
Asymmetric RAID: Rethinking RAID for SSD
Heterogeneity

Ziyang Jiao
Syracuse University
zjiao04@syr.edu

Bryan S. Kim
Syracuse University
bkim01@syr.edu

Abstract
Traditional RAID solutions (e.g., Linux MD) balance writes 
evenly across the array for high I/O parallelism and data relia-
bility. This is built around the assumption that the underlying 
storage components are homogeneous, both in performance 
and capacity. However, SSDs, even for the same model, ex-
hibit very different characteristics and degrade over time, 
leading to severe disk under-utilization.

In this work, we present Asymmetric-RAID (Asym-RAID), 
a novel RAID architecture that optimizes system perfor-
mance and storage utilization by exploiting heterogeneity 
from a larger SSD pool. Asym-RAID asymmetrically dis-
tributes data across the array to fully utilize the capacity of 
each SSD. To improve performance, Asym-RAID differen-
tially exports the address space of each data stripe to the host, 
allowing for performance-optimized data placement. We out-
line the necessary changes in the storage stack for building 
an asymmetric RAID system and highlight its benefits.

CCS Concepts: • Information systems → Disk arrays; 
RAID; Flash memory; • Computing methodologies → 
Modeling methodologies.

Keywords: SSD, RAID, All-flash array, performance, capac-
ity, modeling, heterogeneity
ACM Reference Format:
Ziyang Jiao and Bryan S. Kim. 2024. Asymmetric RAID: Rethinking 
RAID for SSD Heterogeneity. In 16th ACM Workshop on Hot Topics 
in Storage and File Systems (HOTSTORAGE ’24), July 8–9, 2024, Santa 
Clara, CA, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/ 
10.1145/3655038.3665952

1 Introduction
The explosive growth of data, driven by the era of big data, 
places significant stress on data center storage systems [17].

This work is licensed under a Creative Commons Attribution International 
4.0 License.
HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA
© 2024 Copyright is held by the owner/author(s).
ACM ISBN 979-8-4007-0630-1/24/07
https://doi.org/10.1145/3655038.3665952

All-flash arrays (AFAs), which leverage the high performance,
low power consumption, and compact form factor of solid-
state drives (SSDs), are seen as a promising solution to meet
the growing demand for storage [8, 17].
However, despite providing numerous advantages, SSDs

present unique challenges compared to conventional hard
disk drives (HDDs) [5, 10, 11, 22, 29]. The performance and ca-
pacity of SSDs can vary significantly depending on the form
factor and flash memory chips, particularly for enterprise-
grade products [32]. Moreover, it is not uncommon for the
performance of a modern SSD to degrade over time due to
various factors such as write amplification and flash memory
errors, leading to "fail-slow" symptoms where the compo-
nents continue to function but experience reduced perfor-
mance [5, 10, 29]. Recent studies have demonstrated that fail-
slow drives can cause latency spikes of up to 3.65× [22] in
large-scale storage clusters and the performance of a modern
SSD degrades at a rate of 4.3% per petabyte data written [11].
On the other hand, the overall architecture of existing

AFA systems is built around the assumption that the under-
lying storage components are homogeneous. A common 𝑁 -
disk RAID maintains a deterministic stripes-to-disk mapping
that uniformly distributes data and parity chunks across all
disks [38]. This architecture results in significant disk under-
utilization when considering heterogeneity among storage
devices, particularly for modern SSDs. The balanced data
layout requires the underlying storage devices to be roughly
the same size. Otherwise, the aggregate capacity is deter-
mined by the minimal capacity device, making devices with
larger capacity underutilized. Moreover, by evenly spread-
ing data across the disks, the overall system performance is
bottlenecked by the poor-performing drives.
We illustrate this by testing the popular Linux-MD soft-

ware RAID-5 array built on heterogeneous SSDs. Figure 1a
shows the performance profile of two types of SSD prod-
ucts used for the experiments, measured by fio [7]. The read
throughput of the NVMe SSD outperforms the SATA SSD by
5.31× and 5.35×with 512 KiB and 1 MiB request sizes, respec-
tively. We then compare three RAID-5 systems: (1) SATA:
consisting of 3 SATA SSDs; (2) SATA+NVMe: consisting of 1
SATA SSD + 2 NVMe SSDs; and (3) NVMe: consisting of 3
NVMe SSDs. As shown in Figure 1b, although utilizing two
NVMe SSDs, the performance of the SATA+NVMe RAID
remains similar to the SATA RAID and achieves only 16.2%
and 16.1% of the NVMe RAID performance, for partial-stripe

101

https://doi.org/10.1145/3655038.3665952
https://doi.org/10.1145/3655038.3665952
https://doi.org/10.1145/3655038.3665952
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3655038.3665952&domain=pdf&date_stamp=2024-07-08


HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA Ziyang Jiao and Bryan S. Kim

(a) Performance com-
parison of SATA and
NVMe SSDs under
sequential read.

(b) Performance comparison of three
RAID-5 systems. SATA (3 SATA SSDs)
vs. SATA+NVMe (1 SATA SSD and
2 NVMe SSDs) vs. NVMe (3 NVMe
SSDs).

Figure 1. Performance bottleneck caused by disk heterogeneity
with Linux MD. Figure 1a shows the read performance of a SATA
and an NVMe SSD. Figure 1b demonstrates that the overall RAID
performance is determined by the device with the lowest perfor-
mance with conventional RAID solutions.

read and full-stripe read, respectively. As a result, with the
conventional RAID solution, the performance is determined
by the lowest-performance device, resulting in significant
under-utilization of system resources.
As the latest Linux MD is capable of supporting arrays

with more than 384 component devices [21], large cluster
storage systems almost always include a heterogeneous mix
of storage devices [12]. For example, RAID groups from Ne-
tApp deployed in the field contain SSDs with varying deploy-
ment times, which presents different performance character-
istics [23]. Storage nodes deployed in Alibaba Cloud employ
12 to 18 SSDs from multiple vendors to support cloud ser-
vices, including Block service, NoSQL service, and Big Data
service [37]. Furthermore, Huawei builds storage clusters
consisting of different types of storage devices, including
HDDs and SSDs, to improve utilization and throughput [6].
Consequently, such heterogeneous environments inevitably
lead to utilization issues and performance penalties with the
state-of-the-art RAID architectures [12].

This paper presents Asymmetric-RAID, a new RAID con-
struction mechanism to address disk heterogeneity for mod-
ern SSDs. Asym-RAID is designed to asymmetrically dis-
tribute data across the array to fully utilize the capacity of
each SSD while mathematically guaranteeing a maximum
logical volume exported to the host. To avoid performance
bottlenecks, Asym-RAID maintains multiple stripe groups
based on their performance characteristics and differentially
exports the address space of each data stripe to the host,
allowing a more performance-optimized data placement.

The contributions of this paper are as follows.
• We analyze and demonstrate the inefficiency of conven-
tional RAID solutions when considering disk heterogene-
ity for modern SSDs.

• We present Asymmetric-RAID, to our knowledge, the first
RAID architecture designed to leverage a mix of hetero-
geneous SSDs to improve overall storage utilization and
efficiency by distributing data asymmetrically.

• We investigate the option of building a performance-aware
logical volume by exporting address spaces differentially
and coordinating with file systems.

The rest of the paper is organized as follows. Section 2
presents the background for RAID and illustrates the perfor-
mance changes of modern SSDs. Section 3 describes Asym-
RAID’s design, including its heterogeneity-aware data distri-
bution and performance-optimized data placement. We then
discuss other relevant issues in Section 4 and conclude by
highlighting the heterogeneity issue in RAID environments
and the need for further research attention in Section 5.

2 Background and Related Works
In this section, we first present the background for RAID.
We then demonstrate that performance heterogeneity is a
common issue in SSDs, even among devices of the same
model. Finally, we review existing approaches for managing
and optimizing AFA storage.

2.1 RAID
Redundant array of independent disks (RAID) is a classic
solution that manages an array of SSDs to improve perfor-
mance, reliability, and capacity simultaneously [36]. In RAID,
data is striped across the drives based on the required level
of redundancy and performance, referred to as RAID levels.
RAID-5 and RAID-6 are the most commonly used parity-

based RAID levels to balance throughput, redundancy, and
space overhead [34]. For an 𝑁 -drive RAID-5 array, each data
stripe consists of 𝑁 − 1 data chunks and one parity chunk,
which rotates for each stripe to eliminate any parity bottle-
necks in the array [1]. As a result, RAID-5 offers redundancy
against one drive failure with 1/(𝑁 − 1) space overhead. In
theory, RAID-5 can deliver read throughput that scales up to
𝑁 times and write throughput that scales up to 𝑁 − 1 times
compared to the throughput of a single device [34].

However, in practice, this throughput can hardly be achieved
even without drive failures [8, 19, 38]. There are three write
modes in parity-based RAID: full-stripe write, read-modify-
write, and reconstruct write. For a partial-stripe write (read-
modify-write and reconstruct write) where only a subset of
the data chunks of a stripe is written, parity chunks or old
data chunks need to be read from corresponding drives to
generate new parity chunks, thus amplifying the amount
of I/Os. In terms of read, achieving ideal performance relies
on the assumption that the underlying drives can simultane-
ously deliver consistent performance. However, this assump-
tion does not hold true in practice, particularly with modern
SSDs. We will discuss this impact in the subsequent section.

102



Asymmetric RAID: Rethinking RAID for SSD Heterogeneity HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA

2.2 SSD performance heterogeneity
Based on the design methodology of manufacturing, mod-
ern SSDs composed of persistent memory (PM), triple-level
cell (TLC), or quadruple-level cell (QLC) flash memory can
exhibit very different performance characteristics. A recent
study has shown that the performance differential between
two commodity SSD devices can be as high as 5.1× [36].
Thus, to enhance overall resource utilization, it is often rec-
ommended to construct RAID systems using disks of the
same make and model [12, 20].

Nevertheless, the challenge of heterogeneous performance
persists even among disks of identical models [1, 5, 9, 11,
15, 15, 33]. First, SSDs inherently exhibit performance vari-
ability from the time of manufacturing due to differences
in the quality of NAND flash memory cells and variations
in the firmware [2, 33]. Second, depending on workloads,
SSDs from the same brand can experience varying levels
of degradation within RAID configurations. For instance,
with partial-stripe writes, only devices containing relevant
data and parity chunks are updated while the remaining
data chunks within the stripe are untouched. As the SSDs
receive write requests, flash memories degrade differently
due to wear [1, 9, 15, 28] and disturbance [30]. Previous stud-
ies have demonstrated the fail-slow symptoms in SSDs, and
they can exhibit very different performance characteristics
over time [5, 11, 15].

We illustrate this by conducting experiments on an enterprise-
grade SSD and measuring its performance under different
conditions. The device is used by performing random writes,
with approximately 100 terabytes of data written each day
over a duration of 90 days. We measure the latency distri-
bution under read-only I/O workloads (i.e., 4 KiB sequential
read) every morning when the server is idle to avoid other
impacts such as SSD garbage collection and host disruptions.
As shown in Figure 2, even without the impact of GC and
host, the device fails to deliver consistent performance over
time. The average latency increases by 96% compared to its
initial state after running the same workload for 90 days. As

Figure 2. Latency distributions of read-only workloads on an
enterprise-grade SSD under its different states. The device is used
through random writes each day. Even without the impact of GC
and host disruptions, the device presents different performance
characteristics over time.

NAND flash memory density continues to scale, we expect
the degree of such performance changes to increase [11].

2.3 All-flash array systems
As summarized in Table 1, AFA systems have been exten-
sively studied, with approaches categorized into three groups:
(1) taming tail-latency by alleviating GC impact [17, 19]; (2)
enhancing performance by reducing software overhead [8,
36, 38]; (3) improving reliability by distributing parity un-
evenly across the devices [1] or adopting disk-adaptive data
redundancy scheme [12–14]. Approaches in the first two
groups typically assume that disk components have the same
capacity and comparable performance, and most in the third
group only focus on the reliability perspective of the system.

AlleviatingGC interference. SWAN [17] organizes SSDs
into foreground and background groups. The foreground
group will be used to accommodate host writes and only
SSDs in background groups are allowed to perform GC. It
aims to match the aggregated group bandwidth with the net-
work performance without considering disk heterogeneity.
IODA [19], on the other hand, proposes a busy time model to

Table 1. Comparison of existing approaches when managing heterogeneous SSDs in All-Flash Array storage.

Disk heterogeneity Device profiling reliance Metadata overhead Deployment cost Disk utilization

Linux-MD [25] Low — Low Low Low
SWAN (Log-RAID) [17] Low Low High Medium Medium
IODA [19] Low Medium Low High Medium
RAID+ [38] Low — Low Low Medium
FusionRAID [8] Low High Medium High Medium
StRAID [36] Low — Low Low Medium
Diff-RAID [1] Low Low Medium Medium Low
HeART [14] Medium Medium High High Low
Pacemaker [13] Medium High Medium High Low
Tiger [12] Medium High Medium Medium Medium
Asym-RAID (proposed) High Low Low Low High

103



HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA Ziyang Jiao and Bryan S. Kim

coordinate GC and achieve I/O determinism. The model con-
siders devices to have the same capacity and performance.
Reducing software overhead. Both RAID+ [38] and

FusionRAID [8] utilize the mathematical properties of mu-
tually orthogonal Latin squares (MOLS) [38] to spread I/O
to a larger disk pool in a balanced manner. Unfortunately,
MOLS requires each device to have exactly the same size [24].
FusionRAID relies on latency spike detection and requests
redirection to avoid drives experiencing degraded perfor-
mance, causing additional system overhead. Moreover, to
reduce mapping overhead, it restricts a relatively large block
size. On the other hand, StRAID [36] addresses the lock con-
tentions in Linux-MD [25] by assigning a dedicated thread
for each stripe write. It also adopts a two-phase write mech-
anism to opportunistically aggregate I/Os.

Improving system reliability. Diff-RAID [1] distributes
parity blocks unevenly across the array and maintains an age
differential to lower correlated failures in SSDs. However,
it concerns the case where the array has operated in the
degraded mode — data can not be reconstructed because of
correlated failures once a drive fails.
HeART [14] and Pacemaker [13] propose disk-adaptive

redundancy schemes to ensure data reliability. To address
the I/O overhead from redundancy transitions [13], Pace-
maker proactively makes predictions to spread the transition
overload out over time. These two approaches contain disks
from only one make/model. Similarly, Tiger [12] tailors the
redundancy scheme of each data stripe based on disks’ annu-
alized failure rates (AFRs). Works within this group focus on
addressing disk heterogeneity in terms of reliability rather
than capacity and performance.

3 Asymmetric RAID
Inspired by the above observations and analysis, we intro-
duce Asymmetric-RAID. In this section, we first present
the overview and challenges of the proposed design. We
then describe the methodology for data distribution and the
performance-optimized data placement scheme.

3.1 Overview
The proposedAsymmetric-RAID is designed to be heterogeneity-
aware. The core idea is to asymmetrically distribute data
across a larger disk pool based on each device’s capacity
and performance. By doing so, more data will be placed in
larger SSDs and less in smaller ones. Figure 3 illustrates
the overall architecture of the Asym-RAID, for a simple
(2+1) RAID-5 configuration (i.e., 2 data chunks and 1 parity
chunk) from a 5-disk array. Asym-RAID introduces a two-
dimensional logical address space, an internal logical block
layer between the user-perceived logical and the SSD logical
address spaces, where each row corresponds to a single de-
vice. Asym-RAID then separates each address space into one
or more stripe groups and differentially exports them into a

Figure 3. Overview of Asym-RAID: a simple (2+1) RAID-5 config-
uration from a 5-disk array.

one-dimensional logical address space to the host based on
the device performance.
The novel challenges here are to (1) design an efficient

data organization to utilize the total aggregate capacity given
a disk array where each device has a different capacity; (2)
achieve address translation between user space, AFA space,
and devices with minimal overhead; as well as (3) develop a
simple scheme to enable the host to optimize the usage of
devices with higher performance. We first explain the data
distribution scheme that stripes data unevenly across devices
and then describe the capacity-performance-optimized data
placement enabled by the Asym-RAID.

3.2 Heterogeneity-aware data distribution
For conventional 𝑁 -disk RAID arrays, each data stripe con-
sists of exactly 𝑁 chunks, which are uniformly distributed
across 𝑁 disks. To distribute data across a disk pool that
exceeds the typical size of RAID arrays, one straightforward
approach is to physically partition the disk pool into two
RAID groups [38], each potentially configured with different
RAID settings, where each disk belongs to one RAID array.
RAID-50, for instance, adheres to this approach. However,
while this approach achieves good disk isolation and efficient
stripes-to-disks mapping, only a fixed amount of capacity is
used for each device.

Alternatively, Aysm-RAID unevenly distributes data across
the SSDs, with the goal of fully utilizing the capacity of each
SSD and maximizing the available logical capacity exported
to the host. Consequently, SSDs with larger capacity will be
assigned more data and parity chunks within the array.
In particular, this can be formulated as an optimization

problem as follows: given disk pool size 𝑁 , size of the 𝑖𝑡ℎ
disk 𝑆𝑖 (where 𝑖 ranges from 1 to 𝑁 ), data stripe width 𝑘

(𝑘 < 𝑁 ), and chunk size 𝐶 . Let 𝑥𝑖 𝑗𝑘 be a binary decision
variable representing whether chunk 𝑘 of data stripe 𝑗 is
assigned to disk 𝑖 . The objective function is to maximize
the number of complete 𝑘-width data stripes, denoted by

104



Asymmetric RAID: Rethinking RAID for SSD Heterogeneity HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA

𝐷 . There are three constraints inherited from the RAID to
ensure data reliability: 1) each chunk of each data stripe must
be assigned to exactly one disk; 2) any two chunks within
a data stripe are placed on different disks; and 3) each disk
can only accommodate a certain number of chunks based on
its size. Therefore, we have:

Maximize 𝐷

𝑁∑︁
𝑖=1

𝑥𝑖 𝑗𝑘 = 1, ∀𝑗,∀𝑘

𝑥𝑖 𝑗𝑘 + 𝑥𝑖 𝑗𝑘 ′ ≤ 1, ∀𝑖,∀𝑗,∀𝑘 ′ ≠ 𝑘

𝐷∑︁
𝑗=1

𝑘∑︁
𝑘=1

𝐶 · 𝑥𝑖 𝑗𝑘 ≤ 𝑆𝑖 , ∀𝑖

(1)

This combinatorial optimization problem can be commonly
solved by taking advantage of integer linear programming
(ILP) techniques [31] and Figure 3 presents a simple example
of the derived stripe organization, with 𝑁 = 5, 𝑘 = 3, 𝑆 = {6,
4, 2, 5, 2}, and 𝐶 = 1. The derived stripe organization mathe-
matically guarantees a maximum logical address space given
a disk array while allowing Asym-RAID to asymmetrically
place data to fully utilize the aggregate capacity.

The derived stripe organization has another property that
reduces metadata overhead for stripes-to-disk mapping: each
k-subset of n disks can belong to at most one stripe group
(i.e., all stripes from those k disks). Asym-RAID designs a
stripe state table (SST) to maintain the mapping informa-
tion of each stripe group, which converts a user LBA to a
device LBA. Figure 4 presents an example of the SST cor-
responding to the data layout shown in Figure 3, assuming
the chunk/block size is 1. Specifically, an SST entry con-
tains four fields for the indexed stripe group: start_LBA,
length, disk_components, which determines the relative
order of data and parity chunks among the involved disks,
and disk_offsets, which indicates the starting disk LBA
for this stripe group.

3.3 Performance-optimized placement
So far, Asym-RAID employs a deterministic mapping to trans-
late an upper-level LBA to an SSD logical address by consult-
ing the SST table, which improves capacity utilization and
reduces the metadata overhead for addressing compared to
dynamic mapping mechanisms [8, 12, 17]. However, there
is another issue with how to integrate the address space of
each stripe group into a single logical volume and export
it to the upper layers (i.e., file systems and block I/O layer).
Simply concatenating them would not yield performance
benefits, as logical blocks are equally treated and accessed
from the perspective of the file system.

To tackle this, Asym-RAID first profiles the performance
characteristics of every stripe group, which involves fixed
disk components derived from § 3.2. Asym-RAID then con-
catenates and exports the address space of each stripe group

Figure 4. Asym-RAID block mapping table. The stripes-to-disk
mapping is determined during RAID initialization.

based on the identified performance. As a result, the LBA0
perceived by the user will be mapped to the most performant
disks, while subsequent LBAs will be allocated to progres-
sively less performant disks. As illustrated in Figure 3, the
green blocks correspond to the most performant stripe group
0, which consists of SSD 1, 2, and 4. The subsequent blue and
gray blocks are mapped to less performant disk components.
In this example, the difference in terms of disk compo-

nents between stripe group 1 and stripe group 2 is SSD 2
and SSD 5, which suggests that the performance bottleneck
of stripe group 2 is attributed to SSD 5. This is because the
data distribution algorithm described in § 3.2 is more opti-
mized for maximizing the aggregate logical capacity. One
approach to address this is to first partition the array into
disk groups with comparable performance and then apply
the data distribution algorithm within these groups. It allevi-
ates performance disparities among disks within the same
group at the cost of decreased logical capacity.

With that, it opens the door for the system to differentially
use logical blocks with negligible overhead, leading to disks
with higher performance being better utilized. For example,
F2FS internally divides the address space into metadata area
and data area, which is further divided into several (i.e., six by
default) hot/cold logs [18]. As a result, performance-sensitive
data (i.e., metadata and hot logs) can be placed in the lower
LBA space for optimized performance, and cold data can be
placed in the higher LBA space for better capacity utilization.

4 Discussion and Future Work
We now discuss related issues and future work, including
implementation challenges, dynamic heterogeneity, disk re-
placement, fault tolerance, and using Aysm-RAID over dis-
aggregated storage.

Implementation challenges. In conventional RAID so-
lutions, physical addresses can be directly computed with
minimal overhead due to the predefined data layout. In con-
trast, Asym-RAID requires a logical-to-physical mapping for
each stripe group, which takes up to 25 bytes. Additionally,
the entire SST tablemust be persisted in the RAID superblock,
leading to extra space and performance overhead. Neverthe-
less, the metadata overhead introduced by Asym-RAID does
not exceed that of Log-RAID [3, 17], which maintains a one-
to-one mapping for each logical block/chunk. Furthermore,

105



HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA Ziyang Jiao and Bryan S. Kim

the addressing overhead can be mitigated with techniques
such as learned index models [4, 35].

Dynamic heterogeneity. The proposed architecture ad-
dresses the static disk heterogeneity when the system is
initialized. However, as described in § 2.2, the performance
of SSDs can gradually degrade throughout their lifetime,
which needs automatically optimizing data layout to adapt
to dynamic disk heterogeneity. The challenge here is to min-
imize the data re-distribution overhead. One way to solve
this problem is via data-remapping [27, 39]. However, we
believe that this approach may not be optimal as in RAID,
data is located on different disks.
Disk replacement. In Asym-RAID, each drive can con-

tribute to multiple stripe groups. Different from conventional
RAID, when a larger capacity device is used, the added capac-
ity can potentially combine with spare capacity from other
disks to create new data stripes. By inserting them into exist-
ing stripe groups or developing new ones, these data stripes
extend the storage capacity. We consider investigating recent
works [11, 16] to coordinate Asym-RAID and file systems
for efficient online address space adjustment.
Reliability and fault tolerance. At the current stage,

Asym-RAID operates in the same way as the legacy MD un-
der disk failures. The missing data needs to be reconstructed
from the remaining disks in the array. We plan to consider
the case where the reliability of the SSDs is also different. Un-
like existing disk-adaptive redundancy schemes [12, 13], we
will exploit machine-learning techniques to predict SSD reli-
ability changes and imbue this information into the block I/O
layer for more efficient data management and fault handling.

RAID over disaggregated storage. Asym-RAID can be
deployed with disaggregated storage using the NVMe-over-
Fabrics (NVMe-oF) protocol [26]. However, by aggregating
a few SSDs, the storage bandwidth can easily surpass the
bandwidth of a high-end RDMA NIC (e.g., 100 Gbps) [17, 34],
and thus it is still challenging to unlock the full performance
of modern SSDs. One approach is to leverage SSD internal
hardware resources and adopt a host/device co-design that
enables them to communicate directly with their peers with-
out host intervention.

5 Conclusion
From a system design perspective, it is easier to construct and
manage RAID with a deterministic disk layout that evenly
distributes I/O across the disk pool. However, with advance-
ments in SSD technology and evolving data demands, the
limitations of traditional RAID systems are becoming increas-
ingly evident, particularly in large cluster storage systems
where heterogeneous storage devices are ubiquitous. We
believe that it is imperative to rethink existing RAID archi-
tectures and leverage SSD heterogeneity to fully utilize the
capabilities of each storage device.

Acknowledgments
We thank the anonymous reviewers for their constructive
comments and insightful suggestions that help us to improve
the quality of this paper. This research was supported, in part,
by the National Science Foundation award CNS-2008453.

References
[1] Mahesh Balakrishnan, Asim Kadav, Vijayan Prabhakaran, and Dahlia

Malkhi. 2010. Differential RAID: rethinking RAID for SSD reliability. In
European Conference on Computer Systems (EuroSys’10). ACM, 15–26.

[2] Feng Chen, David A. Koufaty, and Xiaodong Zhang. 2009. Understand-
ing intrinsic characteristics and system implications of flash memory
based solid state drives. In International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS’09). ACM, 181–192.

[3] Tzi-cker Chiueh, Weafon Tsao, Hou-Chiang Sun, Ting-Fang Chien, An-
Nan Chang, and Cheng-Ding Chen. 2014. Software Orchestrated Flash
Array. In International Systems and Storage Conference (SYSTOR’14).
ACM, 14:1–14:11.

[4] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do,
Yinan Li, Hantian Zhang, Badrish Chandramouli, Johannes Gehrke,
Donald Kossmann, David B. Lomet, and Tim Kraska. 2020. ALEX:
An Updatable Adaptive Learned Index. In International Conference on
Management of Data (SIGMOD’20). ACM, 969–984.

[5] Haryadi S. Gunawi, Riza O. Suminto, Russell Sears, Casey Golliher,
Swaminathan Sundararaman, Xing Lin, Tim Emami, Weiguang Sheng,
Nematollah Bidokhti, Caitie McCaffrey, Gary Grider, Parks M. Fields,
Kevin Harms, Robert B. Ross, Andree Jacobson, Robert Ricci, Kirk
Webb, Peter Alvaro, H. Birali Runesha, Mingzhe Hao, and Huaicheng
Li. 2018. Fail-Slow at Scale: Evidence of Hardware Performance Faults
in Large Production Systems. In Conference on File and Storage Tech-
nologies (FAST’18). USENIX Association, 1–14.

[6] Huawei. 2024. Huawei Data Storage. https://e.huawei.com/en/
products/storage.

[7] Jens Axboe. 2005. Flexible I/O tester. https://github.com/axboe/fio/.
[8] Tianyang Jiang, Guangyan Zhang, Zican Huang, Xiaosong Ma, Junyu

Wei, Zhiyue Li, and Weimin Zheng. 2021. FusionRAID: Achieving
Consistent Low Latency for Commodity SSD Arrays. In Conference on
File and Storage Technologies (FAST’21). USENIX Association, 355–370.

[9] Ziyang Jiao, Janki Bhimani, and Bryan S. Kim. 2022. Wear leveling in
SSDs considered harmful. In Workshop on Hot Topics in Storage and
File Systems (HotStorage’22). ACM, 72–78.

[10] Ziyang Jiao and Bryan S. Kim. 2022. Generating realistic wear distri-
butions for SSDs. InWorkshop on Hot Topics in Storage and File Systems
(HotStorage’22). ACM, 65–71.

[11] Ziyang Jiao, Xiangqun Zhang, Hojin Shin, Jongmoo Choi, and Bryan S.
Kim. 2024. The Design and Implementation of a Capacity-Variant Stor-
age System. In Conference on File and Storage Technologies (FAST’24).
USENIX Association, 159–176.

[12] Saurabh Kadekodi, Francisco Maturana, Sanjith Athlur, Arif Merchant,
K. V. Rashmi, and Gregory R. Ganger. 2022. Tiger: Disk-Adaptive Re-
dundancyWithout Placement Restrictions. In Symposium on Operating
Systems Design and Implementation (OSDI’22). USENIX Association,
413–429.

[13] Saurabh Kadekodi, Francisco Maturana, Suhas Jayaram Subramanya,
Juncheng Yang, K. V. Rashmi, and Gregory R. Ganger. 2020. PACE-
MAKER: Avoiding HeART attacks in storage clusters with disk-
adaptive redundancy. In Symposium on Operating Systems Design and
Implementation (OSDI’20). USENIX Association, 369–385.

[14] Saurabh Kadekodi, K. V. Rashmi, and Gregory R. Ganger. 2019. Cluster
storage systems gotta have HeART: improving storage efficiency by
exploiting disk-reliability heterogeneity. In Conference on File and
Storage Technologies (FAST’19). USENIX Association, 345–358.

106

https://e.huawei.com/en/products/storage
https://e.huawei.com/en/products/storage
https://github.com/axboe/fio/


Asymmetric RAID: Rethinking RAID for SSD Heterogeneity HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA

[15] Bryan S. Kim, Jongmoo Choi, and Sang Lyul Min. 2019. Design Trade-
offs for SSD Reliability. In Conference on File and Storage Technologies
(FAST’19). USENIX Association, 281–294.

[16] Juwon Kim, Minsu Kim, Muhammad Danish Tehseen, Joontaek Oh,
and Youjip Won. 2022. IPLFS: Log-Structured File System without
Garbage Collection. In Annual Technical Conference (ATC’22). USENIX
Association, 739–754.

[17] Jaeho Kim, Kwanghyun Lim, Youngdon Jung, Sungjin Lee, Changwoo
Min, and Sam H. Noh. 2019. Alleviating Garbage Collection Inter-
ference Through Spatial Separation in All Flash Arrays. In Annual
Technical Conference (ATC’19). USENIX Association, 799–812.

[18] Changman Lee, Dongho Sim, Joo Young Hwang, and Sangyeun Cho.
2015. F2FS: A New File System for Flash Storage. In Conference on File
and Storage Technologies (FAST’15). USENIX Association, 273–286.

[19] Huaicheng Li, Martin L. Putra, Ronald Shi, Xing Lin, Gregory R. Ganger,
and Haryadi S. Gunawi. 2021. IODA: A Host/Device Co-Design for
Strong Predictability Contract on Modern Flash Storage. In Symposium
on Operating Systems Principles (SOSP’21). ACM, 263–279.

[20] Linux RAID. 2011. Linux RAID Setup. https://raid.wiki.kernel.org/
index.php/RAID_setup#RAID-4.2F5.2F6.

[21] Linux RAID. 2011. Linux RAID Superblock. https://raid.wiki.kernel.
org/index.php/RAID_superblock_formats.

[22] Ruiming Lu, Erci Xu, Yiming Zhang, Fengyi Zhu, Zhaosheng Zhu,
Mengtian Wang, Zongpeng Zhu, Guangtao Xue, Jiwu Shu, Minglu Li,
and Jiesheng Wu. 2023. Perseus: A Fail-Slow Detection Framework for
Cloud Storage Systems. In Conference on File and Storage Technologies
(FAST’23). USENIX Association, 49–64.

[23] Stathis Maneas, Kaveh Mahdaviani, Tim Emami, and Bianca Schroeder.
2020. A Study of SSD Reliability in Large Scale Enterprise Storage
Deployments. In Conference on File and Storage Technologies (FAST’20).
USENIX Association, 137–149.

[24] Henry B. Mann. 1942. The construction of orthogonal Latin squares.
In The Annals of Mathematical Statistics. JSTOR, 418–423.

[25] NeilBrown. 2020. Multiple device driver. https://github.com/
neilbrown/mdadm.

[26] NVM Express. 2021. NVMe over Fabrics. https://nvmexpress.org/wp-
content/uploads/NVMe_Over_Fabrics.pdf.

[27] Gihwan Oh, Chiyoung Seo, Ravi Mayuram, Yang-Suk Kee, and Sang-
Won Lee. 2016. SHARE Interface in Flash Storage for Relational and
NoSQL Databases. In International Conference on Management of Data
(SIGMOD’16). ACM, 343–354.

[28] Open NAND Flash Interface. 2021. ONFI 5.0 Spec. http://www.onfi.
org/specifications/.

[29] Biswaranjan Panda, Deepthi Srinivasan, Huan Ke, Karan Gupta,
Vinayak Khot, and Haryadi S. Gunawi. 2019. IASO: A Fail-Slow De-
tection and Mitigation Framework for Distributed Storage Services. In
Annual Technical Conference (ATC’19). USENIX Association, 47–62.

[30] Jisung Park, Myungsuk Kim, Myoungjun Chun, Lois Orosa, Jihong
Kim, and Onur Mutlu. 2021. Reducing solid-state drive read latency
by optimizing read-retry. In Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’21). ACM,
702–716.

[31] Arvind Rajan. 1990. Theory of linear and integer programming. In
Networks. Wiley, 801.

[32] Samsung. 2024. Samsung Datacenter SSDs. https://semiconductor.
samsung.com/us/ssd/datacenter-ssd/pm9a3/mzql23t8hcls-00a07/.

[33] Seagate. 2021. BarraCuda 120 SSD Data Sheet. https:
//www.seagate.com/content/dam/seagate/migrated-assets/www-
content/datasheets/pdfs/barracuda-120-sata-DS2022-2-2104US-
en_US.pdf.

[34] Junyi Shu, Ruidong Zhu, YunMa, GangHuang, HongMei, Xuanzhe Liu,
and Xin Jin. 2023. Disaggregated RAID Storage in Modern Datacenters.
In Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’23). ACM, 147–163.

[35] Jinghan Sun, Shaobo Li, Yunxin Sun, Chao Sun, Dejan Vucinic, and Jian
Huang. 2023. LeaFTL: A Learning-Based Flash Translation Layer for
Solid-State Drives. In Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS’23). ACM, 442–456.

[36] Shucheng Wang, Qiang Cao, Ziyi Lu, Hong Jiang, Jie Yao, and
YuanyuanDong. 2022. StRAID: Stripe-threaded Architecture for Parity-
based RAIDs with Ultra-fast SSDs. In Annual Technical Conference
(ATC’22). USENIX Association, 915–932.

[37] Erci Xu, Mai Zheng, Feng Qin, Yikang Xu, and Jiesheng Wu. 2019.
Lessons and Actions: What We Learned from 10K SSD-Related Storage
System Failures. In Annual Technical Conference (ATC’19). USENIX
Association, 961–976.

[38] Guangyan Zhang, Zican Huang, Xiaosong Ma, Songlin Yang, Zhufan
Wang, and Weimin Zheng. 2018. RAID+: Deterministic and Balanced
Data Distribution for Large Disk Enclosures. In Conference on File and
Storage Technologies (FAST’18). USENIX Association, 279–294.

[39] You Zhou, Qiulin Wu, Fei Wu, Hong Jiang, Jian Zhou, and Changsheng
Xie. 2021. Remap-SSD: Safely and Efficiently Exploiting SSD Address
Remapping to Eliminate Duplicate Writes. In Conference on File and
Storage Technologies (FAST’21). USENIX Association, 187–202.

107

https://raid.wiki.kernel.org/index.php/RAID_setup##RAID-4.2F5.2F6
https://raid.wiki.kernel.org/index.php/RAID_setup##RAID-4.2F5.2F6
https://raid.wiki.kernel.org/index.php/RAID_superblock_formats
https://raid.wiki.kernel.org/index.php/RAID_superblock_formats
https://github.com/neilbrown/mdadm
https://github.com/neilbrown/mdadm
https://nvmexpress.org/wp-content/uploads/NVMe_Over_Fabrics.pdf
https://nvmexpress.org/wp-content/uploads/NVMe_Over_Fabrics.pdf
http://www.onfi.org/specifications/
http://www.onfi.org/specifications/
https://semiconductor.samsung.com/us/ssd/datacenter-ssd/pm9a3/mzql23t8hcls-00a07/
https://semiconductor.samsung.com/us/ssd/datacenter-ssd/pm9a3/mzql23t8hcls-00a07/
https://www.seagate.com/content/dam/seagate/migrated-assets/www-content/datasheets/pdfs/barracuda-120-sata-DS2022-2-2104US-en_US.pdf
https://www.seagate.com/content/dam/seagate/migrated-assets/www-content/datasheets/pdfs/barracuda-120-sata-DS2022-2-2104US-en_US.pdf
https://www.seagate.com/content/dam/seagate/migrated-assets/www-content/datasheets/pdfs/barracuda-120-sata-DS2022-2-2104US-en_US.pdf
https://www.seagate.com/content/dam/seagate/migrated-assets/www-content/datasheets/pdfs/barracuda-120-sata-DS2022-2-2104US-en_US.pdf

	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 RAID
	2.2 SSD performance heterogeneity
	2.3 All-flash array systems

	3 Asymmetric RAID
	3.1 Overview
	3.2 Heterogeneity-aware data distribution
	3.3 Performance-optimized placement

	4 Discussion and Future Work
	5 Conclusion
	References



