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Abstract—The synchrophasor data recorded by Phasor
Measurement Units (PMUs) plays an increasingly critical role
in the regulation and situational awareness of power systems.
However, the widely installed PMUs are vulnerable to multiple
malicious attacks from cyber hackers during data transmission
and storage. To address this problem, a Modified Ensemble
Empirical Mode Decomposition (MEEMD) is proposed first to
extract the intrinsic mode functions of each Synchrophasor Data
Attacks (SDA). The frequency-based adaptive screening criterion
embedded in MEEMD is used to eliminate the false intrin-
sic mode functions. Next, a Multivariate Convolutional Neural
Network (MCNN) is proposed to identify multiple SDA by uti-
lizing the extracted intrinsic mode functions and original SDA
as input vectors. A fusion block as the main structure of MCNN
is also leveraged to increase the diversity of features and com-
press the model parameters. Integrating MEEMD and MCNN,
a framework with automatic feature extraction and multi-source
information fusion capability, referred to as Feature Interactive
Network (FIN), is proposed to detect multiple SDA. Based on
the proposed FIN framework, six types of SDA are explored for
the first time using actual synchrophasor data in FNET/Grideye
that was collected from different locations in the U.S. Eastern
Interconnection. Finally, a large quantity of experiments with
different attack strengths are used to evaluate the adaptability
and classification performance of the proposed FIN.
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NOMENCLATURE

Acronyms

1D One-dimensional

2D Two-dimensional

CC Composite Convolution

CNN Convolutional neural networks

DS Depthwise separable

EEMD Ensemble Empirical Mode Decomposition

EI Eastern Interconnection

FB Fusion block

FDI False data injection

FFT Fast-Fourier Transform

FIN Feature interactive network

GAP Global average pooling

IMFs Intrinsic mode functions

LOF Local outlier factor

MCNN Multivariate convolutional neural network

MEEMD Modified EEMD

NW Negative weight

PMUs Phasor measurement units

SC Standard convolutional

SD Synchrophasor data

SDA Synchrophasor data attacks

SEB Squeeze-and-Excitation block

SVM Support vector machines

WAMS Wide area measurement system.

Sets

Ai The ith type of attack signal

a(t) Combination of IMFs and original SDA

F(t) The IMFs of SDA

K Total number of SDA categories

M Empirical data set for selecting N

N Number of IMFs

ȳ(t) Original SDA.

Functions

I(x) Signum function
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Ȳ(t) FFT frequency spectrum of ȳ(t)

f () RELU activation function

OiD
cr Output of standard convolutional layer

OiD
pr Output of pooling layer

OiD
2pr Output of negative weight layer

Ofr Output of fusion layer

S(F) Output probability value of softmax.

Variables

biD
cr Biases in crth iD convolutional layer

diD
c Depth of convolution kernel

kiD
c Size of convolution kernel

liDf Size of filter area

ps Output probability of FIN

siD
c Stride of convolution kernel

T Threshold

W Weighting factor in negative weight

W iD
cr Weights in crth iD convolutional layer

W iD
cr Weights in crth iD convolutional layer

r Number of convolutional layer

rj(t) Residual of jth EMD

α Threshold parameter of T

θ Parameter in softmax layer.

I. INTRODUCTION

A. Background

N
OWADAYS, Phasor Measurement Units (PMUs) as one

of the most critical elements in wide-area monitoring

systems have been widely deployed in the power grid to mon-

itor the voltage and current in terms of amplitude, phase angle

and frequency in real time [1]. However, two major attacks,

including physical and cyber attacks, increasingly endanger the

trustworthiness of the synchrophasor data and inhibits its secu-

rity against illicit tampering [2]. Meanwhile, the content of the

Synchrophasor Data (SD) packet may be maliciously manipu-

lated since the transfer protocol IEEE C37.118 lacks security

mechanisms and confidentiality [3]. As a result, not only will

the authentication of SD be affected, but the entire system’s

situational awareness will also be degraded. For example,

the frequency would deviate extremely in wide-area damping

control when the data spoofing occurs [4].

Essentially, the cyber attacker can inject deceiving data that

is difficult to be identified as fake, eventually impairing the

normal operation and control system, by providing an inac-

curate state estimation. And the system could be induced to

produce an erroneous decision and slow down the response

speed during power system disturbances [5].

One type of cyber attack referred to as the False Data

Injection (FDI) is difficult to be detected especially for the

artificially tampered SD [6]. In addition to the difficulties

detecting the spoofed data, such cyber attacks can have great

consequences economically and politically. More importantly,

the FDI attack can occur at different stages of the power

system, such as the communication and network stage. It is

the variability of this attack method that makes detection more

difficult [7].

Apart from the aforementioned effects, the Wide Area

Measurement System (WAMS) still faces some cyber security

challenges in three aspects, including the device, communi-

cation, and control center application [8]. In the device level,

the measurement value of the measuring unit device is tam-

pered through interference. The communication channels can

be attacked due to the vulnerabilities of the protocols [9].

At the third stage, some power system applications, such

as disturbance detection and triangulation [10], can be seri-

ously threatened. Some specific attack behaviors are therefore

analyzed considering the severity of FDI attack.

In terms of data spoofing in FDI, the data spoofing attack is

stealthy and volatile. In [4], three types of spoofing attacks are

developed to explore the impact of attacks on source authenti-

cation. The frequency data is attacked by arbitrary PMUs thus

confusing authentication information. Meanwhile, two kinds

of integrity attacks are proposed to study the response of the

grid frequency control system in [11]. The results demon-

strate that automatic generation control depends heavily on

real-time synchrophasor data. To improve the recognition of

multiple Synchrophasor Data Attacks (SDA), an automated

attack detection system is urgently required.

B. Related Works

Recently, several methods have been proposed to detect FDI

attacks for SD [12]. Generally, these methods can be classi-

fied into two categories: anomaly detection and time-spatial

signature methods [13].

In the anomaly detection method, it provides a way to detect

SDA by observing data distribution. Commonly used outlier

detection algorithms include density basis and distance basis

methods, such as k-nearest neighbors and Local Outlier Factor

(LOF) [14]–[16]. For example, a density basis method named

LOF is proposed to detect the FDI and other low-quality SD

in [17]. Although LOF has a fast detection speed, the threshold

selection of the LOF score will affect the detection result. To

address this problem, the symbolic aggregation approximation

is introduced to forecast time series SD, which combines dif-

ferent anomaly detection methods [5], [18]. Additionally, the

ensemble-based algorithm over PMU data is proposed to detect

the noise and missing data attack [1]. However, the ensemble-

based algorithm is difficult to identify different SDA due to

the high shape and amplitude similarity of SDA to the attack

free SD. For example, the replacement attack, part of the data

is replaced by SD from other PMUs, which is very close to

normal data [7]. In [19], the problematic SD is treated as an

anomaly and is cleaned up using the Kalman filter method.

One problem of the anomaly detection method is that the tam-

pered SD does not necessarily have a distinguishable density

or distance from the original SD. Therefore, effective meth-

ods are needed to improve the accuracy from the non-abnormal

perspective under multiple attacks.

Since the signature of SDA is difficult to distinguish in the

time domain, time-spatial signature methods are used to extract

the features. In [20], the Mathematical Morphology (MM)

method is used to decompose the frequency measurement data.

Then, the two signature features are extracted and fed to the
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classifier. Analogously, in [21], the Fast-Fourier Transform

(FFT) of filtered SD is proposed to classify synchrophasor data

from multiple sources. The results of [20], [21] demonstrate

that SD collected from different locations contains unique

time-spatial signatures, whose integrity can be used as an

indicator for attack detection. Nevertheless, the two meth-

ods mentioned above require the SD to be filtered, and the

filtering effect directly affects the validity of the signatures.

To get rid of the filter restrictions, two maximum correlation

signatures are formalized. Thus the spoofed SD can be iden-

tified using Support Vector Machines (SVM) [22]. However,

only three attack modes are considered, making it difficult to

apply in complex grid environments. Thereafter, the Bayesian-

based approximated filter is used to detect four types of FDI,

where the oscillation frequency and damping ratio signatures

are extracted from PMUs [23]. This Bayesian prediction’s

accuracy without prior information is susceptible to outliers.

Some other signature-based methods can also be found

in [24], [25]. Specifically, the SVM and k-nearest neighbor are

proposed to detect the attack problems [24]. And the covari-

ance of the samples is utilized to identify FDI attack in [25]

based on the principal component analysis. The shortcoming

of these two methods is that the adaptability is limited due to

the manual signature extraction. As discussed previously, less

than four types of attacks are verified in [22], [23], which is not

sufficient to reflect the diversity of attacks. Hereby, the neces-

sity to develop a method with an automatic feature extraction

and intelligent recognition for multiple attack detection arise.

The attack detection is essentially an identification and clas-

sification problem via feature extraction. Recently, with the

evolutionary combination of Graphical Processing Unit (GPU),

the Convolutional Neural Networks (CNN) have been adopted

in solving various power system problems including power

quality diagnosis [26], [27], power system measurement and

control [28], and cyber security detection [29], [30]. It demon-

strates that the CNN can efficiently extract features for signal

identification. Thus, it is logical to exploit this ability for multi

SDA detection, which contains complex spatio-temporal char-

acteristics. However, the effectiveness of CNN is limited by a

large number of parameters due to the large multitude of fea-

tures to be extracted. To solve this, a vector convolutional deep

learning method is used to classify the denial of service attack

in [31] by compressing the feature vector. Unfortunately, the

CNN still suffers from the limited input information because

generally only one-dimensional (1D) or two-dimensional (2D)

data are used, resulting in reduced performance. Hence, a more

efficient method is required to detect the SDA.

C. Contribution

To further tackle the challenges of CNN, a novel signature-

basis method is proposed to detect the multiple SDA. The

contributions of this paper are listed as follows:

1) To improve the ability of signature extraction, a

Modified Ensemble Empirical Mode Decomposition

(MEEMD) is proposed to extract Intrinsic Mode

Functions (IMFs) of multiple SDA. The number of IMFs

is automatically selected using the threshold setting

TABLE I
ATTACK NUMERICAL MODELS OF DIFFERENT ATTACK METHODS

method. The false IMFs can be avoided under different

types of SDA.

2) To reduce the impact of manual features, a Multivariate

CNN (MCNN) is proposed to fuse multiple input

information sources, including the original SDA and

extracted IMFs by MEEMD. Particularly, a Fusion

Block (FB) is presented to fuse different dimension fea-

tures with fewer parameters, while the Negative Weight

(NW) and Global Average Pooling (GAP) methods are

used to reduce the number of parameters.

3) Furthermore, a multiple SDA classification framework,

named Feature Interactive Network (FIN), is proposed

based on the MEEMD and MCNN. The signatures are

extracted automatically without the requirement of man-

ual design. Moreover, the sensitivity of the minimum

attack range can be reached up to 1e−5 p.u.

4) Using the actual SD set in U.S. Eastern Interconnection

(EI), a variety of experiments are conducted to ver-

ify the validity of the proposed framework. Particularly,

six types of SDA comprising scaling attack, ramp

attack, pulse attack, random noise attack, replacement

attack, data loss attack, are used for performance eval-

uation. The detection results indicate that the proposed

framework has greater accuracy and fewer parameters

compared with the advanced machine learning methods.

The remainder of the paper is organized as follows. SDA

numerical models are presented in Section II. Then the

extraction of attack signatures using modified EEMD is intro-

duced in Section III. Section IV presents the MCNN with

the proposed fusion block. The proposed FIN consisting of

MEEMD and MCNN is introduced in Section V for SDA

detection. Thereafter, various attack experiments are con-

ducted in Section VI for performance assessment. Finally, the

conclusion is drawn in Section VII.

II. SDA NUMERICAL MODELS

Apparently, each individual data tampering method has its

characteristic. In this paper, six types of common SDAs are

considered according to [13], [23]. These SDAs consist of
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Fig. 1. Six types of SD attacks. (a) and (b) The same normal SD.
(c) Scaling attack. (d) Ramp attack. (e) Pulse attack. (f) Random noise attack.
(g) Replacement attack. (h) Data loss attack.

scaling attack (A2), ramp attack (A3), pulse attack (A4), ran-

dom noise attack (A5), replacement attack (A6), and data loss

attack (A7). The normal SD is labeled as A1. Denoting the

measured normal and attacked synchrophasor data as y(t) and

ȳ(t), respectively, where t is the time index, the numerical

models of six types of SDAs are summarized in Table I.

The strengths of SDA determine whether the attack is easy

to identify. The strength means the maximum attack magni-

tude relative to the normal measurements. Obviously, attack

detection methods should be able to deal with attacks at dif-

ferent strengths. To ensure the effectiveness of the attack, the

detection performance under a small strength is preferentially

explored. For example, to illustrate different types of attacks,

the frequency measurement of synchrophasor is analyzed as

the case study. Frequency data is stochastic, which is beneficial

to verify the effectiveness of the method. Meanwhile, to realize

the attack detection of different measurement data in multiple

locations, the frequency, phase, and amplitude can be trained

together. The dimensions of each dataset need to be the same

so that the input vector of FIN can be matched when the data

are trained together. Considering actual frequency measure-

ment error can reach 5 mHz due to the impact of the hardware

noise and the quantization limitation in PMUs [32], the min-

imum strength of each attack is set to 5 mHz. Consequently,

the strength parameters λ2 and λ3t in Table I are constrained

to [0.000084,+∞] referring to [13]. The G is the uniform

noise, of which the range of boundary values is [0.002,+∞].

An example of six types of SDA is shown in Fig. 1. It

shows that replacement and ramp attacks have a high similarity

with normal SD, which results in those two kinds of attacks

being difficult to be distinguished. Meanwhile, the start time

and ending time are different for scaling attack and data loss

attack, thus resulting in different attack strengths. Therefore,

an effective method that is able to distinguish multiple attacks

with different characteristics is needed.

III. MODIFIED EEMD IN FIN

To distinguish attack signals, the characteristics of the SDA

need to be extracted first. Intuitively, the Empirical Mode

Decomposition (EMD) is developed to decompose the sig-

nal into multiple IMF components, and each IMF contains

specific frequency intervals [33]. It is particularly suitable for

non-stationary signals analysis. However, the decomposition

results of EMD are easily disturbed, resulting in decomposi-

tion biases. Thus, an EMD integration form called Ensemble

Empirical Mode Decomposition (EEMD) is performed to

solve the mode mixing. The primary principle of EEMD is to

obtain IMFs by injecting white noise and integrating multiple

sub-EMDs [34]. Meanwhile, the time of attack, e.g., jump

position can also be strengthened and increased. However, the

result of EEMD is prone to generate false components when

a fixed number of IMFs is selected. Therefore, the MEEMD

is proposed to dynamically select the number of IMFs in FIN.

A. Proposed MEEMD

As the first step of FIN, MEEMD uses the frequency-based

adaptive screening criterion to optimize modal aliasing [33].

Before calculating the EEMD, the frequency-based adaptive

screening strategy is adopted.

Specifically, a threshold based on FFT and EMD is used to

optimize the number of IMFs parameter N. The frequency

components of each IMF are expected to be significant

enough to increase decomposition efficiency. To determine the

frequency component of SDA signal ȳ(t), the FFT is used

to calculate frequency spectrum Ȳ(t). Then, a threshold T is

obtained by extracting the maximum and minimum amplitude

of Ȳ(t). By adopting this spectrum threshold limit, the spec-

trum of each IMF component will be greater than T . The

threshold can be obtained as

T = Ȳ(t)min + α
(

Ȳ(t)max − Ȳ(t)min

)

(1)

where the Ȳ(t)max and Ȳ(t)min denote the maximum and min-

imum amplitude of Ȳ(t) respectively, and the α = 0.3 is

the threshold parameter. The T is used to screen IMFs using

frequency peaks of Ȳ(t)min.

To select a suitable number of IMFs, the EMD of ȳ(t)

under different N is first obtained. The IMFs of EMD can be

expressed as 1th, 2th, . . . , and Nth, where the 1th IMF is the

high frequency component. The Nth IMF is the low frequency

residual component, which is also an attack trend feature.

A larger N value indicates that there are more false compo-

nents under the same decomposition principle. For example,

under two different N (set to N1 and N2), and N1 < N2, the

N1, N1 + 1, N2th IMFs components of N2 are derived from

the N1th residual term of N1. Therefore, the false component

is closer to the residual term (Nth IMF) as N increases. And

the corresponding spectrum amplitudes of IMFs are calculated

in reverse order starting from the (N − 1)th IMF to (N − 2)th

IMF, of which can be expressed as YIMFN−i . The i is set to 1,

2 in order to strike a balance between efficiency and accuracy.

To reduce the impact of spectrum aliasing, a frequency-based

adaptive screening criterion is used to select N from empirical

data set M = {4, 5, 6, 7}, which can be defined as

N = I

(

2
∑

i=1

sign
[ (

YIMFN−i

)

max
− T

)]

)
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Fig. 2. The performance comparsion of EEMD and MEEMD. The dotted
box indicates the location where the attack occurred. (a) Scale SDA. (d), (g)
are the residual IMF of EEMD and MEEMD respectively. (b), (e) and (h) are
the FFT of 4th, 5th, 6th IMF in EEMD, respectively. (c), (f) and (i) are the
FFT of 2th, 3th, 4th IMF in MEEMD, respectively.

I(x) = Index(x ≥ 0)M (2)

where sign() is the signum function, the I(x) indicates that the

index of the data set M when x satisfies not less than 0. To

reduce the search time, the parameter N is searched from 7 to

4 with step 1.

After selecting N, a total of NI EMDs are calculated and

integrated, where NI is the number of EMD in MEEMD.

Accordingly, the MEEMD of SDA consists of the following

four parts:

1) Frequency-based adaptive screening criterion: the

threshold T is first calculated based on the FFT of SDA.

Combining with T and equation (2), the number of IMFs

parameter N is then optimally selected by searching

from M. N can be determined when the equation (2)

is satisfied for both (N − 1)th and (N − 2)th IMFs.

2) Noise superposition: the zero-mean Gaussian white

noise is first added to ȳ(t), where the magnitude is set

to 0.2.

3) Perform EMD: MEEMD performs NI times of EMD for

each ȳ(t).

4) Data average: the result can be obtained by averaging

the NI EMD to get the final N IMFs.

Thereafter, the SDA ȳ(t) can be decomposed into the sum

of multiple IMFs and residuals as follows

ȳ(t) =

N
∑

i=1

⎡

£

NI
∑

j=1

(

IMFij(t) + rj(t)
)

¤

⎦ (3)

where the IMFij(t) denotes the ith IMF of ȳ(t) in the jth EMD

and, the rj(t) denotes the residual of jth EMD.

Hereby, different IMFs of SDA, denoted as F(t) =
∑NI

j=1 IMFij(t) + rj(t), can then be extracted.

B. Comparison of EEMD and Proposed MEEMD

To verify the actual decomposition effect of the MEEMD,

the residual results and FFT components of IMFs are shown.

As demonstrated in Fig. 2, the number of IMFs N is set to 7

in EEMD and optimized to 5 in MEEMD. The last three IMFs

are presented because the false components are more likely to

appear at low frequencies.

TABLE II
THE RELATIONSHIP BETWEEN α AND THE NUMBER OF IMFS FOR

DATA LOSS ATTACK

It can be seen from Fig. 2(d), (g) that the residual IMF of

MEEMD is closer to the trend of scale attack, which indi-

cates that the trend feature of the attack is correctly extracted.

It is worth mentioning that the normal and attack signal can

be distinguished because this trend feature is only one of all

the extracted features in FIN. Some other features, such as

the attack strength, data sources, and type of noise, can also

be used to distinguish the attack and the attack-free data. As

shown in Fig. 2(b) and (e), the same frequency components are

extracted by EEMD because they contain the same frequency.

The frequency component of Fig. 2(h) does not overlap, but the

frequency peaks are still very close to (b) and (e). Conversely,

it is observed from Fig. 2(c), (f) and (i) that the location of

frequency spike points are different from each other, indicat-

ing that IMFs of MEEMD do not contain false components.

Therefore, it can be concluded that the attack trend items are

extracted and some of false components are avoided.

To show the sensitivity relationship between the parameter

α and the number of IMFs, the IMFs of A7 are counted under

different α as listed in Table II. It illustrates that the parameter

α determines the number of IMFs. The 6 and 7 are selected

as the number of IMFs for more than 95% of cases.

Furthermore, to show the statistical characteristics of dif-

ferent EEMD and MEEMD, two statistical indicators are

calculated at different number of N including the correlation

and kurtosis [35]. A larger correlation and kurtosis show a bet-

ter decomposition result. The performances with two statistical

indicators under different N and types of attack methods are

shown in Fig. 3 and 4. The similar correlation and kurtosis

are obtained in Fig. 3(a) and 4(a) because the N is adaptively

selected for MEEMD. In Fig. 3 and 4, it demonstrates that

all types of attack methods obtain higher correlation and kur-

tosis value especially when N < 6, which indicates that the

MEEMD performs better. Meanwhile, EEMD and MEEMD

have similar statistical characteristics when the N is larger

than 6. The results show that the MEEMD has better statis-

tical characteristics because it can reduce modal aliasing by

finding a more suitable N.

Next, a multivariate CNN based classifier is used to identify

and detect multiple SDA based on the extracted IMFs F(t).

IV. MULTIVARIATE CNN IN FIN

A. Proposed Fusion Block

As the second step of FIN, the features of SDA can be

automatically identified using the proposed MCNN by com-

bining the extracted IMFs. In MCNN, both the IMFs F(t) (2D)
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Fig. 3. The correlation between the IMFs and original SD for MEEMD and
EEMD methods. (a) MEEMD (b) EEMD.

Fig. 4. The kurtosis of IMFs for MEEMD and EEMD methods. (a) MEEMD
(b) EEMD.

and original SDA ȳ(t) (1D) are used as the inputs. Compared

with the traditional CNN methods, the motivation to combine

the 1D and 2D feature source is to obtain more diverse and

representative because the input of FB is multi-source.

To fuse the 1D and 2D data, a Fusion Block is proposed

to improve the diversity of SDA detection in FIN. Two types

of convolution kernels, namely 1D and 2D kernels, together

form a complete FB from the different dimensions of input. It

means that two types of features are extracted. To make full

use of the different input source information, the FB is used

to simultaneously process two types of data.

The structure of the proposed FB is depicted in Fig. 5. The

FB contains two inputs and two outputs. The 1D convolution

branch can be used to stack multiple FBs.

Denoting the input data of FB as a(t) = {F(t), ȳ(t)}, the

output of Standard Convolutional (SC) layer is calculated as

OiD
cr = f

(

W iD
cr ∗ a(t) + biD

cr

)

, i = 1, 2 (4)

where the W iD
cr and biD

cr are the weights and the biases in the

crth convolutional layer for the iD convolution, r = 1, 2, . . . , n

is the number of convolutional layer, the symbol * represents

convolution, and f () is the activation function. Meanwhile, the

Rectified Linear Unit (RELU) function, where only the posi-

tive portion of the input is retained, is selected as the activation

function so that the gradient attenuation can be mitigated. The

RELU has low computational complexity and can speed up the

SDA feature extraction process. The performance and output

size of OiD
cr are determined by three parameters: the convo-

lution kernel size kiD
c , i = 1, 2, convolution depth diD

c and

convolution stride siD
c . Here, the stride siD

c is set to 1 and the

zero padding is used to match the output dimensions of the

different convolutions.

The diversity of the SDA features is key to enhance the

model’s learning ability. Unlike standard convolution, the

Depthwise Separable (DS) convolution can increase the SDA

Fig. 5. The structure of the proposed fusion block.

feature space while reducing computation, since each chan-

nel can be assigned a kernel with different sizes [36]. In the

convolutional layer of FB, a Composite Convolution (CC) is

proposed, in which half of the convolutional layers are calcu-

lated using DS convolution and the other half uses standard

convolution. This means that the diD
c /2 depth of features in

CC is obtained from standard convolution and the remaining

half is from DS convolution.

Next, a maximum pooling layer is used to reduce the dimen-

sions of the convolution layer features. In this layer, the

features of the maximum value are retained, and the smaller

values are filtered out. The length of output features becomes

liDp = (liDc − liDf )/siD
p +1, i = 1, 2, where liDf is the size of filter

area, the liDc and siD
p are the output length of OiD

cr and stride of

pooling layer, respectively. Furthermore, the output of pooling

layer can be denoted as OiD
pr .

After the pooling layer results are obtained, two additional

strategies, including the computational complexity reduction

of FB and the multi-input (1D and 2D convolution) fusion,

are used to boost the overall performance.

Since the operation of the kernel function is time-

consuming, a direct NW method is proposed to increase

directly the depth of the feature OiD
pr . As shown in Fig. 5,

a weighting factor W = {−1,−1, . . . ,−1} is multiplied by

OiD
pr . For a feature set F, the opposite feature set −F can be

easily obtained by multiplying −1. Thus more features can

be generated and there is no need to perform the convolution

operations of the NW method. Then the features are added on

the depth axis, which can be expressed as

OiD
2pr =

{

OiD
pr , W· OiD

pr

}

(5)

where the length of W is the same as depth diD
c . The depth

of OiD
2pr becomes 2diD

c without the extra learning process. As

a result, the proposed FB becomes more lightweight.

Next, the 1D and 2D features are integrated into the new

fusion layer. Specifically, the 1D feature is spliced below the

2D feature to form a combined 2D feature. To guarantee a

successful merge, the dimension of 1D and 2D features should

be matched. For example, if the dimension of the 2D feature

O2D
pr is (a, b, d), where a and b are the length and width of

the feature, the dimension of the 1D feature O1D
pr should be

(1, b, d) or (a, 1, d). Then the output of fusion layer becomes

Ofr =
{

max
{

0, f
(

W iD
cr ∗ a(t) + biD

cr

)}

,

Wmax
{

0, f
(

W iD
cr ∗ a(t) + biD

cr

)}}
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Fig. 6. The SDA detection framework based on FIN.

=
{{

O1D
pr , W· O1D

pr

}

,

{

O2D
pr , W· O2D

pr

}}

=
{

O1D
2pr(ȳ(t)), O2D

2pr(F(t))
}

(6)

Before getting the results of the FB, it is worth noting

that there are still some features in MCNN that may easily

become redundant. For example, the distinction between the

two types of attack signals is primarily based on the differ-

ences between features, rather than on features in common.

These common features can be regarded as redundant. To

reduce the impact of redundant information, the Squeeze-and-

Excitation Block (SEB) can automatically assign a weight to

each feature on the depth axis, while adding little computa-

tional burden [37]. Therefore, the SEB is further added after

the fusion layer to strengthen the difference between features

and its representational power.

As can be seen from Eq. (6), the fusion layer fuses the

features of F(t) and original SDA ȳ(t) into 2D features.

The maximization input information of each feature is fully

integrated and learned. This fusion method can enrich the

feature space because when information of one feature is

weak, another feature can make up its deficiency. By stacking

multiple FBs, the key features of SDA can be extracted using

MCNN.

B. Proposed MCNN

Combined with the aforementioned FB, the complete multi-

variate CNN framework is established. After stacking multiple

FBs, the output features can be obtained.

However, the features of the fusion layer have not been

fully integrated and learned in the last FB, i.e., the similar-

ity between 1D and 2D features is not filtered or reinforced.

Therefore, an additional convolutional layer is added to the

end of the last FB. The inception V2 uses four convolution

channels, with the size of each convolution kernel being less

than 3×3 [38]. It means that the inception V2 is more efficient

in terms of the same computational complexity. To improve

the SDA detection accuracy, the inception V2 is selected as

the final convolutional layer. In the same way, the weighting

factor of NW W = {−1,−1, . . . ,−1} is also assigned to the

output of the inception V2. Denoting the output of inception

block as OI , the output after the weighting factor W can then

be expressed as O2I = {OI, W· OI}.

To achieve the detection of SDA, the extracted SDA features

need to be flattened and mapped into the classifier by using

a Full-Connected (FC) layer. However, the FC layer tends to

introduce a large number of parameters, making the model

easy to overfit.

To further reduce the model parameters and the likelihood

of overfitting, the GAP layer is introduced to replace the first

FC layer. The GAP layer filters each channel for the feature

O2I and uses the average value of each channel as an output,

thereby greatly reducing the number of parameters [39]. A

FC layer with fewer hidden nodes is also added after GAP to

adjust the parameters and performance of the model. To reduce

overfitting, the dropout layer is then used to randomly discard

data of the ratio ϕ in the FC layer. Finally, the extracted SDA

features from the final FC layer is fed to the softmax function.

The output of softmax function is set as f (O2I). The detected

SDA category can be calculated by the following formula

ps(ȳ(t) = K|θ, f (O2I)) =
exp

θjf
(

O
j

2I

)

∑K
k=1 expθkf

(

Ok
2I

) (7)

where θj, θk ∈ θ are the parameters of softmax function for

each class of SDA, and j, k = 1, 2, . . . , K, K = 7 is the total

number of SDA categories. The position at the maximum prob-

ability value max(ps()) is the attack category identified by the

model.

V. SDA DETECTION FRAMEWORK BASED ON FIN

By integrating the MEEMD and MCNN proposed above, a

FIN framework with two FBs is proposed in this Section. The

FIN framework is shown in Fig. 6. It shows that a standard

convolution layer and pooling layer is first used to control the

input dimension, ensuring the data can be matched and fused

in FB.

As can be seen, the FIN framework of SDA detection can

be divided into two parts:

1) Attack features extracted using MEEMD: The IMFs of

multiple SDA ȳ(t) are first extracted to obtain the F(t)

based on the MEEMD. Then both the original SDA and

extracted IMFs are combined to get the a(t). The size of

each F(t) is 7×300, where some null values are padded

with 0 when N is less than 7.
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2) Automatic SDA detection: A FB is designed to fuse

different source information, including ȳ(t) and F(t).

Specifically, the MCNN, a lightweight network with

multiple inputs, is built to identify attack signals.

This FIN is dedicated to detect the attacks before any real

power event occurs caused by the FDI attack. Thus the vicious

influence will be blocked if the state of program instructions

in the power system have changed when the attack just started.

According to the FIN results, economic losses will be reduced

through real-time detection and fast response. Here, take the

generator speed control as an example [4]. The power system

controller first needs to stop responding to the current measure-

ment value once an attack is detected. After that, this control

state can be restored to the previous control state to prevent

deterioration. In this scenario, the generator speed control can

resume control once the detection result of the normal signal

is given by FIN.

VI. EXPERIMENT AND ANALYSIS

To verify the effectiveness of the FIN method, various

experiments have been conducted under different attack types

and strengths in Table I. The actual synchrophasor data from

ten locations (L1-L10) in EI of FNET/Grideye [40] was

selected, as depicted in Fig. 7. In this Section, the data from

locations L1-L9 were used as the normal SD. According to

the numerical attack model, the attack A2-A5 and A7 and

corresponding labels can be generated based on the normal

SD. For the replacement attack A6, the DS from L10 is used

to attack the data from other locations. This data from differ-

ent locations are processed separately in the testing process.

Meanwhile, the data of these locations can be detected together

through sequential detection. It is worth mentioning that when

the grid signal and the attack signal are very similar, the syn-

chronization features of data from multiple locations can be

combined to detect SDA comprehensively.

For each type of attack signal, 90468 samples are generated,

the length of each being 300 (corresponds to 30 seconds). In

the experiment, 40% of the data is used for training, 30% is

used for verification and the rest is used for testing. During

the training process of MCNN, the Adam optimizer is used to

optimize the cross entropy loss function. In total, 30 epochs are

set in the Keras for the training of MCNN. To achieve online

detection, synchrophasor data in different locations need to

be intercepted by a sliding window method. The length of

this window is half a minute, and the distance between each

window can be set from 10 to 100 (1 to 10 seconds) to satisfy

real-time requirements.

A. Parameter Selection for MEEMD and MCNN

The parameter α determines the number of IMFs N. To

select a suitable α, the grid search method is used. Four α

values are tested with step 0.2. The result is listed in Table III.

It can be seen that when α = 0.1, the FIN obtains the lowest

accuracy. It is because the setting of N is nearly invalid at

this time. However, the accuracy gradually decreases when

increases. The number of decompositions will be affected

when α > 0.5. As a compromise, α = 0.3 is finally selected.

Fig. 7. The PMU signal acquisition schematic and locations in EI. (a) Signal
acquisition schematic. (b) The actual SD from ten locations of FNET/Grideye.

TABLE III
THE PERFORMANCE OF FIN UNDER DIFFERENT α

Fig. 8. Performance under different number of FB. The FB-i denotes the
number of stacked FB is i. The unit k means thousand.

Additionally, the parameters of MCNN have a great impact

on its performance. Particularly, the number of FB determines

the parameter capacity and performance of the FIN simultane-

ously. Therefore, the performance of MCNN under different

FB numbers is first explored. In this experiment, the depth d

in Inception V2, the nodes in the FC layer, and the dropout

parameter are set with the same value for a fair comparison.

The SDA detection result under different numbers of FB is

illustrated in Fig. 8, where the amplitude of the attack A2-A5

is uniformly set to 5 mHz.

As the number of FB layers increases, it clearly shows

that the number of parameters gradually increases for MCNN.

Meanwhile, the number of model parameters do not exceed

200 thousands even if there are four FBs. It is observed that

the rate of accuracy increases slowly when the number of FB
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TABLE IV
THE OPTIMIZED PARAMETERS IN MCNN

TABLE V
PERFORMANCE COMPARISON WITH DIFFERENT FIN STRUCTURES

is larger than 2. This means that increasing the number of FB

does not significantly improve the accuracy when r > 2. Thus,

considering the trade-off between the complexity of the model

and classification accuracy, the number of FB is set to 2.

After the number of FB is determined, the hyperas is called

to select the optimized parameters [41]. For discrete variables,

such as kernel size kiD
c , i = 1, 2, and convolution depth diD

c ,

the hyperas selects parameters by searching in a specified

dataset. For continuous variables, the hyperas searches for the

optimized value in the uniform distribution. For example, the

ratio ϕ parameter of the dropout layer can be searched in the

Uniform(0.1, 0.5), where the 0.1 and 0.5 are the lower and

upper bounds respectively.

Using the optimization method, the following parameters

are finally adopted as listed in Table IV. Additionally, the

dropout parameter ratio is set to ϕ = 0.3.

Based on optimized parameters, to verify the effectiveness

of SEB, Inception V2 and GAP, the accuracy of FIN is shown

in Table V when these components are not included respec-

tively. The input of these four models are the same. The test

time is the running time of each sample for the FIN struc-

ture part. It can be seen that the parameters and test time of

FIN without SEB is similar to FIN. However, the accuracy

of FIN is higher, indicating that the SEB contributes to the

accuracy of SDA detection. Meanwhile, it shows that the FIN

without Inception V2 has the lowest accuracy and minimal

parameters. The accuracy of the FIN without GAP is higher

than 93%. However, the number of parameters of FIN without

GAP is 7 times than FIN. Overall, it means that the Inception

V2 can improve the accuracy while the GAP helps to reduce

the model parameters.

B. Performance Under Different Attack Strengths and Time

The attack strength determines the sensitivity of SDA detec-

tion. To verify the validity of the FIN, the raw methods

TABLE VI
PERFORMANCE COMPARISON UNDER DIFFERENT ATTACK STRENGTHS

including EEMD and CNN, are used to compare against one

another under different attack strengths. According to the

range of the attack strengths, the strength conditions are set

to 5 mHz, 10 mHz and 20 mHz respectively. For example,

the λ2 and λ3t in Table I are set to 0.00033 when the attack

strength is 20 mHz. In regular EEMD, the number of IMFs is

set to N = 5 here. For the regular CNN, the number of con-

volutional layer is set to 4 which is consistent with MCNN.

The number of nodes is set to 100 in the FC layer. The other

parameters, such as the kernel size and depth, are set with the

same values as MCNN to make a fair comparison. It is noted

that the original SDA ȳ(t) cannot feed into the regular CNN

due to the constraint of 2D shape.

The results under different attack strengths are listed in

Table VI. The input of the EEMD-CNN, MEEMD-CNN, and

EEMD-MCNN methods are the 2D data. This means that only

2D features are generated. The input of DCNN is 1D data,

which means only 1D features can be generated [27]. The test

time refers to the runtime for each test sample. It can be seen

that the EEMD-CNN has the lowest accuracy under different

attack strengths since the number of parameters is only 62.7 k.

The results also show that both MEEMD and MCNN of FIN

contribute to the improvement of accuracy in SDA detection.

Meanwhile, the accuracy of the combination of 1D and 2D

features is higher than the single 1D or 2D features indicating

that a higher number of parameters has a richer feature space.

Obviously, the accuracy increases more than 3% when the

attack strength is 5 mHz, and the corresponding sensitivity is

1e−5 p.u. (0.005/60). In contrast, Only 0.5% detection accu-

racy improvement is achieved in the case of 20 mHz. The

reason for this is that the attack strength is high, making it

easy to be identified by general CNN. The number of param-

eters of MCNN is reduced by more than 95% compared with

CNN, which facilitates its implementation in a practical field

system. Moreover, it can be seen that the real-time SDA detec-

tion can be satisfied because each sample can be tested within

57.27 ms. When a higher sampling rate such as 30, 60, and

120 Hz is configured, the strategies such as down-sampling or

reducing window length can be applied to reduce the running

time.

To verify the time sensitivity to attacks, the accuracy of

FIN under different lasting time is listed in Table VII. This

lasting time means the duration of the attack. The sign 20/300

denotes the length of the attack is 20 (2 seconds), and 300 (30

seconds) is the total length of each sample. It can be seen that

the detection accuracy decreases when the attack’s duration

is only 20/300. As the lasting time of the attack increases,
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TABLE VII
PERFORMANCE COMPARISON WITH DIFFERENT LASTING TIME

TABLE VIII
PERFORMANCE OF FIN UNDER DIFFERENT ATTACK STRENGTHS

TABLE IX
COMPARISON WITH RESULTS OF MACHINE LEARNING METHODS

the detection accuracy increases. When the attack’s duration is

longer than 16%, the proposed method has stable performance.

The detailed performance of different attack strengths are

summarized in Table VIII. As can be seen, A2 and A3 can

be misidentified easier than other types of attacks. When the

attack strength is 5 mHz, the amplitude of scaling and ramp

attack are very similar to original SD, resulting in difficulties

in extracting the features. Particularly, the minimum accuracy

of FIN is 97.55% when the attack strength is 20 mHz. To

address the problem of detection accuracy for some attacks,

more convolutional layers, channels, and higher reporting rates

can be used.

C. Comparison With Machine Learning Methods

To further investigate the performance of MCNN, several

conventional machine learning methods, including Artificial

Neural Network (ANN), SVM and Stacked Auto-Encoder

(SAE), are compared with FIN. The result of MEEMD is

straightened to match the input for the ANN and SVM due to

the 1D limitation, namely being that the input length is 2100

nodes. For SVM, a linear SVM is selected because it can pro-

vide fast calculation taking into account the large dimension

of the input vector. Additionally, the 1D convolution layer is

used in SAE, then the output of SAE are fed to the softmax

classifier. To maintain a reasonable comparison, the number of

convolution layers of SAE is optimally selected. The number

of parameters for three traditional methods is optimized by

using grid search method.

The structure and average detection results are listed in

Table IX. From Table IX, it shows that the proposed FIN

framework achieves the highest 96.66% detection accuracy

and lowest 0.047% uncertainty. As expected, it demonstrates

that the accuracy of the traditional methods is not satisfactory

although they consume less test time. For example, the aver-

age accuracy of SVM and SAE are only 39.84% and 66.39%

respectively.

D. Comparison With Recent SDA Detection Methods

In this subsection, the proposed FIN is compared with four

recent SDA detection methods. An overview of four methods

are as follows:

1) WT-FFT-ANN [21]: The synchrophasor data from dif-

ferent areas are identified in this method. This means

that the method has potential attack detection capabili-

ties. This detection method is divided into three steps:

the common components of SDA are first removed by

wavelet-based method. Then the spectrum features are

extracted using FFT. Lastly, the three layers of ANN is

used to classify the SDA.

2) HF-MM-RFC [4]: The spatio-temporal features of dif-

ferent SDA are extracted to detect the type of SDA.

The detection method contains four steps: in the first

two steps, the weighted high pass filter and MM meth-

ods are used to decompose SDA signals; in the next two

steps, the extracted 62 unique indexes are calculated and

then fed to gcForest classifier. It is noted that only the

replacement attack is tested in this paper.

3) Density based (DB) method: According to [17], the den-

sity or distance basis method can be adopted to detect

the anomaly synchrophasor voltage data, where the SDA

can be treated as outliers. The A5 and A7 attack meth-

ods were used in [17]. The LOF is selected to detected

the SDA. The result of LOF is a two-category result, in

which all of the attacks in A2-A7 are one class and the

A1 is another class.

4) DCNN [27]: In this method, the DCNN is utilized

to directly classify different raw power quality distur-

bances. Importantly, the DCNN contains 1D convolution

and belongs to a CNN classifier with strong feature

extraction capabilities. Therefore, the SDA is directly

fed to a six-layer DCNN to make a reasonable compar-

ison.

The performance comparison of four methods are listed in

Table X. Compared with WT-FFT-ANN and HF-MM-RFC,

the accuracy of FIN is as high as 93.14% even when the

attack strength is 5 mHz. It indicates that the FIN can mine

more valuable features for SDA detection than manual feature

extraction. Although the WT-FFT-ANN has fewer parame-

ters (5k), it can only achieve 68.04% under 5 mHz attack

condition, which indicates that the features of SDA are not

effectively extracted by FFT. Meanwhile, the accuracy of

DCNN is approximately 2% lower than FIN, but the num-

ber of parameters in DCNN is nearly 4 times larger than FIN,

demonstrating that the FIN has a better structure and higher

accuracy. Once the attack signal is recognized, some corre-

sponding measures can be taken. For example, the generator

can maintain the current speed rather than adjusting based on

the attack signal.
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TABLE X
PERFORMANCE COMPARISON WITH RECENT ATTACK METHODS

VII. CONCLUSION

In this paper, a feature interactive network based on the

MEEMD and MCNN is proposed to automatically detect and

classify multiple SDA. The modal aliasing and false IMF com-

ponent have been suppressed by a frequency-based screening

criterion. Based on the extracted IMFs, the negative weight and

GAP are introduced to build a lightweight FB. Thus a MCNN

with stacked FB is further proposed to fuse multi-source and

dimension input information. The experiments under different

attack strengths show fewer parameters, greater accuracy, and

real-time of the proposed FIN. Moreover, six different types

of attack methods are evaluated using the actual synchropha-

sor data from FNET/Grideye. Various experiments are carried

out and the results demonstrate that the accuracy of FIN has

achieved 93.14% even when the attack strength is 1e−5 p.u.

Finally, compared with some common machine learning clas-

sifiers (ANN, SVM, and SAE) and recent advanced SDA

detection methods, the FIN has a more compact structure

and higher detection accuracy. Synchrophasor data from more

locations will be further tested. After the SDA is detected,

the specific response measures of power grids should also be

further studied.

REFERENCES

[1] M. Zhou, Y. Wang, A. K. Srivastava, Y. Wu, and P. Banerjee, “Ensemble-
based algorithm for synchrophasor data anomaly detection,” IEEE Trans.

Smart Grid, vol. 10, no. 3, pp. 2979–2988, May 2019.

[2] M. Yue, T. Hong, and J. Wang, “Descriptive analytics based anomaly
detection for cybersecure load forecasting,” IEEE Trans. Smart Grid,
vol. 10, no. 6, pp. 5964–5974, Nov. 2019.

[3] R. Khan, K. McLaughlin, D. Laverty, and S. Sezer, “Analysis of IEEE
C37.118 and IEC 61850-90-5 synchrophasor communication frame-
works,” in Proc. IEEE Power Energy Soc. Gen. Meeting (PESGM), Jul.
2016, pp. 1–5.

[4] Y. Cui, F. Bai, Y. Liu, P. L. Fuhr, and M. E. Morales-Rodríguez, “Spatio-
temporal characterization of synchrophasor data against spoofing attacks
in smart grids,” IEEE Trans. Smart Grid, vol. 10, no. 5, pp. 5807–5818,
Sep. 2019.

[5] S. Basumallik, R. Ma, and S. Eftekharnejad, “Packet-data anomaly
detection in PMU-based state estimator using convolutional neural
network,” Int. J. Elect. Power Energy Syst., vol. 107, pp. 690–702, May
2019.

[6] K. Manandhar, X. Cao, F. Hu, and Y. Liu, “Detection of faults and
attacks including false data injection attack in smart grid using Kalman
filter,” IEEE Trans. Control. Netw. Syst., vol. 1, no. 4, pp. 370–379, Dec.
2014.

[7] Y. Mo and B. Sinopoli, “Secure control against replay attacks,” in Proc.

47th Annu. Allerton Conf. Commun. Control Comput. (Allerton), 2009,
pp. 911–918.

[8] A. Sundararajan, T. Khan, and A. Moghadasi, “Survey on synchrophasor
data quality and cybersecurity challenges, and evaluation of their inter-
dependencies,” J. Mod. Power Syst. Clean Energy, vol. 7, pp. 449–467,
Dec. 2019.

[9] F. Zhu, A. Youssef, and W. Hamouda, “Detection techniques for data-
level spoofing in GPS-based phasor measurement units,” in Proc. Int.

Conf. Sel. Topics Mobile Wireless Netw. (MoWNeT), 2016, pp. 1–8.

[10] X. Deng, D. Bian, D. Shi, W. Yao, L. Wu, and Y. Liu, “Impact of low
data quality on disturbance triangulation application using high-density
PMU measurements,” IEEE Access, vol. 7, pp. 105054–105061, 2019.

[11] S. Sridhar and G. Manimaran, “Data integrity attacks and their impacts
on SCADA control system,” in Proc. IEEE PES Gen. Meeting, 2010,
pp. 1–6.

[12] A. S. Musleh, G. Chen, and Z. Y. Dong, “A survey on the detection
algorithms for false data injection attacks in smart grids,” IEEE Trans.

Smart Grid, vol. 11, no. 3, pp. 2218–2234, May 2020.

[13] S. Sridhar and M. Govindarasu, “Model-based attack detection and miti-
gation for automatic generation control,” IEEE Trans. Smart Grid, vol. 5,
no. 2, pp. 580–591, Mar. 2014.

[14] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms for
mining outliers from large data sets,” SIGMOD Rec., vol. 29, no. 2,
pp. 427–438, May 2000.

[15] H. Liu and C. Chen, “Data processing strategies in wind energy forecast-
ing models and applications: A comprehensive review,” Appl. Energy,
vol. 249, pp. 392–408, Sep. 2019.

[16] X. Wang, D. Shi, J. Wang, Z. Yu, and Z. Wang, “Online identifica-
tion and data recovery for PMU data manipulation attack,” IEEE Trans.

Smart Grid, vol. 10, no. 6, pp. 5889–5898, Nov. 2019.

[17] M. Wu and L. Xie, “Online detection of low-quality synchrophasor mea-
surements: A data-driven approach,” IEEE Trans. Power Syst., vol. 32,
no. 4, pp. 2817–2827, Jul. 2017.

[18] M. Yue, “Evaluation of a data analytic based anomaly detection method
for load forecasting data,” in Proc. IEEE Power Energy Soc. Gen.

Meeting (PESGM), Aug. 2018, pp. 1–5.

[19] K. D. Jones, A. Pal, and J. S. Thorp, “Methodology for performing
synchrophasor data conditioning and validation,” IEEE Trans. Power

Syst., vol. 30, no. 3, pp. 1121–1130, May 2015.

[20] Y. Cui, F. Bai, Y. Liu, and Y. Liu, “A measurement source authentica-
tion methodology for power system cyber security enhancement,” IEEE

Trans. Smart Grid, vol. 9, no. 4, pp. 3914–3916, Jul. 2018.

[21] W. Yao et al., “Source location identification of distribution-level electric
network frequency signals at multiple geographic scales,” IEEE Access,
vol. 5, pp. 11166–11175, 2017.

[22] J. Landford et al., “Fast sequence component analysis for attack detec-
tion in smart grid,” in Proc. 5th Int. Conf. Smart Cities Green ICT Syst.

(SMARTGREENS), Apr. 2016, pp. 1–8.

[23] H. M. Khalid and J. C. Peng, “A Bayesian algorithm to enhance the
resilience of WAMS applications against cyber attacks,” IEEE Trans.

Smart Grid, vol. 7, no. 4, pp. 2026–2037, Jul. 2016.

[24] M. Ozay, I. Esnaola, F. T. Y. Vural, S. R. Kulkarni, and H. V. Poor,
“Machine learning methods for attack detection in the smart grid,” IEEE

Trans. Neural Netw. Learn. Syst., vol. 27, no. 8, pp. 1773–1786, Aug.
2016.

[25] Y. Ding and J. Liu, “Real-time false data injection attack detection
in energy Internet using online robust principal component analysis,”
in Proc. IEEE Conf. Energy Internet Energy Syst. Integr. (EI2), 2017,
pp. 1–6.

[26] W. Qiu, Q. Tang, J. Liu, and W. Yao, “An automatic identification
framework for complex power quality disturbances based on multifu-
sion convolutional neural network,” IEEE Trans. Ind. Informat., vol. 16,
no. 5, pp. 3233–3241, May 2020.

[27] S. Wang and H. Chen, “A novel deep learning method for the classi-
fication of power quality disturbances using deep convolutional neural
network,” Appl. Energy, vol. 235, pp. 1126–1140, Feb. 2019.

[28] S. Kiranyaz, A. Gastli, L. Ben-Brahim, N. Al-Emadi, and M. Gabbouj,
“Real-time fault detection and identification for MMC using 1-D con-
volutional neural networks,” IEEE Trans. Ind. Electron., vol. 66, no. 11,
pp. 8760–8771, Nov. 2019.

[29] F. Ullah et al., “Cyber security threats detection in Internet of Things
using deep learning approach,” IEEE Access, vol. 7, pp. 124379–124389,
2019.

[30] W. Qiu, Q. Tang, Y. Wang, L. Zhan, Y. Liu, and W. Yao, “Multi-view
convolutional neural network for data spoofing cyber-attack detection in
distribution synchrophasors,” IEEE Trans. Smart Grid, vol. 11, no. 4,
pp. 3457–3468, Jul. 2020.

[31] N. G. Bhuvaneswari Amma and S. Subramanian, “VCDeepFL: Vector
convolutional deep feature learning approach for identification of known
and unknown denial of service attacks,” in Proc. TENCON IEEE Region

10 Conf., Oct. 2018, pp. 0640–0645.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on September 20,2024 at 14:41:46 UTC from IEEE Xplore.  Restrictions apply. 



670 IEEE TRANSACTIONS ON SMART GRID, VOL. 12, NO. 1, JANUARY 2021

[32] J. Zhao et al., “Impact of measurement errors on synchrophasor
applications,” in Proc. IEEE Power Energy Soc. Gen. Meeting, Jul. 2017,
pp. 1–5.

[33] N. E. Huang et al., “The empirical mode decomposition and the Hilbert
spectrum for nonlinear and non-stationary time series analysis,” Proc.

Math. Phys. Eng. Sci., vol. 454, no. 1971, pp. 903–995, 1998.
[34] N. Nizam, K. Alam, and M. Hasan, “EEMD domain AR spectral method

for mean scatterer spacing estimation of breast tumors from ultra-
sound backscattered RF data,” IEEE Trans. Ultrason., Ferroelect., Freq.

Control, vol. 64, no. 10, pp. 1487–1500, Oct. 2017.
[35] J. B. Ali, N. Fnaiech, L. Saidi, B. Chebel-Morello, and F. Fnaiech,

“Application of empirical mode decomposition and artificial neural
network for automatic bearing fault diagnosis based on vibration
signals,” Appl. Acoust., vol. 89, pp. 16–27, Mar. 2015.

[36] F. Chollet, “Deep learning with separable convolutions,” in Proc. IEEE

Conf. Comput. Vis. Pattern Recognit. (CVPR), 2016, pp. 1251–1258.
[37] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proc.

IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2018, pp. 1–13.
[38] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking

the inception architecture for computer vision,” in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 1–10.
[39] T.-Y. Hsiao, Y.-C. Chang, H.-H. Chou, and C.-T. Chiu, “Filter-

based deep-compression with global average pooling for convolutional
networks,” J. Syst. Archit., vol. 95, pp. 9–18, May 2019.

[40] Y. Liu et al., “Wide-area-measurement system development at the dis-
tribution level: An FNET/GridEye example,” IEEE Trans. Power Del.,
vol. 31, no. 2, pp. 721–731, Apr. 2016.

[41] M. Pumperla. (2019). Hyperas. [Online]. Available: https://
github.com/maxpumperla/hyperas

Wei Qiu (Graduate Student Member, IEEE) received
the B.Sc. degree in electrical engineering from the
Hubei University of Technology, Wuhan, China, in
2015, and the M.Sc. degree in electrical engineer-
ing from Hunan University, Changsha, China, in
2017, where he is currently pursuing the Ph.D.
degree.

He has been a joint Doctoral student with the
University of Tennessee since 2019. His current
research interests include power system analysis,
cyber-security of synchrophasor, power quality mea-

surement, and reliability analysis of power equipment.

Qiu Tang was born in Hunan, China, in 1970. She
received the B.Sc. and M.Sc. degrees in electri-
cal engineering from Hunan University, Changsha,
China, in 1992 and 1995, respectively, the M.Sc.
degree in electrical engineering from the University
of Nottingham, Nottingham, U.K., in 2005, and the
Ph.D. degree in electrical engineering from Hunan
University in 2010.

She has been an Associate Professor with Hunan
University since 2006. Her current research interests
include power system analysis, digital signal pro-

cessing, and virtual instruments.

Kunzhi Zhu received the B.S. degree in measure-
ment and control technology and instrument from
Hunan University, Changsha, China, in 2018, where
he is currently pursuing the Ph.D. degree in electri-
cal engineering.

His research interests include signal process-
ing, machine learning, power system analysis, and
mechanical fault diagnosis.

Weikang Wang (Graduate Student Member, IEEE)
received the B.S. degree in computer science from
the School of Control and Computer Engineering,
North China Electric Power University in 2016.
He is currently pursuing the Ph.D. degree in com-
puter engineering with the University of Tennessee,
Knoxville.

His research interests include wide-area moni-
toring, situation awareness, big data, and machine
learning.

Yilu Liu (Fellow, IEEE) received the B.S. degree
from Xi’an Jiaotong University, China, and the
M.S. and Ph.D. degrees from Ohio State University,
Columbus, in 1986 and 1989, respectively.

She is currently the Governor’s Chair with the
University of Tennessee, Knoxville, and Oak Ridge
National Laboratory (ORNL). She is also the
Deputy Director of the DOE/NSF-cofunded engi-
neering research center CURENT. Prior to joining
UTK/ORNL, she was a Professor with Virginia
Tech. She led the effort to create the North American

power grid Frequency Monitoring Network (FNET) with Virginia Tech, which
is now operated at UTK and ORNL as GridEye. Her current research interests
include power system wide-area monitoring and control, large interconnection-
level dynamic simulations, electromagnetic transient analysis, and power
transformer modeling and diagnosis. She is elected as the member of National
Academy of Engineering in 2016.

Wenxuan Yao (Member, IEEE) received the B.S.
and Ph.D. degrees from the College of Electrical
and Information Engineering, Hunan University,
Changsha, China, in 2011 and 2017, respec-
tively, and the Ph.D. degree from the Department
of Electrical Engineering and Computer Science,
University of Tennessee, Knoxville, USA, in 2018.

He is currently a Research Associate with Oak
Ridge National Laboratory. His research interests
include wide-area power system monitoring, syn-
chrophasor measurement applications, embedded

system development, power quality diagnosis and big data analysis for the
power system.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on September 20,2024 at 14:41:46 UTC from IEEE Xplore.  Restrictions apply. 


