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Abstract—“Source ID Mix” spoofing emerged as a new type of
cyber-attack on Distribution Synchrophasors (DS) where adver-
saries have the capability to swap the source information of
DS without changing the measurement values. Accurate detec-
tion of such a highly-deceptive attack is a challenging task
especially when the spoofing attack happens on short frag-
ments of DS recorded within a relatively small geographical
scale. This letter proposes an effective approach to detect this
cyber-attack by realizing the multifractal characteristics of DS
measurements. First, the multifractal cross-correlation of DS
measured at multiple intra-state locations is revealed. Then the
derived correlation is integrated with weighted two-dimensional
multifractal surface interpolation to reconstruct quasi high-
resolution signals. Finally, informative location-specific signatures
are extracted from the high-resolution DS and they are integrated
with advanced machine learning techniques for source authen-
tication. Experiments using the real-life DS are performed to
verify the proposed method.

Index Terms—Source ID Mix, distribution network, cyber-
physical security, OT security, phasor measurement unit (PMU).

I. INTRODUCTION

W
ITH the high accuracy and resolution measurements

of Phasor Measurement Units (PMUs), DS provide
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system operators with an unprecedented way to achieve real-

time monitoring and control of power systems. However, due

to the lack of a perfect data authentication mechanism of PMU

communication protocol-IEEE C37.118, the data security of

DS is always vulnerable to cyber spoofing attacks [1]. Even

IEC 61850-90-5 recommends the communication security of

the PMU protocol, sophisticated data attacks can still be ini-

tiated by potential adversaries. “Source ID Mix” represents a

new type of sophisticated data spoofing attack of DS which

may threaten critical DS-based monitoring and control, such as

inter-area low-frequency oscillation damping control and elec-

tromechanical disturbance location estimation [2]. Therefore,

reliable detection of this attack provides substantial benefits to

system operators for ensuring the data integrity and security

of many DS-based applications in smart grids.

To address the cybersecurity challenges raised by sophis-

ticated data spoofing attack, several cybersecurity defense

methods have been developed. Depending on the robust-

ness of methods, these approaches can be divided into two

major streams, i.e., model-based approaches and model-free

approaches [1]. Model-based approaches usually first estab-

lish state equations of the power network and then examine the

residual vectors or state variables to identify if any abnormal

changes occur in the DS measurements. However, the need for

system structures and parameters for building the state equa-

tions limits its generality and adaptability in detecting spoofing

attacks on DS. To overcome the above limitations, model-free

methods detect the spoofing attack by extracting informative

location-specific signatures embedded in the DS and integrat-

ing the extracted signatures with machine learning techniques,

such as Support Vector Machine (SVM) [3], Artificial Neural

Networks (ANN) [4], Random Forest Classification (RFC) [5]

and deep learning algorithms (such as Deep Forest - DF [2]

and Convolutional Neural Network -CNN [6]–[7]. However,

how to accurately extract the above signatures and achieve

reliable detection is still challenging.

By nature, the variation of DS has the characteristics of

duality in both spatial and temporal domains, i.e., relevance

and randomness. Therefore, the identification accuracy of the

source locations mainly depends on how much the spatio-

temporal signatures of the DS from each local environment

differentiate from each other. For DS collected from wide-area

locations (e.g., inter-country, interconnection or inter-state),

most methods can achieve reasonably high identification accu-

racy (above 90%). For DS measured from dense locations (i.e.,

grid within the same state or even within the same city), the
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Fig. 1. Proposed cybersecurity defense framework.

identification accuracy is normally less than 90% as varia-

tions of the measured DS from these locations exhibit high

similarity. Although the identification accuracy can be further

improved to above 90%, DS with a high reporting rate and

longer time interval (e.g., 120Hz reporting rate and 10 min-

utes length [5]) are required to realize the spatio-temporal

signatures which may not be feasible for protecting real-time

DS-based applications (for example, low-frequency distur-

bance mode identification and localization usually relies on

20 seconds data). Therefore, the main contribution of this

letter is to achieve reliable source authentication of short

DS fragments from near range (i.e., intra-state) locations

without upgrading the hardware of the PMU device. The

findings of this paper have the potential to address the cyber-

security challenges raised by the “Source ID Mix” spoofing

attack.

II. PROPOSED CYBERSECURITY DEFENSE FRAMEWORK

By examining the multifractality of DS recorded at the

individual location, the authors found frequency variations

over a large geographical scale (i.e., Eastern Interconnection

in the U.S.) possess multifractal structures from which

distinctive spatio-temporal signatures can be extracted as

a fingerprint for DS source authentication [2]. Inspired

by this finding, the proposed model-free cybersecurity

defense framework (shown in Fig. 1) contains three major

steps: (1) Analogous Multifractal Height Cross-Correlation

Analysis (AMFHXA) is performed on the DS to quan-

tify the long-term cross-correlation of DS from differ-

ent locations within a distribution network. (2) Weighted

Multifractal Surface Interpolation (WMFSI) is developed to

reconstruct quasi high-resolution DS by using the derived

cross-correlation. (3) Informative spatial and temporal sig-

natures are extracted from the interpolated DS and they

are further integrated with RFC for identifying DS source

locations.

A. Model of “Source ID Mix” Spoofing Attacks

Considering a DS measurement matrix as (1)

U = [U1, U2, · · · Um] =
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(1)

where ui,j denotes the DS measurement from i-th PMU at time

instance j. N is the total length of DS measurements and m is

the number of PMUs.

For DS data from k-th (1≤k≤m) PMU Uk, the “Source ID

Mix” attack happens on Uk when Uk is replaced by DS data

from i-th (1≤i≤m, i �=k) PMU during the same time interval.

B. AMFHXA of Frequency Variations

AMFHXA provides a novel criterion to examine the long-

term cross-correlation between pairwise signals [8]. Different

from the traditional Pearson Correlation Coefficient (PCC)

which evaluates the correlation at a single scale and thus

may not be able to detect the “Source ID Mix” data spoof-

ing (since the spoofed data are still within an acceptable

range creating minor changes in the correlation coefficients),

AMFHXA quantifies the cross-correlation of pairwise time-

series data at different temporal scales. For frequency measure-

ments from multiple locations, a high pass filter is first applied

to remove the general frequency trend and only preserve

the frequency variations [2]. Considering frequency variations

{Ut} and {Vt}recorded at two locations, t = 1, 2, · · · N, N is

the sample number of frequency variations. The first step of

AMFHXA is to construct a cumulative frequency deviation

sequence as (2).

U(t) =

t
∑

i=1

(

Ut − Ū
)

, V(t) =

t
∑

i=1

(

Vt − V̄
)

(2)

where Ū and V̄ are average values of frequency variations.

Then the cross-increment of these two cumulative frequency

deviation sequence with time delay L is defined as (3).

�LU(t)V(t) = [U(t) − U(t + L)] • [V(t) − V(t + L)] (3)

Subsequently, the q-th order height-height covariance of

these two frequency variations is calculated as (4).

Cov
q
U,V(L) =

1

N − L

N−L
∑

t=1

sgn[�LU(t)V(t)] • |

�LU(t)V(t)|q/2, q > 0 (4)

The order q examines the varying degrees of frequency vari-

ations with small and large magnitude. Normally, the order

q less than one magnifies the contribution of variations with

small magnitude while the order q above two concentrates

on the contribution of variations with large magnitude. In

this paper, the 2nd order statistics of fluctuations is adopted

which quantifies the cross-correlation of fluctuations with all

magnitudes. Based on (4), the AMFHXA coefficient ρq(L)is

calculated as (5), which provides an effective measure to quan-

tify the cross-correlation between two frequency variations at

different fluctuation orders and time delay.

ρq(L) =
Cov

q
U,V(L)

√

Cov
q
U,U(L)Cov

q
V,V(L)

, q = 2, ρq(L) ∈ [−1, 1].

(5)

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on September 20,2024 at 14:45:02 UTC from IEEE Xplore.  Restrictions apply. 



1660 IEEE TRANSACTIONS ON SMART GRID, VOL. 13, NO. 2, MARCH 2022

Fig. 2. (a) Locations of frequency signals collected from Queensland network
and (b) cross-correlation coefficients between P1 and other six locations.

C. Weighted Multifractal Surface Interpolation (WMFSI)

Once the AMFHXA coefficient is determined, WMFSI

is developed to reconstruct quasi high-resolution frequency

variations of each measurement location by maintaining the

self-affined and time-invariant structures of the original sig-

nal. For WMFSI, frequency variations of a specific location

are selected as the target location while frequency varia-

tions of the rest locations are used as candidate locations.

Then, the 2nd order AMFHXA coefficients between each

of the candidate location and target location are calculated.

For each pair of candidate and target location, the original

frequency variations of the target location are interpolated

through two-dimensional multifractal surface interpolation [9]

after k iterations which boosts the reporting rate k2 times

higher than the original signal. Then the weighted summa-

tion of the interpolated frequency variations by each pair of

candidate and target location with the corresponding absolute

values of AMFHXA coefficients|ρ2| as weights is computed.

Finally, the above weighted summation is further divided by

the summation of weights to generate the quasi high-resolution

frequency variation of the target location. In this way, if the

frequency variations between the candidate location and tar-

get location are highly correlated (ρ2 = ±1), a large weight

is assigned to the interpolated frequency variations by using

this candidate location. In contrast, if the candidate location

and target location is uncorrelated (ρ2 = 0), the interpo-

lated frequency variations by using this candidate location are

excluded in the final interpolation results.

D. Spatio-Temporal Signature Extraction and Source

Authentication

After constructing the quasi high-resolution frequency vari-

ations at each location, distinctive spatio-temporal signatures

are extracted using the method proposed in [10]. This method

extracts the informative features by examining the statisti-

cal characteristics, non-stationarity and nonlinearity nature

and recurrence characteristics of frequency variations. The

extracted spatio-temporal signatures are further used as input

features for RFC to recognize the source information of DS

measurements.

III. CASE STUDY AND RESULTS DISCUSSION

A. Experiment Database Construction and Setup

In this paper, DS from seven locations within a distribution

network (denoted as P1 to P7 in Fig. 2) over three months are

collected. The distance among most measurement locations is

Fig. 3. Interpolation of frequency variations using (a) conventional multi-
fractal interpolation and (b) proposed WMFSI method.

within 40km, which are considered as dense locations com-

pared with existing studies where most PMUs are deployed

more than 100km far away. For each location, 1000 fragments

with 20 seconds length are randomly selected to construct an

experimental dataset. This exactly simulates the “Source ID

Mix” spoofing attack on short DS fragments at dense loca-

tions. The original reporting rate of DS is 50 data points

per second. The experiment dataset is further grouped into

a training and testing dataset by using 80% and 20% of the

samples. The identification rate of the testing samples (the per-

centage of corrected classified testing samples) is selected as

the performance evaluation criterion.

Fig. 2(b) shows an example of cross-correlation coefficients

calculated by AMFHXA and PCC using P1 as the tar-

get location. It is clear that the coefficients calculated by

AMFHXA gradually decrease when the candidate locations

move far away from P1. Compared with AMFHXA, the con-

ventional PCC fails to describe such a correlation as the

coefficients at some locations significantly diverge from the

main trend. In addition, most coefficients calculated by PCC

are lower than 0.5 which indicate less correlation among these

locations.

B. Results of WMFSI

To demonstrate the performance of the proposed WMFSI

approach, Fig. 3 shows an example of two-seconds measured

and the interpolated frequency variations using the conven-

tional one-dimension multifractal interpolation (CMFI) [11]

and the proposed WMFSI method. The original frequency

variations with 50Hz reporting rate are first downsampled to

10 Hz. Then it is interpolated back to 50Hz resolution to make

a comparison with the original frequency variations. The inter-

polation is also performed by using the spline method for

comparison purposes.

From Fig. 3 it is observed that the WMFSI shows good

performance in reconstructing the frequency variations, where

most large variations of the frequency signal can be recovered.

In contrast, the spline interpolation can only capture the gen-

eral trend of the frequency over the whole period and smooth

the frequency variations. From Fig. 3(a) and Fig. 3(b) it is

found that compared with the conventional multifractal inter-

polation, the signal processed by the proposed WMFSI shows

a higher agreement with the actual measurements. This is

because the conventional multifractal interpolation only real-

izes the multifractal structures using the historical frequency

variations of the target location while the proposed method
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TABLE I
COMPARISON OF IDENTIFICATION RATE WITH FIVE OTHER ALGORITHMS

TABLE II
IDENTIFICATION RATE WITH DIFFERENT WMFSI RESOLUTION

incorporates more information from the neighboring loca-

tions which are highly correlated with the target location. For

the source identification experiment presented in this paper,

1250Hz is selected as the reporting rate of the frequency

variations after WMFSI by considering the computational

complexity and identification rate.

C. Performance Evaluation

In this section, the performance of the proposed cyberse-

curity defense method is compared with other five recently

reported algorithms in identifying the source information of

DS recorded at seven locations. It is clear that the proposed

method outperforms existing methods with an overall identi-

fication rate of 93%. Such a high identification rate is mainly

because the WMFSI has the capability to further increase the

sampling rate of original DS data so that the distinctive spatial-

temporal signatures at the high-frequency band can be further

realized by the machine learning algorithm for accurate source

authentication.

D. Impact of WMFSI Resolution of DS on Identification Rate

The resolution of the frequency variations reconstructed by

the proposed WMFSI method has significant impacts on the

source identification rate. If the resolution is low, the spatio-

temporal signatures may not be fully realized thus making the

RFC confuse the source locations of testing samples. However,

if the resolution is too high, some values of the extracted

spatio-temporal signatures are averaged out which also reduces

the identification rate of RFC. By observing the dependency

between the resolution and the identification rate in Table II,

it is clear that 1250Hz reporting rate is an optimal value

for 20-seconds frequency fragments which attains the highest

identification rate of 93%.

E. Discussion on the Practicability of DS Cybersecurity

Defense Framework

The proposed method can be implemented as a practical DS

cybersecurity defense strategy by the following three steps:

(1) DS database construction and spatial-temporal signature

extraction: Sufficient amount of historical normal DS data are

recorded to build the DS database. Each DS segment is pro-

cessed by the proposed AMFHXA and WMFSI which is then

used to extract distinctive spatial-temporal signatures.

(2) Offline training: The extracted spatial-temporal signatures

are used to train the RFC algorithm which builds a mathematical

model that describes the correlation between the signatures and

the corresponding source locations. Since the spatial-temporal

signatures are usually stable over months, the training of RFC

does not have to be performed frequently.

(3) Online DS authentication: Once the new DS data is

received by the data server, the well-trained model makes

prompt classification (less than 10 milliseconds per sample)

on the source location of the new DS data of interest and an

early warning is raised if any data exception is identified.

IV. CONCLUSION

To mitigate the risk of critical DS-based applications

induced by the sophisticated “Source ID Mix” spoofing

attack, this letter proposes a cybersecurity defense framework,

which combines AMFHXA, WMFSI, spatio-temporal signa-

ture extraction and RFC. The multifractal cross-correlation of

DS at multiple intra-state locations was explored which can

facilitate RFC in realizing unique spatio-temporal signatures

of the DS measurements and identifying the corresponding

source information. The comparison with some commonly

used cybersecurity defense methods reveals that the proposed

method has a stronger capability to detect cyber spoofing

attacks by using short fragments. It is expected that the

explored multifractality of DS can facilitate in improving the

detection rate of other sophisticated spoofing attacks (e.g., time

mirroring spoofing, time dilation spoofing, et al) on DS and

defending the cybersecurity of smart grids.
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