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Abstract—*“Source ID Mix” spoofing emerged as a new type of
cyber-attack on Distribution Synchrophasors (DS) where adver-
saries have the capability to swap the source information of
DS without changing the measurement values. Accurate detec-
tion of such a highly-deceptive attack is a challenging task
especially when the spoofing attack happens on short frag-
ments of DS recorded within a relatively small geographical
scale. This letter proposes an effective approach to detect this
cyber-attack by realizing the multifractal characteristics of DS
measurements. First, the multifractal cross-correlation of DS
measured at multiple intra-state locations is revealed. Then the
derived correlation is integrated with weighted two-dimensional
multifractal surface interpolation to reconstruct quasi high-
resolution signals. Finally, informative location-specific signatures
are extracted from the high-resolution DS and they are integrated
with advanced machine learning techniques for source authen-
tication. Experiments using the real-life DS are performed to
verify the proposed method.

Index Terms—Source ID Mix, distribution network, cyber-
physical security, OT security, phasor measurement unit (PMU).

I. INTRODUCTION

WITH the high accuracy and resolution measurements
of Phasor Measurement Units (PMUs), DS provide
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system operators with an unprecedented way to achieve real-
time monitoring and control of power systems. However, due
to the lack of a perfect data authentication mechanism of PMU
communication protocol-IEEE C37.118, the data security of
DS is always vulnerable to cyber spoofing attacks [1]. Even
IEC 61850-90-5 recommends the communication security of
the PMU protocol, sophisticated data attacks can still be ini-
tiated by potential adversaries. “Source ID Mix” represents a
new type of sophisticated data spoofing attack of DS which
may threaten critical DS-based monitoring and control, such as
inter-area low-frequency oscillation damping control and elec-
tromechanical disturbance location estimation [2]. Therefore,
reliable detection of this attack provides substantial benefits to
system operators for ensuring the data integrity and security
of many DS-based applications in smart grids.

To address the cybersecurity challenges raised by sophis-
ticated data spoofing attack, several cybersecurity defense
methods have been developed. Depending on the robust-
ness of methods, these approaches can be divided into two
major streams, i.e., model-based approaches and model-free
approaches [1]. Model-based approaches usually first estab-
lish state equations of the power network and then examine the
residual vectors or state variables to identify if any abnormal
changes occur in the DS measurements. However, the need for
system structures and parameters for building the state equa-
tions limits its generality and adaptability in detecting spoofing
attacks on DS. To overcome the above limitations, model-free
methods detect the spoofing attack by extracting informative
location-specific signatures embedded in the DS and integrat-
ing the extracted signatures with machine learning techniques,
such as Support Vector Machine (SVM) [3], Artificial Neural
Networks (ANN) [4], Random Forest Classification (RFC) [5]
and deep learning algorithms (such as Deep Forest - DF [2]
and Convolutional Neural Network -CNN [6]-[7]. However,
how to accurately extract the above signatures and achieve
reliable detection is still challenging.

By nature, the variation of DS has the characteristics of
duality in both spatial and temporal domains, i.e., relevance
and randomness. Therefore, the identification accuracy of the
source locations mainly depends on how much the spatio-
temporal signatures of the DS from each local environment
differentiate from each other. For DS collected from wide-area
locations (e.g., inter-country, interconnection or inter-state),
most methods can achieve reasonably high identification accu-
racy (above 90%). For DS measured from dense locations (i.e.,
grid within the same state or even within the same city), the
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Fig. 1. Proposed cybersecurity defense framework.

identification accuracy is normally less than 90% as varia-
tions of the measured DS from these locations exhibit high
similarity. Although the identification accuracy can be further
improved to above 90%, DS with a high reporting rate and
longer time interval (e.g., 120Hz reporting rate and 10 min-
utes length [5]) are required to realize the spatio-temporal
signatures which may not be feasible for protecting real-time
DS-based applications (for example, low-frequency distur-
bance mode identification and localization usually relies on
20 seconds data). Therefore, the main contribution of this
letter is to achieve reliable source authentication of short
DS fragments from near range (i.e., intra-state) locations
without upgrading the hardware of the PMU device. The
findings of this paper have the potential to address the cyber-
security challenges raised by the “Source ID Mix” spoofing
attack.

II. PROPOSED CYBERSECURITY DEFENSE FRAMEWORK

By examining the multifractality of DS recorded at the
individual location, the authors found frequency variations
over a large geographical scale (i.e., Eastern Interconnection
in the U.S.) possess multifractal structures from which
distinctive spatio-temporal signatures can be extracted as
a fingerprint for DS source authentication [2]. Inspired
by this finding, the proposed model-free cybersecurity
defense framework (shown in Fig. 1) contains three major
steps: (1) Analogous Multifractal Height Cross-Correlation
Analysis (AMFHXA) is performed on the DS to quan-
tify the long-term cross-correlation of DS from differ-
ent locations within a distribution network. (2) Weighted
Multifractal Surface Interpolation (WMEFSI) is developed to
reconstruct quasi high-resolution DS by using the derived
cross-correlation. (3) Informative spatial and temporal sig-
natures are extracted from the interpolated DS and they
are further integrated with RFC for identifying DS source
locations.

A. Model of “Source ID Mix” Spoofing Attacks

Considering a DS measurement matrix as (1)

ui,1 o Uz Um,1

urp U2 Um,2
UZ[UI,UZ,"'Um]Z (1)

Uy uz,j Um,j

uN U2N Umn,N
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where u; ; denotes the DS measurement from i-th PMU at time
instance j. N is the total length of DS measurements and m is
the number of PMUs.

For DS data from k-th (1<k<m) PMU Uy, the “Source ID
Mix” attack happens on U; when Uy is replaced by DS data
from i-th (1<i<m, i#k) PMU during the same time interval.

B. AMFHXA of Frequency Variations

AMFHXA provides a novel criterion to examine the long-
term cross-correlation between pairwise signals [8]. Different
from the traditional Pearson Correlation Coefficient (PCC)
which evaluates the correlation at a single scale and thus
may not be able to detect the “Source ID Mix” data spoof-
ing (since the spoofed data are still within an acceptable
range creating minor changes in the correlation coefficients),
AMFHXA quantifies the cross-correlation of pairwise time-
series data at different temporal scales. For frequency measure-
ments from multiple locations, a high pass filter is first applied
to remove the general frequency trend and only preserve
the frequency variations [2]. Considering frequency variations
{U} and {V;}recorded at two locations, t = 1,2,---N, N is
the sample number of frequency variations. The first step of
AMFHXA is to construct a cumulative frequency deviation
sequence as (2).

t t

U =Y (U-0).vy=Y (Vi—V) ?)

i=1 i=1

where U and V are average values of frequency variations.
Then the cross-increment of these two cumulative frequency
deviation sequence with time delay L is defined as (3).

AUV =[U@® -Ue+LD)]e[Ve)—V(E+L)] (3)

Subsequently, the g-th order height-height covariance of
these two frequency variations is calculated as (4).

1 N—L
Covly y(L) = w7 D_sgnlALUOV(D)] o]
=1

ALU@OV@)|9?,g> 0 4)

The order g examines the varying degrees of frequency vari-
ations with small and large magnitude. Normally, the order
q less than one magnifies the contribution of variations with
small magnitude while the order g above two concentrates
on the contribution of variations with large magnitude. In
this paper, the 2" order statistics of fluctuations is adopted
which quantifies the cross-correlation of fluctuations with all
magnitudes. Based on (4), the AMFHXA coefficient p,(L)is
calculated as (5), which provides an effective measure to quan-
tify the cross-correlation between two frequency variations at
different fluctuation orders and time delay.

Cov{, (L)

\/ Covl, y(L)CoV¥, (L)

pq(L) = ,q =2, pq(L) € [-1,1].

(&)
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Fig. 2. (a) Locations of frequency signals collected from Queensland network
and (b) cross-correlation coefficients between P1 and other six locations.

C. Weighted Multifractal Surface Interpolation (WMFSI)

Once the AMFHXA coefficient is determined, WMFSI
is developed to reconstruct quasi high-resolution frequency
variations of each measurement location by maintaining the
self-affined and time-invariant structures of the original sig-
nal. For WMEFSI, frequency variations of a specific location
are selected as the target location while frequency varia-
tions of the rest locations are used as candidate locations.
Then, the 2" order AMFHXA coefficients between each
of the candidate location and target location are calculated.
For each pair of candidate and target location, the original
frequency variations of the target location are interpolated
through two-dimensional multifractal surface interpolation [9]
after k iterations which boosts the reporting rate k> times
higher than the original signal. Then the weighted summa-
tion of the interpolated frequency variations by each pair of
candidate and target location with the corresponding absolute
values of AMFHXA coefficients|p>| as weights is computed.
Finally, the above weighted summation is further divided by
the summation of weights to generate the quasi high-resolution
frequency variation of the target location. In this way, if the
frequency variations between the candidate location and tar-
get location are highly correlated (o, = £1), a large weight
is assigned to the interpolated frequency variations by using
this candidate location. In contrast, if the candidate location
and target location is uncorrelated (pp = 0), the interpo-
lated frequency variations by using this candidate location are
excluded in the final interpolation results.

D. Spatio-Temporal Signature Extraction and Source
Authentication

After constructing the quasi high-resolution frequency vari-
ations at each location, distinctive spatio-temporal signatures
are extracted using the method proposed in [10]. This method
extracts the informative features by examining the statisti-
cal characteristics, non-stationarity and nonlinearity nature
and recurrence characteristics of frequency variations. The
extracted spatio-temporal signatures are further used as input
features for RFC to recognize the source information of DS
measurements.

III. CASE STUDY AND RESULTS DISCUSSION
A. Experiment Database Construction and Setup

In this paper, DS from seven locations within a distribution
network (denoted as P/ to P7 in Fig. 2) over three months are
collected. The distance among most measurement locations is
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Fig. 3. Interpolation of frequency variations using (a) conventional multi-

fractal interpolation and (b) proposed WMFSI method.

within 40km, which are considered as dense locations com-
pared with existing studies where most PMUs are deployed
more than 100km far away. For each location, 1000 fragments
with 20 seconds length are randomly selected to construct an
experimental dataset. This exactly simulates the “Source ID
Mix” spoofing attack on short DS fragments at dense loca-
tions. The original reporting rate of DS is 50 data points
per second. The experiment dataset is further grouped into
a training and testing dataset by using 80% and 20% of the
samples. The identification rate of the testing samples (the per-
centage of corrected classified testing samples) is selected as
the performance evaluation criterion.

Fig. 2(b) shows an example of cross-correlation coefficients
calculated by AMFHXA and PCC using P/ as the tar-
get location. It is clear that the coefficients calculated by
AMFHXA gradually decrease when the candidate locations
move far away from PJ/. Compared with AMFHXA, the con-
ventional PCC fails to describe such a correlation as the
coefficients at some locations significantly diverge from the
main trend. In addition, most coefficients calculated by PCC
are lower than 0.5 which indicate less correlation among these
locations.

B. Results of WMFSI

To demonstrate the performance of the proposed WMFSI
approach, Fig. 3 shows an example of two-seconds measured
and the interpolated frequency variations using the conven-
tional one-dimension multifractal interpolation (CMFI) [11]
and the proposed WMEFSI method. The original frequency
variations with 50Hz reporting rate are first downsampled to
10 Hz. Then it is interpolated back to 50Hz resolution to make
a comparison with the original frequency variations. The inter-
polation is also performed by using the spline method for
comparison purposes.

From Fig. 3 it is observed that the WMEFSI shows good
performance in reconstructing the frequency variations, where
most large variations of the frequency signal can be recovered.
In contrast, the spline interpolation can only capture the gen-
eral trend of the frequency over the whole period and smooth
the frequency variations. From Fig. 3(a) and Fig. 3(b) it is
found that compared with the conventional multifractal inter-
polation, the signal processed by the proposed WMFSI shows
a higher agreement with the actual measurements. This is
because the conventional multifractal interpolation only real-
izes the multifractal structures using the historical frequency
variations of the target location while the proposed method
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TABLE I
COMPARISON OF IDENTIFICATION RATE WITH FIVE OTHER ALGORITHMS

Model Discrete wavelet Time-frequency Time-frequency
transform -ANN mapping-DF mapping-RFC
Accuracy 54% 81% 80%
Ensemble empirical Continuous
Model mode decomposition - wavelet Proposed
ANN transform-CNN
Accuracy 85% 88% 93%
TABLE II

IDENTIFICATION RATE WITH DIFFERENT WMFSI RESOLUTION

DS Resolution (Hz) 200 450 800 1250 1800
Identification rate (%) 83 85 89 93 89

incorporates more information from the neighboring loca-
tions which are highly correlated with the target location. For
the source identification experiment presented in this paper,
1250Hz is selected as the reporting rate of the frequency
variations after WMFSI by considering the computational
complexity and identification rate.

C. Performance Evaluation

In this section, the performance of the proposed cyberse-
curity defense method is compared with other five recently
reported algorithms in identifying the source information of
DS recorded at seven locations. It is clear that the proposed
method outperforms existing methods with an overall identi-
fication rate of 93%. Such a high identification rate is mainly
because the WMFSI has the capability to further increase the
sampling rate of original DS data so that the distinctive spatial-
temporal signatures at the high-frequency band can be further
realized by the machine learning algorithm for accurate source
authentication.

D. Impact of WMFSI Resolution of DS on Identification Rate

The resolution of the frequency variations reconstructed by
the proposed WMFSI method has significant impacts on the
source identification rate. If the resolution is low, the spatio-
temporal signatures may not be fully realized thus making the
RFC confuse the source locations of testing samples. However,
if the resolution is too high, some values of the extracted
spatio-temporal signatures are averaged out which also reduces
the identification rate of RFC. By observing the dependency
between the resolution and the identification rate in Table II,
it is clear that 1250Hz reporting rate is an optimal value
for 20-seconds frequency fragments which attains the highest
identification rate of 93%.

E. Discussion on the Practicability of DS Cybersecurity
Defense Framework

The proposed method can be implemented as a practical DS
cybersecurity defense strategy by the following three steps:

(1) DS database construction and spatial-temporal signature
extraction: Sufficient amount of historical normal DS data are
recorded to build the DS database. Each DS segment is pro-
cessed by the proposed AMFHXA and WMEFSI which is then
used to extract distinctive spatial-temporal signatures.
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(2) Offline training: The extracted spatial-temporal signatures
are used to train the RFC algorithm which builds a mathematical
model that describes the correlation between the signatures and
the corresponding source locations. Since the spatial-temporal
signatures are usually stable over months, the training of RFC
does not have to be performed frequently.

(3) Online DS authentication: Once the new DS data is
received by the data server, the well-trained model makes
prompt classification (less than 10 milliseconds per sample)
on the source location of the new DS data of interest and an
early warning is raised if any data exception is identified.

IV. CONCLUSION

To mitigate the risk of critical DS-based applications
induced by the sophisticated “Source ID Mix” spoofing
attack, this letter proposes a cybersecurity defense framework,
which combines AMFHXA, WMFSI, spatio-temporal signa-
ture extraction and RFC. The multifractal cross-correlation of
DS at multiple intra-state locations was explored which can
facilitate RFC in realizing unique spatio-temporal signatures
of the DS measurements and identifying the corresponding
source information. The comparison with some commonly
used cybersecurity defense methods reveals that the proposed
method has a stronger capability to detect cyber spoofing
attacks by using short fragments. It is expected that the
explored multifractality of DS can facilitate in improving the
detection rate of other sophisticated spoofing attacks (e.g., time
mirroring spoofing, time dilation spoofing, et al) on DS and
defending the cybersecurity of smart grids.
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