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Abstract—Security of Distribution Synchrophasors Data (DSD)
is of paramount importance as the data is used for critical
smart grid applications including situational awareness, advanced
protection, and dynamic control. Unfortunately, the DSD are
attractive targets for malicious attackers aiming to damage grid.
Data spoofing is a new class of deceiving attack, where the
DSD of one Phasor Measurement Units (PMUs) is tampered
by other PMUs thereby spoiling measurement based appli-
cations. To address this issue, a source authentication based
data spoofing attack detection method is proposed using Multi-
view Convolutional Neural Network (MCNN). First, common
components embedded in raw frequency measurements from
DSD are removed by Savitzky-Golay (SG) filter. Second, fast
S transform (FST) is utilized to extract representative spatial
fingerprints via time frequency analysis. Third, the spatial fin-
gerprint is fed to MCNN, which combines dilated and standard
convolutions for automatic feather extraction and source identifi-
cation. Finally, according to the output of MCNN, spoofing attack
detection is performed via threshold criterion. Extensive experi-
ments with actual DSD from multiple locations in FNET/Grideye
are conducted to verify the effectiveness of the proposed method.

Index Terms—Data spoofing attack, distribution
synchrophasors data, multi-view convolutional neural network,
source authentication.
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CNN Convolutional neural networks

DSD Distribution Synchrophasors Data

FST Fast S transform

LSP Least-squares polynomial

MCNN Multi-view convolutional neural network

PMUs Phasor Measurement Unit

SG Savitzky-Golay

t-SNE t-Distributed Stochastic Neighbor Embedding.

Sets

La Length of the spoofed data

Lw Length of the sample

M Length of local symmetry data window in SG

Q Number of DSD classes.

Functions

Ci Output of the convolution layer

C
γ
i Output of dilated convolutional layer

Cγ i Combined output of dilated and standard

convolution

Fi Output of full connected layer

Pi Output of max pooling layer

S(F) Output probability value of softmax.

Variables

A(m, h) Magnitude of FST

Aa Average accuracy for spoofed data

bi Bias term of convolution layer

dc Depth of convolution kernel

fc Size of convolution kernel

fp Size of pooling layer

h Length of the matrix A(m, h)

l(n) Common data components

m Width of the matrix A(m, h)

Mr Misidentification rate of non-spoofed data

Na Non-spoofed data accuracy

p Order of a LSP

r Gaussian window parameter

sc Stride of convolution kernel

t(n) Filtered frequency components

Ts(f ) Threshold of softmax classifier

tw(n) Target signal of t(n)

wi Weight of the convolutional kernel
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x(n) Frequency measurements of DSD

γ Dilated factor of dilated convolution

λ Proportion of data spoofing

ρ Parameter of dropout.

I. INTRODUCTION

S
INCE electric power grids’ dependence on information

provided by Distribution Synchrophasor Data (DSD) is

increasing, the cyber security concerns of synchrophasor

communication network must be carefully addressed [1]-[3].

Some potential attacks have already been recognized,

including Communication Link Damage (CLD), Denial of

Service (DoS), and data spoofing [4]. CLD can be caused by

physical attacks like cut-off or natural disasters, e.g., hurri-

canes or wild fires [5]. DoS attacks occur when a number of

computers or network services in the intranet are controlled by

trojans and huge redundant data traffic or inquiries to the target

are generated in order to saturate the communication link [6].

As both CLD and DoS may result in significant communi-

cation delay or even missing data, existing technologies can

detect these attacks with no difficulty.

Comparatively, data spoofing occurs when the Phasor

Measurement Units (PMUs) are hacked by adversaries, who

can arbitrarily manipulate the synchrophasors data. The

data spoofing attacks can be seen as a specific implementation

of data injection attacks, including various attack methods [7].

For example, data tampering and replay attacks can be

easily detected by continuously monitoring the correlation

coefficients between the afflicted PMUs [8].

However, if malicious intruders are familiar with the

synchrophasors network configuration, data spoofing attacks

may be performed and avoided the detections of existing

approaches. For example, attackers can tamper or mix the

measurement data of one DSD from other DSDs in differ-

ent locations without major change of measurement values.

Compared to random spoofing, it makes the attack much

harder to be distinguished when original data is tampered by

data in other location because the spoofed data have high sim-

ilarity with normal data [25]. As a result, the source authen-

tication can no longer be trusted, resulting in the estimated

disturbance localization being affected. Even worse, measure-

ment based applications are adversely influenced such as faulty

result of state estimator and failure of wide area damping

control since the tampered measurement still appear to be

normal data [9]. Additionally, the PMU spoofing can happen

in data servers such as Phasor Data Concentrators (PDC) or

during data communication by malicious attacker because the

IEEE C37.118.2 protocol does not offer confidentiality [10].

As an increasing number of DSD deployed in power grids,

the necessity to detect such data spoofing attack and enhance

cyber security of synchrophasor network arises.

Data spoofing and intrusion detection method is consid-

ered as a defense-in-depth method by the National Institute

of Standards and Technology [11]. Generally, such methods

are classified into two types: the anomaly detection and

signature-based detection [12]. The anomaly detection method

seeks the degree of deviation between observed data to

determine data spoofing attacks. For example, the Local

Outlier Factor (LOF), a density-based method, is used to detect

falsified data in synchrophasor voltage and current curves [13].

However, the density and shape features of the replay attack

are similar, thus making it difficult to identify by LOF. An

ensemble-based method is used to improve the accuracy of

multiple attack scenarios [14]. As described in [15], three

kinds of anomaly detection methods are concentrated to com-

prehensively identify anomalies in the synchrophasor voltage.

However, the anomaly detection methods based on density

or distance are easily circumvented by adjusting data spoof-

ing behavior, such as adjusting the length and magnitude of

spoofed data.

The objective of this paper is to develop a source authenti-

cation method using spatial anomaly-based for data spoofing

cyber-attack detection. It is demonstrated in [16] that the syn-

chronized frequency measurement from DSD has its own and

unique spatial fingerprint from its local grid, which is mainly

determined by the topology of distribution network. Thus,

these distinct spatial fingerprints, if successfully extracted,

can be potential used as fingerprints for source authentica-

tion. When a data spoof attack occurs, the original spatial

fingerprint embedded in the DSD from one location will be

missing or replaced by fingerprints in other locations, partial

or wholly [17]. Consequently, the integrity of spatial finger-

print can provide a supportive evidence for the detection of

spoofing attack.

The remainder of this paper is organized as follows.

Section II introduces the work related to the anomaly-based

detection method. Then the framework of the proposed method

is presented in Section III. Section IV introduces the principle

of DSD spoofing detection method. In Section V, the fea-

ture visualization is presented to demonstrate the effectiveness

of MCNN. Then, the experiments with actual DSD are con-

ducted in Section VI. Finally, the conclusion and discussion

are presented in Section VII.

II. RELATED WORK

The anomaly-based method first extracts valid spatial fin-

gerprint information and then recognizes it by the classifier.

The premise to identify the source of an unknown DSD from

frequency measurements is to extract its characteristic since

the frequency measured within a same interconnection share

the same main trend due to the synchronicity of AC power

system. Additionally, the common components in DSD is

stochastic since it is determined by generation and load in

power system. Thus the first step is to remove the com-

mon component and extract the spatial fingerprint. In [16],

a Daubechies Wavelet Transform (WT) is used to decom-

pose the original frequency measurements into high and low

components. However, the selection of wavelet basis directly

affects the filtering effect. A weighted high pass filter is

applied on DSD for variation extrication in [18]. However,

different weight vectors introduce computational errors and

time delay on the original data. In this paper, we use the

high-efficiency Savitzky-Golay (SG) filter [19] to eliminate

common components and preserve the key spatial information

without time delay.
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Fig. 1. The proposed framework for DSD spoofing attack detection based on MCNN.

To extract spatial information of DSD, the signal

processing methods are required. Generally, the Hilbert

Huang Transform (HHT) [20] and Variational Mode

Decomposition (VMD) [21] are widely used for signal

decomposition at time and frequency scales. The number

of intrinsic mode function is empirically selected for dif-

ferent power signals in HHT and VMD. However, the

spoofed signal is complicated due to different spoofing

level. Then Empirical Orthogonal Functions (EOF) analysis

is proposed to extract frequency wave components in [22],

but the EOF features of statistical model are ambiguous

and does not contain frequency information. Furthermore, the

S-transform (ST) with the ability to provide both the time

and frequency domain information is a preferred technique

in signal decomposition [23]. It can detect frequency domain

characteristics of the input signal in different time periods.

Moreover, the computation complexity of ST can be signif-

icantly reduced via its fast implementation [24]. Therefore,

the Fast ST (FST) is utilized to extract spatial fingerprints of

filtered DSD at multiple frequency scales.

For the purpose of source location identification and

data spoofing attack detection in DSD, a classifier is needed,

which can be established by training with historical spatial

fingerprints. In [25] and [26], the statistical features, includ-

ing roughness index, sparsity trends, and correlation devia-

tion, are designed to process source authentication. Then the

machine learning methods, e.g., Sparse Logistic Regression

and Support Vector Machines (SVM) [27], [28], are used

for attack detection based on extracted features. However,

for different attack levels, such as different ratio between of

spoofed and normal data, a limited number of handcrafted

features are difficult to represent the characteristics of dif-

ferent cyber-attacks data. Therefore, these detection methods

using handcrafted features are not suitable for detecting diverse

cyber-attack.

With the rise of deep learning algorithms, the development

of Convolutional Neural Networks (CNN) has provided new

ideas for grid data processing [29]. The CNN can learn effec-

tive information through supervised learning method due to

the development of convolution operations, pooling layers, and

computer technology. It is demonstrated that the CNN can

automatically extract a large number of invariant and discrim-

inative features for two-dimensional data [30]. In [32], the WT

and CNN are combined to provide solutions for voltage signal

identification. However, the standard convolution operation

limits the variety of features especially for unknown data [32].

In this work, we propose a cyber-attack detection frame-

work based on SG, FST and Multi-view Convolutional

Neural Network (MCNN), where are first used in cyber-attack

detection. Particularly, a MCNN with dilated convolution is

presented to automatically extract features from a number of

different receptive area. On top of that, MCNN can provide an

attack Confidence Index (CI) based on matching level between

extracted spatial fingerprints from testing data and the trained

neural network. Finally, the threshold decision is made based

on the proposed CI threshold criterion, where it is considered

that an attack behavior has occurred when the classification

output of MCNN is less than the threshold.

III. FRAMEWORK FOR THE DSD SPOOFING DETECTION

The framework of the proposed method for DSD spoofing

detection is shown in Fig. 1. The automatic detection process

can be mainly divided into four steps:

1) Signal filtering: The frequency trend of the DSD x(n)

is captured via Savitzky-Golay filter. Then the common

frequency components are eliminated from the raw data

and the target signal tw(n) is obtained.

2) Spatial fingerprint extraction: Spatial fingerprints of

DSD are extracted using FST. Then the magnitude

matrix A(m/2, h/2) of FST is fed to the MCNN classifier.

3) MCNN model training: A multilayer MCNN model is

designed and trained using extracted spatial fingerprint

from historical ambient DSD without being spoofed.

4) Data spoofing cyber-attack detection: The trained

MCNN model is used to authenticate incoming DSD for

spoofing cyber-attack detection using threshold Ts(f ).

IV. PRINCIPLE OF THE DSD SPOOFING DETECTION

A. Savitzky-Golay Filtering

Since measurements in same interconnection have high sim-

ilarity due to the synchronicity of AC power system and only

spatial fingerprints from local power grid are of interest, it is

essential to remove the common components for each DSD to

extract the representative components. To this end, Savitzky-

Golay filter is utilized to eliminate the common components

and extract the local variations. Compared with common filter-

ing algorithms, e.g., mean filtering and Kalman filtering [33],
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Fig. 2. Illustration of SG filtering effect on raw DSD. (a) Plot of raw
frequency and captured main trend with p = 3 and M = 70, (b) Plot of target
signal t(n) = x(n) − l(n).

SG filter does not introduce signal time shift because it is

based on the local least-squares polynomial and it has zero

phase [19].

In SG filter, the local Least-squares Polynomial (LSP) fit-

ting is first utilized to track fluctuations, and then the moving

window can be used to segment signals [19]. x(n) is denoted as

frequency measurements of DSD. Concretely, for a local sym-

metry data window n = [x−m, x−m+1, . . . , x0, . . . , xm−1, xm]

with a length 2M + 1, where m is the index of n, the common

component of DSD under the window n can be obtained as

l(n) =

k=p
∑

k=0

bknk (1)

where p denotes the order of a LSP (p < 2M), bk is the

coefficient of polynomial. The goal of SG is to minimize the

following error

n=M
∑

n=−M

[l(n) − x(n)] =

M
∑

n=−M

p
∑

k=0

(

bknk − x(n)

)2
(2)

After fitting the x(n) using local window and LSP, the

filtered frequency t(n) can be obtained by subtracting the com-

mon data components l(n) from the original data x(n), namely

t(n) = x(n) − l(n).

To show the filtering effect, we randomly take a non-spoofed

data of length 300 from the data set. The actual filtering results

for DSD is shown in Fig. 2. This parameters of SG are an

example. It can be seen from Fig. 2(a) that the trend of the

frequency measurement in DSD is detected through SG filter.

In Fig. 2(b), the target signal t(n) is within 5 mHz, which

indicates the common data component has been eliminated.

To reduce the computation before spatial fingerprint extrac-

tion, the t(n) is divided into several signals of length Lw

using sliding windows where these truncated signals can be

denoted as tw(n). The interval between different tw(n) is set to

100 sampling points.

B. Time-Frequency Analysis Using Fast S-Transform

The multi-dimensional feature extraction of spoofing signal

is the foundation for cyber-attack detection. Thus followed

Fig. 3. The results of the DSD using FST under different window
parameter r. The abscissa and ordinate represent sampling time and signal
frequency respectively. (a) Target signal tw(n), (b) The FST with r = 10,
(c) The FST with r = 20, (d) The FST with r = 50.

by the SG filter, the FST is used to extract spatial features

via time-frequency analysis.

The calculation steps of FST can be summarized as: 1) The

FFT of tw(n) and Gaussian window are calculated, denoting

as F(n) and G(h) respectively, where the Gaussian window

is part of the ST and can be used to adjust the resolution of

signal. 2) For a specific DSD frequency point q, the spectrum

of F(n) is shifted to F(n + q). Then we get the Hadamard

product of F(n+q) and G(h), where the Hadamard product is

element-wise product to get the same dimension as the input

matrix [45]. 3) The inverse FFT are calculated to get the cor-

responding discrete time-frequency spatial fingerprint results

S(m, h) [23].

The result of FST is complex matrix. The magnitude of

FST A(m, h) can be expressed as A(m, h) = |S(m, h)|, where

m and h denote the width and length of the matrix, respec-

tively. To speed up the calculation, only one frequency point

is calculated per two frequency points in FST [24]. Then the

length of the spatial fingerprint A(m, h/2) is further reduced

to A(m/2, h/2) by down sampling.

In FST, the Gaussian window parameter r should have

an appropriate value to get a desirable resolution. Thus, we

analyze the time-frequency results of tw(n) under different

parameters r. The spatial fingerprint A(m/2, h/2) of the FST

with different r is depicted in Fig. 3. The color of the time-

frequency results represent the amplitude, and the distribution

of the time-frequency results represent the distribution of

amplitude. We can choose the appropriate parameter value by

comparing the time resolution and frequency resolution. The

length of the sample Lw is set to 600 in this test. The cor-

responding time-frequency matrix size is m = 300, h = 600,

in which the DC component is ignored because the common

frequencies have been eliminated. The actual results of the

FST can be evaluated by the frequency resolution and time

resolution [23].

As can be seen from the vertical axis of Fig. 3(b), the

frequency information of tw(n) is very rich and the amplitude

is scattered. From the attacker’s point of view, to reproduce

an illegible attack DSD, the same frequency components,

frequency magnitude, start and end times need to be used. This

means that copying the exact same DSD is very difficult due
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to the diversity of DSD. To choose the appropriate parameter

value, for example, the amplitudes are randomly distributed

in Fig. 3(b). It means a very low frequency resolution when

r = 10. On the contrary, Fig. 3(d) has a very high frequency

resolution because the frequency components are very clear

from the y-axis perspective. However, the time resolution is

very low with r = 50 because many frequency components are

distributed throughout the time axis. Overall, Fig. 3(c) shows

that the frequency components can be distinguished. It means

that it has good frequency resolution. Compared with Fig. 3(d),

the time resolution of Fig. 3(c) is higher because the time-

generated nodes of different frequency components are clearer.

In this paper, the window parameter r is set to 20 as a com-

promise between time and frequency resolution for different

dataset. The selected r can be used to other DSD data set from

different locations in the same power grid.

C. MCNN Model Training

To realize the detection of spoofing attack, an effective

classification method is required to authenticate the spatial

fingerprints of incoming data. The MCNN is used to inte-

grate spatial features and realize signal classification. The input

data A(m/2, h/2) is automatically filtered by MCNN, so that

the information loss from the process of manual feature design

can be avoided.

For general CNN, the structure of CNN contains three

components: the convolutional layer, the pooling layer and

full-connected (FC) layer [34]. The convolutional layer is used

to extracted different features and learn the corresponding

weights from the input data. The dimensions of the input and

feature are downsampling using the pooling layer. Finally,

the learned features are mapped to the outputs by combin-

ing multiple FC layers. By superimposing different layers on

top of each other, higher-level features of spoofed data can

be extracted. To briefly describe the principles of MCNN,

we consider the single layer MCNN, which consists of one

convolution layer and one pooling layer. For the input signal

A(m/2, h/2), the output of the convolution layer is defined as

Ci = g(wi ∗ A(m/2, h/2) + bi) (3)

where wi denotes the weight of the convolutional kernel in i-th

feature map, the symbol * denotes the convolution operation,

the function g(·) is the activation function. The function of

the convolution kernel is to extract features from the input

matrix. To prevent gradient disappearance, the Rectified Linear

Unit (ReLU) is used as the activation function. The size of Ci

after the convolution layer is dc ×((m/4− fc)/sc +1)×((h/4−

fc)/sc + 1), where the dc, fc and sc denote the depth, size of

convolution kernel and stride respectively.

After the feature extraction of convolution layer, the max

pooling layer is utilized to filter out redundant feature

information. The output of max pooling layer can be expressed

as

Pi

(

fp
)

= max
{

0, Ci|fp×fp

}

(4)

where fp denotes the size of pooling layer. The Pi means that

the max value between 0 and zone [fp, fp] in Ci.

Fig. 4. Different convolution operations with convolution kernel size
fc × fc = 3 × 3. (a) Dilated convolution with γ = 2, (b) Standard convolution
with γ = 1.

Then, the Pi is flatted at full connected layer and the output

of full connected layer F is fed to the categorical cross entropy

function to training [35]. The DSD is then detected by the

softmax function, which can be expressed as

S(F) = eFj/

Q
∑

i=1

eFi (5)

where i = 1, 2, . . . , Q, Q is the total number of DSD class.

Generally, the class of the maximum probability value in S(F)

is the category to which the DSD belongs.

Additionally, in order to increase the diversity of fea-

tures, the dilated convolution is used to expand the receptive

area [32]. It have been shown that the dilated convolution

view is more flexible than the standard convolution kernel,

as shown in Fig. 4. It can be seen from Fig. 4(a) that the

dilated factor γ determines the size of the receptive view and

a higher γ means a larger receptive view. The receptive area of

dilated convolution and standard convolution are is 5 × 5 and

3 × 3 respectively when the kernel size is fc×fc = 3×3. Thus,

we further propose the MCNN to combine the advantages of

two convolution operations, which the dilated convolution and

standard convolution kernel are used in the same layer. The

principle of dilated convolution can be expressed as

C
γ
i = g

(

wi ∗γ A(m/2, h/2) + bi

)

(6)

where the *γ denotes the dilated convolution with dilated

factor. The receptive field length of dilated convolution is

(fc − 1) × γ + 1. For the convolution layer with depth of dc,

half of the convolution operation of dc adopts standard convo-

lution and the other half is dilated convolution in this paper.

Therefore, the output of the convolutional layer is

Cγ i =
[

0.5Ci, 0.5C
γ
i

]

(7)

It shows that the depth of dc is composed of two parts,

C
γ
i and Cγ i, which means that the features are more diversi-

fied. Then the parameters of MCNN are trained and optimized

by backpropagation algorithms after establishing the MCNN

structure. Finally, the spoofed data can be detected according

to the softmax function in Equation (5).

D. Data Spoofing Cyber-Attack Using Threshold Criterion

To realize cyber-attack and data spoofing detection, a thresh-

old Ts(f ) is required to distinguish the attacked DSD and

normal DSD, which is considered as attack behavior when
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Fig. 5. The map of distribution synchrophasor locations.

the probability value S(F) is lower than Ts(f ). To selected the

threshold Ts(f ), a CI threshold criterion is further proposed.

After training the MCNN model, the Ts(f ) is obtained by

balancing the accuracy of spoofed data detection and normal

DSD authentication. Broadly, a detection accuracy “trade off”

should be considered when choosing the Ts(f ). If a too large

value is selected for Ts(f ), all the DSD can be identified as

spoofed data. Conversely, the spoofed data cannot be accu-

rately identified when Ts(f ) is set to a too low value. To select

a suitable Ts(f ), a CI reference guideline is designed for Ts(f ),

which can be obtained as

CI = Max
[

0.5
∑

(1 − λ)Aat(λ) + 0.5
∑

Nat(λ) −
∣

∣y′′
∣

∣

]

Ts(f )

s.t. y′′ =
(

0.5
∑

(1 − λ)Aat(λ) + 0.5
∑

Nat(λ)

)′′

(8)

where the Aat(λ) and Nat(λ) denote the Average Accuracy (Aa)

for spoofed data detection and the Non-spoofed data Accuracy

(Na) for normal data under different threshold Ts(f ), respec-

tively. The third item y′′ = yu+2 − 2yu+1 + yu is the second

order difference, where u is the index under different threshold.

The second order difference term is used to constrain the CI

value to choose a smooth threshold point. The equation repre-

sents that the max value is elected from different data spoofing

ratio λ. The data spoofing ratio λ is used to define the strength

of the attack

λ = La/Lw (9)

where the La and Lw are the length of attack and raw data,

respectively. Finally, it indicates that the sum of Aa and Na is

large and stable when Equation (5) is taken to the maximum.

Concretely, a Ts(f ) between 0.5 and 1 is specified through

experimental analysis.

V. VISUAL ANALYSIS OF FEATURES

In this paper, the DSD from 11 different loca-

tions (P1-P11) in Frequency measurement Network

(FNET/Grideye) system [36] are used. Fig. 5 shows the

geographical locations of DSD in our study. It shows that

the PMUs are distributed in various regions. The DSD of

these nine locations are collected to verify the validity of

the proposed framework. There are 12,800 samples used in

validation for DSD in each location with 10 Hz reporting rate

in Fig. 5.

Fig. 6. Visualizations of the input time-frequency matrix signal A(m/2, h/2)
and features in the final layer of MCNN by t-SNE. (a) Visualizations of the
input A(m/2, h/2), (b) Visualizations of features in the final layer of MCNN.

A. Visualization of Classification Capability

In order to verify the feature extraction ability of MCNN,

a nonlinear dimension reduction technique called t-Distributed

Stochastic Neighbor Embedding (t-SNE) is used to visualize

high-dimensional data [37]. In t-SNE, the clustering degree of

features reflects the classification performance.

The input signal A(m/2, h/2) and corresponding output fea-

tures in the final layer are fed to t-SNE. 300 samples per

synchrophasor class are used for visualization. The perplexity

and the number of iterations are set to 40 and 4000 respectively

in t-SNE. The visualization of the different data are shown in

Fig. 6. The markers represents the degree of aggregation of

the input data, where the dimensions of input data are changed

to 2 after transformed by t-SNE.

It is observed from Fig. 6(a) that the input spatial finger-

prints overlap each other, making it difficult to distinguish

the DSD in different locations. In the Fig. 6(b), all the DSD

have been separated from each other after being processed

by MCNN. The spatial fingerprints of the same location are

gathered together. In addition, the spatial fingerprint of P1

and P8 are more dispersed, indicating that these spatial fin-

gerprints contain multiple signal components. It reveals from

Fig. 6 that MCNN can identify the difference of DSD from

multiple locations.

B. Feature Visualization

To further explore the features learned by MCNN, we visu-

alize the output features of different layers. By observing the
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Fig. 7. Visualization of multiple randomly selected features in different layers
of MCNN. The Pr-i represents the features of Pr locations from the ith layer.

shape of spatial fingerprint, it is beneficial to improve the

model through continuous feedback and adjustment.

First, we build a MCNN with five layers. To simplify the

model, all the size of convolution kernel is set to fc = 3 and

the depth of convolution layer is dc = 8 per layer. The size

of the pooled layer is set to fp = 2. We randomly selected the

raw DSD from three locations, P1, P2, and P8. To simulate the

spoof attack, the DSD in P8 is tampered by the DSD in P2.

Fig. 7 exhibits the features from the first, third and the fifth

layers. It shows that the P1 contains components of differ-

ent frequencies from 0-5 Hz, P2 contains only low-frequency

components (f < 2 Hz) and P8 has a small amount of high-

frequency components (f > 2 Hz). It can be seen from

Fig. 7 that the features of the first layer are close to the orig-

inal input signal, indicating that MCNN does not learn any

useful information. However, the low-frequency information

is extracted in the third layer as can be seen from P2-3 and

P8-3. In the fifth layer, the low frequency component is com-

pletely extracted for P2-5. Additionally, the features of the

high frequency portion of P1 and P8 are extracted by P1-5

and P8-5. Particularly, for the attacked data P8 and P8-5, it

shows that the location of the attack is determined, and the

attack effect becomes prominent as the number of convolu-

tion layers increases. Thus, it is evident that the CNN has the

potential ability to detect spoofed data.

VI. MODEL PERFORMANCE ASSESSMENT

To verify the effectiveness of the proposed method, the DSD

samples from multiple locations in Fig. 5 are used for ver-

ification. There are 12,800 different samples used for DSD

with 10 Hz reporting rate. The DSD from P1-P9 is randomly

assigned to different sets, of which 70% are used for training,

15% for testing and 15% for verification. The cross valida-

tion method is applied to validate the model. The DSD from

P10 and P11 are not used during MCNN training process thus

are reserved as the attack signal source. It is worth mention-

ing that the MCNN is only trained using the non-spoofed

DSD from nine locations (P1-P9). To prevent over-fitting,

the dropout technique and training technic are adopted in

MCNN [38]. For the dropout, we denote the ρ as the ratio

of remaining nodes in MCNN. Grid search method is used to

TABLE I
THE PARAMETER SETTINGS OF THE SG AND FST

determine classifier parameters [39]. Additionally, the learning

rate would be reduced by half when the loss value does not

decrease for 5 consecutive iterations. The implementation of

MCNN is based on the Keras framework on a PC with GPU

GTX 1060, which the Keras is a deep learning library [40].

A. Parameter Sensitivity Analysis

Since parameters of the model directly affect the accu-

racy of the spoofing detection, the appropriate parameters are

significant to the performance of the proposed method.

To select appropriate SG filter parameters, Fig. 8 presents

the results of the SG filter for the DSD at P1 with different

p and M. It can be seen from Fig. 8(a) that the SG filter fails

to capture some trends in waveform when p = 1. On the

contrary, the SG filter with order p = 5 varies dramatically

indicates that the common components were not learned. The

SG filter shows a balance between computational complexity

and efficiency when p = 3. Thus, the polynomial order p is

set to 3 or 4 to get a better filtering performance and avoid

overfitting.

As can be noticed from Fig. 8(b) that a higher window width

M(M ≥ 100) prevents the SG filter from capturing detailed

trends in the waveform. However, a smaller window width M

results in an inefficient filtering when M = 25. Consequently,

a small range of parameters, i.e., M ∈ [50, 75], is selected

to apply to the DSD after some trial and error. The detailed

parameter settings of SG and FST are summarized in Table I.

Therefore, the SG parameters of different locations can be

selected from Table I according to the actual filtering effect.

On the other hand, the number of layers and size of con-

volution kernel have a great impact on the performance of

MCNN. To obtain the optimal number of convolution layers,

the non-spoofed DSD is used to verify parameter sensitivity

in the training process.

To select appropriate MCNN parameters, Fig. 9 shows the

relationship between authentication accuracy of raw data, the

number of convolution layers and convolution kernel size

using grid search. For different MCNN structures, all the nodes

of the full connected layer are set to 300. To keep the param-

eter capacity of MCNN at a similar level, the size of pooling

are set to 2, 3, 4, 5 for MCNN-5, MCNN-4, MCNN-3 and

MCNN-2 respectively, where the MCNN-i represents that the

number of convolution layer is equal to i. The other parameters

of MCNN are set the same to have a fair comparison.

It demonstrates that the MCNN has the highest recognition

accuracy when the convolution kernel size is 3×3. The accu-

racy of source identification decreases slightly as the size of

convolution kernel increases. Additionally, it shows that the

layer number of MCNN also affects the accuracy. Overall, the

MCNN-3 performs better than other models.
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Fig. 8. Results of SG filter with different parameters p and M. (a) Filtering
results under different polynomial order p when M = 50, (b) Filtering results
under different window width M when p = 4.

Fig. 9. The raw data authentication performance of MCNN for non-spoofed
data under different layers and convolution kernel sizes.

In this work, a MCNN with three convolution layers is

selected based on the above parameter analysis, and the size

of all the convolution kernels are set to 3×3. The detailed

parameter structure of MCNN is listed in Table II. The stride

sc of convolution layer is set to 1. The dropout layer is placed

after the fully connected layer, and the parameter of dropout

ρ is set to 0.5. The dilated factor γ is set to 2. The batch size

of the training is set to 256. The model parameters are trained

using the RMSProp optimizer. The total number of parameters

in MCNN is nearly 220, 000.

B. Attack Detection of Synchrophasor Data

To verify the accuracy of the proposed method for attack

detection, a spoofing method that directly tampers the original

DSD is adopted [25]. In the verification data set, the DSD is

randomly spoofed by the DSD from other locations.

TABLE II
STRUCTURE OF MCNN FOR DSD ATTACK DETECTOPM

Fig. 10. Illustration of DSD data attack. (a) A schematic diagram of DSD
data attack, where the DSD in P2 is spoofed by data in P8, (b) The FST of
the raw DSD and attacked DSD.

In this work, we randomly test four kinds of attacks, in which

the DSD in one location is spoofed by data in another location

with same timestamp. The Lw is set to 600, which is equivalent

to 1 minute data length. The illustration of data attack and

corresponding spatial fingerprints are shown in Fig. 10. For

each sample, it can be observed from Fig. 10(a) that a portion

of the original DSD is attacked. As can be seen from Fig. 10(b),

the FST can potentially identify the components of the signal

at different times due to the different frequency components of

DSD in each location. Therefore, such attacking characteristics

can then be captured by MCNN.

To identify the attack behavior, the threshold of softmax

function is adjust through Equation (5). When the value of

S(F) is lower than the threshold Ts(f ), it can be considered

that the attack has occurred. The performance of four differ-

ent spoofed data recognition experiments under different Ts(f )

and λ is depicted in Fig. 11. The step size of Ts(f ) and λ are

set to 0.02 and 1/12 respectively.

It can be observed that all the recognition accuracy of the

attack increases with λ. When λ is greater than 3/12, more than

90% of attacks can be detected in Fig. 11(a) and (b). Similarly,

the reduction of the Ts(f ) makes the recognition accuracy of the

attack decrease. For example, the recognition accuracy is lower

than 94% when Ts(f ) is lower than 0.9 as shown in Fig. 11(d).

It also shows that the model has the lowest detection accuracy

when λ ≤ 2/12 and the Ts(f ) ≤ 0.96. Particularly, the accuracy
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Fig. 11. Spoofed data recognition accuracy under different softmax threshold
Ts(f ) and λ. (a) The DSD in P4 is spoofed by data in P9, (b) The DSD in
P4 is spoofed by data in P8, (c) The DSD in P2 is spoofed by data in P5,
(d) The DSD in P2 is spoofed by data in P8.

Fig. 12. The non-spoofed DSD recognition accuracy when the Ts(f ) is range
from 0.8 to 1.

reaches 100% when the Ts(f ) close to the maximum value

S(F)max [the S(F)max is 1 in this test], indicating that some

normal DSD is misidentified.

The recognition accuracy of non-spoofed DSD with differ-

ent Ts(f ) is shown in Fig. 12. It shows that the performance of

non-spoofed data decreases rapidly when the threshold is set

to 1. On the contrary, the accuracy of non-spoofed data is rela-

tively stable for each location when the Ts(f ) range is between

0.8 and 0.95. Therefore, it is reasonable to set the thresh-

old to less than 1. Taking the above results into account,

we set Ts(f ) for 0.92 in P2 according to Equation (5) as

a compromise between attack detection and non-spoofed DSD

recognition. Thresholds for other locations can be set in the

similar approach.

To further verify the spoofed accuracy, two unknown attacks

(both outside the model training set) are used, of which the

DSD is spoofed by the DSD from P10 and P11. The Average

Accuracy (AA) is the average rate for attack detection at dif-

ferent λ. The AA results of two unknown attacks with different

λ are shown in Fig. 13. It can be seen from Fig. 13(b) that

the average AA reached 92.35 % when Ts(f ) is set by the

proposed CI threshold criterion. These two unknown attacks

have the same trend as Fig. 11, indicating that the proposed

algorithm has the ability to detect unknown spoofed signals.

Fig. 13. The spoofed DSD recognition accuracy using non-training data set.
(a) The DSD in P2 is spoofed by data in P11, the average AA is 89.73 %
when Ts(f ) = 0.92. (b) The DSD in P4 is spoofed by data in P10, the average
AA is 92.35 % when Ts(f ) = 0.88.

TABLE III
PERFORMANCE COMPARED UNDER DIFFERENT STEPS

C. Performance Comparison

To verify the contribution of FST and SG in the proposed

method, FST and SG steps are removed separately. It should

be note that a 1-Dimensional Convolutional Neural Network

(1DCNN) is used for direct detection since the data dimension

becomes one-dimensional when FST is removed [41]. The

main difference between 1DCNN and MCNN is the dimen-

sion of convolution kernel. Meanwhile, the Long Short Term

Memory (LSTM), a kind of time series process method [42],

is also used to compare with the proposed method. The num-

ber of nodes and layers of LSTM are optimized selected as 50

and 1 respectively. The inputs of 1DCNN and LSTM are the

raw non-spoofed DSD. The input of SG-1DCNN are data from

which the common component is removed by SG. The number

of layers are optimally selected using grid search.

Table III shows that the both the Mr and Aa accuracy of

LSTM and SG-LSTM are lower than the proposed method.

The time consuming of LSTM is larger than 1DCNN. It is

demonstrated that the proposed method is 11% higher than

the 1DCNN method according to the Mr result. Meanwhile,

it can be inferred that the time of SG is about 0.05 seconds

for all the 1920 verification samples. The average time taken

for the SG step for each sample is approximately 0.025 mil-

liseconds. Therefore, it can be concluded that the SG step does

not significantly affect the real-time performance. Based on the

1DCNN and SG-1DCNN, the Mr and Aa results show that the

common component removed by SG does not affect the iden-

tification accuracy of DSD. Compared with SG+1DCNN and

FST-MCNN, the Mr and Aa results demonstrate that FST helps
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TABLE IV
PERFORMANCE COMPARED TO OTHER METHODS

feature extraction because the spatial fingerprints of different

DSD can be extracted. It can be seen that the proposed method

has the highest Aa and lowest Mr. The reason is that the diver-

sity of features in MCNN contribute to cyber-attack detection.

Compared with the proposed method and SG-FST-CNN, it

can be seen that the MCNN can improve the attack recogni-

tion result by 1.75% under the premise of slightly increasing

the calculation amount.

To further verify the validity of MCNN, we compare

the proposed method with some common machine learn-

ing methods, including Support Vector Machine (SVM),

Artificial Neural Network (ANN) and Stacked Auto-

Encoder (SAE) [43], [44]. For these methods, the input

spatial fingerprint A(m/2, h/2) is reshaped to accommodate

the one-dimensional input. The parameters of these methods

are optimally selected using grid search.

The details of compared spoofing detection methods are as

follows:

1) SG-ST-SVM: The linear kernel and stochastic gradient

descent are used to solve SVM. The kernel coefficient

are optimally screened from 0.01 to 0.001, and finally

0.041 is selected.

2) SG-ST-ANN: A 2-layer ANN is used for classification.

For simplicity, the activation function RELU and soft-

max classifier are used in ANN. The total number of

parameters is about 45 million.

3) SG-ST-SAE: The softmax classifier is used to classify

in SAE with total model parameters 54 million.

The classifier structure, non-spoofed DSD identification

and attack detection results of different methods are listed

in Table IV. The proposed MCNN model is offline trained

and used for real-time DSA detection. The running time

is recorded for efficiency comparison. The running time of

MCNN is slightly higher than ANN and SAE. However,

the average time of each sample is 5 milliseconds, thus

the real-time monitoring can be satisfied considering 1 min

data window for input samples. It is noted that both ANN

and SAE models have tens of millions of parameters, which

can easily lead to overfitting. It shows that the SVM and

MCNN have similar Mr. However, the SVM are more time-

consuming. The ANN and SAE consume less time but the

performance of Aa does not exceed 90%. Compared to these

machine learning methods, the proposed method has the low-

est Mr for non-spoofed data and best performance for attack

detection because the feature extraction ability of MCNN is

stronger.

TABLE V
PERFORMANCE COMPARISON WITH TWO RECENT STUDIES

We further compare the proposed method with two

machine learning-based methods on DSD spoofing attack

detection in [16] and [25], including the Mathematical

Morphology (MM)-Time-Frequency (TF)-Random Forest

Classification (RFC) and Wavelet Transform (WT)-Fast

Fourier Transform (FFT)-ANN. The result is listed in

Table V, which demonstrates that the performance of

proposed method with highest Aa and lowest Mr is superior

compared with the methods in the literatures. Since manual

features are prone to information loss, it can be also con-

cluded that the performance of automatic feature extraction

are better than the conventional manual extraction in [25].

Compared with the method in [16] and proposed framework,

it shows that the classification ability of traditional ANN

is not as good as MCNN. To ensure the reliability of the

model, the parameter of the model can update daily using the

latest DSD.

VII. CONCLUSION

In this paper, a fingerprint-based SG-FST-MCNN frame-

work is proposed to identify the source of the DSD and detect

data spoofing cyber-attack, which can be summarized into four

steps:

1) The SG filter is first utilized to eliminate the common

component of DSD from multiple locations; 2) To effectively

extract spatial fingerprint, the FST is applied on the output of

SG filter for spatial fingerprint extraction via time-frequency

analysis; 3) Utilizing the dilated convolution and standard

convolution, a MCNN is proposed to classify spatial finger-

print automatically, which can avoid interference in manual

feature selection; 4) To distinguish the raw DSD and spoof-

ing DSD, the CI threshold criterion is proposed to detect the

data spoofing cyberattack.

By implementing this framework, the common trend com-

ponent of DSD is effectively removed. The spoofing behavior

in DSD can be captured via FST based on the feature visu-

alization experiments. Particularly, the visualization of classi-

fication capability exhibits the meaning of feature extraction

and verify the classification ability of MCNN. Using the actual

non-spoofed DSD in FNET/Grideye, the attacked experiments

demonstrates the superiority of the proposed framework in the

aspects of interpretability and automatic extraction. The accu-

racy for DSD spoofing detection of proposed method is higher

than some advanced machine learning methods. It should be

noted that the performance of attack detection degrades as the

data spoofing ratio λ decreases, especially when λ < 10%.

Meanwhile, the DSD samples are collected from different

cities with large geographical distance. The DSD with small
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distance and high similarity such as same city has not been

verified. Thus, the next step is to enhance this approach for

the condition of low λ and DSD with higher similarity.
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