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Detection of Synchrophasor False Data Injection
Attack Using Feature Interactive Network
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Abstract—The synchrophasor data recorded by Phasor
Measurement Units (PMUs) plays an increasingly critical role
in the regulation and situational awareness of power systems.
However, the widely installed PMUs are vulnerable to multiple
malicious attacks from cyber hackers during data transmission
and storage. To address this problem, a Modified Ensemble
Empirical Mode Decomposition (MEEMD) is proposed first to
extract the intrinsic mode functions of each Synchrophasor Data
Attacks (SDA). The frequency-based adaptive screening criterion
embedded in MEEMD is used to eliminate the false intrin-
sic mode functions. Next, a Multivariate Convolutional Neural
Network (MCNN) is proposed to identify multiple SDA by uti-
lizing the extracted intrinsic mode functions and original SDA
as input vectors. A fusion block as the main structure of MCNN
is also leveraged to increase the diversity of features and com-
press the model parameters. Integrating MEEMD and MCNN,
a framework with automatic feature extraction and multi-source
information fusion capability, referred to as Feature Interactive
Network (FIN), is proposed to detect multiple SDA. Based on
the proposed FIN framework, six types of SDA are explored for
the first time using actual synchrophasor data in FNET/Grideye
that was collected from different locations in the U.S. Eastern
Interconnection. Finally, a large quantity of experiments with
different attack strengths are used to evaluate the adaptability
and classification performance of the proposed FIN.
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NOMENCLATURE

Acronyms

1D One-dimensional

2D Two-dimensional

CC Composite Convolution

CNN Convolutional neural networks

DS Depthwise separable

EEMD  Ensemble Empirical Mode Decomposition

EI Eastern Interconnection

FB Fusion block

FDI False data injection

FFT Fast-Fourier Transform

FIN Feature interactive network

GAP Global average pooling

IMFs Intrinsic mode functions

LOF Local outlier factor

MCNN  Multivariate convolutional neural network

MEEMD Modified EEMD

NW Negative weight

PMUs Phasor measurement units

SC Standard convolutional

SD Synchrophasor data

SDA Synchrophasor data attacks

SEB Squeeze-and-Excitation block

SVM Support vector machines

WAMS  Wide area measurement system.
Sets

Ai The ith type of attack signal

a(t) Combination of IMFs and original SDA

F(t) The IMFs of SDA

K Total number of SDA categories

M Empirical data set for selecting N

N Number of IMFs

(1) Original SDA.
Functions

I(x) Signum function
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Y (1) FFT frequency spectrum of y(¢)

f0 RELU activation function

ob Output of standard convolutional layer
O‘f,D, Output of pooling layer

Oégr Output of negative weight layer

O Output of fusion layer

S(F) Output probability value of softmax.
Variables

biD Biases in crth iD convolutional layer

ai Depth of convolution kernel

kP Size of convolution kernel

l]’}D Size of filter area

Ds Output probability of FIN

siD Stride of convolution kernel

T Threshold

w Weighting factor in negative weight

Wé’r) Weights in crth iD convolutional layer

wib Weights in crth iD convolutional layer

r Number of convolutional layer

ri(®) Residual of jth EMD

o Threshold parameter of T

0 Parameter in softmax layer.

I. INTRODUCTION
A. Background

OWADAYS, Phasor Measurement Units (PMUs) as one
Nof the most critical elements in wide-area monitoring
systems have been widely deployed in the power grid to mon-
itor the voltage and current in terms of amplitude, phase angle
and frequency in real time [1]. However, two major attacks,
including physical and cyber attacks, increasingly endanger the
trustworthiness of the synchrophasor data and inhibits its secu-
rity against illicit tampering [2]. Meanwhile, the content of the
Synchrophasor Data (SD) packet may be maliciously manipu-
lated since the transfer protocol IEEE C37.118 lacks security
mechanisms and confidentiality [3]. As a result, not only will
the authentication of SD be affected, but the entire system’s
situational awareness will also be degraded. For example,
the frequency would deviate extremely in wide-area damping
control when the data spoofing occurs [4].

Essentially, the cyber attacker can inject deceiving data that
is difficult to be identified as fake, eventually impairing the
normal operation and control system, by providing an inac-
curate state estimation. And the system could be induced to
produce an erroneous decision and slow down the response
speed during power system disturbances [5].

One type of cyber attack referred to as the False Data
Injection (FDI) is difficult to be detected especially for the
artificially tampered SD [6]. In addition to the difficulties
detecting the spoofed data, such cyber attacks can have great
consequences economically and politically. More importantly,
the FDI attack can occur at different stages of the power
system, such as the communication and network stage. It is
the variability of this attack method that makes detection more
difficult [7].
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Apart from the aforementioned effects, the Wide Area
Measurement System (WAMS) still faces some cyber security
challenges in three aspects, including the device, communi-
cation, and control center application [8]. In the device level,
the measurement value of the measuring unit device is tam-
pered through interference. The communication channels can
be attacked due to the vulnerabilities of the protocols [9].
At the third stage, some power system applications, such
as disturbance detection and triangulation [10], can be seri-
ously threatened. Some specific attack behaviors are therefore
analyzed considering the severity of FDI attack.

In terms of data spoofing in FDI, the data spoofing attack is
stealthy and volatile. In [4], three types of spoofing attacks are
developed to explore the impact of attacks on source authenti-
cation. The frequency data is attacked by arbitrary PMUs thus
confusing authentication information. Meanwhile, two kinds
of integrity attacks are proposed to study the response of the
grid frequency control system in [11]. The results demon-
strate that automatic generation control depends heavily on
real-time synchrophasor data. To improve the recognition of
multiple Synchrophasor Data Attacks (SDA), an automated
attack detection system is urgently required.

B. Related Works

Recently, several methods have been proposed to detect FDI
attacks for SD [12]. Generally, these methods can be classi-
fied into two categories: anomaly detection and time-spatial
signature methods [13].

In the anomaly detection method, it provides a way to detect
SDA by observing data distribution. Commonly used outlier
detection algorithms include density basis and distance basis
methods, such as k-nearest neighbors and Local Outlier Factor
(LOF) [14]-[16]. For example, a density basis method named
LOF is proposed to detect the FDI and other low-quality SD
in [17]. Although LOF has a fast detection speed, the threshold
selection of the LOF score will affect the detection result. To
address this problem, the symbolic aggregation approximation
is introduced to forecast time series SD, which combines dif-
ferent anomaly detection methods [5], [18]. Additionally, the
ensemble-based algorithm over PMU data is proposed to detect
the noise and missing data attack [1]. However, the ensemble-
based algorithm is difficult to identify different SDA due to
the high shape and amplitude similarity of SDA to the attack
free SD. For example, the replacement attack, part of the data
is replaced by SD from other PMUs, which is very close to
normal data [7]. In [19], the problematic SD is treated as an
anomaly and is cleaned up using the Kalman filter method.
One problem of the anomaly detection method is that the tam-
pered SD does not necessarily have a distinguishable density
or distance from the original SD. Therefore, effective meth-
ods are needed to improve the accuracy from the non-abnormal
perspective under multiple attacks.

Since the signature of SDA is difficult to distinguish in the
time domain, time-spatial signature methods are used to extract
the features. In [20], the Mathematical Morphology (MM)
method is used to decompose the frequency measurement data.
Then, the two signature features are extracted and fed to the
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classifier. Analogously, in [21], the Fast-Fourier Transform
(FFT) of filtered SD is proposed to classify synchrophasor data
from multiple sources. The results of [20], [21] demonstrate
that SD collected from different locations contains unique
time-spatial signatures, whose integrity can be used as an
indicator for attack detection. Nevertheless, the two meth-
ods mentioned above require the SD to be filtered, and the
filtering effect directly affects the validity of the signatures.
To get rid of the filter restrictions, two maximum correlation
signatures are formalized. Thus the spoofed SD can be iden-
tified using Support Vector Machines (SVM) [22]. However,
only three attack modes are considered, making it difficult to
apply in complex grid environments. Thereafter, the Bayesian-
based approximated filter is used to detect four types of FDI,
where the oscillation frequency and damping ratio signatures
are extracted from PMUs [23]. This Bayesian prediction’s
accuracy without prior information is susceptible to outliers.

Some other signature-based methods can also be found
in [24], [25]. Specifically, the SVM and k-nearest neighbor are
proposed to detect the attack problems [24]. And the covari-
ance of the samples is utilized to identify FDI attack in [25]
based on the principal component analysis. The shortcoming
of these two methods is that the adaptability is limited due to
the manual signature extraction. As discussed previously, less
than four types of attacks are verified in [22], [23], which is not
sufficient to reflect the diversity of attacks. Hereby, the neces-
sity to develop a method with an automatic feature extraction
and intelligent recognition for multiple attack detection arise.

The attack detection is essentially an identification and clas-
sification problem via feature extraction. Recently, with the
evolutionary combination of Graphical Processing Unit (GPU),
the Convolutional Neural Networks (CNN) have been adopted
in solving various power system problems including power
quality diagnosis [26], [27], power system measurement and
control [28], and cyber security detection [29], [30]. It demon-
strates that the CNN can efficiently extract features for signal
identification. Thus, it is logical to exploit this ability for multi
SDA detection, which contains complex spatio-temporal char-
acteristics. However, the effectiveness of CNN is limited by a
large number of parameters due to the large multitude of fea-
tures to be extracted. To solve this, a vector convolutional deep
learning method is used to classify the denial of service attack
in [31] by compressing the feature vector. Unfortunately, the
CNN still suffers from the limited input information because
generally only one-dimensional (1D) or two-dimensional (2D)
data are used, resulting in reduced performance. Hence, a more
efficient method is required to detect the SDA.

C. Contribution

To further tackle the challenges of CNN, a novel signature-
basis method is proposed to detect the multiple SDA. The
contributions of this paper are listed as follows:

1) To improve the ability of signature extraction, a
Modified Ensemble Empirical Mode Decomposition
(MEEMD) is proposed to extract Intrinsic Mode
Functions (IMFs) of multiple SDA. The number of IMFs
is automatically selected using the threshold setting

TABLE I
ATTACK NUMERICAL MODELS OF DIFFERENT ATTACK METHODS

Attack numerical models
g(t) = y(t)
g(t) = y(t) (1 £ Az (u(t —t1) — u(t —t2)))
0<te—t1 <Ly
3(t) = y(t) £ Ast(u(t — 1) — ut — t2)))
0<ta—t1 < Lt
g(t) = y(t) & A4 (tn)
thn €t,n=1,2,...,20
y(t) = y(t) + G(u(t — t1) —u(t — t2))

SD attack types
Al: Normal SD
A2: Scaling attack

A3: Ramp attack
A4: Pulse attack

A5: Random noise

attack 0<ty—t; <Ly
A6: Replacement g(t) = y(&)(1 + u(t — t2) —u(t —t1)) +
attack yi(t)(u(t — tl) — u(t — tQ))

0<ta—t; <Lt >20,0=0,1,....m

g(®) = y(O) (1 +u(t —t2) —u(t —t1)) +
Jou(t —t1) —u(t —t2))

0<te—t1 <Lty >0, fo =60Hz

The t1 and to are the start and end time of the attack respectively. The w(t) is the

heaviside step function. The Ly is the sampling time of each SD sample. The G
represents the uniform noise.

A7: Data loss attack

method. The false IMFs can be avoided under different
types of SDA.

2) To reduce the impact of manual features, a Multivariate
CNN (MCNN) is proposed to fuse multiple input
information sources, including the original SDA and
extracted IMFs by MEEMD. Particularly, a Fusion
Block (FB) is presented to fuse different dimension fea-
tures with fewer parameters, while the Negative Weight
(NW) and Global Average Pooling (GAP) methods are
used to reduce the number of parameters.

3) Furthermore, a multiple SDA classification framework,
named Feature Interactive Network (FIN), is proposed
based on the MEEMD and MCNN. The signatures are
extracted automatically without the requirement of man-
ual design. Moreover, the sensitivity of the minimum
attack range can be reached up to le™ p.u.

4) Using the actual SD set in U.S. Eastern Interconnection
(EI), a variety of experiments are conducted to ver-
ify the validity of the proposed framework. Particularly,
six types of SDA comprising scaling attack, ramp
attack, pulse attack, random noise attack, replacement
attack, data loss attack, are used for performance eval-
uation. The detection results indicate that the proposed
framework has greater accuracy and fewer parameters
compared with the advanced machine learning methods.

The remainder of the paper is organized as follows. SDA

numerical models are presented in Section II. Then the
extraction of attack signatures using modified EEMD is intro-
duced in Section III. Section IV presents the MCNN with
the proposed fusion block. The proposed FIN consisting of
MEEMD and MCNN is introduced in Section V for SDA
detection. Thereafter, various attack experiments are con-
ducted in Section VI for performance assessment. Finally, the
conclusion is drawn in Section VII.

II. SDA NUMERICAL MODELS

Apparently, each individual data tampering method has its
characteristic. In this paper, six types of common SDAs are
considered according to [13], [23]. These SDAs consist of
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Fig. 1. Six types of SD attacks. (a) and (b) The same normal SD.
(c) Scaling attack. (d) Ramp attack. (e) Pulse attack. (f) Random noise attack.
(g) Replacement attack. (h) Data loss attack.

scaling attack (A2), ramp attack (A3), pulse attack (A4), ran-
dom noise attack (AS), replacement attack (A6), and data loss
attack (A7). The normal SD is labeled as Al. Denoting the
measured normal and attacked synchrophasor data as y(f) and
y(1), respectively, where t is the time index, the numerical
models of six types of SDAs are summarized in Table L.

The strengths of SDA determine whether the attack is easy
to identify. The strength means the maximum attack magni-
tude relative to the normal measurements. Obviously, attack
detection methods should be able to deal with attacks at dif-
ferent strengths. To ensure the effectiveness of the attack, the
detection performance under a small strength is preferentially
explored. For example, to illustrate different types of attacks,
the frequency measurement of synchrophasor is analyzed as
the case study. Frequency data is stochastic, which is beneficial
to verify the effectiveness of the method. Meanwhile, to realize
the attack detection of different measurement data in multiple
locations, the frequency, phase, and amplitude can be trained
together. The dimensions of each dataset need to be the same
so that the input vector of FIN can be matched when the data
are trained together. Considering actual frequency measure-
ment error can reach 5 mHz due to the impact of the hardware
noise and the quantization limitation in PMUs [32], the min-
imum strength of each attack is set to 5 mHz. Consequently,
the strength parameters A, and A3t in Table I are constrained
to [0.000084, +o0] referring to [13]. The G is the uniform
noise, of which the range of boundary values is [0.002, 4+-o0].

An example of six types of SDA is shown in Fig. 1. It
shows that replacement and ramp attacks have a high similarity
with normal SD, which results in those two kinds of attacks
being difficult to be distinguished. Meanwhile, the start time
and ending time are different for scaling attack and data loss
attack, thus resulting in different attack strengths. Therefore,
an effective method that is able to distinguish multiple attacks
with different characteristics is needed.

III. MODIFIED EEMD IN FIN

To distinguish attack signals, the characteristics of the SDA
need to be extracted first. Intuitively, the Empirical Mode

IEEE TRANSACTIONS ON SMART GRID, VOL. 12, NO. 1, JANUARY 2021

Decomposition (EMD) is developed to decompose the sig-
nal into multiple IMF components, and each IMF contains
specific frequency intervals [33]. It is particularly suitable for
non-stationary signals analysis. However, the decomposition
results of EMD are easily disturbed, resulting in decomposi-
tion biases. Thus, an EMD integration form called Ensemble
Empirical Mode Decomposition (EEMD) is performed to
solve the mode mixing. The primary principle of EEMD is to
obtain IMFs by injecting white noise and integrating multiple
sub-EMDs [34]. Meanwhile, the time of attack, e.g., jump
position can also be strengthened and increased. However, the
result of EEMD is prone to generate false components when
a fixed number of IMFs is selected. Therefore, the MEEMD
is proposed to dynamically select the number of IMFs in FIN.

A. Proposed MEEMD

As the first step of FIN, MEEMD uses the frequency-based
adaptive screening criterion to optimize modal aliasing [33].
Before calculating the EEMD, the frequency-based adaptive
screening strategy is adopted.

Specifically, a threshold based on FFT and EMD is used to
optimize the number of IMFs parameter N. The frequency
components of each IMF are expected to be significant
enough to increase decomposition efficiency. To determine the
frequency component of SDA signal y(f), the FFT is used
to calculate frequency spectrum Y(¢). Then, a threshold 7 is
obtained by extracting the maximum and minimum amplitude
of Y(¢). By adopting this spectrum threshold limit, the spec-
trum of each IMF component will be greater than 7. The
threshold can be obtained as

T = i/(t)min + O5(Y(l‘)mwc - Y(t)min) (1)

where the Y (£)mar and Y (£)min denote the maximum and min-
imum amplitude of Y () respectively, and the @ = 0.3 is
the threshold parameter. The T is used to screen IMFs using
frequency peaks of Y O min-

To select a suitable number of IMFs, the EMD of y(¢)
under different N is first obtained. The IMFs of EMD can be
expressed as 1th, 2th, ..., and Nth, where the 1¢th IMF is the
high frequency component. The Nth IMF is the low frequency
residual component, which is also an attack trend feature.

A larger N value indicates that there are more false compo-
nents under the same decomposition principle. For example,
under two different N (set to N I and Nz), and N! < N2, the
NI, N' + 1, N%th IMFs components of N? are derived from
the N'th residual term of N!. Therefore, the false component
is closer to the residual term (Nth IMF) as N increases. And
the corresponding spectrum amplitudes of IMFs are calculated
in reverse order starting from the (N — 1)th IMF to (N — 2)th
IMF, of which can be expressed as Yy, _;. The i is set to 1,
2 in order to strike a balance between efficiency and accuracy.
To reduce the impact of spectrum aliasing, a frequency-based
adaptive screening criterion is used to select N from empirical
data set M = {4, 5, 6,7}, which can be defined as

N= 1(22: sign[ (Yiry_) pax — T)]>

i=1
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Fig. 2. The performance comparsion of EEMD and MEEMD. The dotted

box indicates the location where the attack occurred. (a) Scale SDA. (d), (g)
are the residual IMF of EEMD and MEEMD respectively. (b), (¢) and (h) are
the FFT of 4th, 5th, 6th IMF in EEMD, respectively. (c), (f) and (i) are the
FFT of 2th, 3th, 4th IMF in MEEMD, respectively.

I(x) = Index(x > 0)y, 2

where sign() is the signum function, the /(x) indicates that the
index of the data set M when x satisfies not less than 0. To
reduce the search time, the parameter N is searched from 7 to
4 with step 1.

After selecting N, a total of N; EMDs are calculated and
integrated, where N; is the number of EMD in MEEMD.
Accordingly, the MEEMD of SDA consists of the following
four parts:

1) Frequency-based adaptive screening criterion: the
threshold T is first calculated based on the FFT of SDA.
Combining with 7 and equation (2), the number of IMFs
parameter N is then optimally selected by searching
from M. N can be determined when the equation (2)
is satisfied for both (N — 1)th and (N — 2)th IMFs.

2) Noise superposition: the zero-mean Gaussian white
noise is first added to y(f), where the magnitude is set
to 0.2.

3) Perform EMD: MEEMD performs N; times of EMD for
each y(7).

4) Data average: the result can be obtained by averaging
the Ny EMD to get the final N IMFs.

Thereafter, the SDA y(f) can be decomposed into the sum

of multiple IMFs and residuals as follows

N Ny

¥ =Y | Y (IMFy(t) + () 3)

i=1] j=1

where the IMF;;(t) denotes the ith IMF of y(¢) in the jth EMD
and, the r;(#) denotes the residual of jth EMD.

Hereby, different IMFs of SDA, denoted as F(f) =
Zjvz’ | IMF (1) + r;(#), can then be extracted.

B. Comparison of EEMD and Proposed MEEMD

To verify the actual decomposition effect of the MEEMD,
the residual results and FFT components of IMFs are shown.
As demonstrated in Fig. 2, the number of IMFs N is set to 7
in EEMD and optimized to 5 in MEEMD. The last three IMFs
are presented because the false components are more likely to
appear at low frequencies.

TABLE II
THE RELATIONSHIP BETWEEN o AND THE NUMBER OF IMFS FOR
DATA LOSS ATTACK

Ratio of IMFs under different N (%)

The v in T
7 6 5 4
0.1 61.53 36.17 2.29 0.01
0.3 61.18 36.45 2.34 0.03
0.5 60.68 36.81 2.46 0.05
0.7 60.08 37.05 2.79 0.08

It can be seen from Fig. 2(d), (g) that the residual IMF of
MEEMD is closer to the trend of scale attack, which indi-
cates that the trend feature of the attack is correctly extracted.
It is worth mentioning that the normal and attack signal can
be distinguished because this trend feature is only one of all
the extracted features in FIN. Some other features, such as
the attack strength, data sources, and type of noise, can also
be used to distinguish the attack and the attack-free data. As
shown in Fig. 2(b) and (e), the same frequency components are
extracted by EEMD because they contain the same frequency.
The frequency component of Fig. 2(h) does not overlap, but the
frequency peaks are still very close to (b) and (e). Conversely,
it is observed from Fig. 2(c), (f) and (i) that the location of
frequency spike points are different from each other, indicat-
ing that IMFs of MEEMD do not contain false components.
Therefore, it can be concluded that the attack trend items are
extracted and some of false components are avoided.

To show the sensitivity relationship between the parameter
o and the number of IMFs, the IMFs of A7 are counted under
different « as listed in Table II. It illustrates that the parameter
o determines the number of IMFs. The 6 and 7 are selected
as the number of IMFs for more than 95% of cases.

Furthermore, to show the statistical characteristics of dif-
ferent EEMD and MEEMD, two statistical indicators are
calculated at different number of N including the correlation
and kurtosis [35]. A larger correlation and kurtosis show a bet-
ter decomposition result. The performances with two statistical
indicators under different N and types of attack methods are
shown in Fig. 3 and 4. The similar correlation and kurtosis
are obtained in Fig. 3(a) and 4(a) because the N is adaptively
selected for MEEMD. In Fig. 3 and 4, it demonstrates that
all types of attack methods obtain higher correlation and kur-
tosis value especially when N < 6, which indicates that the
MEEMD performs better. Meanwhile, EEMD and MEEMD
have similar statistical characteristics when the N is larger
than 6. The results show that the MEEMD has better statis-
tical characteristics because it can reduce modal aliasing by
finding a more suitable N.

Next, a multivariate CNN based classifier is used to identify
and detect multiple SDA based on the extracted IMFs F(r).

IV. MULTIVARIATE CNN IN FIN
A. Proposed Fusion Block

As the second step of FIN, the features of SDA can be
automatically identified using the proposed MCNN by com-
bining the extracted IMFs. In MCNN, both the IMFs F () (2D)
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Fig. 3. The correlation between the IMFs and original SD for MEEMD and
EEMD methods. (a) MEEMD (b) EEMD.
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Fig. 4. The kurtosis of IMFs for MEEMD and EEMD methods. (a) MEEMD
(b) EEMD.

and original SDA y(¢) (1D) are used as the inputs. Compared
with the traditional CNN methods, the motivation to combine
the 1D and 2D feature source is to obtain more diverse and
representative because the input of FB is multi-source.

To fuse the 1D and 2D data, a Fusion Block is proposed
to improve the diversity of SDA detection in FIN. Two types
of convolution kernels, namely 1D and 2D kernels, together
form a complete FB from the different dimensions of input. It
means that two types of features are extracted. To make full
use of the different input source information, the FB is used
to simultaneously process two types of data.

The structure of the proposed FB is depicted in Fig. 5. The
FB contains two inputs and two outputs. The 1D convolution
branch can be used to stack multiple FBs.

Denoting the input data of FB as a(t) = {F(¢), y(¢)}, the
output of Standard Convolutional (SC) layer is calculated as

0L = (WP xa(t) + D), i=1,2 )

where the W2 and b2 are the weights and the biases in the
crth convolutional layer for the iD convolution, r = 1,2, ...,n
is the number of convolutional layer, the symbol * represents
convolution, and f() is the activation function. Meanwhile, the
Rectified Linear Unit (RELU) function, where only the posi-
tive portion of the input is retained, is selected as the activation
function so that the gradient attenuation can be mitigated. The
RELU has low computational complexity and can speed up the
SDA feature extraction process. The performance and output
size of OQ’? are determined by three parameters: the convo-
lution kernel size kiD ,i = 1,2, convolution depth déD and
convolution stride si”. Here, the stride si is set to 1 and the
zero padding is used to match the output dimensions of the
different convolutions.

The diversity of the SDA features is key to enhance the
model’s learning ability. Unlike standard convolution, the
Depthwise Separable (DS) convolution can increase the SDA
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Fig. 5. The structure of the proposed fusion block.

feature space while reducing computation, since each chan-
nel can be assigned a kernel with different sizes [36]. In the
convolutional layer of FB, a Composite Convolution (CC) is
proposed, in which half of the convolutional layers are calcu-
lated using DS convolution and the other half uses standard
convolution. This means that the d'”/2 depth of features in
CC is obtained from standard convolution and the remaining
half is from DS convolution.

Next, a maximum pooling layer is used to reduce the dimen-
sions of the convolution layer features. In this layer, the
features of the maximum value are retained, and the smaller
values are filtered out. The length of output features becomes
BP = (P =1P)/s;? +1,i= 1,2, where [[” is the size of filter
area, the I’ and s;,D are the output length of O’ and stride of
pooling layer, respectively. Furthermore, the output of pooling
layer can be denoted as O17.

After the pooling layer results are obtained, two additional
strategies, including the computational complexity reduction
of FB and the multi-input (1D and 2D convolution) fusion,
are used to boost the overall performance.

Since the operation of the kernel function is time-
consuming, a direct NW method is proposed to increase
directly the depth of the feature Ogr). As shown in Fig. 5,
a weighting factor W = {—1, —1, ..., —1} is multiplied by
O;B . For a feature set F, the opposite feature set —F can be
easily obtained by multiplying —1. Thus more features can
be generated and there is no need to perform the convolution
operations of the NW method. Then the features are added on
the depth axis, which can be expressed as

iD __ iD
02pr - {Opr’

w-or) )
where the length of W is the same as depth d’”. The depth
of Ogl;r becomes 2d'P without the extra learning process. As
a result, the proposed FB becomes more lightweight.

Next, the 1D and 2D features are integrated into the new
fusion layer. Specifically, the 1D feature is spliced below the
2D feature to form a combined 2D feature. To guarantee a
successful merge, the dimension of 1D and 2D features should
be matched. For example, if the dimension of the 2D feature
012,? is (a, b,d), where a and b are the length and width of
the feature, the dimension of the 1D feature 011,? should be
(1,b,d) or (a, 1, d). Then the output of fusion layer becomes

0y = {masf0. F(W2 + at) + 62)}.
Wmax{O,f(Wg? xa(t) + bé?) H
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Before getting the results of the FB, it is worth noting
that there are still some features in MCNN that may easily
become redundant. For example, the distinction between the
two types of attack signals is primarily based on the differ-
ences between features, rather than on features in common.
These common features can be regarded as redundant. To
reduce the impact of redundant information, the Squeeze-and-
Excitation Block (SEB) can automatically assign a weight to
each feature on the depth axis, while adding little computa-
tional burden [37]. Therefore, the SEB is further added after
the fusion layer to strengthen the difference between features
and its representational power.

As can be seen from Eq. (6), the fusion layer fuses the
features of F(f) and original SDA y(f) into 2D features.
The maximization input information of each feature is fully
integrated and learned. This fusion method can enrich the
feature space because when information of one feature is
weak, another feature can make up its deficiency. By stacking
multiple FBs, the key features of SDA can be extracted using
MCNN.

B. Proposed MCNN

Combined with the aforementioned FB, the complete multi-
variate CNN framework is established. After stacking multiple
FBs, the output features can be obtained.

However, the features of the fusion layer have not been
fully integrated and learned in the last FB, i.e., the similar-
ity between 1D and 2D features is not filtered or reinforced.
Therefore, an additional convolutional layer is added to the
end of the last FB. The inception V2 uses four convolution
channels, with the size of each convolution kernel being less
than 3 x 3 [38]. It means that the inception V2 is more efficient
in terms of the same computational complexity. To improve
the SDA detection accuracy, the inception V2 is selected as
the final convolutional layer. In the same way, the weighting
factor of NW W = {—1, —1,..., —1} is also assigned to the
output of the inception V2. Denoting the output of inception
block as Oy, the output after the weighting factor W can then
be expressed as Oy = {Of, W- Oy}.

SDA detection framework using MCNN

SDA classification

To achieve the detection of SDA, the extracted SDA features
need to be flattened and mapped into the classifier by using
a Full-Connected (FC) layer. However, the FC layer tends to
introduce a large number of parameters, making the model
easy to overfit.

To further reduce the model parameters and the likelihood
of overfitting, the GAP layer is introduced to replace the first
FC layer. The GAP layer filters each channel for the feature
Oy and uses the average value of each channel as an output,
thereby greatly reducing the number of parameters [39]. A
FC layer with fewer hidden nodes is also added after GAP to
adjust the parameters and performance of the model. To reduce
overfitting, the dropout layer is then used to randomly discard
data of the ratio ¢ in the FC layer. Finally, the extracted SDA
features from the final FC layer is fed to the softmax function.
The output of softmax function is set as f(Oy7). The detected
SDA category can be calculated by the following formula

exp@f(%)

Zle expekf(Ogl)

psO() = K|0,f(O2)) = N

where 6;, 6 € 0 are the parameters of softmax function for
each class of SDA, and j,k=1,2,...,K, K =7 is the total
number of SDA categories. The position at the maximum prob-
ability value max(ps()) is the attack category identified by the
model.

V. SDA DETECTION FRAMEWORK BASED ON FIN

By integrating the MEEMD and MCNN proposed above, a
FIN framework with two FBs is proposed in this Section. The
FIN framework is shown in Fig. 6. It shows that a standard
convolution layer and pooling layer is first used to control the
input dimension, ensuring the data can be matched and fused
in FB.

As can be seen, the FIN framework of SDA detection can
be divided into two parts:

1) Attack features extracted using MEEMD: The IMFs of
multiple SDA y(¢) are first extracted to obtain the F(r)
based on the MEEMD. Then both the original SDA and
extracted IMFs are combined to get the a(#). The size of
each F(¢) is 7 x 300, where some null values are padded
with 0 when N is less than 7.
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2) Automatic SDA detection: A FB is designed to fuse
different source information, including y(¢) and F(¢).
Specifically, the MCNN, a lightweight network with
multiple inputs, is built to identify attack signals.

This FIN is dedicated to detect the attacks before any real
power event occurs caused by the FDI attack. Thus the vicious
influence will be blocked if the state of program instructions
in the power system have changed when the attack just started.
According to the FIN results, economic losses will be reduced
through real-time detection and fast response. Here, take the
generator speed control as an example [4]. The power system
controller first needs to stop responding to the current measure-
ment value once an attack is detected. After that, this control
state can be restored to the previous control state to prevent
deterioration. In this scenario, the generator speed control can
resume control once the detection result of the normal signal
is given by FIN.

VI. EXPERIMENT AND ANALYSIS

To verify the effectiveness of the FIN method, various
experiments have been conducted under different attack types
and strengths in Table I. The actual synchrophasor data from
ten locations (L1-L10) in EI of FNET/Grideye [40] was
selected, as depicted in Fig. 7. In this Section, the data from
locations L1-L9 were used as the normal SD. According to
the numerical attack model, the attack A2-A5 and A7 and
corresponding labels can be generated based on the normal
SD. For the replacement attack A6, the DS from L10 is used
to attack the data from other locations. This data from differ-
ent locations are processed separately in the testing process.
Meanwhile, the data of these locations can be detected together
through sequential detection. It is worth mentioning that when
the grid signal and the attack signal are very similar, the syn-
chronization features of data from multiple locations can be
combined to detect SDA comprehensively.

For each type of attack signal, 90468 samples are generated,
the length of each being 300 (corresponds to 30 seconds). In
the experiment, 40% of the data is used for training, 30% is
used for verification and the rest is used for testing. During
the training process of MCNN, the Adam optimizer is used to
optimize the cross entropy loss function. In total, 30 epochs are
set in the Keras for the training of MCNN. To achieve online
detection, synchrophasor data in different locations need to
be intercepted by a sliding window method. The length of
this window is half a minute, and the distance between each
window can be set from 10 to 100 (1 to 10 seconds) to satisfy
real-time requirements.

A. Parameter Selection for MEEMD and MCNN

The parameter o determines the number of IMFs N. To
select a suitable «, the grid search method is used. Four «
values are tested with step 0.2. The result is listed in Table III.
It can be seen that when o = 0.1, the FIN obtains the lowest
accuracy. It is because the setting of N is nearly invalid at
this time. However, the accuracy gradually decreases when
increases. The number of decompositions will be affected
when o > 0.5. As a compromise, « = 0.3 is finally selected.
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Fig. 7. The PMU signal acquisition schematic and locations in EI. (a) Signal
acquisition schematic. (b) The actual SD from ten locations of FNET/Grideye.

TABLE III
THE PERFORMANCE OF FIN UNDER DIFFERENT «

a 0.1 0.3 0.5 0.8
Accuracy (%) 91.88 93.14 9230 92.12
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Fig. 8. Performance under different number of FB. The FB-i denotes the
number of stacked FB is i. The unit k means thousand.

Additionally, the parameters of MCNN have a great impact
on its performance. Particularly, the number of FB determines
the parameter capacity and performance of the FIN simultane-
ously. Therefore, the performance of MCNN under different
FB numbers is first explored. In this experiment, the depth d
in Inception V2, the nodes in the FC layer, and the dropout
parameter are set with the same value for a fair comparison.
The SDA detection result under different numbers of FB is
illustrated in Fig. 8, where the amplitude of the attack A2-A5
is uniformly set to 5 mHz.

As the number of FB layers increases, it clearly shows
that the number of parameters gradually increases for MCNN.
Meanwhile, the number of model parameters do not exceed
200 thousands even if there are four FBs. It is observed that
the rate of accuracy increases slowly when the number of FB
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TABLE IV
THE OPTIMIZED PARAMETERS IN MCNN

TABLE VI
PERFORMANCE COMPARISON UNDER DIFFERENT ATTACK STRENGTHS

Parameters in different layers

Types

Ist FB (r=1) FB (r=2) GAP FC
1D kernel 13 kP =13 kP =13 - -
2D kernel 15x9 k2P =15x9 k2P =15x9 - -
1D depth 8 diP =16 dlP =64 - -
2D depth 8 d?P =16 d?P =64 - -
1D Pool 2 P =2 1P =3 - -
2D Pool (1, 2) l?D =(2,2) z;D =(2,3) - -
Nodes - - - 256 100
TABLE V

PERFORMANCE COMPARISON WITH DIFFERENT FIN STRUCTURES

Accuracy Number of Test time

Models (%) parameter (ms)
FIN-no SEB 91.41 1114 k 0.308
FIN-no Inception V2 90.29 62.7 k 0.264
FIN-no GAP 93.25 752 k 0.305
FIN 93.14 112 k 0.310

is larger than 2. This means that increasing the number of FB
does not significantly improve the accuracy when r > 2. Thus,
considering the trade-off between the complexity of the model
and classification accuracy, the number of FB is set to 2.

After the number of FB is determined, the hyperas is called
to select the optimized parameters [41]. For discrete variables,
such as kernel size k°,i = 1,2, and convolution depth d’P,
the hyperas selects parameters by searching in a specified
dataset. For continuous variables, the hyperas searches for the
optimized value in the uniform distribution. For example, the
ratio ¢ parameter of the dropout layer can be searched in the
Uniform(0.1, 0.5), where the 0.1 and 0.5 are the lower and
upper bounds respectively.

Using the optimization method, the following parameters
are finally adopted as listed in Table IV. Additionally, the
dropout parameter ratio is set to ¢ = 0.3.

Based on optimized parameters, to verify the effectiveness
of SEB, Inception V2 and GAP, the accuracy of FIN is shown
in Table V when these components are not included respec-
tively. The input of these four models are the same. The test
time is the running time of each sample for the FIN struc-
ture part. It can be seen that the parameters and test time of
FIN without SEB is similar to FIN. However, the accuracy
of FIN is higher, indicating that the SEB contributes to the
accuracy of SDA detection. Meanwhile, it shows that the FIN
without Inception V2 has the lowest accuracy and minimal
parameters. The accuracy of the FIN without GAP is higher
than 93%. However, the number of parameters of FIN without
GAP is 7 times than FIN. Overall, it means that the Inception
V2 can improve the accuracy while the GAP helps to reduce
the model parameters.

B. Performance Under Different Attack Strengths and Time

The attack strength determines the sensitivity of SDA detec-
tion. To verify the validity of the FIN, the raw methods

Models Accuracy (%) Number of Test
5mHz 10 mHz 20 mHz parameter time (ms)

1DCNN 91.23 96.51 98.92 491 k 3.85

EEMD-CNN 90.04 96.64 98.73 2856 k 54.30

MEEMD-CNN  91.63 97.45 98.84 2856 k 57.30

EEMD-MCNN  91.74 97.35 98.85 112 k 54.27

FIN 93.14 97.67 99.18 112 k 57.27

including EEMD and CNN, are used to compare against one
another under different attack strengths. According to the
range of the attack strengths, the strength conditions are set
to 5 mHz, 10 mHz and 20 mHz respectively. For example,
the A, and A3¢ in Table I are set to 0.00033 when the attack
strength is 20 mHz. In regular EEMD, the number of IMFs is
set to N = 5 here. For the regular CNN, the number of con-
volutional layer is set to 4 which is consistent with MCNN.
The number of nodes is set to 100 in the FC layer. The other
parameters, such as the kernel size and depth, are set with the
same values as MCNN to make a fair comparison. It is noted
that the original SDA y(7) cannot feed into the regular CNN
due to the constraint of 2D shape.

The results under different attack strengths are listed in
Table VI. The input of the EEMD-CNN, MEEMD-CNN, and
EEMD-MCNN methods are the 2D data. This means that only
2D features are generated. The input of DCNN is 1D data,
which means only 1D features can be generated [27]. The test
time refers to the runtime for each test sample. It can be seen
that the EEMD-CNN has the lowest accuracy under different
attack strengths since the number of parameters is only 62.7 k.
The results also show that both MEEMD and MCNN of FIN
contribute to the improvement of accuracy in SDA detection.
Meanwhile, the accuracy of the combination of 1D and 2D
features is higher than the single 1D or 2D features indicating
that a higher number of parameters has a richer feature space.

Obviously, the accuracy increases more than 3% when the
attack strength is 5 mHz, and the corresponding sensitivity is
le™ p.u. (0.005/60). In contrast, Only 0.5% detection accu-
racy improvement is achieved in the case of 20 mHz. The
reason for this is that the attack strength is high, making it
easy to be identified by general CNN. The number of param-
eters of MCNN is reduced by more than 95% compared with
CNN, which facilitates its implementation in a practical field
system. Moreover, it can be seen that the real-time SDA detec-
tion can be satisfied because each sample can be tested within
57.27 ms. When a higher sampling rate such as 30, 60, and
120 Hz is configured, the strategies such as down-sampling or
reducing window length can be applied to reduce the running
time.

To verify the time sensitivity to attacks, the accuracy of
FIN under different lasting time is listed in Table VII. This
lasting time means the duration of the attack. The sign 20/300
denotes the length of the attack is 20 (2 seconds), and 300 (30
seconds) is the total length of each sample. It can be seen that
the detection accuracy decreases when the attack’s duration
is only 20/300. As the lasting time of the attack increases,
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TABLE VII
PERFORMANCE COMPARISON WITH DIFFERENT LASTING TIME

20/300  50/300
89.91  93.97

100/300  200/300
94.20 93.95

Lasting time

Accuracy (%)

TABLE VIII
PERFORMANCE OF FIN UNDER DIFFERENT ATTACK STRENGTHS

Accuracy (%)

SDA types

5SmHz 10 mHz 20 mHz
Al 90.92 97.31 98.94
A2 86.35 95.51 98.16
A3 85.93 95.23 99.17
A4 93.63 97.29 97.55
A5 96.64 99.79 99.96
A6 98.65 99.43 99.77
A7 99.87 99.12 100
TABLE IX

COMPARISON WITH RESULTS OF MACHINE LEARNING METHODS

Models Structure Ave. Acc. (%) Test time (ms)
MEEMD-ANN 2100-1000-300 71.17 4+ 0.216 57.04
MEEMD-SVM  Hinge:0.0051 39.84 + 0.173 57.02
MEEMD-SAE  2100-600-300 66.39 + 0.079 57.03

FIN Two FBs 96.66 + 0.047 57.27

Ave. Acc.: Average accuracy, it is calculated under 5, 10 and 20 mHz.

the detection accuracy increases. When the attack’s duration is
longer than 16%, the proposed method has stable performance.

The detailed performance of different attack strengths are
summarized in Table VIII. As can be seen, A2 and A3 can
be misidentified easier than other types of attacks. When the
attack strength is 5 mHz, the amplitude of scaling and ramp
attack are very similar to original SD, resulting in difficulties
in extracting the features. Particularly, the minimum accuracy
of FIN is 97.55% when the attack strength is 20 mHz. To
address the problem of detection accuracy for some attacks,
more convolutional layers, channels, and higher reporting rates
can be used.

C. Comparison With Machine Learning Methods

To further investigate the performance of MCNN, several
conventional machine learning methods, including Artificial
Neural Network (ANN), SVM and Stacked Auto-Encoder
(SAE), are compared with FIN. The result of MEEMD is
straightened to match the input for the ANN and SVM due to
the 1D limitation, namely being that the input length is 2100
nodes. For SVM, a linear SVM is selected because it can pro-
vide fast calculation taking into account the large dimension
of the input vector. Additionally, the 1D convolution layer is
used in SAE, then the output of SAE are fed to the softmax
classifier. To maintain a reasonable comparison, the number of
convolution layers of SAE is optimally selected. The number
of parameters for three traditional methods is optimized by
using grid search method.

The structure and average detection results are listed in
Table IX. From Table IX, it shows that the proposed FIN
framework achieves the highest 96.66% detection accuracy
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and lowest 0.047% uncertainty. As expected, it demonstrates
that the accuracy of the traditional methods is not satisfactory
although they consume less test time. For example, the aver-
age accuracy of SVM and SAE are only 39.84% and 66.39%
respectively.

D. Comparison With Recent SDA Detection Methods

In this subsection, the proposed FIN is compared with four
recent SDA detection methods. An overview of four methods
are as follows:

1) WT-FFT-ANN [21]: The synchrophasor data from dif-
ferent areas are identified in this method. This means
that the method has potential attack detection capabili-
ties. This detection method is divided into three steps:
the common components of SDA are first removed by
wavelet-based method. Then the spectrum features are
extracted using FFT. Lastly, the three layers of ANN is
used to classify the SDA.

2) HF-MM-RFC [4]: The spatio-temporal features of dif-
ferent SDA are extracted to detect the type of SDA.
The detection method contains four steps: in the first
two steps, the weighted high pass filter and MM meth-
ods are used to decompose SDA signals; in the next two
steps, the extracted 62 unique indexes are calculated and
then fed to gcForest classifier. It is noted that only the
replacement attack is tested in this paper.

3) Density based (DB) method: According to [17], the den-
sity or distance basis method can be adopted to detect
the anomaly synchrophasor voltage data, where the SDA
can be treated as outliers. The A5 and A7 attack meth-
ods were used in [17]. The LOF is selected to detected
the SDA. The result of LOF is a two-category result, in
which all of the attacks in A2-A7 are one class and the
Al is another class.

4) DCNN [27]: In this method, the DCNN is utilized
to directly classify different raw power quality distur-
bances. Importantly, the DCNN contains 1D convolution
and belongs to a CNN classifier with strong feature
extraction capabilities. Therefore, the SDA is directly
fed to a six-layer DCNN to make a reasonable compar-
ison.

The performance comparison of four methods are listed in
Table X. Compared with WT-FFT-ANN and HF-MM-RFC,
the accuracy of FIN is as high as 93.14% even when the
attack strength is 5 mHz. It indicates that the FIN can mine
more valuable features for SDA detection than manual feature
extraction. Although the WT-FFT-ANN has fewer parame-
ters (5k), it can only achieve 68.04% under 5 mHz attack
condition, which indicates that the features of SDA are not
effectively extracted by FFT. Meanwhile, the accuracy of
DCNN is approximately 2% lower than FIN, but the num-
ber of parameters in DCNN is nearly 4 times larger than FIN,
demonstrating that the FIN has a better structure and higher
accuracy. Once the attack signal is recognized, some corre-
sponding measures can be taken. For example, the generator
can maintain the current speed rather than adjusting based on
the attack signal.
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TABLE X
PERFORMANCE COMPARISON WITH RECENT ATTACK METHODS

Accuracy (%) Number of
Models SmHz 10 mHz 20 mHz parameter
WT-FFT-ANN  68.04 72.67 78.18 5k
HF-MM-RFC  50.49 52.48 54.07 -
DB (LOF) 67.50 70.63 75.31 -
DCNN 91.23 96.51 98.92 491 k
FIN 93.14 97.67 99.18 112 k

- it is not reported.

VII. CONCLUSION

In this paper, a feature interactive network based on the
MEEMD and MCNN is proposed to automatically detect and
classify multiple SDA. The modal aliasing and false IMF com-
ponent have been suppressed by a frequency-based screening
criterion. Based on the extracted IMFs, the negative weight and
GAP are introduced to build a lightweight FB. Thus a MCNN
with stacked FB is further proposed to fuse multi-source and
dimension input information. The experiments under different
attack strengths show fewer parameters, greater accuracy, and
real-time of the proposed FIN. Moreover, six different types
of attack methods are evaluated using the actual synchropha-
sor data from FNET/Grideye. Various experiments are carried
out and the results demonstrate that the accuracy of FIN has
achieved 93.14% even when the attack strength is le™ p.u.
Finally, compared with some common machine learning clas-
sifiers (ANN, SVM, and SAE) and recent advanced SDA
detection methods, the FIN has a more compact structure
and higher detection accuracy. Synchrophasor data from more
locations will be further tested. After the SDA is detected,
the specific response measures of power grids should also be
further studied.
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