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Abstract—Cyber spoofing with distributed synchrophasor
adversely affects the decision-making and situational awareness
of the power grid. To detect the spoofing trail, this letter proposes
a composite signature-based cyber spoofing detection method-
ology. The intrinsic principal modes are first extracted from
the distributed synchrophasor data. Then, multiple signatures
of different intrinsic model components are derived to quantify
the spoofing. Thereafter, the dynamic dual-kernel support vector
machine is proposed to identify cyber spoofing using multiple sig-
natures. Multiple experimental results using six spoofing methods
have verified the validity of the methodology.

Index Terms—Cyber spoofing, distributed synchrophasor,
dynamic dual-kernel support vector machine.

I. INTRODUCTION

D
UE TO the rising demand for transmission and callback

of grid measurements, the number of synchronized mea-

surement devices that collect distributed synchrophasor data

from different locations is increased, making it vulnerable to

be tampered by the False Data Injected Attack (FDIA). FDIA

is an attack method where data is manipulated and modified by

adversaries. For example, the source authentication can be con-

fused by high similarity false measurement value injected [1].

The cyber spoofing attack will cause equipment and economic

losses to the power system. Between 2011 and 2014, it is

reported that a total of 362 power interruption reports that are

related to cyber attack in the USA [2].
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Moreover, the purpose of cyber spoofing detection is to

protect the reliability, consistency, and availability of the mea-

surement data. Most of the applications that use synchrophasor

data for power grid situational awareness, such as oscillation

analysis and event location [3], can be protected. In [4], the

data packet can be hacked as the IEEE C37.118 lacks a perfect

security mechanism. If the channel security characteristics are

incomplete, even dedicated channels may still be attacked.

With the increasing sophisticate of FDIA, the state estima-

tion methods based on the power system model are used to

identify FDIA [2]. However, it requires the information of the

system parameter and its performance will be degraded when

the model differs from actual operation. Then, the model-

free methods using the measurement values are developed,

such as gcForest and Support Vector Machine (SVM) [1].

However, they are prone to being deceived because only a

small amount of input information is considered. SVM also

has limited learning ability because only single kernel is used.

The power system faces cyber security challenges in three

aspects, including the device, communication, and control cen-

ter [5]. Based on this consideration, to detect the availability

of data and prevent misuse of attack data in time, the FDIA

detection method is urgently required.

In this letter, a cyber spoofing detection methodology

is introduced using composite signature-based features of

grid distributed synchrophasor. Specifically, a Dynamic dual-

Kernel Support Vector Machine (DKSVM) is proposed to

solve the defect of single kernel in SVM. The advantage of

DKSVM is that multi-source signatures and multiple kernels

are used.

II. CYBER SPOOFING DETECTION FRAMEWORK

Different characteristics are exhibited in various FDIAs,

which means that the signatures of these Spoofing

Synchrophasor Data (SSD) are different from the normal

data. Under this scenario, the proposed methodology for SSD

detection is depicted in Fig. 1(a).

Denoting the distributed synchrophasor value as c(t). It can

be seen that this framework includes three stages:

1) Feature extraction: the Variational Mode Decomposition

(VMD) is utilized to decompose the c(t) into multiple

Intrinsic Principal Modes (IPMs) v(t).

2) Combining with data c(t), three signatures including the

kurtosis, envelope entropy, and spectrum are calculated

from the IPMs v(t) in time and frequency domains.
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Fig. 1. The cyber spoofing detection framework. (a) Framework of VMD-DKSVM, (b) Flowchart of VMD-DKSVM.

3) SSD detection: Four signatures are transformed in the

proposed dynamic dual-kernel space. The SSD can be

identified from original data using the VMD-DKSVM

methodology. As shown in Fig. 1(b), the parameters of

DKSVM are then optimized and selected.

Here, to include as many different characteristics of spoof-

ing as possible, six types of cyber spoofing methods are

considered [6], [7], including the scaling (S1), noise (S2), data

packet loss (S3), oscillation (S4), synchronous replacement

(S5) and fake frequency disturbance (S6) spoofing.

III. PRINCIPLE OF THE CYBER SPOOFING DETECTION

A. Signature Extraction Using VMD

To extract the features from the SSD, a signal decomposition

method is required. VMD is an adaptive method and suitable

for the decomposition of non-steady state signals. Compared

with the traditional Empirical Mode Decomposition (EMD),

VMD overcomes the problems of end effect and modal alias-

ing. The primary objective of VMD is to decompose the

synchrophasor signal c(t) into multiple sub-signals v(t). These

sub-signals consist of spoofing components, which have the

property of reproducing the input signal.

To obtain the IPMs, the following constrained variational

problem should be satisfied, which can be written as

min
{vr},{ωr}

{

∑

r

∥

∥∂t

[

vr
+(t) exp−jωr t

]
∥

∥

2

2

}

(1)

where the vr
+(t) is the analytic signal of vr(t), the vr(t) denotes

the rth IPM, the ∂t denotes the partial derivative of time, the

spectrum factor exp−jωr t is used to adjust the frequency band

centered of each vr(t). This constrained problem should satisfy
∑

r vr(t) = c(t).

By solving this constrained problem, the IPMs can be

extracted. To verify the decomposition effect of the VMD, an

oscillator synchrophasor frequency spoofing with max ampli-

tude 10 mHz is demonstrated in Fig. 2. The r is set to 6 which

means 6 IPMs are decomposed. Compared with Fig. 2(c)

and (d), (g) and (h), the shape and amplitude are similar,

which indicating that the common IPMs of original data and

SSD are extracted. It can be seen from Fig. 2(e) and (f) that

the oscillator component has been extracted with the same

amplitude.

Fig. 2. The VMD result of oscillator spoofing. (a) The oscillator SSD and
original data, (b) The oscillator spoofing component, (c) (e) and (g) are the
4th, 5th and 6th IPMs of oscillator SSD respectively, (d) (f) and (h) are the
4th, 5th and 6th IPMs of original data respectively.

After obtained the IPMs, different signatures are extracted.

It is founded from [8] that patterns of the synchrophasor data

will not change in the short term. To maximize the detec-

tion performance and ensure its robustness and adaptability,

features from different domains are extracted to fully charac-

terize the attack signal. Two statistical signatures are kurtosis,

envelope entropy of each IPM which can be denoted as sr, er

respectively. Additionally, the frequency domain information

of each signal has proved to be the unique fingerprints since

the main trend term (called residual IPM component) of the

signal is obtained [6]. Specifically, the spectrum signature f is

calculated from the FFT of c(t)− v6(t), where the v6(t) is the

residual IPM component.

It is emphasized that the spectrum and statistical signatures

do not include time domain information. However, the shape

change in the time domain can be used to distinguish several

cyber spoofing methods, such as S1 and S3. Therefore, the

original SSD is also selected as one of signatures. Finally,

four signatures sn = {sr, er, f , c(t)}, n = 1, 2, 3, 4 are designed

as the input of DKSVM. It should be notable that if more

attacks need to be detected, more features can be designed

and a larger number of training data is required to learn the

model parameters.

B. Proposed DKSVM

To fully integrate and identify the extracted signatures, a

dynamic dual-kernel SVM is proposed to detect the cyber

spoofing. The advantage of the DKSVM is that multiple kernel
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function can be utilized to map each input signature to get

higher accuracy while only a single dedicated kernel is used

in generally SVM. Concretely, given the input vectors as

I = {si
n, yi}, where the si

n is the ith samples and the yi is the

label of si
n. The dual-Kernel SVM (KSVM) is first proposed,

which the dual-kernel is defined as

K
(

si
n, sj

n

)

=
∑4

n=1
µnKn

dual

(

si
n, sj

n

)

(2)

µnKn
dual = (µn − λ)Kn

d1 + λKn
d2 (3)

where the µn is the coefficient of different kernels and it satis-

fies
∑4

n=1 µn = 1. The Kn
dual is the dual-kernel and it consists

of two different sub-kernels Kd1 and Kd2. The λ ⊂ [0, 0.1] is

the coefficient of sub-kernels. The sub-kernel Kn
d1 is used as

the primary kernel, and Kn
d2 is used to correct the misclassified

support vectors in Kn
d1.

Moreover, it is notable that two signatures of I have a

certain similarity if they belong to the same cyber spoofing

class. Therefore, a label information of the training sam-

ples can be incorporated into the prediction of KSVM [9].

Here, the dynamic KSVM is further proposed to use the label

information dynamically. The dynamic dual-kernel for training

process can be expressed as

Kd(s
i
n, s

j
n) = exp(logK(si

n, s
j
n) + T) (4)

T(si
n, s

j
n) =

{

β, yi = yj

0, yi �= yj
(5)

where the T(si
n, s

j
n) is the dynamic ideal kernel, β is the

dynamic factor and it represents the weight information of

the label. Using the Neumann divergence [9], the new syn-

chrophasor samples of the DKSVM is calculated as

Kd(s
p
n, sq

n) = −K(sp
n, sq

n) + K(sp
n, sq

n)SK(si
n, sj

n) (6)

where the s
p
n, s

q
n ⊂ I are the prediction samples. The S =

K−1(Kd(s
i
n, s

j
n)+K)K−1. Finally, the cyber spoofing detection

decision function can be obtained as

y = sign(WTKd(s
p
n, sq

n) + b) (7)

where the W
T and b denote the learned weight vector and bias

term respectively.

IV. EXPERIMENTS AND ANALYSIS

To verify the proposed cyber spoofing detection method-

ology, the distributed synchrophasor data of four Frequency

Disturbance Recorders (FDRs) in FNET/GridEye are collected

at different operating points as shown in Fig. 3. More impor-

tantly, some disturbance events, such as generation trip and

load shedding, have been included in the training data since

the actual synchrophasor data is collected. Thus this method

can identify different power system configurations. The data

are collected at three time nodes including the first day of

January (D1), March (D2), and May (D3) respectively. In each

day, 3000 samples are collected and the duration of each sam-

ple is 30 s with 10 Hz reporting rate. Seven types of data

are used to classify including one type of normal data and

six types of spoofing synchrophasor data S1-S6. Based on the

numerical model in [6], [7], the intensity (magnitude) and the

duration time of the spoofing are randomly set. The length of

Fig. 3. Location of the distributed FDRs in FNET/GridEye.

TABLE I
PERFORMANCE WITH DIFFERENT PROPORTIONS OF TRAINING DATA

each sample is 300. The duration time is set to 10% − 90%

of the total length. The kernel parameters and coefficients of

DKSVM are optimized by using particle swarm optimization.

The number of IPMs is optimized set to 6 in VMD. Namely,

6 sr, er of each SSD are calculated.

The kernels are selected as follows by some trials and fails:

all the Kn
d1 are set as Radial Basis Function (RBF) kernels, the

Kn
d2 are designated as Sigmoid, Polynomial and tanh kernels

for K1
d2, K3

d2, K4
d2 respectively, where the dual-kernel of er is

not set. The corresponding λ is set to 0.01. The coefficients

µn of dual-kernels are 0.15, 0.24, 0.15 and 0.46 respectively.

The dynamic factor β = 0.0015.

A. Results With Different SVM Methodology

To verify the robustness of the proposed VMD-DKSVM,

the SVM, KSVM, and DKSVM are compared under different

proportions of training data, which means that the different

number of training samples are used in the training process.

The detection and hamming loss results are listed in Table I,

which the input of c(t)−SVM and c(t)−DKSVM are c(t).

In Table I, n% training data means n% data from the 3000

samples are randomly selected. The hamming loss denotes

the proportion of misidentification samples. A lower hamming

loss means a better classifier. It can be inferred that the sig-

natures derived from VMD can greatly improve the spoofing

detection effect compared from the SVM and VMD-SVM,

DKSVM and VMD-DKSVM. Moreover, the VMD-DKSVM

obtained the 94.28% accuracy ever with only 10% training

data. However, the VMD-SVM reaches 89.25%, which is 5%

lower than VMD-DKSVM. As the training samples increase,

the accuracy difference decreases due to the compression of

the test sample space. Moreover, it is clear from Table I that

the SVM method obtains the highest hamming loss while

the VMD-DKSVM has the lowest value. This means that the

proposed method has better attack recognition capability.

To verify the accuracy of different attacks, the confusion

matrix is calculated as shown in Fig. 4. Both the number of

observations and the accuracy are shown in each cell. The

column on the far right are the precision and false discov-

ery rate, respectively. The row at the bottom of the plot are
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Fig. 4. The confusion matrix of the VMD-DKSVM when 10% data are used
in training.

the recall and false negative rate, respectively. It can be seen

that the noise (S2), oscillation (S4), and fake frequency distur-

bance (S6) have higher precision. The performance of scaling

(S1) and synchronous replacement (S5) are lower than the

overall accuracy. In S1 and S5, more than 0.93% and 1.15%

data are misidentified to normal data. The reason is because

the shape of the S1 and S5 is very similar to the normal

data when the attack intensity is small. The S4 has the low-

est false negative rate with only 0.1% because the features

can be efficiently extracted by VMD. However, the normal

data obtains the 14.2% false negative rate. It indicates that the

attack is prone to misidentification when the attack intensity

is small. The overall accuracy reaches 94.3% shown in the

bottom right means that the VMD-DKSVM has the potential

to detect multiple attacks.

B. Results With Different Spoofing Intensity

The complexity of spoofing data is the key to verify the

performance of VMD-DKSVM. Therefore, the accuracy under

different spoofing intensity and time nodes are shown in

Fig. 5. Meanwhile, three types of intensities including 5 mHz,

10 mHz, and 20 mHz are tested due to the measurement error

of FDRs is generally lower than 5 mHz. It shows that as the

spoofing intensity of SSD increases, the detection accuracy is

further improved. From a time node perspective, the model

detection accuracy changes stay within 1% even at D3 when

the spoofing intensity higher than 5 mHz. This means that the

VMD-DKSVM has profound robustness. To ensure long-term

effectiveness, the VMD-DKSVM can train once every week

using the latest measurement data.

C. Comparison With Other Machine Learning Methods

In the case, another three intelligent methods are used to

identify the SSD, including the Artificial Neural Networks

(ANN), Decision Trees (DT), MM-TF-GCF [1]. Table II sum-

marized the accuracy and running time of different methods.

When the spoofing intensity is 20 mHz, it shows that the accu-

racy of ANN and DT classifiers are higher than 86%, while

the MM-TF-RFC is less than 70%. Additionally, the proposed

Fig. 5. The accuracy in different test time nodes with 10% training data.

TABLE II
PERFORMANCE COMPARISON OF MACHINE LEARNING METHODS

VMD-DKSVM obtains the best performance under different

intensities. The test time of VMD-DKSVM is 0.15 ms higher

than ANN and DT due to the kernel calculation. However, the

real-time performance can be satisfied because the time is far

below 30 s.

V. CONCLUSION

In this letter, a composite signature-based methodology,

which is composed of VMD and DKSVM, is proposed

to detect the cyber spoofing in distributed synchrophasor.

Utilizing the sync frequency data from FNET/GridEye, the

experimental results under different intensity and time nodes

reveal that the proposed methodology has high spoofing detec-

tion capability and robustness. This makes it suitable for data

spoofing monitoring in distributed synchronized measurement

devices.
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