x1(n).

To extract both the time and frequency domain features
automatically, the Time-Frequency (TF) block is proposed
in TFCN. As demonstrated in Fig. 1, the spectrum will be
extracted using the Fast Fourier Transform (FFT). Denoting
this process as the spectrum layer, for an N -point data x1(n),
the output of the spectrum layer can be expressed as

X(k) =

N−1∑
n=0

e−j 2π
N nkx1(n) (1)

Considering that X(k) is the complex form, it is challeng-
ing to perform gradient calculations in forward propagation.
Therefore, to make the features suitable for the model, only
the absolute value of the spectrum layer is preserved, then
an additional convolutional layer is connected to the spectrum
layer to strengthen the features, which can be calculated as

Oc(k) = f(w|X(k)|+ b)

Ob(k) = γ(
Oc(k)− µB√

σ2
B + ϵ

) + βb
(2)

where the Oc(k) and Ob(k) are the output of the convolutional
layer and Batch Normalization (BN) layers, respectively. f()
denotes the activation function, and w and b denote the weight
and bias of the activation function, respectively. µB and σB
represent the mean and standard error, while βb and γ are the
parameters to adjust the ratio in BN layer.

Thereafter, multiple TF blocks are connected together to
strengthen and filter the useful time and frequency features. To
make the model converge better, the skip connection is also
introduced to the TF block, where its output can be calculated
as Ob(k) + x1(k).

Finally, given the output of the TF block as Obm(k) =
Ob(k) + x1(k), the class of the identified cyber attack results
can be simplified and expressed as

Sobm(m) =
eObm(k)∑

K θmeObm(k)
(3)

where the m denotes the label of the cyber attacks, and the
θm denotes the parameter of the softmax function.

After training the model, the real-time synchrophasor mea-
surements can be fed into the TFCN to achieve identification.

B. Feature visualization

To illustrate the feature difference with and without the
spectrum information, the features from the convolutional
layer are visualized, as shown in Fig. 2. Fig. 2(a) and (b)
present the frequency measurement after removing its DC
trend component and its frequency spectrum, respectively. The
features illustrated in Fig. 2(c) reveal a similar profile with the
FFT spectrum, indicating the frequency domain information
has been learned. However, the features from (d) are more
random because only the time domain information is learned.

In this paper, five types of false data injection attacks
are simulated based on numerical models [21], including
the normal data (p1), noise attack (p2), scaling attack (p3),
replacement attack (p4), and false oscillation attack (p5).

III. DEFENSE APPROACH TO IMPROVE THE RESILIENCE
OF POWER GRID

A. Frequency regulation in VSC-HVDC

After detecting the cyber attacks, the corresponding control
strategies can be implemented to defend against their effects.
In this case, the HVDC system providing frequency regulation
is developed to test the proposed defense approach.

In the conventional control framework of a typical voltage
source converter (VSC) based HVDC system, the auxiliary
frequency regulation provides additional active power refer-
ence value for the HVDC basic control, namely the constant
active power control. The inputs of the frequency regulation
come from the PMU measurements, fPMU1 and fPMU2, at
two AC terminals of the VSC-HVDC, which are considered
vulnerable to multiple cyber attacks. Basically, the frequency
regulation can be expressed as a proportional and integral (PI)
control:

Paux = (fPMU1 − fPMU2)

(
kp +

ki
s

)
(4)
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Fig. 1. Framework of the proposed TFCN model.

Fig. 2. Feature visualization, (a) frequency measurement after detrending,
(b) the spectrum of (a), (c) features of TFCN with TF block, (d) features of
TFCN without TF block.

where Paux denotes the auxiliary active power output of the
frequency regulation; kp and ki represent proportional and
integral gain, respectively.

By modulating the active power deviation, the inner loop
current control and the outer loop voltage control generate
the pulse signal to command the switchings inside the VSC
converter.

B. Comprehensive defense control strategy

To enhance the resilience of the power system, Fig. 3 depicts
the proposed comprehensive defense control strategy based
on a VSC-HVDC system. The potential cyber attacks occur
during the transmission and communication process of the
PMU data collected from AC grids. Accordingly, the TFCN
model proposed in II-A is deployed before the PMU signals
come into the frequency regulation.

For defense purposes, the five types of false data injection
attacks can be further classified into three categories. The noise
attack (p2), scaling attack (p3), and false oscillation attack
(p5) can be generally considered as false data superimposed
on the original data. The control strategies for each false data
identification type are demonstrated below.

1) Normal data (p1): The normal data can be passed to
the frequency regulation without additional processing. On the
other hand, it is essential to preserve normal data instantly
when the power system is indeed exposed to a cyber attack.

Fig. 3. VSC-HVDC control structure.

2) False data (p2, p3, p5): The superimposition of false
data is quite detrimental as it will directly arouse a power
system contingency. To avoid the terrible expansion, the input
of the frequency regulation will be frozen to the normal data
stored at the last point, as long as the TFCN detects and
identifies the cyber attack in this category.

3) False data (p4): When a replacement attack is detected,
it is quite straightforward to exchange the signals back to their
initial measurement locations. Then the data can be sent to
the frequency regulation for control purposes. Actually, the
replacement attack is harmful when happening along with a
power system event, since it will not bring obvious disturbance
in steady states.

IV. EXPERIMENTS

To validate the proposed cyber security monitoring and de-
fense methodology, the off-line TFCN training model utilizes
data from three Universal Grid Analyzers (UGAs) with a
120Hz/s high-speed reporting ratio, which are the highly ac-
curate, real-time, and GPS synchronized phasor measurement
units [22]. The frequency measurements of UGAs are collected
in the FNET/GridEye server located at the University of
Tennessee, Knoxville. The dataset consists of 27330 samples
and each sample is with a length of 320. During the training,
70% of the dataset is used for training and 30% for testing.
Besides, the data collected from the second day is used for
verification, which contains 5190 samples. Afterward, the
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well-trained TFCN is integrated in a modified IEEE test model
for defense strategy verification. Considering that the field data
are collected through FNET/GridEye, the generalization of the
method can be satisfied.

A. Verification under different parameters

To explore a better performance of the model, the parame-
ters of the TFCN are optimally selected by using grid search.
Here, the size of the convolutional layer in the TF block is
treated as an example, where the result is listed in Table I.
It can be seen that the performance increases from 94.45%
to 95.57% when the kernel is lower than 9 × 1. And the
performance decreases when the kernel size is 9× 1. Besides,
the testing time for each sample is 51.13ms, indicating the
real-time performance can be satisfied. In this case, when the
window step size of each sample is 10, the corresponding
response time is about 134.46ms under a 120Hz reporting rate.

TABLE I
PERFORMANCE OF THE PROPOSED TFCN UNDER THE DIFFERENT SIZES

OF CONVOLUTION KERNELS.

Acc. under different size of conv. kernels (%)
Testing time(ms)

3× 1 5× 1 7× 1 9× 1

94.95 95.22 95.57 95.16 51.13

Taking the same parameter optimization method, the pri-
mary parameters of the model are listed in Table II. The kernel
size 5/7/3 means that the size of the conventional layer at the
beginning of the model is 5× 1, the kernel near the spectrum
layer is 7× 1, and the rest is set to 3× 1, respectively.

TABLE II
PRIMARY PARAMETERS OF THE TFCN MODEL.

Conv. layers Kernel size Nodes in FC Learning rate L2

13 5/7/3 256 6e-3 4e-5

B. Performance Comparison of different methods

To verify the robustness of the proposed TFCN model, the
loss function value, confusion matrix, and detailed perfor-
mance are summarized. Based on the optimized parameters,
the training loss and the testing loss with and without the
FFT spectrum are demonstrated in Fig. 4 under 100 epochs.
It can be observed that even though the training loss of the
TFCN without the FFT spectrum is lower, the testing loss of
the TFCN with FFT is slightly lower. The main reason is that
the features of the spectrum increase the complexity of the
TFCN model, whereas it has better robustness compared with
the TFCN model without FFT.

The detailed performance of each class is presented in Fig.
5. It illustrated that the p1, scaling attack, and replacement
attack can successfully identify all the samples. However,
for the noise attack (p2) and false oscillation attack (p5),
84.2% and 93.64% accuracies are obtained, respectively. The
performance is 2% higher than that TFCN model without

Fig. 4. Training and testing loss for TFCN model with and without FFT
spectrum.

Fig. 5. The detailed performance comparison for each class of cyber attacks.

spectrum, indicating that the spectrum information contributes
2% to the detection of cyber attacks. The main reason is
that the frequency measurement is also superimposed with
rich noise. And a small part of false oscillation attacks is
misidentified.

To further investigate the reason for the misidentification,
the confusion matrix is determined, as shown in Fig. 6. As
demonstrated in Fig. 6, it reveals that the false oscillation
attack and the noise attack are misidentified by each other.
When the noise level is higher, and the magnitude of the When
the damping coefficient of the oscillation tends to be stable,
and when the oscillation frequency is high, the profile of the
oscillation and the noise signal are relatively similar.

Fig. 6. Confusion matrix results of the TFCN model, (a) TFCN model with
FFT, (b) TFCN model without FFT.

C. Cyber Security Defense performance for IEEE test model

To test the performance of the proposed cyber security
defense strategy, a modified IEEE 39 bus system is established
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Fig. 7. Topology of modified IEEE 39 bus system.

in PSCAD/EMTDC [23], with a two-terminal VSC-HVDC
connecting two split systems, as shown in Fig. 7.

In the test system, VSC1 undertakes the constant DC voltage
control, while VSC2 modulates the active power. Therefore,
the auxiliary frequency regulation is added at VSC2, with
PMU measurements as input from the two terminals. The
initial power flow is 20MW transferred from VSC1 to VSC2.

1) Case one: scaling attack (p3)
A piece of fake ramping data, y = 0.8t, is injected into the

PMU at the VSC1 terminal at t = 1s.
2) Case two: replacement attack (p4)
A load increase of 58MW occurs on Bus 6 at t = 1s.

Simultaneously, the PMUs measurements from VSC1 and
VSC2 are exchanged due to cyber attacks.

Fig. 8. Frequency and active power performance after scaling attack.

The bus frequency and active power at VSC1 in the above
two cases are demonstrated in Fig. 8 and Fig. 9, respectively.
The zoomed-in waveforms within the defense time are plotted
in the ellipse as well.

For the scaling attack, the negative impact has quite severe
behaviors, as shown in Fig. 8. After the PMU measurements
are hacked, the bus frequency shows an upward growth with
the highest point of 60.42Hz, as well as an inter-area low-

Fig. 9. Frequency and active power performance after replacement attack.

frequency oscillation. The active power through HVDC hits
the maximum value due to the increasing frequency regula-
tion input. The phenomenon can be fairly harmful without
proper management. With the defense strategy integrated, the
dynamic performance can be largely improved in terms of both
frequency and active power. The frequency deviation along
with the oscillation can be quickly eliminated. In addition, the
active power only drops 20MW tracking the false frequency
within 134.46ms.

In Fig. 9, the dynamic performance varies much with and
without the replacement attack. To be specific, the attack
lowers the bus frequency nadir from 59.79Hz to 59.38Hz
and extends the frequency restoration time. Meanwhile, the
active power of HVDC transmission shows an opposite trend,
drastically growing to the maximum power limit of 200MW.
With the proposed defense strategy, the bus frequency and
active power perform similarly to the circumstances without
attack, except for the small disturbance at the very beginning.
The excellent results are attributed to the rapid detection and
identification of the defense strategy, which corrects the PMU
measurements.

V. CONCLUSIONS

To achieve rapid monitoring and cyber attack defense,
this paper proposes a detection framework based on the
time-frequency-based convolutional neural network and the
corresponding comprehensive defense strategy. In TFCN, the
spectrum layer is fused with the time domain features to avoid
additional frequency domain analysis methods. The feature
visualization result indicates the frequency features have been
learned. The cyber attack detection experiments reveal a
95.57% average accuracy can be achieved. The spectrum infor-
mation contributes to the performance improvement compared
with the TFCN without spectrum. The comprehensive defense
experiments in the modified IEEE 39 bus model illustrate that
the frequency and active power of the grid can be stabilized
quickly. Further research can be developed to distinguish the
detailed cyber attacks.

Page 5 of 6 2023-IASAM23-0140

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on September 20,2024 at 14:09:49 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] Z. Ju, H. Zhang, X. Li, X. Chen, J. Han, and M. Yang, “A survey on
attack detection and resilience for connected and automated vehicles:
From vehicle dynamics and control perspective,” IEEE Transactions on
Intelligent Vehicles, vol. 7, no. 4, pp. 815–837, 2022.

[2] O. Aouedi, K. Piamrat, G. Muller, and K. Singh, “Federated semisu-
pervised learning for attack detection in industrial internet of things,”
IEEE Transactions on Industrial Informatics, vol. 19, no. 1, pp. 286–
295, 2023.

[3] A. Shehod, “Ukraine power grid cyberattack and us susceptibility:
Cybersecurity implications of smart grid advancements in the us, [on-
line] available at: https://web.mit.edu/smadnick/www/wp/2016-22.pdf,”
pp. 1–36, 2016.

[4] D. Du, M. Zhu, X. Li, M. Fei, S. Bu, L. Wu, and K. Li, “A review on
cybersecurity analysis, attack detection, and attack defense methods in
cyber-physical power systems,” Journal of Modern Power Systems and
Clean Energy, pp. 1–18, 2022.

[5] A. S. Musleh, G. Chen, and Z. Y. Dong, “A survey on the detection algo-
rithms for false data injection attacks in smart grids,” IEEE Transactions
on Smart Grid, vol. 11, no. 3, pp. 2218–2234, 2020.

[6] S. Wei, J. Xu, Z. Wu, Q. Hu, and X. Yu, “A false data injection attack
detection strategy for unbalanced distribution networks state estimation,”
IEEE Transactions on Smart Grid, pp. 1–1, 2023.

[7] Z. Zhang, R. Deng, D. K. Y. Yau, P. Cheng, and M.-Y. Chow, “Security
enhancement of power system state estimation with an effective and
low-cost moving target defense,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, pp. 1–16, 2022.

[8] J. Tian, B. Wang, J. Li, and C. Konstantinou, “Datadriven
false data injection attacks against cyber-physical power systems,”
Computers & Security, vol. 121, p. 102836, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404822002309

[9] H. Yang, X. He, Z. Wang, R. C. Qiu, and Q. Ai, “Blind false data
injection attacks against state estimation based on matrix reconstruction,”
IEEE Transactions on Smart Grid, vol. 13, no. 4, pp. 3174–3187, 2022.

[10] Y. Cui, F. Bai, T. Saha, and J. Yaghoobi, “Authenticating source
information of distribution synchrophasors at intra-state locations for
cyber-physical resilient power networks,” International Journal of
Electrical Power & Energy Systems, vol. 139, p. 108009, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0142061522000540

[11] F. Bai, Y. Cui, R. Yan, H. Yin, T. Chen, D. Dart, and J. Yaghoobi, “Cost-
effective synchrophasor data source authentication based on multiscale
adaptive coupling correlation detrended analysis,” International Journal
of Electrical Power & Energy Systems, vol. 144, p. 108606, 2023.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0142061522006020

[12] W. Qiu, K. Sun, K.-J. Li, Y. Li, J. Duan, and K. Zhu, “Cyberattack
detection: Modeling and roof-pv generation system defending,” IEEE
Transactions on Industry Applications, vol. 59, no. 1, pp. 160–168, 2023.

[13] M. Dehghani, M. Ghiasi, T. Niknam, A. Kavousi-Fard, and S. Pad-
manaban, “False data injection attack detection based on hilbert-huang
transform in ac smart islands,” IEEE Access, vol. 8, pp. 179 002–179 017,
2020.

[14] H. Cui, X. Dong, H. Deng, M. Dehghani, K. Alsubhi, and H. M. A.
Aljahdali, “Cyber attack detection process in sensor of dc micro-
grids under electric vehicle based on hilbert–huang transform and deep
learning,” IEEE Sensors Journal, vol. 21, no. 14, pp. 15 885–15 894,
2021.

[15] J. J. Q. Yu, Y. Hou, and V. O. K. Li, “Online false data injection
attack detection with wavelet transform and deep neural networks,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 7, pp. 3271–3280,
2018.

[16] A. M. Mohan, N. Meskin, and H. Mehrjerdi, “A comprehensive review
of the cyber-attacks and cyber-security on load frequency control of
power systems,” Energies, vol. 13, no. 15, 2020. [Online]. Available:
https://www.mdpi.com/1996-1073/13/15/3860

[17] T. Huang, B. Satchidanandan, P. R. Kumar, and L. Xie, “An online
detection framework for cyber attacks on automatic generation control,”
IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 6816–6827,
2018.

[18] W. Qiu, K. Sun, W. Yao, S. You, and et al., “Time-frequency
based cyber security defense of wide-area control system for fast
frequency reserve,” International Journal of Electrical Power &

Energy Systems, vol. 132, p. 107151, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0142061521003902

[19] S. Sarangan, V. K. Singh, and M. Govindarasu, “Cyber attack-
defense analysis for automatic generation control with renewable energy
sources,” in 2018 North American Power Symposium (NAPS), 2018, pp.
1–6.

[20] K. Sun, W. Qiu, and et al., “Wams-based hvdc damping control for cyber
attack defense,” IEEE Transactions on Power Systems, vol. 38, no. 1,
pp. 702–713, 2023.

[21] S. Sridhar and M. Govindarasu, “Model-based attack detection and
mitigation for automatic generation control,” IEEE Transactions on
Smart Grid, vol. 5, no. 2, pp. 580–591, 2014.

[22] L. Zhan, J. Zhao, J. Culliss, Y. Liu, Y. Liu, and S. Gao, “Universal
grid analyzer design and development,” in 2015 IEEE Power & Energy
Society General Meeting, 2015, pp. 1–5.

[23] Y. Dong, K. Sun, J. Wang, and Wang, “A time-delay correction control
strategy for hvdc frequency regulation service,” CSEE Journal of Power
and Energy Systems, pp. 1–11, 2022.

Page 6 of 62023-IASAM23-0140

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on September 20,2024 at 14:09:49 UTC from IEEE Xplore.  Restrictions apply. 


