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Cyber Spoofing Detection for Grid Distributed Synchrophasor
Using Dynamic Dual-Kernel SVM

Wei Qiu ', Graduate Student Member, IEEE, Qiu Tang

Abstract—Cyber spoofing with distributed synchrophasor
adversely affects the decision-making and situational awareness
of the power grid. To detect the spoofing trail, this letter proposes
a composite signature-based cyber spoofing detection method-
ology. The intrinsic principal modes are first extracted from
the distributed synchrophasor data. Then, multiple signatures
of different intrinsic model components are derived to quantify
the spoofing. Thereafter, the dynamic dual-kernel support vector
machine is proposed to identify cyber spoofing using multiple sig-
natures. Multiple experimental results using six spoofing methods
have verified the validity of the methodology.

Index Terms—Cyber spoofing, distributed synchrophasor,
dynamic dual-kernel support vector machine.

I. INTRODUCTION

UE TO the rising demand for transmission and callback

of grid measurements, the number of synchronized mea-
surement devices that collect distributed synchrophasor data
from different locations is increased, making it vulnerable to
be tampered by the False Data Injected Attack (FDIA). FDIA
is an attack method where data is manipulated and modified by
adversaries. For example, the source authentication can be con-
fused by high similarity false measurement value injected [1].
The cyber spoofing attack will cause equipment and economic
losses to the power system. Between 2011 and 2014, it is
reported that a total of 362 power interruption reports that are
related to cyber attack in the USA [2].
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Moreover, the purpose of cyber spoofing detection is to
protect the reliability, consistency, and availability of the mea-
surement data. Most of the applications that use synchrophasor
data for power grid situational awareness, such as oscillation
analysis and event location [3], can be protected. In [4], the
data packet can be hacked as the IEEE C37.118 lacks a perfect
security mechanism. If the channel security characteristics are
incomplete, even dedicated channels may still be attacked.

With the increasing sophisticate of FDIA, the state estima-
tion methods based on the power system model are used to
identify FDIA [2]. However, it requires the information of the
system parameter and its performance will be degraded when
the model differs from actual operation. Then, the model-
free methods using the measurement values are developed,
such as gcForest and Support Vector Machine (SVM) [1].
However, they are prone to being deceived because only a
small amount of input information is considered. SVM also
has limited learning ability because only single kernel is used.
The power system faces cyber security challenges in three
aspects, including the device, communication, and control cen-
ter [5]. Based on this consideration, to detect the availability
of data and prevent misuse of attack data in time, the FDIA
detection method is urgently required.

In this letter, a cyber spoofing detection methodology
is introduced using composite signature-based features of
grid distributed synchrophasor. Specifically, a Dynamic dual-
Kernel Support Vector Machine (DKSVM) is proposed to
solve the defect of single kernel in SVM. The advantage of
DKSVM is that multi-source signatures and multiple kernels
are used.

II. CYBER SPOOFING DETECTION FRAMEWORK

Different characteristics are exhibited in various FDIAs,
which means that the signatures of these Spoofing
Synchrophasor Data (SSD) are different from the normal
data. Under this scenario, the proposed methodology for SSD
detection is depicted in Fig. 1(a).

Denoting the distributed synchrophasor value as c(¢). It can
be seen that this framework includes three stages:

1) Feature extraction: the Variational Mode Decomposition
(VMD) is utilized to decompose the c(f) into multiple
Intrinsic Principal Modes (IPMs) v(z).

2) Combining with data c(¢), three signatures including the
kurtosis, envelope entropy, and spectrum are calculated
from the IPMs v(¢#) in time and frequency domains.
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Fig. 1.

3) SSD detection: Four signatures are transformed in the
proposed dynamic dual-kernel space. The SSD can be
identified from original data using the VMD-DKSVM
methodology. As shown in Fig. 1(b), the parameters of
DKSVM are then optimized and selected.

Here, to include as many different characteristics of spoof-
ing as possible, six types of cyber spoofing methods are
considered [6], [7], including the scaling (S1), noise (S2), data
packet loss (S3), oscillation (S4), synchronous replacement
(S5) and fake frequency disturbance (S6) spoofing.

IITI. PRINCIPLE OF THE CYBER SPOOFING DETECTION
A. Signature Extraction Using VMD

To extract the features from the SSD, a signal decomposition
method is required. VMD is an adaptive method and suitable
for the decomposition of non-steady state signals. Compared
with the traditional Empirical Mode Decomposition (EMD),
VMD overcomes the problems of end effect and modal alias-
ing. The primary objective of VMD is to decompose the
synchrophasor signal ¢(#) into multiple sub-signals v(#). These
sub-signals consist of spoofing components, which have the
property of reproducing the input signal.

To obtain the IPMs, the following constrained variational
problem should be satisfied, which can be written as

min
{vr} {or}

2l 0 e [ M

where the v/, (¢) is the analytic signal of v,(¢), the v, () denotes
the rth IPM, the d; denotes the partial derivative of time, the
spectrum factor exp /" is used to adjust the frequency band
centered of each v,(¢). This constrained problem should satisfy
Yo V() = (D).

By solving this constrained problem, the IPMs can be
extracted. To verify the decomposition effect of the VMD, an
oscillator synchrophasor frequency spoofing with max ampli-
tude 10 mHz is demonstrated in Fig. 2. The r is set to 6 which
means 6 IPMs are decomposed. Compared with Fig. 2(c)
and (d), (g) and (h), the shape and amplitude are similar,
which indicating that the common IPMs of original data and
SSD are extracted. It can be seen from Fig. 2(e) and (f) that
the oscillator component has been extracted with the same
amplitude.
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Fig. 2. The VMD result of oscillator spoofing. (a) The oscillator SSD and
original data, (b) The oscillator spoofing component, (c) (e) and (g) are the
4th, 5th and 6th IPMs of oscillator SSD respectively, (d) (f) and (h) are the
4th, 5th and 6th IPMs of original data respectively.

After obtained the IPMs, different signatures are extracted.
It is founded from [8] that patterns of the synchrophasor data
will not change in the short term. To maximize the detec-
tion performance and ensure its robustness and adaptability,
features from different domains are extracted to fully charac-
terize the attack signal. Two statistical signatures are kurtosis,
envelope entropy of each IPM which can be denoted as s;, e,
respectively. Additionally, the frequency domain information
of each signal has proved to be the unique fingerprints since
the main trend term (called residual IPM component) of the
signal is obtained [6]. Specifically, the spectrum signature f is
calculated from the FFT of c¢(f) — vs(¢), where the vg(?) is the
residual IPM component.

It is emphasized that the spectrum and statistical signatures
do not include time domain information. However, the shape
change in the time domain can be used to distinguish several
cyber spoofing methods, such as S1 and S3. Therefore, the
original SSD is also selected as one of signatures. Finally,
four signatures s, = {s,, e,, f, c(t)}, n = 1,2, 3, 4 are designed
as the input of DKSVM. It should be notable that if more
attacks need to be detected, more features can be designed
and a larger number of training data is required to learn the
model parameters.

B. Proposed DKSVM

To fully integrate and identify the extracted signatures, a
dynamic dual-kernel SVM is proposed to detect the cyber
spoofing. The advantage of the DKSVM is that multiple kernel
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function can be utilized to map each input signature to get
higher accuracy while only a single dedicated kernel is used
in generally SVM. Concretely, given the input vectors as
I = {sil, vi}, where the sﬁl is the ith samples and the y; is the
label of s/. The dual-Kernel SVM (KSVM) is first proposed,
which the dual-kernel is defined as

. . 4 . .
K5l = 3 K (sie ) @
U“nKZual = (4n — A)Kgl + )\KSQ 3)

where the u, is the coefficient of different kernels and it satis-
fies Zi: | un = 1. The K}, is the dual-kernel and it consists
of two different sub-kernels K;; and K . The A C [0, 0.1] is
the coefficient of sub-kernels. The sub-kernel K7, is used as
the primary kernel, and K7}, is used to correct the misclassified
support vectors in Kj;.

Moreover, it is notable that two signatures of I have a
certain similarity if they belong to the same cyber spoofing
class. Therefore, a label information of the training sam-
ples can be incorporated into the prediction of KSVM [9].
Here, the dynamic KSVM is further proposed to use the label
information dynamically. The dynamic dual-kernel for training
process can be expressed as

Ka(si, s}) = exp(logK (si,, sh) + T) (4)
i JN :39 Yi=Yj
T(sn7 *dn) - {O, Yi ;é y] (5)

where the T(si,s)) is the dynamic ideal kernel, 8 is the
dynamic factor and it represents the weight information of
the label. Using the Neumann divergence [9], the new syn-
chrophasor samples of the DKSVM is calculated as

Ka(sh, s1) = —K(sD, s1) + K(sD), sDSK(st,, 8]) (6)

where the sh,sq C I are the prediction samples. The S =
K=Y (K4(st, sh) +K)K~!. Finally, the cyber spoofing detection
decision function can be obtained as

y = sign(W'Ky(sD), s9) + b) (7

where the WT and b denote the learned weight vector and bias
term respectively.

IV. EXPERIMENTS AND ANALYSIS

To verify the proposed cyber spoofing detection method-
ology, the distributed synchrophasor data of four Frequency
Disturbance Recorders (FDRs) in FNET/GridEye are collected
at different operating points as shown in Fig. 3. More impor-
tantly, some disturbance events, such as generation trip and
load shedding, have been included in the training data since
the actual synchrophasor data is collected. Thus this method
can identify different power system configurations. The data
are collected at three time nodes including the first day of
January (D1), March (D2), and May (D3) respectively. In each
day, 3000 samples are collected and the duration of each sam-
ple is 30 s with 10 Hz reporting rate. Seven types of data
are used to classify including one type of normal data and
six types of spoofing synchrophasor data S1-S6. Based on the
numerical model in [6], [7], the intensity (magnitude) and the
duration time of the spoofing are randomly set. The length of
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Fig. 3. Location of the distributed FDRs in FNET/GridEye.

TABLE I
PERFORMANCE WITH DIFFERENT PROPORTIONS OF TRAINING DATA

. Accuracy (%) Hamming
Methods 0%  30%  50%  70% loss
(O)SVM 5446 6357 6887 7092 0464
¢(t)-DKSVM  55.13 6394 69.05 7117 0463
VMD-SVM 8925 9279 9441 9439  0.107
VMD-KSVM 9389 9580 96.63 9698 0.6l
VMD-DKSVM 9428 9615 9697 97.14  0.056

each sample is 300. The duration time is set to 10% — 90%
of the total length. The kernel parameters and coefficients of
DKSVM are optimized by using particle swarm optimization.
The number of IPMs is optimized set to 6 in VMD. Namely,
6 s,, e, of each SSD are calculated.

The kernels are selected as follows by some trials and fails:
all the K7}, are set as Radial Basis Function (RBF) kernels, the
K, are designated as Sigmoid, Polynomial and tanh kernels
for K1), K3,, K4, respectively, where the dual-kernel of e, is
not set. The corresponding A is set to 0.01. The coefficients
iy of dual-kernels are 0.15, 0.24, 0.15 and 0.46 respectively.
The dynamic factor 8 = 0.0015.

A. Results With Different SVM Methodology

To verify the robustness of the proposed VMD-DKSVM,
the SVM, KSVM, and DKSVM are compared under different
proportions of training data, which means that the different
number of training samples are used in the training process.
The detection and hamming loss results are listed in Table I,
which the input of c(¥)—SVM and c(r)—DKSVM are c(?).
In Table I, n% training data means n% data from the 3000
samples are randomly selected. The hamming loss denotes
the proportion of misidentification samples. A lower hamming
loss means a better classifier. It can be inferred that the sig-
natures derived from VMD can greatly improve the spoofing
detection effect compared from the SVM and VMD-SVM,
DKSVM and VMD-DKSVM. Moreover, the VMD-DKSVM
obtained the 94.28% accuracy ever with only 10% training
data. However, the VMD-SVM reaches 89.25%, which is 5%
lower than VMD-DKSVM. As the training samples increase,
the accuracy difference decreases due to the compression of
the test sample space. Moreover, it is clear from Table I that
the SVM method obtains the highest hamming loss while
the VMD-DKSVM has the lowest value. This means that the
proposed method has better attack recognition capability.

To verify the accuracy of different attacks, the confusion
matrix is calculated as shown in Fig. 4. Both the number of
observations and the accuracy are shown in each cell. The
column on the far right are the precision and false discov-
ery rate, respectively. The row at the bottom of the plot are
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Fig. 4. The confusion matrix of the VMD-DKSVM when 10% data are used
in training.

the recall and false negative rate, respectively. It can be seen
that the noise (S2), oscillation (S4), and fake frequency distur-
bance (S6) have higher precision. The performance of scaling
(S1) and synchronous replacement (S5) are lower than the
overall accuracy. In S1 and S5, more than 0.93% and 1.15%
data are misidentified to normal data. The reason is because
the shape of the S1 and S5 is very similar to the normal
data when the attack intensity is small. The S4 has the low-
est false negative rate with only 0.1% because the features
can be efficiently extracted by VMD. However, the normal
data obtains the 14.2% false negative rate. It indicates that the
attack is prone to misidentification when the attack intensity
is small. The overall accuracy reaches 94.3% shown in the
bottom right means that the VMD-DKSVM has the potential
to detect multiple attacks.

B. Results With Different Spoofing Intensity

The complexity of spoofing data is the key to verify the
performance of VMD-DKSVM. Therefore, the accuracy under
different spoofing intensity and time nodes are shown in
Fig. 5. Meanwhile, three types of intensities including 5 mHz,
10 mHz, and 20 mHz are tested due to the measurement error
of FDRs is generally lower than 5 mHz. It shows that as the
spoofing intensity of SSD increases, the detection accuracy is
further improved. From a time node perspective, the model
detection accuracy changes stay within 1% even at D3 when
the spoofing intensity higher than 5 mHz. This means that the
VMD-DKSVM has profound robustness. To ensure long-term
effectiveness, the VMD-DKSVM can train once every week
using the latest measurement data.

C. Comparison With Other Machine Learning Methods

In the case, another three intelligent methods are used to
identify the SSD, including the Artificial Neural Networks
(ANN), Decision Trees (DT), MM-TF-GCEF [1]. Table II sum-
marized the accuracy and running time of different methods.
When the spoofing intensity is 20 mHz, it shows that the accu-
racy of ANN and DT classifiers are higher than 86%, while
the MM-TF-RFC is less than 70%. Additionally, the proposed
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Fig. 5. The accuracy in different test time nodes with 10% training data.

TABLE II
PERFORMANCE COMPARISON OF MACHINE LEARNING METHODS

Accuracy (%) Test time for

Methods 5mHz 10mHz 20 mHz each sampple (ms)
VMD-ANN 64.72 84.34 87.78 24.51
VMD-DT 78.20 82.67 86.65 24.52
MM-TF-GCF 50.49 56.48 64.07 27.18
VMD-DKSVM  94.28 95.48 96.60 24.66

VMD-DKSVM obtains the best performance under different
intensities. The test time of VMD-DKSVM is 0.15 ms higher
than ANN and DT due to the kernel calculation. However, the
real-time performance can be satisfied because the time is far
below 30 s.

V. CONCLUSION

In this letter, a composite signature-based methodology,
which is composed of VMD and DKSVM, is proposed
to detect the cyber spoofing in distributed synchrophasor.
Utilizing the sync frequency data from FNET/GridEye, the
experimental results under different intensity and time nodes
reveal that the proposed methodology has high spoofing detec-
tion capability and robustness. This makes it suitable for data
spoofing monitoring in distributed synchronized measurement
devices.
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