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ON THE TWO-DIMENSIONAL JACOBIAN CONJECTURE:
MAGNUS’ FORMULA REVISITED, 1

WILLIAM E. HURST, KYUNGYONG LEE, L1 L1 AND GEORGE D. NASR

To the memory of Shreeram Shankar Abhyankar

Let K be an algebraically closed field of characteristic 0. For f, g € K[x, y], when the Jacobian
(0f /0x)(0g/0y) — (0g/dx)(df /dy) is a constant, Magnus’ formula describes the relations between the
homogeneous degree pieces f; and g;. We show a more general version of Magnus’ formula, which could
provide a potentially useful tool to prove the Jacobian conjecture.

1. Introduction

The Jacobian conjecture, raised by Keller [8], has been studied by many mathematicians. A survey is
given in [4; 5]. In this paper, we exclusively deal with the plane case. Hence, whenever we write the
Jacobian conjecture, we mean the two-dimensional Jacobian conjecture.

Let K be an algebraically closed field of characteristic 0, and let ® = K [x, y].

Jacobian conjecture. Let f(x, y), g(x,y) € R. Consider the polynomial map 7w : R —> R given by
w(x)= f(x,y)and 7w (y) = g(x, y). If the Jacobian of the map

af /ox 0g/dx
det<af/ay ag/8y>

is a nonzero constant, then the map is bijective.
For simplicity, let
[f. ¢l = det(af/ax 8g/8x) cR

af /dy 09g/dy
for any pair of polynomials f, g € R. Similarly [ f, g] is defined for f, g € R[[¢]] = K[[z][x, y].
A useful tool to study this conjecture is the Newton polygon. One source for this is [3], but we redefine
it here. Let
f=Y fyx'y’

i,j>0

This paper grew out of an undergraduate research project for Hurst, which had been initiated by the Randall Research Scholars
Program at the University of Alabama. Lee was supported by the University of Alabama, the Korea Institute for Advanced Study,
and the NSF grant DMS-2042786. Nasr was supported by the NSF FRG grant DMS-2053243.

2020 AMS Mathematics subject classification: primary 14R15; secondary 11P21, 13F20, 14M25.

Keywords and phrases: Jacobian conjecture, Newton polygon, Magnus’ formula.

Received by the editors on January 22, 2022, and in revised form on June 24, 2022.

DOI: 10.1216/1rmj.2023.53.791 © Rocky Mountain Mathematics Consortium


https://doi.org/rmj.2023.53-3
https://doi.org/10.1216/rmj.2023.53.791

792 WILLIAM E. HURST, KYUNGYONG LEE, LI LI AND GEORGE D. NASR

Figure 1. N(f) for f =y +7xy* + V7x3y* —4x3y3 +2x3y? — Ixd +xy + L.

be a polynomial in R. The support of f is defined as

supp(f) ={(, j) | fij #0} C Z* CR*.

The Newton polygon for f, which we denote N (f), is defined to be the convex hull of supp(f)! in R2.
Note that N(f) C R2>0. See Figure 1 for an example of a Newton polygon. The support and Newton
polygon of a Laurent_polynomial in K[x*!, y*!] are similarly defined.

Throughout this paper, whenever we consider pairs of polynomials f, g with [f, g] € K, we only
consider such pairs for which both N(f) and N (g) contain (1, 0), (0, 1), and (0, 0). As long as deg(f)
and deg(g) are positive, it is always possible to obtain such a pair by adding a generic constant to f and g
and applying some linear change of variables x and y, which does not change [ f, g].

It is known that the following conjecture implies the Jacobian conjecture; for instance, see [5, Theo-
rem 10.2.23]:

Conjecture A. Let a, b € Z.( be relatively prime. Suppose that F, G € R satisfy the following:
(1) [F,G] €K,
(2) {(1,0),(0,1),(0,0)} C N(F)NN(G) and N(F) is similar to N (G) with the origin as the center of
similarity and with ratio deg(F) : deg(G) = a : b; and
(3) min(a, b) > 2.
Then [F, G]=0.

Let W={(u,v) €Z?:u>0o0rv>0, and ged(|ul|, |v|) = 1}. An element w = (u, v) € W is called
a direction. To each such direction, we consider its w-grading on R by defining the w-degree of the
monomial x’y/ as n = ui 4+ vj. Define R, C R to be the K-subspace generated by monomials of
w-degree n. Then R = B,czR,,. A nonzero element P of R, is called a w-homogeneous element of R;
the integer n is called the w-degree of P and is denoted w-deg(P). The element of the highest w-degree
in the homogeneous decomposition of a nonzero polynomial P is called its w-leading form and is denoted
by P,. The w-degree of P is by definition w-deg(Py.).

I1n [3], the Newton polygon was defined as the convex hull of supp(f)U{(0, 0)} in R2, which is different from our definition.
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Magnus [9, Theorem 1] produced a formula which inspired much of the work for this paper. His
formula was published almost 70 years ago, but has not been used in almost any paper but [10]. Even
in [10], only a small piece of information from the formula was utilized. The first main result in our
paper is a more general version of Magnus’ formula, given in Theorem 1.1. In what follows, the binomial
coefficient (2) is defined by

(2) o A(A—l)--}-ggA—B—i-l)

for any real number A and any nonnegative integer B.

Theorem 1.1. Suppose [F, G] € K. For any direction w = (u,v) € W, let d = w-deg(Fy) and
e = w-deg(G4). Write the w-homogeneous degree decompositions F = Zingi and G = ZigeGi-
Then there exists a unique2 sequence of constants cg, ¢y, . .., C4re—u—v—1 € K such that cg # 0 and

|

m
— d 4V ! _ _ N
(1-1) Ge—M=ZCyZ( (e V)/ )(Zafd 1 }’»Ol') F(Ef YIA= y<i1Vy. 1_[ Foll)y,a
y=0

> azd—1Vya) Tlaza—1Vy.a! w<d—1

for every integer u € {0, 1, ...,d +e —u — v — 1}, where the inner sum is to run over all combinations of
nonnegative integers v, , satisfying Zafd_l (d—a)vy ¢ = u—y. Furthermore, ¢, =0ifr(e—y)/d ¢ Z,

where r € Z- is the largest integer such that F dl/ "e K[x, y].

In a series of forthcoming papers, we will make progress toward Conjecture A, using Theorem 1.1.
The purpose of this paper is to write out a proof of Theorem 1.13 and illustrate how useful this theorem is.

Let F and G satisfy assumptions (1) and (2) in Conjecture A. Then [F, G] € K implies F}r/ “eK|x, y]
for any direction w € W (for instance, see [1; 2; 11]). Let J be the set of polynomials f € K[x, y] such
that N (f) contains exactly two distinct lattice points, i.e., N(f) is a line segment containing no lattice
points other than its endpoints.

Definition 1.2. We say that the pair (¥, G) has generic boundaries if it satisfies (1) and (2) in Conjecture A,
and the polynomial FJL/ @ is not divisible by the square of any polynomial in J for any direction w € W.#

As an application of the generalization of Magnus’ theorem, we have the following:
Proposition 1.3. If (¥, G) has generic boundaries with @ = 2, then Conjecture A is true. More precisely,
F =P +u
for some P € K|[x, y] and some ug € K. In particular, [F, G] =0.

Remark 1.4. As suggested by the referee, the condition that (F, G) has generic boundaries is very strong,
and the above proposition can be proved using Theorem 7.6 and Proposition 5.18 of [12] instead of using
the generalization of Magnus’ theorem, as we do in this paper. However, the strategy used in this paper
motivated the introduction of the remainder vanishing conjecture, appearing in [6]. One can use the

ZNote that there is some ambiguity in the notation F' C} / " since it is unique up to an r-th root of unity. We fix a choice of F ; .

Then the fractional power F;/ "= (F dl/ r)C is unambiguous for any integer c.
3In [9], a detailed proof was not given. Moreover, the original statement in [9] was written only for w = (1, 1), and did not
contain the statement that starts with “Furthermore”, which will play a pivotal role in a series of our papers including this one.
4Note that the latter condition is equivalent to FJIF/ @ not having as a divisor any square of a nonmonomial polynomial, since
K is algebraically closed.
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generalization of Magnus’ theorem to show that the remainder vanishing conjecture implies the Jacobian
conjecture, which we believe is a fruitful contribution for future work on this topic. In [7], we illustrate
how to prove the vanishing conjecture for some special cases.

For a real number r € R and a subset S C R?, denote rS := {rs :5€8}C R2.

Corollary 1.5. Suppose that each edge of (1/a)N (F) contains either the origin or no lattice points other
than its endpoints. If a = 2, then Conjecture A is true.

2. Magnus’ formula revisited

The goal of this section is to prove Theorem 1.1 and present Proposition 2.4, a useful application of this
theorem. We start by reinterpreting (1-1) in Theorem 1.1 as follows: Recall that ® = K [x, y], where K
is an algebraically closed field of characteristic 0. For any F € R[¢]], denote

[ﬁ],i = the coefficient of 7' in f

which is a polynomial in x and y.
Recall the generalized multinomial theorem in the formal power series ring K [[x1, . .., x,]]: For A€ @,

A i 2tV w

.. Un
1 X"

[Tz vi! "

Consider a variation of this. For xq, ..., x, € R, we have the following expansion in the ring R[¢]:

x4 x)? =

AA=1D---(A=Y" .
Atxirt-dxtHt= Y ( )1_[,,( U"Z’=1 )
i=1"

In general, for xq, ..., x, € R and for A = a/b where a € Z, b € Z-, we have the following identity

in the ring Q{[xoil/b][[t]] (where we fix a choice of x(l)/b ):

Vi, Un €250

n
( Zl:l vl)xA_Zi=l levl . xrl:nl»vl““'"‘rnvn'

[Tz vi! 0 !

Q-1)  (o+xtt-txtHi=

+1/d

Lemma 2.1. Equation (1-1) can be rewritten as the following in R[F,; " ]:
"
(2-2) Gep= Z cy[(Fg+ Faoit + Fyot> +- - )(e_y)/d]wy-
y=0
Proof. Let A= (e—y)/dand s =} ,_; | Vyq. Then
( (e—y)/d )(Zafd_lvy,a)! CAA-D-(A-s+D) gl A (A=s+ 1)
>azd—1Vra) [loza—ivya! s! [Tozd—1vr.a! [To<a_1vya!

So the right side of (1-1), without the constraint Zaid_l (d—a)vy g =p—1y,is

N
Z cy(Fg+ Fg1t+ Fyot> .. )en/d,
y=0

thanks to (2-1). Then, note that the constraint » a<d—1(d —a)vy o = —y is equivalent to the restriction
to degree V. Thus the right side of (1-1) is equal to the right side of (2-2). O
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We will prove the following statement, which is equivalent to Theorem 1.1:

Theorem 2.2. Suppose [F, G] € K. For any direction w = (u,v) € W, let d = w-deg(Fy) and
e = w-deg(G4). Assume d > 0. Write the w-homogeneous decompositions F = ), <o Fi and
G =), G;. Define

F=Fd+Fd_1t+~- and 5=G6+Ge_1l‘+'-~.

Let r € Z. be the largest integer such that F [}/ " € K[x, y]. Then there exists a unique sequence of

constants cg, €1, ..., Cj+e—u—v—1 € K such that ¢y # 0 and
M ~
(2-3) Geep =Y cy[F My
y=0

for every integer u € {0, 1, ...,d +e—u —v —1}. Moreover, ¢, =0if r(e—y)/d ¢ Z.

Note that the last condition implies that every nonzero summand appearing on the right side of (2-3) is
in R[F, 1771, so it must be a rational function.

In order to prove Theorem 2.2, we need the following lemma (see [11, Propositions 1 and 2], [2,
Lemma 22], and [9, p.258]), and for the reader’s convenience, we reproduce the proof here:

Lemma 2.3. Let w = (1, v) € W. Let R be any polynomial ring over K, f € R be a w-homogeneous
polynomial of degree dy > 0, and g be a nonzero w-homogeneous function of degree d, € Z in the
fractional field of R such that the Jacobian [g, f] = 0. Define r € Z- ¢ to be the largest integer such that
h = Y7 is a polynomial. Then there exists a unique ¢ € K \ {0} so that g = ¢ - h*, where s = rdg/dy is
an integer.

Proof. If g € K, the statement is trivial where s = 0, ¢ = g. So for the rest of the proof, we assume that g
is not a constant. By Euler’s lemma, uxf, +vyf, =dy f and uxg, +vygy, =d,g. Then

=L )
dgg 8x 8y LVY ’
O AR (RO 8 R R
_dffgx+dggfx —8& fx dgg -8 fx 8x 8y |LVvYy 00]||vy ol

Thus, (g% /f%)y=drg¥ g, f U —dy f =%~ g% = g¥r =1 =%~V (d; fg.—d,gf:) =0, and similarly
(g9 /f%), =0. So, g% / f9 = ¢’ for some ¢’ € K \ {0}.

SO

Let a1, a» € K\ {0}, p1, ..., p, be distinct irreducible polynomials, ry, ..., r, € Z>9, S1,...,Sp € Z,
such that we have the prime factorizations f = a;p|' - pand g = a Py p'. Then d r8i =dgr;
forl1 <i<n,andr=gcd(ry, ..., ry). Lets’=gcd(sy, ..., s,) >0. Wehaved s =gcd(dysi, ..., dssy) =
ged(dgry, ..., dgry) = |dg|r. So s = £s' is an integer, and r; : 5; = dy : dy =r : 5. So the exponent of p;
in the prime factorization of ¢ = g/h* is s; — s(r;/r) = 0O; thus, c is a constant. The uniqueness of ¢
follows from the previous sentences. O

Proof of Theorem 2.2. We proceed by induction on p. The base case of u =01is G, =coF 5/ 4 which
follows from Lemma 2.3. Note that ¢y # 0, because otherwise G, = ¢y F, j/ 4 = (), which contradicts the
assumption that e = w-deg(G ).
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For the inductive step, assume pu > 0. By the inductive assumption, c, ..., c,—1 are uniquely
determined. The assumption [F, G] € K implies that each positive w-degree component of [F, G] is 0.
Note that if the w-degrees of homogeneous rational functions f and g are i and j, respectively, then
the w-degree of [f, gl isi + j —u — v. On the other hand, the component in [F, G] of w-degree
d+e—u—v—puisjust [[F, (N}]]ﬂl. Since u < d +e —u — v, we have

0=[(F, 51]tu=[[ZFd_ir",ZGe_,-ﬂH = 3 [Fii. G,

i>0 j=0 4 i,j>0,
i+j=n
therefore
(2-4) [Geepp Fal = —[Fu. Ge—yl = > [Fais Gejl.
i>0, j>0,
i+j=un
Define
n—1
H=G, — Z CV[F(G*V)/d]M_y‘
y=0

Note that (2-3) holds if and only if H = ¢, F* /¢ (= ¢, [Fe~m/4],).

If H=0, then H = ¢, F{* "% holds exactly when c,, = 0, so the choice of ¢, is unique.

Now assume H # 0. It is a homogeneous rational function in R[F,; Y "] with w-deg = e — 11 by the
inductive hypothesis. We claim that [H, F;] = 0. Indeed,

n—1
[H,Fgl =[Ge—p, Fal— |:Z c},[f(e_y)/d];u—y, Fd] (by the definition of H)
y=0
n—1
= > [FairGejl= ) [, [F My Fy]  (by (2-4)
i>0, j>0 y=0
i+j=p
u—1 J - pu—1 -
= Z [quﬂ', ch [F(e_y)/d]tjy] —Z[CV [Fen/dy, ., Fd] (by the inductive hypothesis)
j=0 y=0 y=0
n—1 n—1
=) ¢ (Z[Fd_,ﬁ o LFC1 N i 1= [IFC M ey Fd])
y=0 j=y
n—1 " N pu—1 oo -
=Y ¢ (Z[Fd_w j» [F(e‘”/"]t,--y]) = ZCV(Z[[FLW, [F“‘V)/"L.f_y])
=0 j=y y=0 J=y
n—1

= Z Cy([[ﬁ» I?(e_y)/d]]tﬂ_y) =0 (because [F, Fe /4] = ().
y=0

This equality together with Lemma 2.3 (withg=H, f=Fg,andh=F dl/ ") implies that there is a unique
element ¢, € K \ {0} such that

H=c,h' = cﬂpgeg H/deg Fy _ CﬂFage—u)/d,

where s =r(e —u)/d € Z. In other words, ¢, =0if r(e —n)/d ¢ Z. O



ON THE TWO-DIMENSIONAL JACOBIAN CONJECTURE: MAGNUS’ FORMULA REVISITED, I 797

For any real numbers r; <r,, we use the usual notation for a closed interval [r, r] :={x e R:r; <x <rp}
and introduce the notation [ry, 2]z := [r1, r2] N Z. For a line segment AB C R? whose endpoints are both
in 7> C R?, we define the length len(AB) € Z > to be one less than the number of lattice points on AB. For
any direction w = (u, v) € W and for any w-homogeneous Laurent polynomial # € K[x*!, y*!], we define
len(h) to be the length of N (h); that is, if h = agx?y¢ +a;xPH0y=4 4 apxP T2V ye=24 .. 4 g xbHv =i
with a9 # 0 and a; # 0, then len(h) = 1.

In the following statement, for each polynomial F, P, and R, we fix w = (4, v) € W and write the
w-homogeneous degree decompositions F =) . F;, P=) . Pi,and R=), R;.

Proposition 2.4. Let k € Z- o and assume that (F, G) has generic boundaries with a =2 and b = 2k + 1.
Denote d := w-deg(F) and e := w-deg(Gy). Let P € R such that w-deg(Py) =m =d/2 and Fy; = Pn%.
Let R=F—P?>and h €[1,2m —1]z. If Ry_y =0 for all £ < h, then P,/'R;_, € K[xE!, y£!].

Proof. We assume P,, is not a monomial (thus, F; is not a monomial) since the statement is trivial
otherwise. Let

F=Fy+Fy it +Fyot* +-- € R[1],

Q= Py+ Pu_it +-- -+ Pu_yt" € R[], and

T=F-Q%
For each positive integer z, let O(¢*) denote an element of the form Zizz fiti in R[[¢]], where each f; is a
polynomial in ® which we do not have to care about. Since R;_, =0 for £ < h, we get

h
T= (Fdh = P thﬂ)th +0@"
j=0

= Rd_hlh + @(th+l).

We will apply Theorem 2.2 to the case of u = h(k + 1). For that purpose, we need to check that
h(k+1)<d+e—u—v—1. Observe that

d+e—u—v—1—htk+1)=2m+2k+1ym—-—u—v—1—QCm—1)(k+1)
=m—-u—v+k
>m—u—v+1
=m+ 1 — (w-deg(xy))
>0,

where the last inequality holds because m — (w-deg(xy)) > 0 if the lattice point (1, 1) is contained
in N(P), or w-deg(xy) = m + 1 otherwise. Indeed, if (1, 1) is not contained in N(P), then N(P)
is either the triangle with vertices (0, 0), (c, 0), and (0, 1) or the triangle with vertices (0, 0), (1, 0),
and (0, ¢) for some ¢ € Z.o. Without loss of generality, we assume the former. Since P, is not a
monomial, both the points (¢, 0) and (0, 1) must lie in the support of P,. So w = (1, ¢), m = ¢, and thus
w-deg(xy)=14+c=m+ 1.



798 WILLIAM E. HURST, KYUNGYONG LEE, LI LI AND GEORGE D. NASR

Since (F, G) has generic boundaries, Theorem 2.2 gives

Lh(k+1)/m]
Gehks1) = Z Crm [ FFY212 snyrm
r=0
Lh(k+1)/m]
= Z Crm[(Q2 + T)k+1/2_r/2]t’l(k+1)—rm
r=0
Lh(k+1)/m]

_ Z o [Z(k+l/2—r/2) Q2k+1—r—2iTii|

1 _
=0 i—0 th(k+1) rm

Note that T = O(t"), which implies 7! = O(¢""). Then it is enough to look at r and i such that
hi < h(k+1) —rm, or equivalently i <k + 1 —rm/h. Then the exponent of Q satisfies

2k+1—r—2i > 2k+1—r—2(k+1—rm/h) =2rm/h—r—1>2rm/d—r—1=r—r—1=—1.

__ 9

Here, the first “>" becomes “=" only when i = k4 1 —rm/h, and the second “>" becomes “=" only
when r = 0. Since the exponent of Q is an integer, it is always nonnegative except when “r = 0
and i = k4 1” (in which case the exponent is —1). Since G,_p4+1) and [Q2k+l_r_2iTi]th(k+l)—rm are
polynomials in K [x, y] whenever 2k + 1 —r —2i > 0, the following must also be a polynomial in K [x, y]:

k+1/2 _ k+1/2 _ 1\ k41
o0 T e = eo( ) B+ 00 (Racat + 0+
k+1/2N _
=Co< k+1 )Pml(Rd—h)k+1-
Since cp # 0 and (k;lgz) # 0, we get that P! (Ry_)**! is a polynomial. Since (F, G) has generic
boundaries, the polynomial P, is not divisible by the square of any polynomial in J. This implies

P,;le_h € K[x*!, yil], because K is algebraically closed. O
Corollary 2.5. Assume the same hypotheses as above. If len(R;—_;,) < len(P,,), then R;_; = 0.
Proof. If Ry_, # 0 then len(R;_p,) > len(P,,), because P 'Ry, € K[x*!, y*!]. O

The next lemma is elementary but makes Proposition 2.4 useful. Let F' € R be a polynomial with a
nonzero constant term such that all vertices of N (F) are in (2Z)2, and let C be any vertex of N (F) other
than the point of origin O. Let N' = %N(F), which is defined at the end of Section 1, and N” = N’ + %&?
(For example, see the polygons shown in Figure 4.)

Lemma 2.6. Let F = Zi,j Aijxiyj. There exists a polynomial P = Z(i’j)eﬂ, pijxiyj, unique up to a
sign, such that supp(F — PH)NN" = @.

Proof. First consider the case that N (F) is a rectangle [0, 2m'] x [0, 2m] for m’, m € 7. In particular,
Aom 2om 7 0. See Figure 2. Let C = (2m’, 2m). The required property gives a system of (m + 1)(m’ + 1)
quadratic equations with (m + 1)(m’ + 1) variables p;;. We can solve p;; recursively, in the following
“graded lex order”: pu/.m > Pm'.m—1 > Pm'—1.m > Pm'.m—2 > Pm'—1.m—1 > Pm'—2.m > - -- . Namely, first
use A’ om — pi,’m =0 to determine py, ;, 7 0 up to a sign; next use Ay 2m—1 — 2Pm’ .m Pm'.m—1 = 0 to
uniquely determine p,, ,,—1, etc.
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y
(m’, 2m) ,
(0, 2m) Qm’, 2m)
0. m) (', m) Qm'. m)
0 ' 0 om0

Figure 2. The case where N (F) is a rectangle.

Even if N(F) is arbitrary, we can still solve p;; recursively with respect to an appropriate order in
the same way as follows: Let L. = {(x, y) | ax + By = c}, for some ¢ > 0, be a line with irrational
slope that passes C and intersects with N (F) only at C. Then N (F') lies in the half-plane ax 4+ Sy < c.
Arrange the points {z; = (x;, yi)}1<i<n in N such that ax; + By > axo + Byr > -+ > ax, + By,.
Then z; = %C . Denote x% = x*yY. Then in our new notation, P = Zz,- Pz X“. We claim that we can
solve p;,, Pz, - - ., Pz, Tecursively. First use Ay, —p; =0 to determine p,, up toasign. If p;,..., p;_,
are determined, then using

hevta = ), Dubz =2pupy+ > PPz

zitzj=z21+2k zi+zj=n1+w, 1<i, j<k

we can uniquely determine p,,. Since N” = {z; +z; | 1 <k < n}, we have found a unique P (up to
a sign) such that supp(F — P NN" = @. O

3. Proof of Proposition 1.3 for the case where N (F) is a rectangle

Let F =), i jxiy-/ . In this section, we prove Proposition 1.3, assuming that N(F) is a rectangle
[0, 2m’] x [0, 2m] for m’, m € Z~. In particular, Ay, 2, 7# 0. See Figure 2.

Let P be a polynomial given by Lemma 2.6, and let R = F — P2. Write the w-homogeneous degree
decomposition R =), R; for w = (0, 1) € W, and the w’-homogeneous degree decomposition R=)", R!
forw' = (1,0) ¢ W.

Proposition 3.1. Suppose that (F, G) has generic boundaries with a = 2. Let d’ = 2m’, d = 2m, and
¢ = (2k+ 1)m’, e = (2k + 1)m for some positive integer k. Then we have R;_; =0 for h € [0, d — 1]z,
and R/, _, =0forh e[0,d —1]z.

Proof. We will use induction on /. The base case of 4 = 0 is well known (for instance, see [1; 2; 11]),
and it also follows from Theorem 1.1 for u = 0.

Let i € [1, m]z, and assume the inductive hypothesis that R;_, = 0 for £ < h. Lemma 2.6 implies that
len(R;_,) <m’ =len(Py). Hence, R;_;, = 0 by Corollary 2.5.
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y
0.2) (1. 2) 2.2)
0, 1) D 1oy
P
(0 (1,0) 2,0

Figure 3. The Newton polygons associated with F' and P, with P in bold.

Applying the same argument, we also get R, , =0 for i € [0, m’]z. Then the support of R is contained
in [0, m" — 1] x [0, m — 1], which in turn implies that R;_, =0 for h € [m 4+ 1,d — 1]z, and Réi,_h =0
forhe[m' +1,d —1]z. O

In light of this proposition, we can show the following:

Corollary 3.2. Suppose that (F, G) has generic boundaries with a = 2. If N(F) is a rectangle, then
F = P? + u for some constant uy € K. In particular, [F, G] =0.

Proof. Proposition 3.1 implies that the support of R is either the origin or empty, so R is equal to a
constant, say ug € K. That is, F = P?% + ug. This gives [F, G] = [P2,G]=2P[P,Gl€K.So PeK,
which gives [F, G] = 0. O

Example 3.3. Assume that a =2, b =3, N(F) is the 2 x 2 square, N (G) is the 3 x 3 square, and F takes
the form

F = hoox?y? 4+ A 1x%y + i 2xy% + A11xy + A2,0x% + 40232 + A1,0x + 20,1y + 10,0,

where A; ; € K and A3 223 0102 # 0. See Figure 3.
By Lemma 2.6, there exists a polynomial P = Pj jxy 4+ Pj o0x + Po.1y + Po,o such that supp(F — P?)
is contained in {(0, 2), (0, 1), (0, 0), (1, 0), (2, 0)}. We immediately deduce that

Ao =P,
A1 =2P11P10,
AM2=2P11P1,

A =2P1oPo1+2P 1 Poo.
Suppose that [F, G] € K. Applying (1-1) to w = (0, 1) and u = 0, we have
A2y 4 Ay pxy? 4+ ooy’ = Pﬁlx2y2 + 2P 1 Po1xy? + Aoy’ = (P{ xy+ Pé,ﬂ)z

for some constants P| |, Pj, € K, which implies A9 = P&] and (Py1xy + Py 1y)> = (P{ \xy+ Pé’ly)z.
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Figure 4. The case where N (F) is arbitrary, « =4, and 8 = 3. Regions N’, N”, and P;;
are shown on the left; and various broken lines 7p, where the red dots are the various
positions of the point D are shown on the right.

Applying (1-1) to w = (0,1) and u = 2, we get that A» 1x2y + Aq.1xy + Ao,y is divisible by
P| 1 xy + Pg . hence divisible by Py 1xy + Po1y. This means that

A ax2y + 11Xy +ho.1y = 2P1 1 Prox?y 4+ (2P1oPo1 +2P11 Poo)Xy + Aoy
=2(Py1xy + Po,1y) (P ox + Py )

for some constants Pl’ 0 Pé,o € K, which implies Ao.1 = 2Py 1 Py.0-
Similarly, applying Magnus’ formula to w = (1, 0), we also have A, o = P12,0 and 10 =2P;0Po0.
From here, it follows that F — P2 is a constant.

4. Construction of broken lines and the proof of Proposition 1.3

In this section, we prove Proposition 1.3. Besides from using Proposition 2.4, Corollary 2.5, and
Lemma 2.6, the rest is a purely combinatorial analysis on subsets of R? and Z2. Suppose that (F, G) has
generic boundaries with a = 2.

Denote the point of origin by O = Ay = By. Now we extend the result from Section 3 to the
general case that N (F) is of arbitrary shape. We say that a vertex C = (cy, ¢y) € N(F) is northeastern if
(Vx—cx, vy—cy) & Zio for any other vertex V = (v, vy) € N(F). Observe that a northeastern vertex exists.

Let N(F)=0A; o Ayt CBg_ - - - By, where C is anortheastern vertex of N (F). Weset A, =Bg=C
and C' = %C. Since (1, 0), (0, 1) € N(F), we must have that A; lies on the y-axis and B; lies on the
x-axis. Without loss of generality, assume « > 1 (but we allow g =1).

Let N = %N(F) and N = N+ %_0—8 be the polygons shown in Figure 4.

4.1. Construction of parallelograms associated with N (F'). For 0 <i < j < «, define
Ajj=3(Ai+ A)) e R~

In particular, A; ; = A;.
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We define the parallelogram %;;, where 1 < i < j < «a, by its four vertices A; 1 ;j_1, Ai_1 j,
Ai,j—17 and Ai,j- For convenience, we call the line segments Ai—l,j—lAi,j—l’ Ai,j—lAij’ A,’in_Lj,
and A;_1 jA;_1,;—1 the west, north, east, and south edges of P;;, respectively. Similarly, we also define
the parallelogram %/ ;»Where I <i < j < p. See Figure 4.

One can verify that:

o P;; is indeed a parallelogram.
o The lengths of the edges of %;; are equal to %Ai_lAi and %Aj_lAj.
o P; ; shares edges with P; ;1| and P;+ ; (if the latter are defined).

We make the following claim:

Lemma 4.1. (a) The union of the parallelograms %;; is the (closed and nonconvex) polygon
P:=A01An - AoeAlaAsa Aa—1,0Aa—1Aa—2 - Al

(b) These parallelograms do not overlap with each other. More precisely, P;; NP; j11 = A;i_1,j Aij,
PijNPiy1j=Aij-14ij, PijNPiy1 jr1 = Aij, PijNPig1j—1=Ai j—1, and P;; NPy =@ if [i —i'| > 1
or|j—j'|>1.

Proof. (a) Given any point r € %, we assert that r is in some %;;.
1 u—— . _ i ]

Let v; be the vector 5A;_1A; for 1 <i <«. Then A;; = O+Zk:1 vk—i-Zk:l Vg, and the parallelogram
Pij={Ai—1,j—1+sv; +1v; |0 <s,r < 1}. The assumption that C is a northeastern vertex of N (F) has
the following consequences: N’ N N” ={C’}, and vy, ..., v, are in clockwise order and (strictly) in the
same half plane y 4+ Ax > 0 for a sufficiently large constant A >> 0.

One can see that ? = L; + L,, the Minkowski sum of the two broken lines

Li:=0A0nAp---Ape—1 and Lr:=Ap1Ap - Aoe—140.a-

It can be visualized as follows: as a point p moves along L, the broken line p + L, sweeps out the
region . As a consequence, any point r € % is the sum of a point p € L and a point ¢ € L,. Without
loss of genepality, we may assume that p lies in Ag ;1 A, and g lies in Ag ;1 Ao, ; for some i < j. Then
p=0+ Z;{;ll vk +sv;and g = O + Z,’C;ll v +1v;. We consider three cases:
o Ifi < j,thenr =p+qg=A;_1j—1+sv;+tv; liesin P; ;.
e Ifi=jands+r<1,thenr=p+qg=A;,_1i—1+(@6+)vi=A;_2;i—1+1vi_+(s+1)v; liesin P;_y ;.
e Ifi=jands+r>1,thenr=p+g=A;_1i—-1+@6+)vi=A;_1;+(+t—1)v;+0v;4 liesin P; ;1.
So we have proved that in all cases, the point r lies in some parallelogram %;;. This proves (a).
(b) Assume that there exists a point r € ?;; NP/, where i < j, i’ < j and i <i'. Then

i—1 Jj—1 i'—1 Jj -1

r=0+ka+2vk+svi+tvj=0+ka+2vk+s’v,~f+t’u,~/
k=1 k=1 k=1 k=1

for some s, ¢, s’, ¢t € [0, 1].
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Figure 5. The red broken lines are p 4+ L, whose left endpoint p is blue and right
endpoint is red.

o Ifi’=iand j'> j, then sv;+1v; =Z£:_jl vx+s'v;+1'vjr, hence (s—s)v; =(1—t)vj+21{:_jl+1vk+t’vj/.
Note that v;, v;, vj41, ..., vy lie in a half-plane and are in the clockwise order. So we must have
J/=j+lands—s'=1—t=1¢=0.Inthiscase, r = A;_1 j +sv; € A;j_1 jAjj.

o If j/=j and i’ > i, then by a similar argument we have i’ =i+ 1andr € A; j_1A;;.

e If i’ >i and j/ > j, then

i'—1 Jj =1
SV +1v; = Z Vi + Z v +5'vi 4 +t/vj+1,
k=i k=j
i'—1 j -1
(I=)v+(=0vj+ D v+ Y ve+svp+1v5 =0,
k=i+1 k=j+1

Note that all vy lie in a half-plane, so we musthave i’ =i+1, j'=j+1,and | —s=1—t=s"=1"=0.
In this case, r = A;;.

e If i’ >i and j/ < j, then

j—1 i'—1
Z Vg + sV 1) = Z v +s'vy +1'vj
k=j’ k=i
j—1 i'—1
(1 —t’)vj/ + Z v +1v; =1 —s)v; + Z v +5'vpr.
k=j'+1 k=i+1
Note that v;, ..., vy, vj, ..., v; lie in a half plane and are in the clockwise order, so we must have

i"'=i+1,j/=j—1l,and 1 —s'=s=1—r=1¢"=0. Inthis case, r = A; j_1.
This proves all cases for (b). O
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4.2. Construction of broken lines. Next we construct broken lines Tp and Tl/):
(a) For every point D on the line segment C'C, we draw a broken line T that goes to the left until it
reaches the boundary of N (F'), as follows:
Step 1: first, it goes in the direction Ay A,—1 until it reaches a point D,_; on the west boundary
of %, o for some r;
Step 2: then, it goes in the direction A,_; A,—> until it reaches a point D,_; on the west boundary

of Pro—1;
Step 3: then, it goes in the direction A,_>A,_3 until it reaches a point D,_3 on the west boundary

of Prg—2;

Step (o — r): finally, it goes in the direction A,, A, until it reaches a point D, on the west boundary
of @r,r-H .

If DD, _, does not contain the north edge of P, for any r > 1, then define Tp = DDy_1Dy—3 - - - D, .
Note that it now reaches the boundary of N (F).

If DD, _1 contains the north edge of P, for some r > 1, we define Tp to be the broken line consisting
of DD,_ and the north edges of P, 4_1, Pry—2,..., Prr+1, and ending at A,.
(b) Still for every point D on the line segment C'C, similarly we define a broken line T}, that goes down
and whose linear pieces are parallel to B; B; _; for i < . Note that for D = C’,

Ter = 3AgAg—1 -+ Al = AogAoa—1 -+~ Aot and T¢ = 3BgBg_y--- By = BogBop—1 - Bo.

(c) Forevery D € ocC’ \ {0}, define

Tn =D, D ...D =||0D”
D alda—1 1 ||0C||

rescaling the boundary broken line from A, to A; so that it passes the point D = D,,.
(d) For every D € ocC’ \ {0}, define

o Ol—l"'Al’

_llop|
loci|
rescaling the boundary broken line from Bg to Bj so that it passes the point D = Dyg.

T[/):D/BDﬁ—l"‘Dl sBg_1--- B,

Note that every point on N(F)\ OC lies in a unique Tp or Tj,.
4.3. Proof of Proposition 1.3. Let P be a polynomial given by Lemma 2.6, and let R = F — P2. We
have the following generalization of Proposition 3.1:

Proposition 4.2. Suppose that (F, G) has generic boundaries with a = 2. In the above setting, R must
be a constant; that is, F = P2 + ug for some constant ug € K.

Proof. We consider the finite sequence of broken lines Ty, 73, ..., T; such that:
e each T; is either Tp or Tb for some D € OC \{O};
« supp(F) \ {0} C Ui_ Ti;
 each 7; contains a lattice point; and
« the distance from O to 7; N OC is no less than the distance from O to TN OcC.
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Figure 6. Case (bl) is on the left; and Case (b2) is on the right.

To make the order unique, we assume that if 7; N oC = Tiv1 N OC = D, then T; = Tp and Tiv1 = TI’).
In particular, 71 = Ay Aq—1 (recall that o > 1) and 7o = BgBg_1 if B > 1.
We will inductively prove that supp(R)NT; = @.

(a) Let w = (u, v) be the normal direction of the edge Ay Ay—1. Let d = w-deg(Fy) and m = w-deg(Py),

sod=

2m. The assumption [F, G] € K implies that F; = Pn%. This is well known (see [1; 2; 11]), and

also follows from Theorem 1.1 for u = 0. Thus, supp(R) N Ay Aq—1 = supp(R) N T} = &. Similarly,
supp(R) N BgBg_1 =supp(R)NT, =@ if B > 1.

(b) Assume the inductive hypothesis that supp(R) N (T7U---UT;_1) = &. We consider the broken line 7;.
There are two cases.

(bl)

(b2)

Suppose T; = Tp or T}, for D = (d, d) in the segment C'C. Without loss of generality, assume
I;=Tp=DDy 1Dy 3 Dy.

By Proposition 2.4, we see that P,; lRud1+vdz € K[x*!, yil]. Denote by D, the intersection
of the line segment DD;.(_) 1 with the boundary of N”. Let E; be the intersectimﬂ)int of the
(unbounded) half-line D, D and the boundary of N”'. Let E; be the intersection of D, D with the
boundary of N(F'). See the picture on the left in Figure 6.

Since supp(R) N N” = @, we have supp(R) N D,E| = @. Since the lattice points on E| E»
must be in some 7, for some £ < i, we also have supp(R) N E\E, = @. Hence, supp(Rud,+vd,) €
Do Dy—1\{Dy}, so len(Ryd,+vd,) < len(Py,). Then supp(R) N Dy Dy = @ due to Corollary 2.5.
Applying a similar argument, we see that supp(R) N Dy_1Dy_> =--- =supp(R)N D, 1D, = &.
Therefore, supp(R) N T; = &.

Suppose T; = Tp or TI/) for D = (d,d) € ocC’ \ {0, C’}. Without loss of generality, assume
T, =Tp=DyDy_1 --- D1, where Dy = D. Let E be the intersection of D,_; D with the boundary
of N(F). See the picture on the right in Figure 6. Since the lattice points on DE must be in
some Ty for some £ < i, we also have supp(R) N DE = @. Hence, supp(Rud, +vd,) € Do Dgy—1, SO
len(Ryu4,+v4,) < len(P,,). From here, we get the same conclusion as in (bl). Il

Proof of Proposition 1.3. The proof is analogous to the proof of Corollary 3.2. O
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