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Abstract—Security of Distribution Synchrophasors Data (DSD)
is of paramount importance as the data is used for critical
smart grid applications including situational awareness, advanced
protection, and dynamic control. Unfortunately, the DSD are
attractive targets for malicious attackers aiming to damage grid.
Data spoofing is a new class of deceiving attack, where the
DSD of one Phasor Measurement Units (PMUs) is tampered
by other PMUs thereby spoiling measurement based appli-
cations. To address this issue, a source authentication based
data spoofing attack detection method is proposed using Multi-
view Convolutional Neural Network (MCNN). First, common
components embedded in raw frequency measurements from
DSD are removed by Savitzky-Golay (SG) filter. Second, fast
S transform (FST) is utilized to extract representative spatial
fingerprints via time frequency analysis. Third, the spatial fin-
gerprint is fed to MCNN, which combines dilated and standard
convolutions for automatic feather extraction and source identifi-
cation. Finally, according to the output of MCNN, spoofing attack
detection is performed via threshold criterion. Extensive experi-
ments with actual DSD from multiple locations in FNET/Grideye
are conducted to verify the effectiveness of the proposed method.

Index Terms—Data spoofing attack, distribution
synchrophasors data, multi-view convolutional neural network,
source authentication.

NOMENCLATURE

Acronyms

CI Confidence Index

Manuscript received April 2, 2019; revised July 27, 2019 and December
3, 2019; accepted January 19, 2020. Date of publication February 3, 2020;
date of current version June 19, 2020. This work was supported in part by
the Engineering Research Center Program of the National Science Foundation
and the Department of Energy under NSF Award EEC-1041877, and in part
by the CURENT Industry Partnership Program. Paper no. TSG-00499-2019.
(Corresponding author: Wenxuan Yao.)

Wei Qiu and Qiu Tang are with the College of Electrical and
Information Engineering, Hunan University, Changsha 410082, China (e-mail:
qiuwei@hnu.edu.cn; tangqiu@hnu.edu.cn).

Yajun Wang is with the Department of Electrical Engineering and Computer
Science, University of Tennessee, Knoxville, TN 37996 USA (e-mail:
ywang139@vols.utk.edu).

Lingwei Zhan is with the Electrical and Electronics Systems Research
Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA (e-mail:
zhanl@ornl.gov).

Yilu Liu and Wenxuan Yao are with the Department of Electrical
Engineering and Computer Science, University of Tennessee, Knoxville, TN
37996 USA, and also with the Electrical and Electronics Systems Research
Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA (e-mail:
liu@utk.edu; wyao3@vols.utk.edu).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSG.2020.2971148

CNN
DSD
FST
LSP
MCNN
PMUs
SG
t-SNE

Sets

CESS

Functions
Ci
cl
Cyi

F;
P;
S(F)

Variables
A(m, h)

, Member, IEEE, Lingwei Zhan, Member, IEEE,
, Fellow, IEEE, and Wenxuan Yao

, Member, IEEE

Convolutional neural networks
Distribution Synchrophasors Data

Fast S transform

Least-squares polynomial

Multi-view convolutional neural network
Phasor Measurement Unit
Savitzky-Golay

t-Distributed Stochastic Neighbor Embedding.

Length of the spoofed data
Length of the sample

Length of local symmetry data window in SG

Number of DSD classes.

Output of the convolution layer
Output of dilated convolutional layer
Combined output of dilated and
convolution

Output of full connected layer

Output of max pooling layer

Output probability value of softmax.

Magnitude of FST

Average accuracy for spoofed data
Bias term of convolution layer
Depth of convolution kernel

Size of convolution kernel

Size of pooling layer

Length of the matrix A(m, h)
Common data components

Width of the matrix A(m, h)

standard

Misidentification rate of non-spoofed data

Non-spoofed data accuracy

Order of a LSP

Gaussian window parameter
Stride of convolution kernel
Filtered frequency components
Threshold of softmax classifier
Target signal of #(n)

Weight of the convolutional kernel

1949-3053 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on September 20,2024 at 14:43:27 UTC from IEEE Xplore. Restrictions apply.



3458

x(n) Frequency measurements of DSD

y Dilated factor of dilated convolution
A Proportion of data spoofing

P Parameter of dropout.

I. INTRODUCTION

INCE electric power grids’ dependence on information
Sprovided by Distribution Synchrophasor Data (DSD) is
increasing, the cyber security concerns of synchrophasor
communication network must be carefully addressed [1]-[3].
Some potential attacks have already been recognized,
including Communication Link Damage (CLD), Denial of
Service (DoS), and data spoofing [4]. CLD can be caused by
physical attacks like cut-off or natural disasters, e.g., hurri-
canes or wild fires [5]. DoS attacks occur when a number of
computers or network services in the intranet are controlled by
trojans and huge redundant data traffic or inquiries to the target
are generated in order to saturate the communication link [6].
As both CLD and DoS may result in significant communi-
cation delay or even missing data, existing technologies can
detect these attacks with no difficulty.

Comparatively, data spoofing occurs when the Phasor
Measurement Units (PMUs) are hacked by adversaries, who
can arbitrarily manipulate the synchrophasors data. The
data spoofing attacks can be seen as a specific implementation
of data injection attacks, including various attack methods [7].
For example, data tampering and replay attacks can be
easily detected by continuously monitoring the correlation
coefficients between the afflicted PMUs [8].

However, if malicious intruders are familiar with the
synchrophasors network configuration, data spoofing attacks
may be performed and avoided the detections of existing
approaches. For example, attackers can tamper or mix the
measurement data of one DSD from other DSDs in differ-
ent locations without major change of measurement values.
Compared to random spoofing, it makes the attack much
harder to be distinguished when original data is tampered by
data in other location because the spoofed data have high sim-
ilarity with normal data [25]. As a result, the source authen-
tication can no longer be trusted, resulting in the estimated
disturbance localization being affected. Even worse, measure-
ment based applications are adversely influenced such as faulty
result of state estimator and failure of wide area damping
control since the tampered measurement still appear to be
normal data [9]. Additionally, the PMU spoofing can happen
in data servers such as Phasor Data Concentrators (PDC) or
during data communication by malicious attacker because the
IEEE C37.118.2 protocol does not offer confidentiality [10].
As an increasing number of DSD deployed in power grids,
the necessity to detect such data spoofing attack and enhance
cyber security of synchrophasor network arises.

Data spoofing and intrusion detection method is consid-
ered as a defense-in-depth method by the National Institute
of Standards and Technology [11]. Generally, such methods
are classified into two types: the anomaly detection and
signature-based detection [12]. The anomaly detection method
seeks the degree of deviation between observed data to
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determine data spoofing attacks. For example, the Local
Outlier Factor (LOF), a density-based method, is used to detect
falsified data in synchrophasor voltage and current curves [13].
However, the density and shape features of the replay attack
are similar, thus making it difficult to identify by LOF. An
ensemble-based method is used to improve the accuracy of
multiple attack scenarios [14]. As described in [15], three
kinds of anomaly detection methods are concentrated to com-
prehensively identify anomalies in the synchrophasor voltage.
However, the anomaly detection methods based on density
or distance are easily circumvented by adjusting data spoof-
ing behavior, such as adjusting the length and magnitude of
spoofed data.

The objective of this paper is to develop a source authenti-
cation method using spatial anomaly-based for data spoofing
cyber-attack detection. It is demonstrated in [16] that the syn-
chronized frequency measurement from DSD has its own and
unique spatial fingerprint from its local grid, which is mainly
determined by the topology of distribution network. Thus,
these distinct spatial fingerprints, if successfully extracted,
can be potential used as fingerprints for source authentica-
tion. When a data spoof attack occurs, the original spatial
fingerprint embedded in the DSD from one location will be
missing or replaced by fingerprints in other locations, partial
or wholly [17]. Consequently, the integrity of spatial finger-
print can provide a supportive evidence for the detection of
spoofing attack.

The remainder of this paper is organized as follows.
Section II introduces the work related to the anomaly-based
detection method. Then the framework of the proposed method
is presented in Section III. Section IV introduces the principle
of DSD spoofing detection method. In Section V, the fea-
ture visualization is presented to demonstrate the effectiveness
of MCNN. Then, the experiments with actual DSD are con-
ducted in Section VI. Finally, the conclusion and discussion
are presented in Section VII.

II. RELATED WORK

The anomaly-based method first extracts valid spatial fin-
gerprint information and then recognizes it by the classifier.
The premise to identify the source of an unknown DSD from
frequency measurements is to extract its characteristic since
the frequency measured within a same interconnection share
the same main trend due to the synchronicity of AC power
system. Additionally, the common components in DSD is
stochastic since it is determined by generation and load in
power system. Thus the first step is to remove the com-
mon component and extract the spatial fingerprint. In [16],
a Daubechies Wavelet Transform (WT) is used to decom-
pose the original frequency measurements into high and low
components. However, the selection of wavelet basis directly
affects the filtering effect. A weighted high pass filter is
applied on DSD for variation extrication in [18]. However,
different weight vectors introduce computational errors and
time delay on the original data. In this paper, we use the
high-efficiency Savitzky-Golay (SG) filter [19] to eliminate
common components and preserve the key spatial information
without time delay.
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To extract spatial information of DSD, the signal
processing methods are required. Generally, the Hilbert
Huang Transform (HHT) [20] and Variational Mode
Decomposition (VMD) [21] are widely used for signal
decomposition at time and frequency scales. The number
of intrinsic mode function is empirically selected for dif-
ferent power signals in HHT and VMD. However, the
spoofed signal is complicated due to different spoofing
level. Then Empirical Orthogonal Functions (EOF) analysis
is proposed to extract frequency wave components in [22],
but the EOF features of statistical model are ambiguous
and does not contain frequency information. Furthermore, the
S-transform (ST) with the ability to provide both the time
and frequency domain information is a preferred technique
in signal decomposition [23]. It can detect frequency domain
characteristics of the input signal in different time periods.
Moreover, the computation complexity of ST can be signif-
icantly reduced via its fast implementation [24]. Therefore,
the Fast ST (FST) is utilized to extract spatial fingerprints of
filtered DSD at multiple frequency scales.

For the purpose of source location identification and
data spoofing attack detection in DSD, a classifier is needed,
which can be established by training with historical spatial
fingerprints. In [25] and [26], the statistical features, includ-
ing roughness index, sparsity trends, and correlation devia-
tion, are designed to process source authentication. Then the
machine learning methods, e.g., Sparse Logistic Regression
and Support Vector Machines (SVM) [27], [28], are used
for attack detection based on extracted features. However,
for different attack levels, such as different ratio between of
spoofed and normal data, a limited number of handcrafted
features are difficult to represent the characteristics of dif-
ferent cyber-attacks data. Therefore, these detection methods
using handcrafted features are not suitable for detecting diverse
cyber-attack.

With the rise of deep learning algorithms, the development
of Convolutional Neural Networks (CNN) has provided new
ideas for grid data processing [29]. The CNN can learn effec-
tive information through supervised learning method due to
the development of convolution operations, pooling layers, and
computer technology. It is demonstrated that the CNN can
automatically extract a large number of invariant and discrim-
inative features for two-dimensional data [30]. In [32], the WT
and CNN are combined to provide solutions for voltage signal

Data spoofing cyber-

MCNN model training attack detection

The proposed framework for DSD spoofing attack detection based on MCNN.

identification. However, the standard convolution operation
limits the variety of features especially for unknown data [32].

In this work, we propose a cyber-attack detection frame-
work based on SG, FST and Multi-view Convolutional
Neural Network (MCNN), where are first used in cyber-attack
detection. Particularly, a MCNN with dilated convolution is
presented to automatically extract features from a number of
different receptive area. On top of that, MCNN can provide an
attack Confidence Index (CI) based on matching level between
extracted spatial fingerprints from testing data and the trained
neural network. Finally, the threshold decision is made based
on the proposed CI threshold criterion, where it is considered
that an attack behavior has occurred when the classification
output of MCNN is less than the threshold.

III. FRAMEWORK FOR THE DSD SPOOFING DETECTION

The framework of the proposed method for DSD spoofing
detection is shown in Fig. 1. The automatic detection process
can be mainly divided into four steps:

1) Signal filtering: The frequency trend of the DSD x(n)
is captured via Savitzky-Golay filter. Then the common
frequency components are eliminated from the raw data
and the target signal #,,(n) is obtained.

2) Spatial fingerprint extraction: Spatial fingerprints of
DSD are extracted using FST. Then the magnitude
matrix A(m/2, h/2) of FST is fed to the MCNN classifier.

3) MCNN model training: A multilayer MCNN model is
designed and trained using extracted spatial fingerprint
from historical ambient DSD without being spoofed.

4) Data spoofing cyber-attack detection: The trained
MCNN model is used to authenticate incoming DSD for
spoofing cyber-attack detection using threshold T).

IV. PRINCIPLE OF THE DSD SPOOFING DETECTION
A. Savitzky-Golay Filtering

Since measurements in same interconnection have high sim-
ilarity due to the synchronicity of AC power system and only
spatial fingerprints from local power grid are of interest, it is
essential to remove the common components for each DSD to
extract the representative components. To this end, Savitzky-
Golay filter is utilized to eliminate the common components
and extract the local variations. Compared with common filter-
ing algorithms, e.g., mean filtering and Kalman filtering [33],
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Fig. 2. Illustration of SG filtering effect on raw DSD. (a) Plot of raw
frequency and captured main trend with p = 3 and M = 70, (b) Plot of target
signal t(n) = x(n) — I(n).

SG filter does not introduce signal time shift because it is
based on the local least-squares polynomial and it has zero
phase [19].

In SG filter, the local Least-squares Polynomial (LSP) fit-
ting is first utilized to track fluctuations, and then the moving
window can be used to segment signals [19]. x(n) is denoted as
frequency measurements of DSD. Concretely, for a local sym-
metry data window n = [X_,;, X1y - o s X0y « « - s Xm—1, Xim]
with a length 2M + 1, where m is the index of n, the common
component of DSD under the window n can be obtained as

k=p
=> bt (1)
k=0

where p denotes the order of a LSP (p < 2M), by is the
coefficient of polynomial. The goal of SG is to minimize the
following error

I(n)

n=M
3 1) - x(m)] = Z Z(bkn —x(n)) )
n=—M n=—M k=0

After fitting the x(n) using local window and LSP, the
filtered frequency #(n) can be obtained by subtracting the com-
mon data components /(n) from the original data x(n), namely
t(n) = x(n) — l(n).

To show the filtering effect, we randomly take a non-spoofed
data of length 300 from the data set. The actual filtering results
for DSD is shown in Fig. 2. This parameters of SG are an
example. It can be seen from Fig. 2(a) that the trend of the
frequency measurement in DSD is detected through SG filter.
In Fig. 2(b), the target signal #(n) is within 5 mHz, which
indicates the common data component has been eliminated.

To reduce the computation before spatial fingerprint extrac-
tion, the #(n) is divided into several signals of length L,,
using sliding windows where these truncated signals can be
denoted as t,,(n). The interval between different #,,(n) is set to
100 sampling points.

B. Time-Frequency Analysis Using Fast S-Transform

The multi-dimensional feature extraction of spoofing signal
is the foundation for cyber-attack detection. Thus followed
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(c) The FST with r = 20, (d) The FST with r = 50.

by the SG filter, the FST is used to extract spatial features
via time-frequency analysis.

The calculation steps of FST can be summarized as: 1) The
FFT of t,,(n) and Gaussian window are calculated, denoting
as F(n) and G(h) respectively, where the Gaussian window
is part of the ST and can be used to adjust the resolution of
signal. 2) For a specific DSD frequency point ¢, the spectrum
of F(n) is shifted to F(n + ¢). Then we get the Hadamard
product of F(n+¢q) and G(h), where the Hadamard product is
element-wise product to get the same dimension as the input
matrix [45]. 3) The inverse FFT are calculated to get the cor-
responding discrete time-frequency spatial fingerprint results
S(@m, h) [23].

The result of FST is complex matrix. The magnitude of
FST A(m, h) can be expressed as A(m, h) = |S(m, h)|, where
m and h denote the width and length of the matrix, respec-
tively. To speed up the calculation, only one frequency point
is calculated per two frequency points in FST [24]. Then the
length of the spatial fingerprint A(m, h/2) is further reduced
to A(m/2, h/2) by down sampling.

In FST, the Gaussian window parameter r should have
an appropriate value to get a desirable resolution. Thus, we
analyze the time-frequency results of #,,(n) under different
parameters r. The spatial fingerprint A(m/2, h/2) of the FST
with different r is depicted in Fig. 3. The color of the time-
frequency results represent the amplitude, and the distribution
of the time-frequency results represent the distribution of
amplitude. We can choose the appropriate parameter value by
comparing the time resolution and frequency resolution. The
length of the sample L,, is set to 600 in this test. The cor-
responding time-frequency matrix size is m = 300, & = 600,
in which the DC component is ignored because the common
frequencies have been eliminated. The actual results of the
FST can be evaluated by the frequency resolution and time
resolution [23].

As can be seen from the vertical axis of Fig. 3(b), the
frequency information of #,,(n) is very rich and the amplitude
is scattered. From the attacker’s point of view, to reproduce
an illegible attack DSD, the same frequency components,
frequency magnitude, start and end times need to be used. This
means that copying the exact same DSD is very difficult due
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to the diversity of DSD. To choose the appropriate parameter
value, for example, the amplitudes are randomly distributed
in Fig. 3(b). It means a very low frequency resolution when
r = 10. On the contrary, Fig. 3(d) has a very high frequency
resolution because the frequency components are very clear
from the y-axis perspective. However, the time resolution is
very low with » = 50 because many frequency components are
distributed throughout the time axis. Overall, Fig. 3(c) shows
that the frequency components can be distinguished. It means
that it has good frequency resolution. Compared with Fig. 3(d),
the time resolution of Fig. 3(c) is higher because the time-
generated nodes of different frequency components are clearer.
In this paper, the window parameter r is set to 20 as a com-
promise between time and frequency resolution for different
dataset. The selected r can be used to other DSD data set from
different locations in the same power grid.

C. MCNN Model Training

To realize the detection of spoofing attack, an effective
classification method is required to authenticate the spatial
fingerprints of incoming data. The MCNN is used to inte-
grate spatial features and realize signal classification. The input
data A(m/2, h/2) is automatically filtered by MCNN, so that
the information loss from the process of manual feature design
can be avoided.

For general CNN, the structure of CNN contains three
components: the convolutional layer, the pooling layer and
full-connected (FC) layer [34]. The convolutional layer is used
to extracted different features and learn the corresponding
weights from the input data. The dimensions of the input and
feature are downsampling using the pooling layer. Finally,
the learned features are mapped to the outputs by combin-
ing multiple FC layers. By superimposing different layers on
top of each other, higher-level features of spoofed data can
be extracted. To briefly describe the principles of MCNN,
we consider the single layer MCNN, which consists of one
convolution layer and one pooling layer. For the input signal
A(m/2, h/2), the output of the convolution layer is defined as

3)

where w; denotes the weight of the convolutional kernel in i-th
feature map, the symbol * denotes the convolution operation,
the function g(-) is the activation function. The function of
the convolution kernel is to extract features from the input
matrix. To prevent gradient disappearance, the Rectified Linear
Unit (ReLU) is used as the activation function. The size of C;
after the convolution layer is d. x (m/4—f.)/sc+ 1) x ((h/4—
fo)/se + 1), where the d., f. and s. denote the depth, size of
convolution kernel and stride respectively.

After the feature extraction of convolution layer, the max
pooling layer is utilized to filter out redundant feature
information. The output of max pooling layer can be expressed
as

Ci=gw;*xA(m/2,h/2) + b))

Pi(f,) = max{0, Cil;, s, } 4)

where f, denotes the size of pooling layer. The P; means that
the max value between 0 and zone [fy, f,] in C;.

3461

Convolution result

K fixf=3x3

Fig. 4. Different convolution operations with convolution kernel size
fe X fe =3 x 3. (a) Dilated convolution with y = 2, (b) Standard convolution
with y = 1.

Then, the P; is flatted at full connected layer and the output
of full connected layer F is fed to the categorical cross entropy
function to training [35]. The DSD is then detected by the
softmax function, which can be expressed as

0
S(F) =€) e
i=1
where i = 1,2,...,0, Q is the total number of DSD class.
Generally, the class of the maximum probability value in S(F)
is the category to which the DSD belongs.

Additionally, in order to increase the diversity of fea-
tures, the dilated convolution is used to expand the receptive
area [32]. It have been shown that the dilated convolution
view is more flexible than the standard convolution kernel,
as shown in Fig. 4. It can be seen from Fig. 4(a) that the
dilated factor y determines the size of the receptive view and
a higher y means a larger receptive view. The receptive area of
dilated convolution and standard convolution are is 5 x 5 and
3 x 3 respectively when the kernel size is f,. x f = 3x3. Thus,
we further propose the MCNN to combine the advantages of
two convolution operations, which the dilated convolution and
standard convolution kernel are used in the same layer. The
principle of dilated convolution can be expressed as

Cl = g(w; %, A(m/2, h/2) + b))

(&)

(6)

where the *, denotes the dilated convolution with dilated
factor. The receptive field length of dilated convolution is
(fe — 1) x y + 1. For the convolution layer with depth of d,,
half of the convolution operation of d. adopts standard convo-
lution and the other half is dilated convolution in this paper.
Therefore, the output of the convolutional layer is

Cyi = [0.5C;,0.5C7 ] @)

It shows that the depth of d. is composed of two parts,
C! and Cy;, which means that the features are more diversi-
fied. Then the parameters of MCNN are trained and optimized
by backpropagation algorithms after establishing the MCNN
structure. Finally, the spoofed data can be detected according
to the softmax function in Equation (5).

D. Data Spoofing Cyber-Attack Using Threshold Criterion

To realize cyber-attack and data spoofing detection, a thresh-
old Ty is required to distinguish the attacked DSD and
normal DSD, which is considered as attack behavior when
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the probability value S(F) is lower than Ty. To selected the
threshold T, a CI threshold criterion is further proposed.

After training the MCNN model, the T is obtained by
balancing the accuracy of spoofed data detection and normal
DSD authentication. Broadly, a detection accuracy “trade off”
should be considered when choosing the Ty. If a too large
value is selected for Tyy), all the DSD can be identified as
spoofed data. Conversely, the spoofed data cannot be accu-
rately identified when T, is set to a too low value. To select
a suitable Ty, a CI reference guideline is designed for T(),
which can be obtained as

CI = Max [0.5 D (1= 2)Au() + 0.5 " Nu(h) — |y”|]T .

st Y = (0.5 3 (1= Au) +0.5 ZNa,(A)>H (8)

where the A,+()) and N, (1) denote the Average Accuracy (A,)
for spoofed data detection and the Non-spoofed data Accuracy
(Ng) for normal data under different threshold T), respec-
tively. The third item y” = y,12 — 2y,+1 + yy is the second
order difference, where u is the index under different threshold.
The second order difference term is used to constrain the CI
value to choose a smooth threshold point. The equation repre-
sents that the max value is elected from different data spoofing
ratio A. The data spoofing ratio A is used to define the strength
of the attack

A =Lg/Ly €))

where the L, and L,, are the length of attack and raw data,
respectively. Finally, it indicates that the sum of A, and N, is
large and stable when Equation (5) is taken to the maximum.
Concretely, a Tyy) between 0.5 and 1 is specified through
experimental analysis.

V. VISUAL ANALYSIS OF FEATURES

In this paper, the DSD from 11 different loca-
tions (P1-P11) in Frequency measurement Network
(FNET/Grideye) system [36] are used. Fig. 5 shows the
geographical locations of DSD in our study. It shows that
the PMUs are distributed in various regions. The DSD of
these nine locations are collected to verify the validity of
the proposed framework. There are 12,800 samples used in
validation for DSD in each location with 10 Hz reporting rate
in Fig. 5.
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Fig. 6. Visualizations of the input time-frequency matrix signal A(m/2, h/2)
and features in the final layer of MCNN by t-SNE. (a) Visualizations of the
input A(m/2, h/2), (b) Visualizations of features in the final layer of MCNN.

A. Visualization of Classification Capability

In order to verify the feature extraction ability of MCNN,
a nonlinear dimension reduction technique called t-Distributed
Stochastic Neighbor Embedding (t-SNE) is used to visualize
high-dimensional data [37]. In t-SNE, the clustering degree of
features reflects the classification performance.

The input signal A(m/2, h/2) and corresponding output fea-
tures in the final layer are fed to t-SNE. 300 samples per
synchrophasor class are used for visualization. The perplexity
and the number of iterations are set to 40 and 4000 respectively
in t-SNE. The visualization of the different data are shown in
Fig. 6. The markers represents the degree of aggregation of
the input data, where the dimensions of input data are changed
to 2 after transformed by t-SNE.

It is observed from Fig. 6(a) that the input spatial finger-
prints overlap each other, making it difficult to distinguish
the DSD in different locations. In the Fig. 6(b), all the DSD
have been separated from each other after being processed
by MCNN. The spatial fingerprints of the same location are
gathered together. In addition, the spatial fingerprint of P1
and P8 are more dispersed, indicating that these spatial fin-
gerprints contain multiple signal components. It reveals from
Fig. 6 that MCNN can identify the difference of DSD from
multiple locations.

B. Feature Visualization

To further explore the features learned by MCNN, we visu-
alize the output features of different layers. By observing the
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Fig. 7. Visualization of multiple randomly selected features in different layers
of MCNN. The Pr-i represents the features of Pr locations from the ith layer.

shape of spatial fingerprint, it is beneficial to improve the
model through continuous feedback and adjustment.

First, we build a MCNN with five layers. To simplify the
model, all the size of convolution kernel is set to f, = 3 and
the depth of convolution layer is d. = 8 per layer. The size
of the pooled layer is set to f, = 2. We randomly selected the
raw DSD from three locations, P1, P2, and P8. To simulate the
spoof attack, the DSD in P8 is tampered by the DSD in P2.

Fig. 7 exhibits the features from the first, third and the fifth
layers. It shows that the Pl contains components of differ-
ent frequencies from 0-5 Hz, P2 contains only low-frequency
components (f < 2 Hz) and P8 has a small amount of high-
frequency components (f > 2 Hz). It can be seen from
Fig. 7 that the features of the first layer are close to the orig-
inal input signal, indicating that MCNN does not learn any
useful information. However, the low-frequency information
is extracted in the third layer as can be seen from P2-3 and
P8-3. In the fifth layer, the low frequency component is com-
pletely extracted for P2-5. Additionally, the features of the
high frequency portion of P1 and P8 are extracted by P1-5
and P8-5. Particularly, for the attacked data P8 and P8-5, it
shows that the location of the attack is determined, and the
attack effect becomes prominent as the number of convolu-
tion layers increases. Thus, it is evident that the CNN has the
potential ability to detect spoofed data.

VI. MODEL PERFORMANCE ASSESSMENT

To verify the effectiveness of the proposed method, the DSD
samples from multiple locations in Fig. 5 are used for ver-
ification. There are 12,800 different samples used for DSD
with 10 Hz reporting rate. The DSD from P1-P9 is randomly
assigned to different sets, of which 70% are used for training,
15% for testing and 15% for verification. The cross valida-
tion method is applied to validate the model. The DSD from
P10 and P11 are not used during MCNN training process thus
are reserved as the attack signal source. It is worth mention-
ing that the MCNN is only trained using the non-spoofed
DSD from nine locations (P1-P9). To prevent over-fitting,
the dropout technique and training technic are adopted in
MCNN [38]. For the dropout, we denote the p as the ratio
of remaining nodes in MCNN. Grid search method is used to
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TABLE I
THE PARAMETER SETTINGS OF THE SG AND FST

Method SG FST
Parameter p M r
Value 3,4 [50, 75] 20

determine classifier parameters [39]. Additionally, the learning
rate would be reduced by half when the loss value does not
decrease for 5 consecutive iterations. The implementation of
MCNN is based on the Keras framework on a PC with GPU
GTX 1060, which the Keras is a deep learning library [40].

A. Parameter Sensitivity Analysis

Since parameters of the model directly affect the accu-
racy of the spoofing detection, the appropriate parameters are
significant to the performance of the proposed method.

To select appropriate SG filter parameters, Fig. 8 presents
the results of the SG filter for the DSD at P1 with different
p and M. It can be seen from Fig. 8(a) that the SG filter fails
to capture some trends in waveform when p = 1. On the
contrary, the SG filter with order p = 5 varies dramatically
indicates that the common components were not learned. The
SG filter shows a balance between computational complexity
and efficiency when p = 3. Thus, the polynomial order p is
set to 3 or 4 to get a better filtering performance and avoid
overfitting.

As can be noticed from Fig. 8(b) that a higher window width
M(M > 100) prevents the SG filter from capturing detailed
trends in the waveform. However, a smaller window width M
results in an inefficient filtering when M = 25. Consequently,
a small range of parameters, i.e., M € [50, 75], is selected
to apply to the DSD after some trial and error. The detailed
parameter settings of SG and FST are summarized in Table I.
Therefore, the SG parameters of different locations can be
selected from Table I according to the actual filtering effect.

On the other hand, the number of layers and size of con-
volution kernel have a great impact on the performance of
MCNN. To obtain the optimal number of convolution layers,
the non-spoofed DSD is used to verify parameter sensitivity
in the training process.

To select appropriate MCNN parameters, Fig. 9 shows the
relationship between authentication accuracy of raw data, the
number of convolution layers and convolution kernel size
using grid search. For different MCNN structures, all the nodes
of the full connected layer are set to 300. To keep the param-
eter capacity of MCNN at a similar level, the size of pooling
are set to 2, 3, 4, 5 for MCNN-5, MCNN-4, MCNN-3 and
MCNN-2 respectively, where the MCNN-i represents that the
number of convolution layer is equal to i. The other parameters
of MCNN are set the same to have a fair comparison.

It demonstrates that the MCNN has the highest recognition
accuracy when the convolution kernel size is 3x3. The accu-
racy of source identification decreases slightly as the size of
convolution kernel increases. Additionally, it shows that the
layer number of MCNN also affects the accuracy. Overall, the
MCNN-3 performs better than other models.
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Fig. 8. Results of SG filter with different parameters p and M. (a) Filtering
results under different polynomial order p when M = 50, (b) Filtering results
under different window width M when p = 4.
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Fig. 9. The raw data authentication performance of MCNN for non-spoofed
data under different layers and convolution kernel sizes.

In this work, a MCNN with three convolution layers is
selected based on the above parameter analysis, and the size
of all the convolution kernels are set to 3x3. The detailed
parameter structure of MCNN is listed in Table II. The stride
sc of convolution layer is set to 1. The dropout layer is placed
after the fully connected layer, and the parameter of dropout
p is set to 0.5. The dilated factor y is set to 2. The batch size
of the training is set to 256. The model parameters are trained
using the RMSProp optimizer. The total number of parameters
in MCNN is nearly 220, 000.

B. Attack Detection of Synchrophasor Data

To verify the accuracy of the proposed method for attack
detection, a spoofing method that directly tampers the original
DSD is adopted [25]. In the verification data set, the DSD is
randomly spoofed by the DSD from other locations.
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TABLE II
STRUCTURE OF MCNN FOR DSD ATTACK DETECTOPM

Layer Layer 1 Layer 2 Layer 3 Layer 4
Conv. 8x3x3 16x3x3 16%3x3 -
Pooling 3x3 4x4 3x3 -
FC - - - 300

It is reported that the format of convolution is d.xf:xfc,
and the format of pooling is f,%f,.
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Fig. 10. Illustration of DSD data attack. (a) A schematic diagram of DSD

data attack, where the DSD in P2 is spoofed by data in P8, (b) The FST of
the raw DSD and attacked DSD.

In this work, we randomly test four kinds of attacks, in which
the DSD in one location is spoofed by data in another location
with same timestamp. The L,, is set to 600, which is equivalent
to 1 minute data length. The illustration of data attack and
corresponding spatial fingerprints are shown in Fig. 10. For
each sample, it can be observed from Fig. 10(a) that a portion
of the original DSD is attacked. As can be seen from Fig. 10(b),
the FST can potentially identify the components of the signal
at different times due to the different frequency components of
DSD in each location. Therefore, such attacking characteristics
can then be captured by MCNN.

To identify the attack behavior, the threshold of softmax
function is adjust through Equation (5). When the value of
S(F) is lower than the threshold Ty, it can be considered
that the attack has occurred. The performance of four differ-
ent spoofed data recognition experiments under different Ty
and A is depicted in Fig. 11. The step size of Tyy) and A are
set to 0.02 and 1/12 respectively.

It can be observed that all the recognition accuracy of the
attack increases with A. When A is greater than 3/12, more than
90% of attacks can be detected in Fig. 11(a) and (b). Similarly,
the reduction of the Tr) makes the recognition accuracy of the
attack decrease. For example, the recognition accuracy is lower
than 94% when T is lower than 0.9 as shown in Fig. 11(d).
It also shows that the model has the lowest detection accuracy
when A < 2/12 and the Ty < 0.96. Particularly, the accuracy
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Fig. 12. The non-spoofed DSD recognition accuracy when the T(f) is range
from 0.8 to 1.

reaches 100% when the T,y close to the maximum value
S(F)max [the S(F)max is 1 in this test], indicating that some
normal DSD is misidentified.

The recognition accuracy of non-spoofed DSD with differ-
ent Ty is shown in Fig. 12. It shows that the performance of
non-spoofed data decreases rapidly when the threshold is set
to 1. On the contrary, the accuracy of non-spoofed data is rela-
tively stable for each location when the T(r) range is between
0.8 and 0.95. Therefore, it is reasonable to set the thresh-
old to less than 1. Taking the above results into account,
we set Typ for 0.92 in P2 according to Equation (5) as
a compromise between attack detection and non-spoofed DSD
recognition. Thresholds for other locations can be set in the
similar approach.

To further verify the spoofed accuracy, two unknown attacks
(both outside the model training set) are used, of which the
DSD is spoofed by the DSD from P10 and P11. The Average
Accuracy (AA) is the average rate for attack detection at dif-
ferent A. The AA results of two unknown attacks with different
A are shown in Fig. 13. It can be seen from Fig. 13(b) that
the average AA reached 92.35 % when Ty) is set by the
proposed CI threshold criterion. These two unknown attacks
have the same trend as Fig. 11, indicating that the proposed
algorithm has the ability to detect unknown spoofed signals.
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Fig. 13. The spoofed DSD recognition accuracy using non-training data set.
(a) The DSD in P2 is spoofed by data in P11, the average AA is 89.73 %
when Ty = 0.92. (b) The DSD in P4 is spoofed by data in P10, the average
AA is 92.35 % when Ty = 0.88.

TABLE III
PERFORMANCE COMPARED UNDER DIFFERENT STEPS

Method Classifier structure  Time (s) M, (%) A (%)
LSTM One layer LSTM 7.01 21.06 87.26
SG-LSTM One layer LSTM 7.07 19.03 85.42
IDCNN Five-layer 1D 0.74 1140 8654
conv. layer
SG-IDCNN  Five-layer 1D 0.80 783 79.50
conv. layer
FSTMCNN  [hree-layerconv. g o5 228 8126
layer
SD-FST- Three-layer conv.
CNN layer 9.14 0.61 89.71
Proposed Three-layer conv. 9.61 0.18 91.46
method layer

Note: M,(%): Misidentification Rate for non-spoofed data.
A,(%): Average Accuracy for spoofed data detection.

C. Performance Comparison

To verify the contribution of FST and SG in the proposed
method, FST and SG steps are removed separately. It should
be note that a 1-Dimensional Convolutional Neural Network
(IDCNN) is used for direct detection since the data dimension
becomes one-dimensional when FST is removed [41]. The
main difference between 1DCNN and MCNN is the dimen-
sion of convolution kernel. Meanwhile, the Long Short Term
Memory (LSTM), a kind of time series process method [42],
is also used to compare with the proposed method. The num-
ber of nodes and layers of LSTM are optimized selected as 50
and 1 respectively. The inputs of IDCNN and LSTM are the
raw non-spoofed DSD. The input of SG-1DCNN are data from
which the common component is removed by SG. The number
of layers are optimally selected using grid search.

Table IIT shows that the both the M, and A, accuracy of
LSTM and SG-LSTM are lower than the proposed method.
The time consuming of LSTM is larger than 1DCNN. It is
demonstrated that the proposed method is 11% higher than
the IDCNN method according to the M, result. Meanwhile,
it can be inferred that the time of SG is about 0.05 seconds
for all the 1920 verification samples. The average time taken
for the SG step for each sample is approximately 0.025 mil-
liseconds. Therefore, it can be concluded that the SG step does
not significantly affect the real-time performance. Based on the
IDCNN and SG-1DCNN, the M, and A, results show that the
common component removed by SG does not affect the iden-
tification accuracy of DSD. Compared with SG+1DCNN and
FST-MCNN, the M, and A, results demonstrate that FST helps
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TABLE IV
PERFORMANCE COMPARED TO OTHER METHODS
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TABLE V
PERFORMANCE COMPARISON WITH TWO RECENT STUDIES

Method Classifier structure Time M, (%) Ay, (%) Method N“mbef of Feat“?e M, (%) Aq (%)
(s) categories extraction
Linear kernel MM-TF-RFC [25] 10 manual 3.60 72.00
SG-FST-SVM function 10.50 0.79 86.53 WT-FFT-ANN [16] 5 automatic 3.26 87.12
SG-FST-ANN 45000-1000-300 8.65 1.55 83.52 Proposed method 9 automatic 0.18 91.46
SG-FST-SAE 450%%’32%'03000' 8.76 2.95 89.50 Note: M(%): Misidentification Rate for non-spoofed data.
600- Aq(%): Average Accuracy for spoofed data detection.
Proposed Three-layer conv. 9.61 0.18 91.46
method layer

Note: M(%): Misidentification Rate for non-spoofed data.
Aq(%): Average Accuracy for spoofed data detection.

feature extraction because the spatial fingerprints of different
DSD can be extracted. It can be seen that the proposed method
has the highest A, and lowest M,.. The reason is that the diver-
sity of features in MCNN contribute to cyber-attack detection.
Compared with the proposed method and SG-FST-CNN, it
can be seen that the MCNN can improve the attack recogni-
tion result by 1.75% under the premise of slightly increasing
the calculation amount.

To further verify the validity of MCNN, we compare
the proposed method with some common machine learn-
ing methods, including Support Vector Machine (SVM),
Artificial Neural Network (ANN) and Stacked Auto-
Encoder (SAE) [43], [44]. For these methods, the input
spatial fingerprint A(m/2, h/2) is reshaped to accommodate
the one-dimensional input. The parameters of these methods
are optimally selected using grid search.

The details of compared spoofing detection methods are as
follows:

1) SG-ST-SVM: The linear kernel and stochastic gradient
descent are used to solve SVM. The kernel coefficient
are optimally screened from 0.01 to 0.001, and finally
0.041 is selected.

2) SG-ST-ANN: A 2-layer ANN is used for classification.
For simplicity, the activation function RELU and soft-
max classifier are used in ANN. The total number of
parameters is about 45 million.

3) SG-ST-SAE: The softmax classifier is used to classify
in SAE with total model parameters 54 million.

The classifier structure, non-spoofed DSD identification
and attack detection results of different methods are listed
in Table IV. The proposed MCNN model is offline trained
and used for real-time DSA detection. The running time
is recorded for efficiency comparison. The running time of
MCNN is slightly higher than ANN and SAE. However,
the average time of each sample is 5 milliseconds, thus
the real-time monitoring can be satisfied considering 1 min
data window for input samples. It is noted that both ANN
and SAE models have tens of millions of parameters, which
can easily lead to overfitting. It shows that the SVM and
MCNN have similar Mr. However, the SVM are more time-
consuming. The ANN and SAE consume less time but the
performance of A, does not exceed 90%. Compared to these
machine learning methods, the proposed method has the low-
est M, for non-spoofed data and best performance for attack
detection because the feature extraction ability of MCNN is
stronger.

We further compare the proposed method with two
machine learning-based methods on DSD spoofing attack
detection in [16] and [25], including the Mathematical
Morphology (MM)-Time-Frequency (TF)-Random Forest
Classification (RFC) and Wavelet Transform (WT)-Fast
Fourier Transform (FFT)-ANN. The result is listed in
Table V, which demonstrates that the performance of
proposed method with highest A, and lowest M, is superior
compared with the methods in the literatures. Since manual
features are prone to information loss, it can be also con-
cluded that the performance of automatic feature extraction
are better than the conventional manual extraction in [25].
Compared with the method in [16] and proposed framework,
it shows that the classification ability of traditional ANN
is not as good as MCNN. To ensure the reliability of the
model, the parameter of the model can update daily using the
latest DSD.

VII. CONCLUSION

In this paper, a fingerprint-based SG-FST-MCNN frame-
work is proposed to identify the source of the DSD and detect
data spoofing cyber-attack, which can be summarized into four
steps:

1) The SG filter is first utilized to eliminate the common
component of DSD from multiple locations; 2) To effectively
extract spatial fingerprint, the FST is applied on the output of
SG filter for spatial fingerprint extraction via time-frequency
analysis; 3) Utilizing the dilated convolution and standard
convolution, a MCNN is proposed to classify spatial finger-
print automatically, which can avoid interference in manual
feature selection; 4) To distinguish the raw DSD and spoof-
ing DSD, the CI threshold criterion is proposed to detect the
data spoofing cyberattack.

By implementing this framework, the common trend com-
ponent of DSD is effectively removed. The spoofing behavior
in DSD can be captured via FST based on the feature visu-
alization experiments. Particularly, the visualization of classi-
fication capability exhibits the meaning of feature extraction
and verify the classification ability of MCNN. Using the actual
non-spoofed DSD in FNET/Grideye, the attacked experiments
demonstrates the superiority of the proposed framework in the
aspects of interpretability and automatic extraction. The accu-
racy for DSD spoofing detection of proposed method is higher
than some advanced machine learning methods. It should be
noted that the performance of attack detection degrades as the
data spoofing ratio A decreases, especially when A < 10%.
Meanwhile, the DSD samples are collected from different
cities with large geographical distance. The DSD with small
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distance and high similarity such as same city has not been
verified. Thus, the next step is to enhance this approach for
the condition of low A and DSD with higher similarity.
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