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Abstract—Data security and cyberattack have become critical
issues in the distributed power system where adversaries can
swap the source information of sensors or even spoof and alter
measurements. However, the cyber security of the power system
is challenged by the unpredictability and stealth of the spoofing
attacks. To protect the data security at the grid edge, this
paper developed a synchrophasor data spoofing attack detec-
tion framework based on the time-frequency feature extraction
techniques including the short-time Fourier transform (STFT)
and object detection network for real-time synchrophasor data
categorization and spoofing attack localization. The proposed
approach outperforms earlier work in terms of spoofing attack
detection and offers a vital localization function employing
distributed synchrophasor sensors.

Index Terms—Data security defense, synchrophasor data,
spoofing attack, time-frequency domain, grid edge

I. INTRODUCTION

The rapid growth of high-penetration renewable energy
sources increases the need for real-time monitoring of dis-
tributed grid edge. A significant number of sensors, such as
the Phasor Measurement Units (PMUs), and smart meters,
coordinate with the internet and physical infrastructure to
form the heterogeneous Cyber-Physical Power System (CPPS)
[1]. The Wide Area Measurement System (WAMS), such
as the synchrophasor technologies maintained by the North
American SynchroPhasor Initiative (NASPI) and Frequency
Monitoring Network (FNET), is a typical CPPS that integrates
hardware, software, and application components [2]. However,
because of its open compatibility and several flawed protocols,
the CPPS has several cyber security problems. Important
attack events have caused chaos and significant damage to
the power grid in recent years [3]. For instance, an American
oil pipeline system suffered a ransomware cyberattack and
pipeline operations were halted to contain the attack on May
7, 2021 [4].

Recently, spoofing attacks emerged as a new type of false
data injection attack have been reported in some studies [5],
[6]. The measurements of the synchronization sensors are
susceptible to manipulation, which poses a risk to data-driven
applications like oscillation damping control. As a result, the
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pernicious effects of spoofing attacks promote the necessity of
effective means against them and protect data security.

To deal with spoofing attacks in CPPS, numerous efforts
have been developed based on system-level techniques. In [7],
algorithms based on the linear time-invariant (LTI) system
and Kalman filter are studied respectively to defend against
cyberattacks. In addition, methods for state estimation and
secure control have been developed to address the issue of
cyberattacks [8], [9]. However, the common drawback of
the aforementioned approaches is the necessity of partial or
substantial detailed electrical parameters of the power system,
therefore limiting its adaptability.

After that, certain model-free based techniques are devel-
oped based on the highly correlated features from the distri-
bution synchrophasors. In [10], the event-unsynchronized and
event-synchronized attacks are modeled and the optimization-
based attack identification method based on the micro-PMU
measurements is proposed [10]. Next, [11] presents a false
data injection attack detection method to preserve data privacy
using secure federated deep learning. By capturing the uncon-
formity between abnormal and secure measurements, the auto-
encoders combined with the generative adversarial network
are also intended to fight against the attacks [12]. The typical
restriction is that the flexibility of the method will decline
since the unique features are not mined.

To mitigate this problem, the multiscale adaptive multi-
fractal detrended fluctuation analysis is proposed to reveal
the significant multifractality of the measurements [13]. In
response to the data security issue, the continuous wavelet
transforms and the convolution neural network (CNN) is
connected to authenticating using real-life synchrophasor data
[14]. The trials show that it can identify cyberattacks with
an accuracy of more than 84 percent while requiring little
computational effort. However, the aforementioned methods
still have two obvious limitations. The first limitation is that a
relatively larger time window (several minutes) of synchropha-
sor data is utilized [15]. The second limitation is that model-
free based approaches such as CNN are unable to determine
the localization of the spoofing attack which generates a more
considerable delay for data recovery.

To address the above limitations, this paper proposes a
practical data security defense solution for synchrophasor data
spoofing attacks at the grid edge, of which the contributions
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Fig. 1. Proposed data security defense framework based on STFT-based spectrum and YOLO-v3.

can be summarized below:

1) A framework-based short-time Fourier transform (STFT)
and You Only Look Once version 3 (YOLOV3) is
proposed to perform spoofing attack detection, where the
YOLOV3 is a visual analysis algorithm. This data-driven
framework has two advantages: it does not need any
detailed structure parameters of the grid edge; achieves
both the categorization and localization with profound
performance.

2) To verify the performance of this framework, the sen-
sitivity of window parameters in STFT, and the com-
parisons with some state-of-art methods are conducted
in detail to explore the feasibility of the algorithm to
achieve higher accuracy in practical application.

II. PROPOSED DATA SPOOFING DETECTION FRAMEWORK

To achieve the synchrophasor data spoofing detection, the
data security defense framework based on the STFT-based
spectrum and YOLO-v3 is depicted in Fig. 1.

The structure of the proposed framework can be classified
into two stages, where the motivation of the first stage is to
extract the unique fingerprint information from the measure-
ments using STFT. The second stage is to identify the time
duration and category of the spoofing attack using YOLO-v3.

Given the measurement frequency as x(n), as demonstrated
in Fig. 2. It reveals that all the synchrophasors have the same
DC component o pc based on their profile. Thus, the common
feature needs to be filtered.

Here, a high-pass filter is designed based on the Butterworth
filter with a 0.1Hz cut-off frequency. The filtered residual
signal d(n) = z(n) — opc is depicted in Fig. 2(b). It reveals
that the DC component has been removed, and the rest useful
information as well as the measurement noise are mixed.

III. TIME AND FREQUENCY DOMAIN FEATURES
EXTRACTION USING STFT
A. Principle of STFT

Commonly used feature extraction for the non-linearly sig-
nals are Empirical Mode Decomposition (EMD) and Ensemble
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Empirical Mode Decomposition (EEMD) [16]. The time do-
main modal components of each frequency can be accurately
extracted. However, the separated modal signals require further
processing to obtain their frequency or statistical domain
information.

To this end, the STFT is used, where its advantage is to
extract both time and frequency domain information for non-
stationary signals.

The definitions of STFT can be denoted as

D, (e/“%) = Z d(m)w(n — m)e Iwrm ()

where wy = 27k/N, and k and N are frequency band and
the number of frequency bands, respectively. The w(m) is the
window function with length L.

To be precise, the above equation is also equivalent to

D, (ej"”‘) = e D, (wy) 2)

The equation (2) can be viewed as the lowpass representations
of bandpass filter outputs. Once the window function is
selected, the frequency resolution is fixed over all the bands.
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Fig. 3.

The STFT of synchrophasor data spoofing attack under different
window sizes, where the o = 0.07 for all the cases. (a) filter frequency, (b)
STFT with L = 128, (¢) STFT with L = 64, (d) STFT with L = 32.

In this paper, the symmetric Gaussian window is selected
because it is suitable for truncating the non-periodic signals,
and it is discrete form can be expressed as

w(m) — e_%(%)z

3)

where o is the width factor.

To choose a better frequency resolution, a suitable parameter
should be determined. In STFT, multiple FFT would be per-
formed to obtain the time-frequency joint distribution. Finally,
the magnitude of this D,, can be saved for the next step
analysis, which can be denoted as |D,, (e/“%) |.

B. Case analysis for window parameter selection

As mentioned above, the parameters of the window func-
tion, including the width factor o0 and window size L, would
have an impact on the frequency resolution. To investigate the
relationship between the measurement synchrophasor data and
the parameters, an example of synchrophasor data spoofing
attack under different window size L is tested, as shown in
Fig. 3. In this case, all the o is set to 0.07, and the window
size L are set to 128, 64, and 32, respectively.

Fig. 3(a) demonstrates that part of the measurement fre-
quency data is intercepted and manipulated by attackers be-
tween times 2 to 12 seconds. The manipulated data can easily
bypass bad data detection due to its small amplitude change.

Better resolution enables the separation of various com-
ponents from the time and frequency axes. Compared with
Fig. 3(b), (c¢), and (d), it can be observed that when a larger
window size of 128 is used, only some low-frequency and
high-frequency components are scattered between 0-1Hz and
4-5Hz. It is possible to distinguish the frequency components
more clearly. However, the time-vary between the manipulated
and tested signal is still connected. For Fig. 3(c), it has a better
time resolution because the manipulated and tested signal can
be separated. For Fig. 3(d), it has the best time resolution
when L=32 because the energy of the signal is more concen-
trated. However, the frequency component is connected. This
phenomenon is caused by Heinsberg’s uncertainty principle.
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Based on the above analysis, the L is set to 64 as a trade-off
between the time and frequency domain. Next, the spoofing
attack would be identified based on |D,, (e7“*) |.

IV. SPOOFING ATTACK IDENTIFICATION BASED ON YOLO3

After obtaining the |D,, (¢/“*) |, the YOLOV3 is introduced
to identify the category and time duration of the spoofing
attacks.

Modern real-time object detection technology, known as
YOLOV3, was developed from the YOLO system [17]. It can
detect a 320 x 320 figure in only 22ms, which is fast enough
for the majority of applications. In the grid edge detection,
a PMU with a reporting rate of 10Hz would take 100ms to
calculate each synchrophasor. Furthermore, the sample can be
detected with a step size, this means that YOLOv3 would not
slow down the data processing.

The basic structure of YOLOV3 is illustrated in Fig. 1. As
with the general convolutional neural networks, the bottom
layers of YOLOV3 are two basic units, including the convolu-
tional layer and the pooling layer. The convolutional layer is
responded for fingerprint extraction, and the pooling layer is
used to filter the redundant features. Additionally, the residual
network, sometimes known as the “Res Unit,” is designed to
expedite training and avoid gradient explosion.

According to Fig. 1, the data set |D,, (¢’**)|, Cq, [h,]
would first pass some residual networks to learn the sufficient
fingerprint from measurements, where the C; = 0,1 denotes
that category label and the [k, ] denotes the localization of the
spoofing attack. It is worth mentioning that the localization
information is mainly transformed by coordinates.

Then, three different scales of boxes Y1, Y2, and Y3 are
designed to match the targets of different sizes. The YOLOv3
achieves localization detection by using a bounding box.
YOLOvV3 may continually enlarge the bounding box until it
has the lowest loss by learning the bounding box’s coordinate
location. Finally, the last of these predict a 3-d tensor encoding
bounding box, class predictions.

To train the YOLOV3, the time duration of the spoofing
attack would be encoded as coordinates. The yellow circle
shown in Fig. 3(a) is an example. The coordinates of the upper
left and lower right corners will be marked as a label.

To evaluate the predicted results, the mean average precision
(mAP) and F1 score are selected. The mAP is derived from
the average precision. Both the larger mAP and F1 values,
which means that a better result is obtained.

V. EXPERIMENTS

To verify the effectiveness of the proposed STFT-based
spectrum and Yolo3 model, the synchrophasor frequency
collected by 12 Frequency Disturbance Recorders (FDRs) is
used. All the devices are distributed in the Western Electricity
Coordinating Council system and will be transferred to the
FNET/GridEye server located at the University of Tennessee,
Knoxville. Each FDR reports data at a rate of 10Hz/s, and the
length of each sample is 320.
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Fig. 4. STFT of the extracted fingerprint for original and attacked measure-
ments. (a) and (c) are the original measurements and attacked measurements,
respectively. (b) and (d) are their STFT, respectively.

Only the data from 11 FDRs are utilized for training to
replicate the spoofing attack, and one FDR is set aside for data
tampering. A total of 18450 samples are created, of which 70%
are utilized for training, 15% are used for verification, and the
remaining 15% are used for testing. Two categories are used,
including the measurement data and the attacked data.

A. Results of extracted fingerprint

To demonstrate the time-frequency fingerprint of the STFT
approach, Fig. 4 presents an example of a 32-seconds mea-
sured frequency. From Fig. 4(a) and (c) it is observed that
the original measurements show consistent time-frequency
characteristics.

From Fig. 4(b) and (d) it is found that compared with the
original measurements, the time-frequency fingerprint without
cyberattacks shows a higher agreement with Fig. 4(c). In
contrast, the fingerprint of the spoofing area has a completely
different distribution, especially in the high-frequency part
where f = 4H z, indicating that STFT can extract the unique
fingerprint for synchrophasor data.

Besides, to increase the complexity of the attacks, the
compound spoofing attack is also generated. There are two
pieces of data were tampered with FDR and simulated event
data, as demonstrated in Fig. 5. The first piece of data is
attacked by the reserved FDR and the other is tamped with a
low-frequency oscillation. It can be seen from Fig. 5 that, the
time-frequency information of the spoofing area is different
from the original measurements, indicating the effectiveness
of the STFT.

If the attacker keeps the measurements (e.g. truly forced
oscillation) that occurred before and replaces to with the same
PMU, multiple PMU signals can be combined to defend this
type of spoofing.

B. Training loss for the YOLOv3

The training loss of the YOLOvV3 is depicted in Fig. 6. It
reveals that the model is convergent after nearly 60 epochs.
Besides, the curves of the training loss and verification loss
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Fig. 6. Training and verification losses of YOLOV3.

are almost overlapped each other, indicating the YOLOV3 is
not over-fitting.

C. Performance comparison with different methods

To evaluate the performance of the proposed data secu-
rity defense framework, two different time-frequency analysis
methods are compared, including the Stockwell transform
(ST) and Continuous Wavelet Transform (CWT). Besides, the
Artificial Neural Network (ANN) is also selected to compare
with YOLOV3. The tested results are listed in Table 1. Besides,
the Yolov5 [18] is also tested combined with STFT.

Compared with ST-YOLOv3, CWT-YOLOV3, and proposed
STFT-YOLOV3, it demonstrated that both the mAP and F1 of
ST are lower. The F1 and accuracy of CWT are slightly lower
than the proposed STFT-YOLOv3. The main explanation
could be that the fingerprint feature extraction is affected by
the wavelet basis functions. However, the mAP of the CWT
is 0.009 higher than STFT. This means that the resolution of
STFT can be further optimized. Compared with STFT-ANN,
it obtains an accuracy lower than 90%. The primary reason is
that YOLOV3 has a stronger learning ability than ANN does.
Compared with STFT-YOLOVS, the performance is slightly
higher than the proposed method. However, it would consume
more time due to its high frames per second [18]. Overall,
the STFT-YOLOV3 can be a better choice as a compromise of
accuracy and efficiency.
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TABLE I
PERFORMANCE COMPARISON FOR TIME-FREQUENCY METHODS.

YOLOV3 can accurately and successfully detect single and
even compound spoofing attacks with 0.89 mAP and 94.35%
accuracy. Importantly, it is possible to discover the time

Methods mAP F1 Accuracy(%) . . . . .
STYOLOVA 0788 085 9270 duration of spoofing attacks, which can assist us in figuring out
CWT-YOLO;I3 0.83 s 0.8 6 93' s when the data might be utilized again. Our ongoing effort will
STFT.ANN i 0.83 82,25 concentrate on V.aydat;ng.the decent.rzlnlhzled mthod to facilitate
STFT-YOLOVS 0.842 091 04.97 extension to additional grid edges with alternative data sources.
TABLE II [1] G. Wu and Z. Li, “Cyberphysical power system (cpps) A review on
P measures and optimization methods of system resilience,” Frontiers of
ERFORMANCE COMPARISON WITH THE STATE-OF-ART METHODS. Engineering Management., vol. 8, p. 503-518, 2021.
Localizati [2] H. M. Mustafa and et al., “Cyberpower cosimulation for endtoend
Methods F1  Accuracy(%) mAP oca .1z.a ton synchrophasor network analysis and applications,” in 2021 IEEE In-
ability ternational Conference on Communications, Control, and Computing
WT-FFT-ANN [19] 0.88 85.32 - no Technologies for Smart Grids (SmartGridComm), 2021, pp. 164-169.
MM-gcForest [15] 0.82 82.57 R no [3] M. Ravinder and et al., “A review on cyber security and anomaly detec-
tion perspectives of smart grid,” in 2023 5th International Conference on
EEMD-FFT-BP [6 0.74 73.68 -
FST-MCNN 2([) ] 0.87 91.46 ne Smart Systems and Inventive Technology (ICSSIT), 2023, pp. 692-697.
) (20] : : - no [4] Wikipedia, “Colonial pipeline ransomware attack, [online] available at:,”
CWT-CNN [14] - 84.44 - no https://en.wikipedia.org/wiki/Colonial_Pipeline_ransomware_attack,
Proposed STFT-YOLOv3  0.89 94.35 0.826 yes 2023.

D. Comparison with some state-of-art methods

The last experiment is to compare with some state-of-
art spoofing attack detection methods, including the WT-
FFT-ANN [19], MM-gcForest [15], EEMD-FFT-BP [6], FST-
MCNN [20], and CWT-CNN [14]. For WT-FFT-ANN and
EEMD-FFT-BP, only the frequency information is fed into the
spoofing attack framework.

As can be seen from Table II, the WT-FFT-ANN and
MM-gcForest get an accuracy in the range of 82% to 86%.
The minimal amount of information that was retrieved might
be the cause. The CWT-CNN reaches an accuracy higher
than 84%, where its advantage is that it can achieve real-
time detection for each sample in 1.8ms [14]. For the FST-
MCNN, an accuracy higher than 90% is obtained because
the MCNN has better learning ability compared with the
traditional identification methods.

However, in terms of the spoofing attack localization ability,
none of the state-of-the-art techniques mentioned above can
pinpoint where or when the spoofing attack occurred due to
structural limitations. The detection method can not identify
the target without the localization data for training. Based
on the aforementioned analysis, the proposed STFT-YOLOv3
has a remarkable performance because it has high-quality
input time-frequency information and the ability to locate the
spoofing attack.

VI. CONCLUSION

In this paper, a data spoofing attack detection framework
named STFT-YOLOvV3 is proposed for grid edge data se-
curity protection. The time-frequency domain information is
extracted as the fingerprint for each device. The visual analysis
results of the window parameter selection reveal that the STFT
can distinguish the difference between the measurement syn-
chrophasors and the spoofing attack area. Then, the YOLOv3
is designed for the time duration and category detection of
the spoofing attack. The experiments demonstrate that the
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