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Abstract—Data security and cyberattack have become critical
issues in the distributed power system where adversaries can
swap the source information of sensors or even spoof and alter
measurements. However, the cyber security of the power system
is challenged by the unpredictability and stealth of the spoofing
attacks. To protect the data security at the grid edge, this
paper developed a synchrophasor data spoofing attack detec-
tion framework based on the time-frequency feature extraction
techniques including the short-time Fourier transform (STFT)
and object detection network for real-time synchrophasor data
categorization and spoofing attack localization. The proposed
approach outperforms earlier work in terms of spoofing attack
detection and offers a vital localization function employing
distributed synchrophasor sensors.

Index Terms—Data security defense, synchrophasor data,
spoofing attack, time-frequency domain, grid edge

I. INTRODUCTION

The rapid growth of high-penetration renewable energy

sources increases the need for real-time monitoring of dis-

tributed grid edge. A significant number of sensors, such as

the Phasor Measurement Units (PMUs), and smart meters,

coordinate with the internet and physical infrastructure to

form the heterogeneous Cyber-Physical Power System (CPPS)

[1]. The Wide Area Measurement System (WAMS), such

as the synchrophasor technologies maintained by the North

American SynchroPhasor Initiative (NASPI) and Frequency

Monitoring Network (FNET), is a typical CPPS that integrates

hardware, software, and application components [2]. However,

because of its open compatibility and several flawed protocols,

the CPPS has several cyber security problems. Important

attack events have caused chaos and significant damage to

the power grid in recent years [3]. For instance, an American

oil pipeline system suffered a ransomware cyberattack and

pipeline operations were halted to contain the attack on May

7, 2021 [4].

Recently, spoofing attacks emerged as a new type of false

data injection attack have been reported in some studies [5],

[6]. The measurements of the synchronization sensors are

susceptible to manipulation, which poses a risk to data-driven

applications like oscillation damping control. As a result, the
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pernicious effects of spoofing attacks promote the necessity of

effective means against them and protect data security.

To deal with spoofing attacks in CPPS, numerous efforts

have been developed based on system-level techniques. In [7],

algorithms based on the linear time-invariant (LTI) system

and Kalman filter are studied respectively to defend against

cyberattacks. In addition, methods for state estimation and

secure control have been developed to address the issue of

cyberattacks [8], [9]. However, the common drawback of

the aforementioned approaches is the necessity of partial or

substantial detailed electrical parameters of the power system,

therefore limiting its adaptability.

After that, certain model-free based techniques are devel-

oped based on the highly correlated features from the distri-

bution synchrophasors. In [10], the event-unsynchronized and

event-synchronized attacks are modeled and the optimization-

based attack identification method based on the micro-PMU

measurements is proposed [10]. Next, [11] presents a false

data injection attack detection method to preserve data privacy

using secure federated deep learning. By capturing the uncon-

formity between abnormal and secure measurements, the auto-

encoders combined with the generative adversarial network

are also intended to fight against the attacks [12]. The typical

restriction is that the flexibility of the method will decline

since the unique features are not mined.

To mitigate this problem, the multiscale adaptive multi-

fractal detrended fluctuation analysis is proposed to reveal

the significant multifractality of the measurements [13]. In

response to the data security issue, the continuous wavelet

transforms and the convolution neural network (CNN) is

connected to authenticating using real-life synchrophasor data

[14]. The trials show that it can identify cyberattacks with

an accuracy of more than 84 percent while requiring little

computational effort. However, the aforementioned methods

still have two obvious limitations. The first limitation is that a

relatively larger time window (several minutes) of synchropha-

sor data is utilized [15]. The second limitation is that model-

free based approaches such as CNN are unable to determine

the localization of the spoofing attack which generates a more

considerable delay for data recovery.

To address the above limitations, this paper proposes a

practical data security defense solution for synchrophasor data

spoofing attacks at the grid edge, of which the contributions
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Fig. 1. Proposed data security defense framework based on STFT-based spectrum and YOLO-v3.

can be summarized below:

1) A framework-based short-time Fourier transform (STFT)

and You Only Look Once version 3 (YOLOv3) is

proposed to perform spoofing attack detection, where the

YOLOv3 is a visual analysis algorithm. This data-driven

framework has two advantages: it does not need any

detailed structure parameters of the grid edge; achieves

both the categorization and localization with profound

performance.

2) To verify the performance of this framework, the sen-

sitivity of window parameters in STFT, and the com-

parisons with some state-of-art methods are conducted

in detail to explore the feasibility of the algorithm to

achieve higher accuracy in practical application.

II. PROPOSED DATA SPOOFING DETECTION FRAMEWORK

To achieve the synchrophasor data spoofing detection, the

data security defense framework based on the STFT-based

spectrum and YOLO-v3 is depicted in Fig. 1.

The structure of the proposed framework can be classified

into two stages, where the motivation of the first stage is to

extract the unique fingerprint information from the measure-

ments using STFT. The second stage is to identify the time

duration and category of the spoofing attack using YOLO-v3.

Given the measurement frequency as x(n), as demonstrated

in Fig. 2. It reveals that all the synchrophasors have the same

DC component σDC based on their profile. Thus, the common

feature needs to be filtered.

Here, a high-pass filter is designed based on the Butterworth

filter with a 0.1Hz cut-off frequency. The filtered residual

signal d(n) = x(n)− σDC is depicted in Fig. 2(b). It reveals

that the DC component has been removed, and the rest useful

information as well as the measurement noise are mixed.

III. TIME AND FREQUENCY DOMAIN FEATURES

EXTRACTION USING STFT

A. Principle of STFT

Commonly used feature extraction for the non-linearly sig-

nals are Empirical Mode Decomposition (EMD) and Ensemble

Fig. 2. (a) The measurement frequency and its DC component, (b) the residual
component of x(n).

Empirical Mode Decomposition (EEMD) [16]. The time do-

main modal components of each frequency can be accurately

extracted. However, the separated modal signals require further

processing to obtain their frequency or statistical domain

information.

To this end, the STFT is used, where its advantage is to

extract both time and frequency domain information for non-

stationary signals.

The definitions of STFT can be denoted as

Dn

(

ejωk
)

=
∑

m

d(m)ω(n−m)e−jωkm (1)

where ωk = 2πk/N , and k and N are frequency band and

the number of frequency bands, respectively. The ω(m) is the

window function with length L.

To be precise, the above equation is also equivalent to

Dn

(

ejωk
)

= e−jωknD̄n (ωk) (2)

The equation (2) can be viewed as the lowpass representations

of bandpass filter outputs. Once the window function is

selected, the frequency resolution is fixed over all the bands.
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Fig. 3. The STFT of synchrophasor data spoofing attack under different
window sizes, where the σ = 0.07 for all the cases. (a) filter frequency, (b)
STFT with L = 128, (c) STFT with L = 64, (d) STFT with L = 32.

In this paper, the symmetric Gaussian window is selected

because it is suitable for truncating the non-periodic signals,

and it is discrete form can be expressed as

ω(m) = e−
1
2 (

m−(L−1)/2
σ(L−1)/2 )

2

(3)

where σ is the width factor.

To choose a better frequency resolution, a suitable parameter

should be determined. In STFT, multiple FFT would be per-

formed to obtain the time-frequency joint distribution. Finally,

the magnitude of this Dn can be saved for the next step

analysis, which can be denoted as |Dn

(

ejωk
)

|.

B. Case analysis for window parameter selection

As mentioned above, the parameters of the window func-

tion, including the width factor σ and window size L, would

have an impact on the frequency resolution. To investigate the

relationship between the measurement synchrophasor data and

the parameters, an example of synchrophasor data spoofing

attack under different window size L is tested, as shown in

Fig. 3. In this case, all the σ is set to 0.07, and the window

size L are set to 128, 64, and 32, respectively.

Fig. 3(a) demonstrates that part of the measurement fre-

quency data is intercepted and manipulated by attackers be-

tween times 2 to 12 seconds. The manipulated data can easily

bypass bad data detection due to its small amplitude change.

Better resolution enables the separation of various com-

ponents from the time and frequency axes. Compared with

Fig. 3(b), (c), and (d), it can be observed that when a larger

window size of 128 is used, only some low-frequency and

high-frequency components are scattered between 0-1Hz and

4-5Hz. It is possible to distinguish the frequency components

more clearly. However, the time-vary between the manipulated

and tested signal is still connected. For Fig. 3(c), it has a better

time resolution because the manipulated and tested signal can

be separated. For Fig. 3(d), it has the best time resolution

when L=32 because the energy of the signal is more concen-

trated. However, the frequency component is connected. This

phenomenon is caused by Heinsberg’s uncertainty principle.

Based on the above analysis, the L is set to 64 as a trade-off

between the time and frequency domain. Next, the spoofing

attack would be identified based on |Dn

(

ejωk
)

|.

IV. SPOOFING ATTACK IDENTIFICATION BASED ON YOLO3

After obtaining the |Dn

(

ejωk
)

|, the YOLOv3 is introduced

to identify the category and time duration of the spoofing

attacks.

Modern real-time object detection technology, known as

YOLOv3, was developed from the YOLO system [17]. It can

detect a 320× 320 figure in only 22ms, which is fast enough

for the majority of applications. In the grid edge detection,

a PMU with a reporting rate of 10Hz would take 100ms to

calculate each synchrophasor. Furthermore, the sample can be

detected with a step size, this means that YOLOv3 would not

slow down the data processing.

The basic structure of YOLOv3 is illustrated in Fig. 1. As

with the general convolutional neural networks, the bottom

layers of YOLOv3 are two basic units, including the convolu-

tional layer and the pooling layer. The convolutional layer is

responded for fingerprint extraction, and the pooling layer is

used to filter the redundant features. Additionally, the residual

network, sometimes known as the ”Res Unit,” is designed to

expedite training and avoid gradient explosion.

According to Fig. 1, the data set |Dn

(

ejωk
)

|, Cd, [h, l]
would first pass some residual networks to learn the sufficient

fingerprint from measurements, where the Cd = 0, 1 denotes

that category label and the [h, l] denotes the localization of the

spoofing attack. It is worth mentioning that the localization

information is mainly transformed by coordinates.

Then, three different scales of boxes Y1, Y2, and Y3 are

designed to match the targets of different sizes. The YOLOv3

achieves localization detection by using a bounding box.

YOLOv3 may continually enlarge the bounding box until it

has the lowest loss by learning the bounding box’s coordinate

location. Finally, the last of these predict a 3-d tensor encoding

bounding box, class predictions.

To train the YOLOv3, the time duration of the spoofing

attack would be encoded as coordinates. The yellow circle

shown in Fig. 3(a) is an example. The coordinates of the upper

left and lower right corners will be marked as a label.

To evaluate the predicted results, the mean average precision

(mAP) and F1 score are selected. The mAP is derived from

the average precision. Both the larger mAP and F1 values,

which means that a better result is obtained.

V. EXPERIMENTS

To verify the effectiveness of the proposed STFT-based

spectrum and Yolo3 model, the synchrophasor frequency

collected by 12 Frequency Disturbance Recorders (FDRs) is

used. All the devices are distributed in the Western Electricity

Coordinating Council system and will be transferred to the

FNET/GridEye server located at the University of Tennessee,

Knoxville. Each FDR reports data at a rate of 10Hz/s, and the

length of each sample is 320.
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Fig. 4. STFT of the extracted fingerprint for original and attacked measure-
ments. (a) and (c) are the original measurements and attacked measurements,
respectively. (b) and (d) are their STFT, respectively.

Only the data from 11 FDRs are utilized for training to

replicate the spoofing attack, and one FDR is set aside for data

tampering. A total of 18450 samples are created, of which 70%

are utilized for training, 15% are used for verification, and the

remaining 15% are used for testing. Two categories are used,

including the measurement data and the attacked data.

A. Results of extracted fingerprint

To demonstrate the time-frequency fingerprint of the STFT

approach, Fig. 4 presents an example of a 32-seconds mea-

sured frequency. From Fig. 4(a) and (c) it is observed that

the original measurements show consistent time-frequency

characteristics.

From Fig. 4(b) and (d) it is found that compared with the

original measurements, the time-frequency fingerprint without

cyberattacks shows a higher agreement with Fig. 4(c). In

contrast, the fingerprint of the spoofing area has a completely

different distribution, especially in the high-frequency part

where f = 4Hz, indicating that STFT can extract the unique

fingerprint for synchrophasor data.

Besides, to increase the complexity of the attacks, the

compound spoofing attack is also generated. There are two

pieces of data were tampered with FDR and simulated event

data, as demonstrated in Fig. 5. The first piece of data is

attacked by the reserved FDR and the other is tamped with a

low-frequency oscillation. It can be seen from Fig. 5 that, the

time-frequency information of the spoofing area is different

from the original measurements, indicating the effectiveness

of the STFT.

If the attacker keeps the measurements (e.g. truly forced

oscillation) that occurred before and replaces to with the same

PMU, multiple PMU signals can be combined to defend this

type of spoofing.

B. Training loss for the YOLOv3

The training loss of the YOLOv3 is depicted in Fig. 6. It

reveals that the model is convergent after nearly 60 epochs.

Besides, the curves of the training loss and verification loss

Fig. 5. Example of the compound spoofing attack. (a)measurements with
compound spoofing attack, (b) the STFT of (a).

Fig. 6. Training and verification losses of YOLOv3.

are almost overlapped each other, indicating the YOLOv3 is

not over-fitting.

C. Performance comparison with different methods

To evaluate the performance of the proposed data secu-

rity defense framework, two different time-frequency analysis

methods are compared, including the Stockwell transform

(ST) and Continuous Wavelet Transform (CWT). Besides, the

Artificial Neural Network (ANN) is also selected to compare

with YOLOv3. The tested results are listed in Table I. Besides,

the Yolov5 [18] is also tested combined with STFT.

Compared with ST-YOLOv3, CWT-YOLOv3, and proposed

STFT-YOLOv3, it demonstrated that both the mAP and F1 of

ST are lower. The F1 and accuracy of CWT are slightly lower

than the proposed STFT-YOLOv3. The main explanation

could be that the fingerprint feature extraction is affected by

the wavelet basis functions. However, the mAP of the CWT

is 0.009 higher than STFT. This means that the resolution of

STFT can be further optimized. Compared with STFT-ANN,

it obtains an accuracy lower than 90%. The primary reason is

that YOLOv3 has a stronger learning ability than ANN does.

Compared with STFT-YOLOv5, the performance is slightly

higher than the proposed method. However, it would consume

more time due to its high frames per second [18]. Overall,

the STFT-YOLOv3 can be a better choice as a compromise of

accuracy and efficiency.
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TABLE I
PERFORMANCE COMPARISON FOR TIME-FREQUENCY METHODS.

Methods mAP F1 Accuracy(%)

ST-YOLOv3 0.788 0.85 92.70

CWT-YOLOv3 0.835 0.86 93.58

STFT-ANN - 0.83 82.25

STFT-YOLOv5 0.842 0.91 94.97

Proposed STFT-YOLOv3 0.826 0.89 94.35

TABLE II
PERFORMANCE COMPARISON WITH THE STATE-OF-ART METHODS.

Methods F1 Accuracy(%) mAP
Localization

ability

WT-FFT-ANN [19] 0.88 85.32 - no

MM-gcForest [15] 0.82 82.57 - no

EEMD-FFT-BP [6] 0.74 73.68 - no

FST-MCNN [20] 0.87 91.46 - no

CWT-CNN [14] - 84.44 - no

Proposed STFT-YOLOv3 0.89 94.35 0.826 yes

D. Comparison with some state-of-art methods

The last experiment is to compare with some state-of-

art spoofing attack detection methods, including the WT-

FFT-ANN [19], MM-gcForest [15], EEMD-FFT-BP [6], FST-

MCNN [20], and CWT-CNN [14]. For WT-FFT-ANN and

EEMD-FFT-BP, only the frequency information is fed into the

spoofing attack framework.

As can be seen from Table II, the WT-FFT-ANN and

MM-gcForest get an accuracy in the range of 82% to 86%.

The minimal amount of information that was retrieved might

be the cause. The CWT-CNN reaches an accuracy higher

than 84%, where its advantage is that it can achieve real-

time detection for each sample in 1.8ms [14]. For the FST-

MCNN, an accuracy higher than 90% is obtained because

the MCNN has better learning ability compared with the

traditional identification methods.

However, in terms of the spoofing attack localization ability,

none of the state-of-the-art techniques mentioned above can

pinpoint where or when the spoofing attack occurred due to

structural limitations. The detection method can not identify

the target without the localization data for training. Based

on the aforementioned analysis, the proposed STFT-YOLOv3

has a remarkable performance because it has high-quality

input time-frequency information and the ability to locate the

spoofing attack.

VI. CONCLUSION

In this paper, a data spoofing attack detection framework

named STFT-YOLOv3 is proposed for grid edge data se-

curity protection. The time-frequency domain information is

extracted as the fingerprint for each device. The visual analysis

results of the window parameter selection reveal that the STFT

can distinguish the difference between the measurement syn-

chrophasors and the spoofing attack area. Then, the YOLOv3

is designed for the time duration and category detection of

the spoofing attack. The experiments demonstrate that the

YOLOv3 can accurately and successfully detect single and

even compound spoofing attacks with 0.89 mAP and 94.35%

accuracy. Importantly, it is possible to discover the time

duration of spoofing attacks, which can assist us in figuring out

when the data might be utilized again. Our ongoing effort will

concentrate on validating the decentralized method to facilitate

extension to additional grid edges with alternative data sources.
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