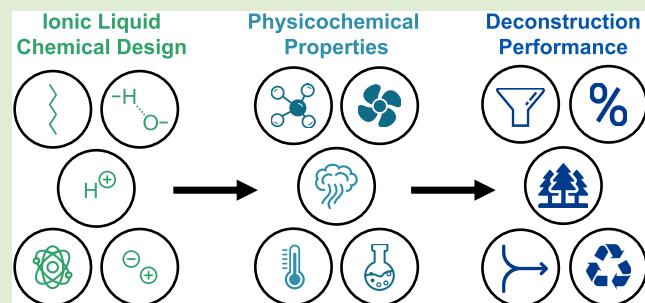


Ionic-Liquid-Mediated Deconstruction of Polymers for Advanced Recycling and Upcycling

Ty Christoff-Tempesta and Thomas H. Epps, III*

Cite This: *ACS Macro Lett.* 2023, 12, 1058–1070


Read Online

ACCESS |

Metrics & More

Article Recommendations

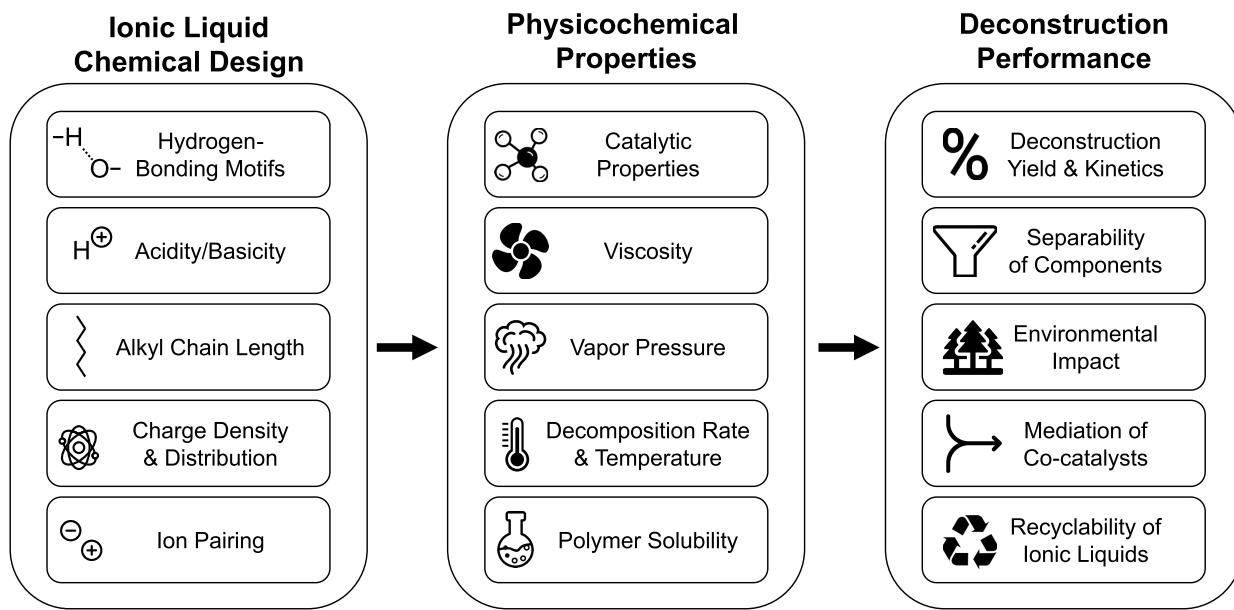
ABSTRACT: Ionic liquids (ILs) are a promising medium to assist in the advanced (chemical and biological) recycling of polymers, owing to their tunable catalytic activity, tailorabile chemical functionality, low vapor pressures, and thermal stability. These unique physicochemical properties, combined with ILs' capacity to solubilize plastics waste and biopolymers, offer routes to deconstruct polymers at reduced temperatures (and lower energy inputs) versus conventional bulk and solvent-based methods, while also minimizing unwanted side reactions. In this Viewpoint, we discuss the use of ILs as catalysts and mediators in advanced recycling, with an emphasis on chemical recycling, by examining the interplay between IL chemistry and deconstruction thermodynamics, deconstruction kinetics, IL recovery, and product recovery. We also consider several potential environmental benefits and concerns associated with employing ILs for advanced recycling over bulk- or solvent-mediated deconstruction techniques, such as reduced chemical escape by volatilization, decreased energy demands, toxicity, and environmental persistence. By analyzing IL-mediated polymer deconstruction across a breadth of macromolecular systems, we identify recent innovations, current challenges, and future opportunities in IL application toward circular polymer economies.

Plastics are ubiquitous in modern society owing to their low cost and widely tunable properties that can be leveraged across many industries. Since reaching commercial viability in the 1950s, plastics production has grown faster than that of other manufactured materials.¹ The widespread use of plastics has improved quality of life and replaced alternative materials due to generally lower energetic and environmental costs in primary production;^{2,3} however, the lack of appropriate infrastructural and societal systems for plastics waste management has become a significant burden.^{4,5} To date, most plastics waste has been directed to landfills, incinerated, or leaked into the environment,¹ where it can persist for years as microplastics and in other forms.^{6,7} This problem, combined with a reliance on fossil fuel resources for monomer feedstocks,⁸ energy costs associated with plastics synthesis and processing,⁹ and public awareness,^{10,11} has invigorated interest and research in methods to capture and repurpose plastics waste.

The most prevalent strategy for reconditioning end-of-life plastics is mechanical recycling.^{12,13} In mechanical recycling, mixed plastics waste streams are typically separated by chemical identity, and the resultant homogeneous plastics streams are ground, melted, pelletized, and reused for new applications.^{2,13} Generating plastics materials from mechanical recycling outputs can offset demand for virgin petrochemical feedstocks and lower environmental burdens from plastics waste;⁴ however, mechanical recycling alters the underlying

macromolecules (e.g., through chain scission and cross-linking, as well as inducing color changes), severely limiting the potential number of cycles for the polymers' reuse and downgrading the potential applications of the recycled materials.^{13–16} Additionally, the cost and effort associated with separating plastics waste to produce high purity streams for mechanical recycling constrains the process to plastics with limited additives in configurations that are easily separable from mixed waste streams.¹⁷ As a consequence, only certain types of plastics, primarily polyethylenes and poly(ethylene terephthalate) (PET), are widely recycled.¹⁸

In recent years, increased attention has been devoted to advanced recycling processes as an alternative or complement to mechanical recycling.^{19,20} More specifically, polymers subjected to advanced recycling can be depolymerized to their constituent monomers that can be used to regenerate the original macromolecules or deconstructed into other small molecules or oligomers that serve as feedstocks for synthesiz-


Received: May 10, 2023

Accepted: June 26, 2023

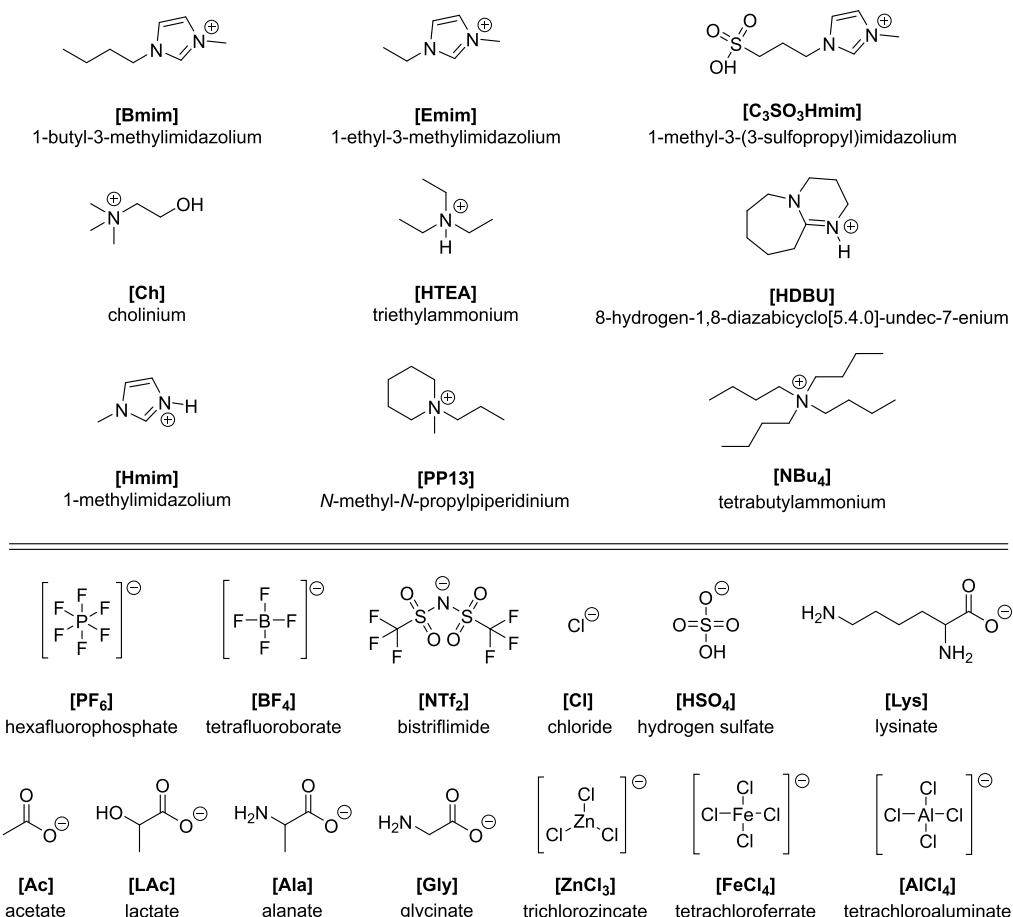
Published: July 30, 2023

Scheme 1. Chemical Design of ILs Can Be Harnessed to Impart Desired Physicochemical Properties and, in Turn, Impact Deconstruction Performance

ing new materials.^{16,21–23} Herein, we focus primarily on chemical recycling, which may offer a strategy to “close the loop” on the plastics life cycle if (1) chemical recycling can efficiently achieve high yields of valuable chemicals, feedstocks, and building blocks; and (2) societal and infrastructural changes enable the capture of plastics more effectively at their end-of-life.^{24,25}

The principles that underpin the chemical recycling of plastics similarly have found use in the deconstruction and valorization of biopolymers to create sustainable small-molecule feedstocks.^{26–28} Biopolymer deconstruction offers a pathway to using renewable, carbon-neutral materials in place of petroleum-derived compounds.^{28,29} In some cases, the waste streams from biomass-intensive industrial processes (e.g., lignin from pulping operations) may serve as the inputs for polymer deconstruction to produce commercially useful small molecules, lessening the environmental impact of existing manufacturing by reducing waste.³⁰ Products resulting from biopolymer deconstruction, including phenolics and sugar alcohols, are useful as, e.g., biofuels, commodity chemicals, pharmaceuticals, and monomers for sustainable plastics.^{30–33}

Chemical recycling may be performed in bulk with neat polymers or in solvent. Neat deconstruction (e.g., bulk thermal depolymerization, pyrolysis) often requires high temperatures and significant energy input (e.g., from pulling a high vacuum) and can be prone to the formation of unwanted byproducts, owing to the harsh conditions.^{34–36} Pyrolysis deconstruction kinetics are further hampered by heat and mass transfer effects that progressively slow the deconstruction rate as the polymer dimensionality (e.g., thickness) increases.^{37,38} Neat polymer deconstruction may be aided by catalysts to enable new chemical routes for producing small molecules or to reduce heat or pressures needed in bulk recycling strategies.^{16,39} However, the catalysts used in these processes may be expensive, are impeded by common polymer additives, and can be difficult to separate from deconstruction byproducts for regeneration.^{16,39}

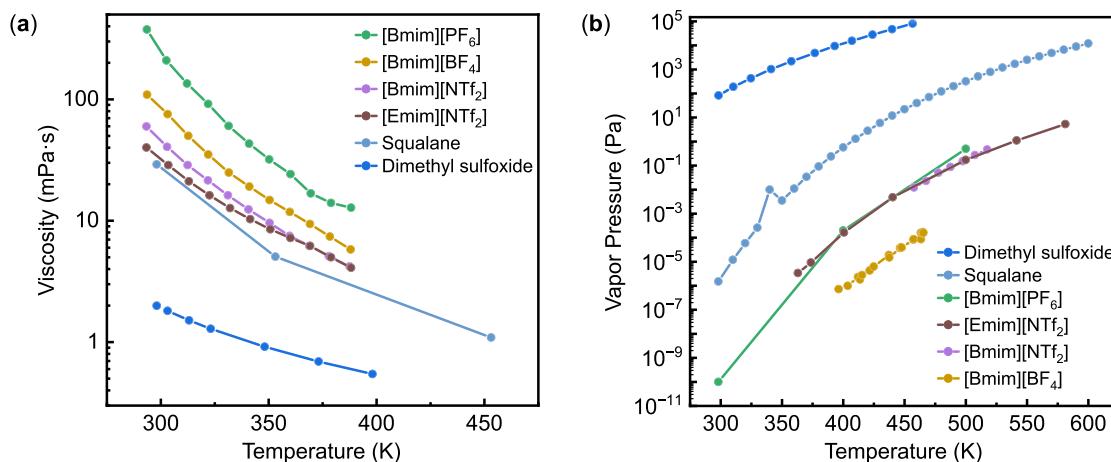

In contrast, solvent-mediated chemical recycling can enable deconstruction pathways with reduced energy demands versus

bulk processes and more efficient mixing between catalysts and substrates to enhance deconstruction outcomes (e.g., kinetics and selectivity).^{40–43} Unfortunately, many solvent-based processes are hindered by limited solubility for combinations of catalysts and polymers or multipolymer waste streams.⁴⁴ Solvent selection also is constrained by solvent boiling points relative to the temperature at which deconstruction effectively proceeds,^{45–47} significantly limiting the library of potential solvents for a given materials stream. For cases in which a solvent-mediated route for a deconstruction is identified, solvent escape, flammability, and costs associated with solvent recovery and recycling can further limit implementation.^{48–50}

Ionic liquids (ILs), conventionally defined as compounds composed entirely of ions with melting points below 100 °C,⁵¹ have unique physicochemical properties that could address some of the abovementioned hurdles to solvent-based chemical recycling. ILs are generally more thermally stable (e.g., higher boiling and decomposition temperatures) than molecular solvents and can effectively solubilize a broad range of polymer and nonpolymer species.^{52,53} Notably, the chemical design of ILs also can be harnessed to impart catalytic properties for chemical transformations,^{54–57} a promising feature to facilitate polymer deconstructions. Herein, we discuss the current understanding of the chemical design–property–performance relationships of ILs for polymer deconstruction to uncover opportunities and challenges in the application of ILs for chemical recycling (Scheme 1).

IL DESIGN DETERMINES PHYSICOCHEMICAL PROPERTIES

ILs can fulfill one or several roles in a deconstruction reaction, including as a solvent, catalyst or cocatalyst, or reactant. Consequently, they can partially or entirely replace the nonpolymeric components of a deconstruction milieu. In this section, we discuss the physicochemical properties of ILs that are important to polymer deconstruction. As a note to the reader, ILs are often referred to by acronyms due to their long chemical names arising from their complex chemical nature. In


Figure 1. Chemical identity and combination of constituent ions determine the physicochemical properties of an IL. Cation (above) and anion (below) chemical structures of ILs discussed in this Viewpoint and the corresponding abbreviations are compiled here and showcase the breadth of chemistries used in IL design.

this Viewpoint, we adopt the common naming convention “[cation abbreviation][anion abbreviation]” and summarize major chemical names and structures in Figure 1. We direct readers to this figure and the abbreviations list at the end of the manuscript for full chemical names rather than defining each IL as it is introduced in the manuscript.

This Viewpoint considers IL systems spanning a wide range of IL sub-classifications, including (but not limited to) aprotic ILs, protic ILs, acidic ILs, basic ILs, and task-specific ILs. Aprotic ILs are comprised of cations and anions that combine to form liquids without proton dissociation; in contrast, counterions in protic ILs transfer protons between Brønsted acids and bases.⁵⁸ Acidic and basic ILs take on acidic and basic characteristics, respectively, governed by the chemical functionalities that may be present on the cation, anion, or both.⁵⁹ Task-specific ILs harness chemical design to incorporate functional groups into IL chemistries that impart reactivity or physicochemical properties desirable for targeted applications.⁶⁰ ILs often belong to several of these sub-classifications because of overlaps between these categories (e.g., a protic IL optimized for polymer deconstructions with acidic characteristics).⁵⁹ More recently, deep eutectic solvents, combinations of compounds that liquefy due to hydrogen-bonding (rather than ionic) interactions, have risen in interest as potential alternatives to ILs.⁶¹ Additionally, ionic systems that liquefy below deconstruction operating temperatures, but above 100 °C, have been investigated as catalysts for deconstruction.^{62–64}

Such systems are outside the scope of this Viewpoint because they do not meet the classical definition of ILs, but we direct readers to the available literature for more information.^{62–64}

ILs are renowned for their broad solubilities of organic and inorganic species, which can provide versatility to deconstruction reactions.^{65,66} Solubility parameters like the Hildebrand and Hansen parameters are widely used to predict the solubility of polymers (and other organic species) in molecular solvents based on a “like dissolves like” description.⁶⁷ However, such parameters are broadly unreliable in describing the solubility of polymers in ILs.^{53,68} For example, the solubility of poly(methyl methacrylate) varies widely among ILs with near-identical Hildebrand solubility parameters.⁶⁹ As a result, researchers have turned their attention toward multi-parameter solubility models to describe polymer solubility in ILs. Of note, the hydrogen-bonding behavior of ILs has emerged as a dominant characteristic in quantifying the capacity of ILs to dissolve polymers.⁷⁰ The Kamlet–Abraham–Taft scale, which combines parameters for polarity, hydrogen-bond-donating character, and hydrogen-bond-accepting character, has found increasing prominence in the prediction of IL solvation properties.^{70–73} This scale can explain qualitative observations that acidic and basic ILs readily dissolve basic and acidic polymers, respectively, when IL polarities are broadly similar.^{70,74} Computational screening of IL–polymer interactions has further supported that hydrogen-bond interaction energies have the strongest influence on

Figure 2. Physicochemical properties of ILs are sensitive to temperature. (a) ILs approach room-temperature viscosities of molecular solvents like squalane at temperatures within 100 K of room temperature.^{84–86} (b) The vapor pressures of ILs are orders of magnitude below those of molecular solvents across experimental temperature ranges.^{86,96–100}

polymer dissolution in ILs, followed by electrostatic and van der Waals forces.⁷⁵ Interactions arising from the IL anions and cations were found to have similar impacts on polymer solubilities.⁷⁵

Viscosity is also an important consideration in IL systems. ILs' ambient- or near-ambient-temperature viscosities typically range from 10 to 500 mPa·s, one to two orders of magnitude higher than common molecular solvents, creating challenges with IL handling at room temperature.⁷⁶ The high viscosity of ILs is largely attributable to a combination of hydrogen-bonding, electrostatic, and van der Waals interactions.^{76–78} Consequently, there is significant potential to use the chemical design of ILs to control viscosity.⁷⁹ For example, increasing the carbon chain length in alkyl IL cations results in a predictable increase in the room-temperature viscosity of imidazolium-based ILs.⁸⁰ Anion selection also can influence room-temperature viscosity over an order of magnitude.⁸⁰ The presence of impurities further strongly impacts the viscosity of ILs. Notably, water loadings as low as 1.5 wt % can reduce IL viscosities over an order of magnitude,⁸¹ and the chemical identity of ILs can be chosen to control IL equilibrium and saturated water contents.⁸² Thus, the presence of water and other impurities in ILs should be thoroughly characterized and may be exploited to control viscosities for deconstruction reactions.

The viscosities of ILs also demonstrate a notable sensitivity to temperature, with easier handling (e.g., significantly lower viscosities) at elevated temperatures (Figure 2a).^{83,84} For example, the viscosity of [Bmim][PF₆] drops from ~376 (at 20 °C) to ~24 mPa·s (at 87 °C),⁸⁴ the latter of which is below the room-temperature (20 °C) 29 mPa·s viscosity of squalane.⁸⁵ Although current understanding supports the observation that the high-temperature viscosities of ILs fall below room-temperature viscosities of common molecular solvents,^{83,84} there exists limited literature that quantitatively examines the high-temperature (>100 °C) viscosities of ILs. Given the importance of viscosity in deconstruction reactions, the experimental characterization of IL viscosities at deconstruction temperatures is worthy of further investigation to enable direct comparison to molecular solvents.^{85,86}

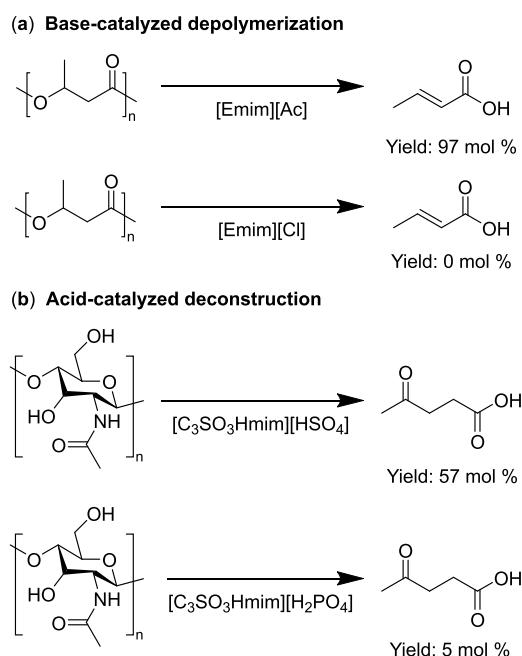
ILs are widely known for their thermal stability that arises from intermolecular cohesion,⁸⁷ enabling the use of ILs in high-temperature deconstructions, such as the depolymeriza-

tion of Nylon-6 at 300 °C.⁸⁸ However, IL decomposition temperatures are most often obtained through thermogravimetric analysis (TGA), a technique that is impacted by a variety of experimental parameters (e.g., heating rate, gas choice and flow rate, sample purity) and may not be representative of deconstruction conditions.^{89,90} As one example, the reported TGA-based decomposition temperature of [Emim][NTf₂] varies significantly from 410–455 °C,⁸⁹ and isothermal experiments on the same IL indicate 1% mass loss within 1 h below 300 °C and within 10 h below 250 °C.⁹¹ Though these degradation temperatures surpass the boiling points of most organic solvents to enable high-temperature deconstructions,⁹² researchers are nonetheless encouraged to quantify IL decomposition or vaporization under representative reaction conditions to ensure IL loss is fully considered in a deconstruction system.

ILs are commonly acknowledged for having “negligible vapor pressures”,^{93–95} and although this notion is not strictly accurate, ILs' extraordinarily low vapor pressures relative to molecular solvents make them attractive for deconstruction setups by potentially enabling process intensification (e.g., simultaneous depolymerization and monomer distillation; Figure 2b).^{86,96–100} As one point of reference, the vapor pressure of dimethyl sulfoxide ranges from approximately 10^{1.9} to 10^{4.9} Pa from 25 to 180 °C,⁸⁶ while the vapor pressure of [Bmim][PF₆] ranges from approximately 10⁻¹⁰ to 10^{-0.3} Pa from 25 to 225 °C.⁹⁷ It should be noted that there is significant experimental difficulty in obtaining reliable vapor pressure measurements for ILs, and consequently, there is broad dispersity in reported values for a given IL system.¹⁰¹ Nevertheless, these low vapor pressures reduce the risk of losing solvent to evaporation during deconstruction, minimize the release of volatile organic compounds (VOCs), and offer lower flammability than many molecular solvents.^{102–104} Limited IL volatility can be harnessed to evaporate the resultant small molecules from a reaction mixture and drive the equilibrium toward deconstruction, offering facile separation of products from the starting material and the chosen IL (discussed in more detail later).¹⁰⁵

Table 1. Comparison of IL-Mediated Polymer Deconstruction Performance to Other Systems^a

polymer [desired small molecule from deconstruction]	IL system	comparative deconstructions	
poly(ethylene terephthalate) [bis(hydroxyethyl) terephthalate] ^I [dimethyl terephthalate]	[Bmim][ZnCl ₃] ¹¹⁸ conversion: 98% yield: 83% 5 h, 180 °C	catalytic glycolysis ¹¹⁹ conversion: quantitative yield: 60% 1 h, 185 °C, organocatalyst	acidic hydrolysis ¹²⁰ conversion: quantitative yield: quantitative ^I 5 h, 150 °C, 10 M H ₂ SO ₄
poly(3-hydroxybutyrate) [crotonic acid]	[Emim][Ac] ¹⁰⁶ conversion: quantitative yield: 97% 1.5 h, 140 °C	pyrolysis ¹²¹ conversion: 99% yield: 84% 0.5 h, 290 °C, 150 mbar	basic hydrolysis ¹²² conversion: 74% yield: 25% 4 h, 190 °C, 4 M NaOH
poly(bisphenol A carbonate) [bisphenol A]	[HDBU][LAc] ¹⁰⁷ conversion: quantitative yield: 99% 1 h, 120 °C	pyrolysis ¹⁰⁸ conversion: 70% yield: 10% 0.28 h, 550 °C, N ₂ atmosphere	basic alcoholysis ¹²³ conversion: quantitative yield: 95% 0.58 h, 40 °C, catalytic NaOH, tetrahydrofuran
chitin [levulinic acid]	[C ₃ SO ₃ Hmim][HSO ₄] ¹¹¹ conversion: not reported yield: 67% 5 h, 180 °C, deionized water	acidic hydrolysis ¹²⁴ conversion: not reported yield: 38 wt % 0.5 h, 190 °C, microwave	biphasic acidic hydrolysis ¹²⁵ conversion: 74% yield: 29% 1 h, 150 °C
poly(lactic acid) [methyl lactate] ^{II} [ethyl lactate]	[Bmim][HSO ₄] ¹²⁶ conversion: 97% yield: 93% 3 h, 115 °C, methanol	catalytic methanolysis ¹²⁷ conversion: quantitative yield: 100% 8 h, 80 °C, Ar flow	solvothermal ethanolysis ¹²⁸ conversion: quantitative yield: 99% ^{II} 1 h, 260 °C, N ₂ atmosphere
Nylon-6 [caprolactam] ^{III} [aminocaproic acid]	[PP13][NTf ₂] + DMAP ¹²⁹ conversion: not reported yield: 86% 1 h, 300 °C, N ₂ atmosphere	acidic hydrolysis ¹³⁰ conversion: not reported yield: 94% ^{III} 8 h, 40 vol % HCl	hydrothermal ¹³¹ conversion: quantitative yield: 85% 1 h, 300 °C, subcritical H ₂ O, Ar atmosphere
polyethylene [liquid and gaseous alkanes] ^{IV} [liquid and gaseous hydrocarbons]	[Emim][AlCl ₄] ¹³² conversion: not reported yield: 95 wt % 72 h, 120 °C, mixed with acidic cocatalyst	catalytic hydrogenolysis ¹³³ conversion: quantitative yield: quantitative 12 h, 280 °C, 30 bar H ₂ atmosphere	pyrolysis ¹³⁴ conversion: 97% yield: 97 wt % ^{IV} 0.75 h, 450–470 °C, N ₂ flow


^aConversion describes the loss in mass of the starting polymer as a result of undergoing deconstruction, and yield describes the amount of captured small-molecule products relative to the theoretical maximum of product. Conversions and yields selected for this table are from the most optimized conditions in each report and provided on a mass and molar basis, respectively, unless otherwise noted. The conditions included in each cell are intended to give context for, rather than exhaustively describe, the deconstruction parameters and environment.

IL PHYSICOCHEMICAL PROPERTIES IMPACT DECONSTRUCTION PERFORMANCE

The catalytic properties of ILs can be tailored through chemical design to enable efficient polymer deconstructions, often producing small-molecule products at higher yields and lower energy demands than those of prototypical strategies (Table 1). An increasing body of literature indicates that the acidic or basic nature of ILs dictates IL-mediated deconstruction performance, in contrast to deconstruction in molecular solvents in which monomer solubility has a dominant role.⁴⁵ For example, the base-catalyzed deconstruction of poly(3-hydroxybutyrate) (PHB) proceeds rapidly to high yield in the presence of the basic [Emim][Ac] IL (97 mol % yield, 90 min, 140 °C), but does not occur with the less basic [Emim][Cl] IL (Figure 3a).¹⁰⁶ A similar trend is revealed in the alcoholysis of polycarbonate (PC) in which highly basic [HDBU]-based ILs produce near quantitative yields of bisphenol A (BPA),

whereas neutral or acidic ILs yield less BPA (0–90 mol %).¹⁰⁷ The optimized IL-mediated PC deconstruction provides significant advantages in yield and reaction conditions over PC pyrolysis. For instance, pyrolysis is prone to significant byproduct formation that in turn demands extensive separations to obtain BPA but with lower yields (10 mol % yield, 550 °C, 17 min, N₂ atmosphere).¹⁰⁸

Acidic ILs have likewise demonstrated efficient use in acid-catalyzed deconstructions, as in the depolymerization of PET.¹⁰⁹ Currently, only limited examples are available that compare the acid-catalyzed deconstruction performance of ILs with differing acidities for plastics systems. However, investigations of biopolymer deconstructions with systematic changes in IL chemistry find that increasing IL acidity enhances acid-catalyzed deconstruction performance.^{110,111} For example, the ether cleavage rate during lignin deconstruction increases as the acidity of the IL increases.¹¹⁰ Similarly,

Figure 3. Small-molecule yields are well correlated with the acidity or basicity of the ILs used in polymer deconstructions. Here, selected examples show the influence of counterion acidity or basicity in (a) the base-catalyzed deconstruction of poly(3-hydroxybutyrate)¹⁰⁶ and (b) the acid-catalyzed deconstruction of chitin.¹¹¹

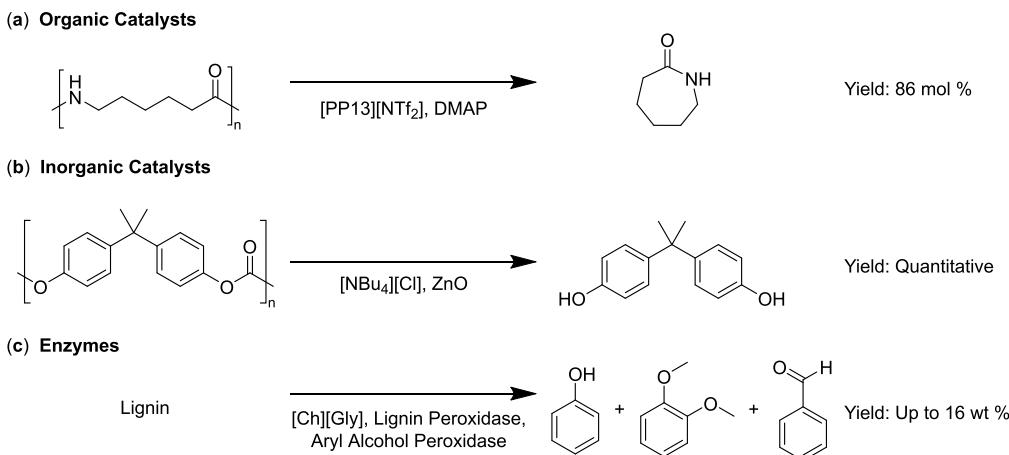
the yield of levulinic acid from the acid-catalyzed deconstruction of chitin is well-correlated to the Brønsted acidities of the IL medium (Figure 3b).¹¹¹ These results underscore the impact of incorporating acidic or basic characteristics into IL design for catalyzing the corresponding deconstruction mechanism.

The effect of IL acidity or basicity on deconstruction performance can be complicated by steric effects in IL design. In the base-catalyzed deconstruction of PET by amino acid-based ILs, the least sterically hindered glycine-containing [Ch][Gly] IL demonstrated notably higher small-molecule yields (43 mol % yield) vs lysine-containing [Ch][Lys] (24 mol % yield) or alanine-containing [Ch][Ala] (0 mol % yield) ILs with similar anion acid dissociation constants under the same conditions (6 h, 150 °C).¹¹² Similarly, in the aforementioned alcoholysis of PC, equivalently acidic ILs with differing steric hindrances showed markedly different catalytic activities. For example, the sterically hindered [HTEA][LAc] yielded just 10 mol % BPA, while the less bulky [Hmim][LAc] yielded 90 mol % BPA under identical reaction conditions.¹⁰⁷

The ability to disrupt inter- and intramolecular hydrogen bonding in polymeric systems offers another vital parameter in IL design to enhance deconstruction. Hydrogen bonding between ILs and PET influences, among other parameters, backbone PET bond lengths and angles, charge densities, and electronegativities, synergistically promoting PET deconstruction.¹¹³ For example, [Ch][Ac] with a calculated 453 kJ/mol binding strength to PET model dimers deconstructed PET at a 94 wt % conversion to a small-molecule product in 83 mol % yield.¹¹³ In contrast, [Ch][Cl] at a comparatively weaker 424 kJ/mol binding strength deconstructed PET with a 3 wt % conversion to no capturable small-molecule product.¹¹³ This effect is particularly important for polymers with properties

that are dominated by hydrogen-bonding effects (e.g., polyamides).¹¹⁴

Metallic atoms also can be added into the design of ILs, often in the form of metal salts, to promote deconstruction. These metals can coordinate with hydrogen-bonding groups in condensation polymers to cause rapid deconstructions with high yields.^{115–117} For example, [Bmim][ZnCl₃] ILs have been used as the deconstruction medium for PET with an 83 mol % yield of bis(hydroxyethyl) terephthalate (5 h, 180 °C).¹¹⁸ This performance falls between typical outcomes for PET deconstruction by catalytic glycolysis¹¹⁹ and acidic hydrolysis,¹²⁰ but it avoids the potentially complicated removal of catalysts or the use of concentrated acids (e.g., 10 M sulfuric acid) needed to achieve high yields. Similarly, synergistic effects between the cation and anion of a [Bmim][FeCl₄] IL result in higher deconstruction catalytic activities at lower temperatures for PET versus either the analogous metal-free [Bmim][Cl] IL or the FeCl₃ salt alone.¹³⁵ The incorporation of metallic atoms into ILs also has shown promise for polyolefin deconstruction.¹³⁶ For instance, a Lewis acid chloroaluminate-based IL facilitated the upcycling of polyethylene to liquid alkanes by enabling simultaneous cracking and alkylation. This system achieved quantitative polyethylene conversion to isoalkanes within 6 h at 70 °C, and the small-molecule outputs phase-separated from the IL reaction milieu to enable facile recovery of the product.¹³⁶


It is worth noting that several experimental parameters interact with IL design to determine the effectiveness of IL-mediated deconstruction. For example, temperature plays a controlling role in overcoming the activation energy to enable catalytic reactions.^{88,137} The concentration of the polymer species also has a critical role in its IL-mediated deconstruction. In general, increasing polymer concentrations in ILs increases the polymer degradation rate, as in the deconstruction of PET.¹³⁸ However, high polymer concentrations (e.g., >40 wt % polymer in IL) can impede deconstruction when hydrogen bonding is possible between the IL and the polymer, as demonstrated in the deconstruction of PHB.¹⁰⁶ The presence of impurities, especially water, also can influence deconstruction thermodynamics.^{106,139} In PET glycolysis, water loadings as low as 4 wt % can halve reaction conversion (1 atm, 180 °C, 8 h) due to the coordination of water protons with the IL anions.¹³⁹ The same effect transpires at higher water loadings (25–50 wt %) in the deconstruction of PHB but is less influential at lower water loadings (2.5 wt %).¹⁰⁶

In short, the chemical design of ILs can be exploited to enhance catalytic deconstruction through control of IL acidity/basicity, sterics, hydrogen bonding, and reactive sites. These characteristics can be tuned through changes to experimental parameters, namely, temperature, polymer concentration, and impurities. Researchers are thus offered a wide experimental design space when ILs are used for deconstruction.

■ ILS SOLUBILIZE AND SYNERGIZE NON-IL CATALYSTS

The previous section discussed how ILs can be used in isolation as simultaneous deconstruction catalysts and solubilizing agents. Here, we describe how ILs find additional utility in enhancing the performance of non-IL catalysts in the deconstruction of plastics and biopolymers.

At the simplest level, ILs may be used as high-temperature-stable, polymer-dissolving solvents for deconstructions involving non-IL catalysts. Among organic catalysts, 4-dimethylami-

Figure 4. ILs may be combined with other catalysts to mediate deconstruction reactions. (a) Organic catalysts like DMAP are used effectively in ILs to depolymerize polyesters and polyamides like Nylon-6.¹²⁹ (b) ILs can enhance the catalytic properties of inorganic catalysts, such as zinc oxide in the deconstruction of PC.¹⁴⁴ (c) Typically recalcitrant biopolymers like lignin can be dissolved in ILs for enzyme-mediated deconstructions that are challenging in molecular solvents.¹⁵¹

nopyridine (DMAP) has found significant use as a deconstruction catalyst. Low loadings (<10 wt % relative to monomer) of DMAP are recognized to catalyze transesterification and alcoholysis reactions, leading to its use in the deconstruction of PC, poly(lactic acid), and PET. Specific combinations of ILs and DMAP were found to enhance the yield of caprolactam from Nylon-6 depolymerization at 300 °C over ILs alone, indicating a synergistic effect may be present when ILs and DMAP are used in tandem for deconstructions.^{129,143} Though [PP13][NTf₂] catalyzed Nylon-6 depolymerization to caprolactam to 55 mol % yield in 6 h, a mixture of [PP13][NTf₂] and DMAP was able to improve the depolymerization yield to 86 mol % yield under the same conditions (Figure 4a).¹²⁹

The capacity of ILs to simultaneously solubilize organic and nonorganic species also has been of great interest for chemical recycling by enabling efficient interactions between ionic or metallic catalysts and end-of-life polymers. For example, zinc oxide nanoparticles in [NBu₄][Cl] are capable of quantitatively depolymerizing PC to BPA in 7 h at 100 °C (Figure 4b); in this reaction, the IL likely acts as a basic cocatalyst.¹⁴⁴ Similarly, [Emim][Ac] can solubilize cobalt chloride and niobium pentoxide catalysts to deconstruct lignin into a variety of commercially useful aromatic compounds, including vanillin, guaiacol, and syringol.¹⁴⁵

Combining ILs with highly acidic cocatalysts offers a pathway to enhance deconstruction by harnessing Brønsted superacidity.^{146,147} A notable example of this behavior is the cracking of low- and high-density polyethylene (LDPE, HDPE) by chloroaluminate(III)-based ILs.¹³² These ILs in conjunction with acidic cocatalysts like sulfuric acid were capable of deconstructing LDPE and HDPE into low molecular weight hydrocarbons, including propane, butane, and methylbutane.¹³² PE was powdered to increase surface area and enhance deconstruction kinetics, and efficient stirring was required above 180 °C to disperse molten polyethylene within the IL milieu.¹³² The study further identified reaction temperature as a handle to influence product composition by achieving greater yields of high activation energy products at elevated temperatures. Hydrocarbon products were obtained in 60–95 wt % yields and separated by solvent extraction, offering a pathway to reuse the IL.¹³²

Finally, enzyme-mediated deconstruction is an emerging area of advanced recycling that exploits the high selectivity of enzymes to convert polymers into desirable small-molecule species. ILs are particularly useful in enzyme-mediated deconstruction due to the ability of ILs to solubilize or swell a breadth of species.^{148,149} This feature is especially useful for biopolymers that are recalcitrant in the aqueous milieu typically needed for enzyme catalysis. For example, [Emim][Ac] can efficiently extract lignin from cellulose; this cellulose is then enzymatically digestible in the IL.¹⁵⁰ Similarly, the unreactive nature of lignin in water makes it challenging to deconstruct enzymatically in aqueous media. Biocompatible ILs such as [Ch][Gly] can overcome this obstacle by concomitantly solubilizing lignin and enabling the enzymatic deconstruction of lignin to low-molecular-weight products (Figure 4c).¹⁵¹

■ ILS MAY LOWER THE ENVIRONMENTAL IMPACTS OF ADVANCED RECYCLING

The use of ILs in advanced recycling can lower the environmental impacts of polymer deconstruction relative to neat or organic-solvent-mediated systems if the recycling process is designed to fully recover the ILs after deconstruction. In this section, we describe the features of ILs that offer improvements in IL implementation over common chemical recycling methods, discuss strategies to reclaim ILs from deconstruction processes, and examine environmental challenges that must be addressed when using ILs for deconstructions at scale.

A key challenge in pyrolytic and solvent-based deconstructions is the need for extensive energy input to reach deconstruction temperatures and pressures (whether at high pressure to assist deconstruction or under vacuum to prevent byproduct formation).¹⁵² ILs can enable significant energy savings by facilitating deconstruction under more benign conditions. For example, IL catalytic behavior has been demonstrated to depolymerize epoxy thermosets and carbon fiber epoxy composites at 150 °C and atmospheric pressure,¹⁵³ versus the 350–500 °C temperatures and 120–325 atm pressures typical of analogous solvent-mediated approaches.^{154,155} With improvements in IL design, more examples of IL-mediated room-temperature deconstructions

may be realized, as seen in the recent deconstruction of lignin to vanillin at 10–20 wt % yields in metal-containing ILs.^{152,156}

The release of solvents from industrial processes is estimated to result in 60% of global industrial emissions and 30% of VOC emissions.¹⁵⁷ Incorporating ILs in place of more volatile solvents for industrial processes, including in deconstruction methods, offers a pathway toward offsetting this environmental impact.^{103,158} ILs can be designed for deconstructions to this end to minimize IL-derived environmental impact; for example, shortening alkyl chains in IL cations increases an IL's boiling point, and anion selection can modulate IL boiling points over 100 °C for equivalent cations.^{102,159}

In 2018, an imidazolium-based IL was discovered in soil samples near a landfill in the United Kingdom that could trigger an autoimmune chronic liver disease by replacing biological components of mitochondrial proteins.¹⁶⁰ IL toxicity is not yet well characterized, but emerging understanding about the hazards of ILs to animal and human health suggests the need for safeguards to prevent environmental release.^{160–162} To highlight some significant findings to date, imidazolium-based ILs are acutely toxic to bacteria at concentrations well below those of molecular solvents, and ILs have been linked to injury among several bacterial and aquatic species.¹⁶² ILs generally exhibit limited biodegradability and high water solubility, which enables their transport to, and persistence in, drinking water reservoirs.^{161,163} As a result, ILs have shown some similarities to perfluoroalkyl substances.¹⁶³ Many commonplace ILs also rely on toxic or corrosive chemicals for sourcing counterions. For example, fluorinated anions used widely in IL design may be derived from highly reactive superacids that are obtained through hazardous syntheses (e.g., HF chemistry).¹⁶⁴ Such fluorinated anions in ILs demonstrate limited pathways for environmental decomposition and may have significant cytotoxicity.^{165,166}

As the increasing use of ILs across applications, including polymer deconstructions, may lead to intentional or unintentional environmental discharges,¹⁶⁷ future IL design should consider environmental impacts and methods for biodegradation as a parameter of research. These developments may work in tandem with the sourcing of IL components from sustainable feedstocks. For example, the design of ILs from renewable organic compounds (e.g., amino acids, citric acid, acetic acid) and nontoxic minerals may help overcome negative IL environmental impacts.^{168–170} Further research should also elucidate IL chemistries that can minimize toxicity while meeting performance requirements for targeted applications.^{171,172} In the meantime, it is imperative that ILs used in polymer deconstructions are fully contained within the engineering system and separated from the resulting products to enable complete reuse.

To this end, two separation methods dominate in the literature for isolating ILs from monomers and small molecules from deconstruction: distillation and liquid–liquid extraction. Distillation harnesses the low vapor pressures of ILs to evaporate molecular products from the deconstruction reaction vessels. This strategy has the secondary benefit of driving reaction equilibria toward small-molecule species by actively removing the volatile deconstruction products as they are formed. Distillation for product recovery has been demonstrated in the deconstruction of polyesters¹⁰⁵ and nylons,⁸⁸ among others. In contrast, liquid–liquid extraction relies on the preferential dissolution of ILs into water over molecular organic solvents to separate ILs and organic products into

aqueous and organic phases, respectively. These phases are then concentrated to remove the solvents and recover the dissolved IL and small-molecule products. It is worth noting that the need to distill solvents to reclaim components after liquid–liquid separation may require a higher net energy input than directly distilling deconstruction products from an IL; differences in energy demands between the two strategies could be revealed by a process model combined with life-cycle analysis to evaluate impacts for a specific polymer deconstruction.¹⁷³ Liquid–liquid extraction for small molecule recovery from ILs has been shown for, e.g., Nylon-6 and lignin.^{174,175}

Advances in IL design and separation techniques may prove useful for the translation of IL-mediated polymer deconstructions to more polymer species or lower energetic costs. For example, recently developed solubility-switchable ILs may become of interest for expanding the library of targetable polymers. These ILs are capable of undergoing a simple, reversible chemical reaction (e.g., protection–deprotection reaction) that induces a marked shift in an IL's hydrophilicity.^{114,174,176,177} Such ILs could be harnessed to solubilize and depolymerize hydrophobic plastics, undergo a switching reaction to become hydrophilic, and then be separated from the small-molecule products via liquid–liquid extraction. Membrane separation, crystallization, electrodialysis, and adsorption also have been demonstrated as potential options for IL recovery and may find future use in deconstruction processes.^{178,179}

Historically, a mismatch between the attributes of interest for laboratory-scale IL study and industrial-scale IL deployment have limited the translation of ILs to commercial practice.¹⁸⁰ For example, high IL viscosities, limited IL material-property and environmental impact data, and substantial IL raw material costs have hindered the development of IL-based processes.¹⁸⁰ While this Viewpoint has addressed several of these considerations for IL-mediated polymer deconstructions—e.g., lowered IL viscosities at elevated temperatures relevant to deconstructions, strategies to separate monomers from ILs for recyclability, chemical motifs to enhance thermal stability—further effort is needed to tackle outstanding concerns for IL use at a commercial scale. Continued investigations into IL toxicity will be needed for regulatory approval, and ongoing IL chemistry development will be needed to reduce IL costs for batch reactions.^{180,181} Technoeconomic analysis is also important to validate the utility of ILs in industrial unit operations by identifying savings arising from IL recyclability and opportunities for process intensification.¹⁷³ Additionally, learnings from ongoing pilots of IL-based systems will undoubtedly inform future considerations for IL design and implementation.¹⁸¹

ILs overcome significant environmental challenges in polymer chemical recycling by lowering energy inputs to achieve deconstruction and minimizing VOC release by replacing volatile molecular solvents. However, the persistence of ILs in aquatic environments and emerging concerns about IL toxicity to biotic health underscore the need to appropriately contain ILs in deconstruction setups and prioritize environmental considerations in future IL design. Methods to separate ILs from deconstruction products, therefore, become critical in recovering and reusing ILs to prevent environmental leakage while enabling circular life cycles.

CONCLUSIONS

ILs offer broad utility for the deconstruction of plastics and biopolymers for chemical and advanced recycling and upcycling. Control over IL chemical design enables the customization of physicochemical properties to target catalytic performance, decomposition temperatures, and polymer solubilities for specific deconstruction applications. This bottom-up control in turn governs deconstruction yields and kinetics, cocatalysis, and facile separation of resulting products from ILs. Recent advances in IL design show promise for efficient deconstructions at lower energy demands than many existing strategies, yet pressing challenges in the environmental impact upon leakage and thermal decomposition should be addressed to facilitate the widespread implementation of ILs in chemical recycling. In short, ILs may find application as a cornerstone of circular polymer economies with continued research and development.

AUTHOR INFORMATION

Corresponding Author

Thomas H. Epps, III – Department of Chemical and Biomolecular Engineering, Department of Materials Science and Engineering, and Center for Research in Soft matter and Polymers (CRISP), University of Delaware, Newark, Delaware 19716, United States; orcid.org/0000-0002-2513-0966; Email: thepps@udel.edu

Author

Ty Christoff-Tempesta – Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States; orcid.org/0000-0002-6551-6599

Complete contact information is available at:

<https://pubs.acs.org/10.1021/acsmacrolett.3c00276>

Author Contributions

All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors are grateful for financial support from the Army Research Office under Cooperative Agreement Number W911NF-22-2-0257 during the writing of this manuscript. T.H.E. also acknowledges the Allan and Myra Ferguson Distinguished Professorship in Chemical and Biomolecular Engineering for additional support. The views and conclusions herein are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office or the U.S. Government.

ABBREVIATIONS

BPA, bisphenol A; $[\text{Bmim}][\text{BF}_4]$, 1-butyl-3-methylimidazolium tetrafluoroborate; $[\text{Bmim}][\text{NTf}_2]$, 1-butyl-3-methylimidazolium bis(trifluoromethane)sulfonimide; $[\text{Bmim}][\text{FeCl}_4]$, 1-butyl-3-methylimidazolium tetrachloroferrate; $[\text{Bmim}][\text{HSO}_4]$, 1-butyl-3-methylimidazolium hydrogen sulfate; $[\text{Bmim}][\text{PF}_6]$, 1-butyl-3-methylimidazolium hexafluorophosphate; $[\text{Bmim}][\text{ZnCl}_3]$, 1-butyl-3-methylimidazolium trichlorozincate; $[\text{C}_3\text{SO}_3\text{Hmim}][\text{HSO}_4]$, 1-methyl-3-(3-sulfopropyl)-imidazolium hydrogen sulfate; $[\text{Ch}][\text{Ac}]$, cholinium acetate;

$[\text{Ch}][\text{Ala}]$, cholinium alanate; $[\text{Ch}][\text{Cl}]$, cholinium chloride; $[\text{Ch}][\text{Gly}]$, cholinium glycinate; $[\text{Ch}][\text{Lys}]$, cholinium lysinate; DMAP, dimethylaminopyridine; $[\text{Emim}][\text{Ac}]$, 1-ethyl-3-methylimidazolium acetate; $[\text{Emim}][\text{AlCl}_4]$, 1-ethyl-3-methylimidazolium tetrachloroaluminate; $[\text{Emim}][\text{Cl}]$, 1-ethyl-3-methylimidazolium chloride; $[\text{Emim}][\text{NTf}_2]$, 1-ethyl-3-methylimidazolium bis(trifluoromethane)sulfonimide; $[\text{HDBU}]$, 8-hydrogen-1,8-diazabicyclo[5.4.0]-undec-7-ene; HDPE, high-density polyethylene; $[\text{Hmim}][\text{LAc}]$, 1-methylimidazolium lactate; $[\text{HTEA}][\text{LAc}]$, triethylammonium lactate; IL, ionic liquid; LDPE, low-density polyethylene; $[\text{NBu}_4][\text{Cl}]$, tetrabutylammonium chloride; PC, polycarbonate; PET, poly(ethylene terephthalate); PHB, poly(3-hydroxybutyrate); $[\text{PP13}][\text{NTf}_2]$, N-methyl-N-propylpiperidinium bis(trifluoromethane)sulfonimide; TGA, thermogravimetric analysis; VOC, volatile organic compound

REFERENCES

- (1) Geyer, R.; Jambeck, J. R.; Law, K. L. Production, use, and fate of all plastics ever made. *Sci. Adv.* **2017**, *3*, e1700782.
- (2) Hinton, Z. R.; Talley, M. R.; Kots, P. A.; Le, A. V.; Zhang, T.; Mackay, M. E.; Kunjapur, A. M.; Bai, P.; Vlachos, D. G.; Watson, M. P.; et al. Innovations Toward the Valorization of Plastics Waste. *Annu. Rev. Mater. Res.* **2022**, *52*, 249–280.
- (3) Andrade, A. L.; Neal, M. A. Applications and societal benefits of plastics. *Philos. Trans. R. Soc. London, Ser. B* **2009**, *364*, 1977–1984.
- (4) Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: challenges and opportunities. *Philos. Trans. R. Soc. London, Ser. B* **2009**, *364*, 2115–2126.
- (5) d'Ambrères, W. Plastics recycling worldwide: current overview and desirable changes. *Field Actions Sci. Rep.* **2019**, *12*–21.
- (6) Gouin, T.; Becker, R. A.; Collot, A.-G.; Davis, J. W.; Howard, B.; Inawaka, K.; Lampi, M.; Ramon, B. S.; Shi, J.; Hopp, P. W. Toward the Development and Application of an Environmental Risk Assessment Framework for Microplastic. *Environ. Toxicol. Chem.* **2019**, *38*, 2087–2100.
- (7) Andrade, A. L. Persistence of plastic litter in the oceans. *Marine Anthropogenic Litter* **2015**, *57*–72.
- (8) Singh, N.; Ogunseitan, O. A.; Wong, M. H.; Tang, Y. Sustainable materials alternative to petrochemical plastics pollution: A review analysis. *Sustainable Horizons* **2022**, *2*, 100016.
- (9) Nicholson, S. R.; Rorrer, N. A.; Carpenter, A. C.; Beckham, G. T. Manufacturing energy and greenhouse gas emissions associated with plastics consumption. *Joule* **2021**, *5*, 673–686.
- (10) Davison, S. M.; White, M. P.; Pahl, S.; Taylor, T.; Fielding, K.; Roberts, B. R.; Economou, T.; McMeel, O.; Kellett, P.; Fleming, L. E. Public concern about, and desire for research into, the human health effects of marine plastic pollution: Results from a 15-country survey across Europe and Australia. *Glob. Environ. Change* **2021**, *69*, 102309.
- (11) Catarino, A. I.; Kramm, J.; Voelker, C.; Henry, T. B.; Everaert, G. Risk posed by microplastics: Scientific evidence and public perception. *Curr. Opin. Green Sustain. Chem.* **2021**, *29*, 100467.
- (12) Al-Salem, S.; Lettieri, P.; Baeyens, J. Recycling and recovery routes of plastic solid waste (PSW): A review. *Waste Manage. (Oxford)* **2009**, *29*, 2625–2643.
- (13) Schyns, Z. O.; Shaver, M. P. Mechanical recycling of packaging plastics: A review. *Macromol. Rapid Commun.* **2021**, *42*, 2000415.
- (14) Assadi, R.; Colin, X.; Verdu, J. Irreversible structural changes during PET recycling by extrusion. *Polymer* **2004**, *45*, 4403–4412.
- (15) Law, K. L.; Narayan, R. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. *Nat. Rev. Mater.* **2022**, *7*, 104–116.
- (16) Rahimi, A.; García, J. M. Chemical recycling of waste plastics for new materials production. *Nat. Rev. Chem.* **2017**, *1*, 0046.
- (17) Vogt, B. D.; Stokes, K. K.; Kumar, S. K. Why is recycling of postconsumer plastics so challenging? *ACS Appl. Polym. Mater.* **2021**, *3*, 4325–4346.

(18) Garcia, J. M.; Robertson, M. L. The future of plastics recycling. *Science* **2017**, *358*, 870–872.

(19) Korley, L. T. J.; Epps, T. H., III; Helms, B. A.; Ryan, A. J. Toward polymer upcycling - adding value and tackling circularity. *Science* **2021**, *373*, 66–69.

(20) Kusenberg, M.; Eschenbacher, A.; Delva, L.; De Meester, S.; Delikostantis, E.; Stefanidis, G. D.; Ragaert, K.; Van Geem, K. M. Towards high-quality petrochemical feedstocks from mixed plastic packaging waste via advanced recycling: The past, present and future. *Fuel Process. Technol.* **2022**, *238*, 107474.

(21) Thiounn, T.; Smith, R. C. Advances and approaches for chemical recycling of plastic waste. *J. Polym. Sci.* **2020**, *58*, 1347–1364.

(22) Jehanno, C.; Alty, J. W.; Roosen, M.; De Meester, S.; Dove, A. P.; Chen, E. Y. X.; Leibfarth, F. A.; Sardon, H. Critical advances and future opportunities in upcycling commodity polymers. *Nature* **2022**, *603*, 803–814.

(23) Kim, S.; Rahman, M. A.; Arifuzzaman, M.; Gilmer, D. B.; Li, B.; Wilt, J. K.; Lara-Curzio, E.; Saito, T. Closed-loop additive manufacturing of upcycled commodity plastic through dynamic cross-linking. *Sci. Adv.* **2022**, *8*, eabn6006.

(24) Vollmer, I.; Jenks, M. J. F.; Roelands, M. C. P.; White, R. J.; Harmelen, T.; Wild, P.; Laan, G. P.; Meirer, F.; Keurentjes, J. T. F.; Weckhuysen, B. M. Beyond mechanical recycling: Giving new life to plastic waste. *Angew. Chem., Int. Ed.* **2020**, *59*, 15402–15423.

(25) Zheng, J.; Arifuzzaman, M.; Tang, X.; Chen, X. C.; Saito, T. Recent development of end-of-life strategies for plastic in industry and academia: bridging their gap for future deployment. *Mater. Horiz.* **2023**, *10*, 1608–1624.

(26) Xu, C.; Arancon, R. A. D.; Labidi, J.; Luque, R. Lignin depolymerisation strategies: towards valuable chemicals and fuels. *Chem. Soc. Rev.* **2014**, *43*, 7485–7500.

(27) Chundawat, S. P.; Beckham, G. T.; Himmel, M. E.; Dale, B. E. Deconstruction of lignocellulosic biomass to fuels and chemicals. *Annu. Rev. Chem. Biomol. Eng.* **2011**, *2*, 121–145.

(28) Luterbacher, J.; Alonso, D. M.; Dumesic, J. Targeted chemical upgrading of lignocellulosic biomass to platform molecules. *Green Chem.* **2014**, *16*, 4816–4838.

(29) Sohn, Y. J.; Kim, H. T.; Baritugo, K.-A.; Jo, S. Y.; Song, H. M.; Park, S. Y.; Park, S. K.; Pyo, J.; Cha, H. G.; Kim, H.; et al. Recent Advances in Sustainable Plastic Upcycling and Biopolymers. *Biotechnol. J.* **2020**, *15*, 1900489.

(30) Bass, G. F.; Epps, T. H., III Recent developments towards performance-enhancing lignin-based polymers. *Polym. Chem.* **2021**, *12*, 4130–4158.

(31) Voloshin, R. A.; Rodionova, M. V.; Zharmukhamedov, S. K.; Veziroglu, T. N.; Allakhverdiev, S. I. Biofuel production from plant and algal biomass. *Int. J. Hydrogen Energy* **2016**, *41*, 17257–17273.

(32) Briens, C.; Piskorz, J.; Berruti, F. Biomass valorization for fuel and chemicals production - A review. *Int. J. Chem. React. Eng.* **2008**, *6*, 1–49.

(33) Espro, C.; Paone, E.; Mauriello, F.; Gotti, R.; Uliassi, E.; Bolognesi, M. L.; Rodríguez-Padrón, D.; Luque, R. Sustainable production of pharmaceutical, nutraceutical and bioactive compounds from biomass and waste. *Chem. Soc. Rev.* **2021**, *50*, 11191–11207.

(34) Demirbaş, A. Mechanisms of liquefaction and pyrolysis reactions of biomass. *Energy Convers. Manage.* **2000**, *41*, 633–646.

(35) Godiya, C. B.; Gabrielli, S.; Materazzi, S.; Pianesi, M. S.; Stefanini, N.; Marcantoni, E. Depolymerization of waste poly (methyl methacrylate) scraps and purification of depolymerized products. *J. Environ. Manage.* **2019**, *231*, 1012–1020.

(36) Madorsky, S. L.; Straus, S.; Thompson, D.; Williamson, L. Pyrolysis of polyisobutene (vistanex), polyisoprene, polybutadiene, GR-S, and polyethylene in a high vacuum. *J. Polym. Sci.* **1949**, *4*, 639–664.

(37) Richter, F.; Rein, G. The Role of Heat Transfer Limitations in Polymer Pyrolysis at the Microscale. *Front. Mech. Eng.* **2018**, *4*, 1–13.

(38) Houser, T. J. Kinetics of Polymer Pyrolysis from Surface Regression Rates. *J. Chem. Phys.* **1966**, *45*, 1031–1037.

(39) Liu, Y.; Lu, X.-B. Emerging Trends in Closed-Loop Recycling Polymers: Monomer Design and Catalytic Bulk Depolymerization. *Eur. J. Chem.* **2023**, *29*, e202203635.

(40) Bywater, S.; Black, P. Thermal Depolymerization of Polymethyl Methacrylate and Poly- α -methylstyrene in Solution in Various Solvents. *J. Phys. Chem.* **1965**, *69*, 2967–2970.

(41) Goto, M. Chemical recycling of plastics using sub-and supercritical fluids. *J. Supercrit. Fluids* **2009**, *47*, 500–507.

(42) Sang, Y.; Chen, H.; Khalifeh, M.; Li, Y. Catalysis and chemistry of lignin depolymerization in alcohol solvents - A review. *Catal. Today* **2023**, *408*, 168–181.

(43) Iwaya, T.; Tokuno, S.; Sasaki, M.; Goto, M.; Shibata, K. Recycling of fiber reinforced plastics using depolymerization by solvothermal reaction with catalyst. *J. Mater. Sci.* **2008**, *43*, 2452–2456.

(44) Ellis, L. D.; Rorrer, N. A.; Sullivan, K. P.; Otto, M.; McGeehan, J. E.; Román-Leshkov, Y.; Wierckx, N.; Beckham, G. T. Chemical and biological catalysis for plastics recycling and upcycling. *Nat. Catal.* **2021**, *4*, 539–556.

(45) Cederholm, L.; Wohlert, J.; Olsén, P.; Hakkarainen, M.; Odelius, K. “Like recycles like”: selective ring-closing depolymerization of poly(L-lactic acid) to L-lactide. *Angew. Chem., Int. Ed.* **2022**, *61*, e202204531.

(46) Feng, P.; Wang, H.; Lin, H.; Zheng, Y. Selective production of guaiacol from black liquor: Effect of solvents. *Carbon Resour. Convers.* **2019**, *2*, 1–12.

(47) Borand, M. N.; Karaosmanoğlu, F. Effects of organosolv pretreatment conditions for lignocellulosic biomass in biorefinery applications: a review. *J. Renew. Sustain. Energy* **2018**, *10*, 033104.

(48) Questell-Santiago, Y. M.; Galkin, M. V.; Barta, K.; Luterbacher, J. S. Stabilization strategies in biomass depolymerization using chemical functionalization. *Nat. Rev. Chem.* **2020**, *4*, 311–330.

(49) Han, J.; Luterbacher, J. S.; Alonso, D. M.; Dumesic, J. A.; Maravelias, C. T. A lignocellulosic ethanol strategy via nonenzymatic sugar production: Process synthesis and analysis. *Bioresour. Technol.* **2015**, *182*, 258–266.

(50) Li, X.-L.; Clarke, R. W.; An, H.-Y.; Gowda, R. R.; Jiang, J.-Y.; Xu, T.-Q.; Chen, E. Y.-X. Dual Recycling of Depolymerization Catalyst and Biodegradable Polyester that Markedly Outperforms Polyolefins. *Angew. Chem., Int. Ed.* **2023**, *62*, e202303791.

(51) Wasserscheid, P.; Keim, W. Ionische Flüssigkeiten—neue, Lösungen “für die Übergangsmetallkatalyse. *Angew. Chem.* **2000**, *112*, 3926–3945.

(52) Forsyth, S. A.; Pringle, J. M.; MacFarlane, D. R. Ionic liquids—an overview. *Aust. J. Chem.* **2004**, *57*, 113–119.

(53) Winterton, N. Solubilization of polymers by ionic liquids. *J. Mater. Chem.* **2006**, *16*, 4281–4293.

(54) Welton, T. Ionic liquids in catalysis. *Coord. Chem. Rev.* **2004**, *248*, 2459–2477.

(55) Steinrueck, H.-P.; Wasserscheid, P. Ionic liquids in catalysis. *Catal. Lett.* **2015**, *145*, 380–397.

(56) Jehanno, C.; Pérez-Madrigal, M. M.; Demarteau, J.; Sardon, H.; Dove, A. P. Organocatalysis for depolymerisation. *Polym. Chem.* **2019**, *10*, 172–186.

(57) Liu, D.; Chen, E. Y. X. Ubiquitous aluminum alkyls and alkoxides as effective catalysts for glucose to HMF conversion in ionic liquids. *Appl. Catal., A* **2012**, *435*–436, 78–85.

(58) Angell, C. A.; Ansari, Y.; Zhao, Z. Ionic liquids: past, present and future. *Faraday Discuss.* **2012**, *154*, 9–27.

(59) Amarasekara, A. S. Acidic ionic liquids. *Chem. Rev.* **2016**, *116*, 6133–6183.

(60) Giernoth, R. Task-specific ionic liquids. *Angew. Chem., Int. Ed.* **2010**, *49*, 2834–2839.

(61) Plotka-Wasylka, J.; De la Guardia, M.; Andruch, V.; Vilková, M. Deep eutectic solvents vs ionic liquids: Similarities and differences. *Microchem. J.* **2020**, *159*, 105539.

(62) Fukushima, K.; Coady, D. J.; Jones, G. O.; Almegren, H. A.; Alabdulrahman, A. M.; Alsewailem, F. D.; Horn, H. W.; Rice, J. E.; Hedrick, J. L. Unexpected efficiency of cyclic amidine catalysts in

depolymerizing poly (ethylene terephthalate). *J. Polym. Sci., Part A: Polym. Chem.* **2013**, *51*, 1606–1611.

(63) Jehanno, C.; Demarteau, J.; Mantione, D.; Arno, M. C.; Ruipérez, F.; Hedrick, J. L.; Dove, A. P.; Sardon, H. Selective chemical upcycling of mixed plastics guided by a thermally stable organocatalyst. *Angew. Chem., Int. Ed.* **2021**, *60*, 6710–6717.

(64) Jehanno, C.; Flores, I.; Dove, A. P.; Müller, A. J.; Ruipérez, F.; Sardon, H. Organocatalysed depolymerisation of PET in a fully sustainable cycle using thermally stable protic ionic salt. *Green Chem.* **2018**, *20*, 1205–1212.

(65) Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. *Chem. Rev.* **1999**, *99*, 2071–2084.

(66) Kubisa, P. Application of ionic liquids as solvents for polymerization processes. *Prog. Polym. Sci.* **2004**, *29*, 3–12.

(67) Venkatram, S.; Kim, C.; Chandrasekaran, A.; Ramprasad, R. Critical assessment of the Hildebrand and Hansen solubility parameters for polymers. *J. Chem. Inf. Model.* **2019**, *59*, 4188–4194.

(68) Ueki, T.; Watanabe, M. Polymers in ionic liquids: dawn of neoteric solvents and innovative materials. *Bull. Chem. Soc. Jpn.* **2012**, *85*, 33–50.

(69) Ueno, K.; Fukai, T.; Nagatsuka, T.; Yasuda, T.; Watanabe, M. Solubility of Poly(methyl methacrylate) in Ionic Liquids in Relation to Solvent Parameters. *Langmuir* **2014**, *30*, 3228–3235.

(70) Yuan, Y.-F.; Zhang, J.-M.; Zhang, B.-Q.; Liu, J.-J.; Zhou, Y.; Du, M.-X.; Han, L.-X.; Xu, K.-J.; Qiao, X.; Liu, C.-Y. Polymer solubility in ionic liquids: dominated by hydrogen bonding. *Phys. Chem. Chem. Phys.* **2021**, *23*, 21893–21900.

(71) Kamlet, M. J.; Abboud, J. L. M.; Abraham, M. H.; Taft, R. Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, π^* , α , and β , and some methods for simplifying the generalized solvatochromic equation. *J. Org. Chem.* **1983**, *48*, 2877–2887.

(72) Yalcin, D.; Drummond, C. J.; Greaves, T. L. Solvation properties of protic ionic liquids and molecular solvents. *Phys. Chem. Chem. Phys.* **2020**, *22*, 114–128.

(73) Lungwitz, R.; Spange, S. A hydrogen bond accepting (HBA) scale for anions, including room temperature ionic liquids. *New J. Chem.* **2008**, *32*, 392–394.

(74) Anderson, J. L.; Ding, J.; Welton, T.; Armstrong, D. W. Characterizing Ionic Liquids On the Basis of Multiple Solvation Interactions. *J. Am. Chem. Soc.* **2002**, *124*, 14247–14254.

(75) Mohan, M.; Keasling, J. D.; Simmons, B. A.; Singh, S. *In silico* COSMO-RS predictive screening of ionic liquids for the dissolution of plastic. *Green Chem.* **2022**, *24*, 4140–4152.

(76) Endres, F.; El Abedin, S. Z. Air and water stable ionic liquids in physical chemistry. *Phys. Chem. Chem. Phys.* **2006**, *8*, 2101–2116.

(77) Zhang, X.; Huo, F.; Liu, X.; Dong, K.; He, H.; Yao, X.; Zhang, S. Influence of microstructure and interaction on viscosity of ionic liquids. *Ind. Eng. Chem. Res.* **2015**, *54*, 3505–3514.

(78) Ohno, H. Functional design of ionic liquids. *Bull. Chem. Soc. Jpn.* **2006**, *79*, 1665–1680.

(79) Bonhote, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. Hydrophobic, highly conductive ambient-temperature molten salts. *Inorg. Chem.* **1996**, *35*, 1168–1178.

(80) Gardas, R. L.; Coutinho, J. A. P. A group contribution method for viscosity estimation of ionic liquids. *Fluid Phase Equilib.* **2008**, *266*, 195–201.

(81) Carda-Broch, S.; Berthod, A.; Armstrong, D. Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid. *Anal. Bioanal. Chem.* **2003**, *375*, 191–199.

(82) Seddon, K. R.; Stark, A.; Torres, M.-J. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. *Pure Appl. Chem.* **2000**, *72*, 2275–2287.

(83) Okoturo, O.; VanderNoot, T. Temperature dependence of viscosity for room temperature ionic liquids. *J. Electroanal. Chem.* **2004**, *568*, 167–181.

(84) Jacquemin, J.; Husson, P.; Padua, A. A.; Majer, V. Density and viscosity of several pure and water-saturated ionic liquids. *Green Chem.* **2006**, *8*, 172–180.

(85) Krahn, U. G.; Luft, G. Viscosity of several liquid hydrocarbons in the temperature range 298–453 K at pressures up to 200 MPa. *J. Chem. Eng. Data* **1994**, *39*, 670–672.

(86) Flick, E. W. *Industrial Solvents Handbook*, 5th ed.; William Andrew Publishing/Noyes, 1998.

(87) Wasserscheid, P.; Keim, W. Ionic liquids—new “solutions” for transition metal catalysis. *Angew. Chem., Int. Ed.* **2000**, *39*, 3772–3789.

(88) Kamimura, A.; Yamamoto, S. A novel depolymerization of nylons in ionic liquids. *Polym. Adv. Technol.* **2008**, *19*, 1391–1395.

(89) Maton, C.; De Vos, N.; Stevens, C. V. Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. *Chem. Soc. Rev.* **2013**, *42*, 5963–5977.

(90) Cao, Y.; Mu, T. Comprehensive investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis. *Ind. Eng. Chem. Res.* **2014**, *53*, 8651–8664.

(91) Baranyai, K. J.; Deacon, G. B.; MacFarlane, D. R.; Pringle, J. M.; Scott, J. L. Thermal degradation of ionic liquids at elevated temperatures. *Aust. J. Chem.* **2004**, *57*, 145–147.

(92) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. *Organic solvents: physical properties and methods of purification*; Wiley-Interscience, 1986.

(93) Sun, P.; Armstrong, D. W. Ionic liquids in analytical chemistry. *Anal. Chim. Acta* **2010**, *661*, 1–16.

(94) Torimoto, T.; Tsuda, T.; Okazaki, K. i.; Kuwabata, S. New frontiers in materials science opened by ionic liquids. *Adv. Mater.* **2010**, *22*, 1196–1221.

(95) Noble, R. D.; Gin, D. L. Perspective on ionic liquids and ionic liquid membranes. *J. Membr. Sci.* **2011**, *369*, 1–4.

(96) Zafar, A.; Chickos, J. The vapor pressure and vaporization enthalpy of squalene and squalane by correlation gas chromatography. *J. Chem. Thermodyn.* **2019**, *135*, 192–197.

(97) Paulechka, Y. U.; Kabo, G. J.; Blokhin, A. V.; Vydrov, O. A.; Magee, J. W.; Frenkel, M. Thermodynamic properties of 1-butyl-3-methylimidazolium hexafluorophosphate in the ideal gas state. *J. Chem. Eng. Data* **2003**, *48*, 457–462.

(98) Ahrenberg, M.; Beck, M.; Neise, C.; Keßler, O.; Kragl, U.; Verevkin, S. P.; Schick, C. Vapor pressure of ionic liquids at low temperatures from AC-chip-calorimetry. *Phys. Chem. Chem. Phys.* **2016**, *18*, 21381–21390.

(99) Paulechka, Y. U.; Zaitsev, D. H.; Kabo, G. J.; Strechan, A. A. Vapor pressure and thermal stability of ionic liquid 1-butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide. *Thermochim. Acta* **2005**, *439*, 158–160.

(100) Krannich, M.; Heym, F.; Jess, A. Characterization of Six Hygroscopic Ionic Liquids with Regard to Their Suitability for Gas Dehydration: Density, Viscosity, Thermal and Oxidative Stability, Vapor Pressure, Diffusion Coefficient, and Activity Coefficient of Water. *J. Chem. Eng. Data* **2016**, *61*, 1162–1176.

(101) M. S. S Esperança, J.; Canongia Lopes, J. N.; Tariq, M.; Santos, L. S. M.; Magee, J. W.; Rebelo, L. S. P. N. Volatility of Aprotic Ionic Liquids - A Review. *J. Chem. Eng. Data* **2010**, *55*, 3–12.

(102) Rebelo, L. P.; Canongia Lopes, J. N.; Esperança, J. M.; Filipe, E. On the critical temperature, normal boiling point, and vapor pressure of ionic liquids. *J. Phys. Chem. B* **2005**, *109*, 6040–6043.

(103) Earle, M. J.; Seddon, K. R. Ionic liquids. Green solvents for the future. *Pure Appl. Chem.* **2000**, *72*, 1391–1398.

(104) Earle, M. J.; Esperança, J. M.; Gilea, M. A.; Canongia Lopes, J. N.; Rebelo, L. P.; Magee, J. W.; Seddon, K. R.; Widegren, J. A. The distillation and volatility of ionic liquids. *Nature* **2006**, *439*, 831–834.

(105) Kamimura, A.; Yamamoto, S.; Yamada, K. Depolymerization of Unsaturated Polyesters and Waste Fiber-Reinforced Plastics by using Ionic Liquids: The Use of Microwaves to Accelerate the Reaction Rate. *ChemSusChem* **2011**, *4*, 644–649.

(106) Jablonski, P.; Nikjoo, D.; Warna, J.; Irgum, K.; Mikkola, J.-P.; Khokarale, S. G. Sustainable, highly selective, and metal-free thermal depolymerization of poly-(3-hydroxybutyrate) to crotonic acid in recoverable ionic liquids. *Green Chem.* **2022**, *24*, 4130–4139.

(107) Liu, M.; Guo, J.; Gu, Y.; Gao, J.; Liu, F.; Yu, S. Pushing the limits in alcoholysis of waste polycarbonate with DBU-based ionic liquids under metal-and solvent-free conditions. *ACS Sustain. Chem. Eng.* **2018**, *6*, 13114–13121.

(108) Achilias, D.; Antonakou, E.; Koutsokosta, E.; Lappas, A. Chemical recycling of polymers from waste electric and electronic equipment. *J. Appl. Polym. Sci.* **2009**, *114*, 212–221.

(109) Amarasekara, A. S.; Gonzalez, J. A.; Nwankwo, V. C. Sulfonic acid group functionalized Brönsted acidic ionic liquid catalyzed depolymerization of poly (ethylene terephthalate) in water. *J. Ionic Liquids* **2022**, *2*, 100021.

(110) De Gregorio, G. F.; Weber, C. C.; Gräsvik, J.; Welton, T.; Brandt, A.; Hallett, J. P. Mechanistic insights into lignin depolymerisation in acidic ionic liquids. *Green Chem.* **2016**, *18*, 5456–5465.

(111) Hou, W.; Zhao, Q.; Liu, L. Selective conversion of chitin to levulinic acid catalyzed by ionic liquids: distinctive effect of N-acetyl groups. *Green Chem.* **2020**, *22*, 62–70.

(112) Marullo, S.; Rizzo, C.; Dintcheva, N. T.; D'Anna, F. Amino acid-based cholinium ionic liquids as sustainable catalysts for PET depolymerization. *ACS Sustain. Chem. Eng.* **2021**, *9*, 15157–15165.

(113) Liu, Y.; Yao, X.; Yao, H.; Zhou, Q.; Xin, J.; Lu, X.; Zhang, S. Degradation of poly (ethylene terephthalate) catalyzed by metal-free choline-based ionic liquids. *Green Chem.* **2020**, *22*, 3122–3131.

(114) Chen, J. Y.; Li, Z. L.; Xu, T. J. Depolymerization of waste nylon 6 in [Bmim] Cl/water mixture. *Advanced Materials Research*; Trans Tech Publ, 2012; Vol. 550, pp 2284–2287.

(115) Al-Sabagh, A. M.; Yehia, F. Z.; Eshaq, G.; ElMetwally, A. E. Ionic liquid-coordinated ferrous acetate complex immobilized on bentonite as a novel separable catalyst for PET glycolysis. *Ind. Eng. Chem. Res.* **2015**, *54*, 12474–12481.

(116) Wang, Q.; Geng, Y.; Lu, X.; Zhang, S. First-row transition metal-containing ionic liquids as highly active catalysts for the glycolysis of poly(ethylene terephthalate) (PET). *ACS Sustain. Chem. Eng.* **2015**, *3*, 340–348.

(117) Wang, Q.; Lu, X.; Zhou, X.; Zhu, M.; He, H.; Zhang, X. 1-allyl-3-methylimidazolium halometallate ionic liquids as efficient catalysts for the glycolysis of poly(ethylene terephthalate). *J. Appl. Polym. Sci.* **2013**, *129*, 3574–3581.

(118) Yue, Q. F.; Yang, H. G.; Zhang, M. L.; Bai, X. F. Metal-containing ionic liquids: highly effective catalysts for degradation of poly (ethylene terephthalate). *Adv. Mater. Sci. Eng.* **2014**, *2014*, 1–6.

(119) Wang, L.; Nelson, G. A.; Toland, J.; Holbrey, J. D. Glycolysis of PET using 1,3-dimethylimidazolium-2-carboxylate as an organocatalyst. *ACS Sustain. Chem. Eng.* **2020**, *8*, 13362–13368.

(120) Yoshioka, T.; Sato, T.; Okuwaki, A. Hydrolysis of waste PET by sulfuric acid at 150°C for a chemical recycling. *J. Appl. Polym. Sci.* **1994**, *52*, 1353–1355.

(121) Parodi, A.; Jorea, A.; Fagnoni, M.; Ravelli, D.; Samori, C.; Torri, C.; Galletti, P. Bio-based crotonic acid from polyhydroxybutyrate: synthesis and photocatalyzed hydroacylation. *Green Chem.* **2021**, *23*, 3420–3427.

(122) Yu, J.; Plackett, D.; Chen, L. X. Kinetics and mechanism of the monomeric products from abiotic hydrolysis of poly [(R)-3-hydroxybutyrate] under acidic and alkaline conditions. *Polym. Degrad. Stab.* **2005**, *89*, 289–299.

(123) Liu, F.-S.; Li, Z.; Yu, S.-T.; Cui, X.; Xie, C.-X.; Ge, X.-P. Methanolysis and hydrolysis of polycarbonate under moderate conditions. *J. Polym. Environ.* **2009**, *17*, 208–211.

(124) Szabolcs, Á.; Molnár, M.; Dibó, G.; Mika, L. T. Microwave-assisted conversion of carbohydrates to levulinic acid: an essential step in biomass conversion. *Green Chem.* **2013**, *15*, 439–445.

(125) Mascal, M.; Nikitin, E. B. Dramatic advancements in the saccharide to 5-(chloromethyl) furfural conversion reaction. *ChemSusChem: Chemistry & Sustainability Energy & Materials* **2009**, *2*, 859–861.

(126) Song, X.; Zhang, X.; Wang, H.; Liu, F.; Yu, S.; Liu, S. Methanolysis of poly (lactic acid)(PLA) catalyzed by ionic liquids. *Polym. Degrad. Stab.* **2013**, *98*, 2760–2764.

(127) Payne, J.; McKeown, P.; Mahon, M. F.; Emanuelsson, E. A.; Jones, M. D. Mono-and dimeric zinc (ii) complexes for PLA production and degradation into methyl lactate—a chemical recycling method. *Polym. Chem.* **2020**, *11*, 2381–2389.

(128) Petrus, R.; Bykowski, D.; Sobota, P. Solvothermal alcoholysis routes for recycling polylactide waste as lactic acid esters. *ACS Catal.* **2016**, *6*, 5222–5235.

(129) Kamimura, A.; Yamamoto, S. An efficient method to depolymerize polyamide plastics: A new use of ionic liquids. *Org. Lett.* **2007**, *9*, 2533–2535.

(130) Shukla, S.; Harad, A. M.; Mahato, D. Depolymerization of nylon 6 waste fibers. *J. Appl. Polym. Sci.* **2006**, *100*, 186–190.

(131) Iwaya, T.; Sasaki, M.; Goto, M. Kinetic analysis for hydrothermal depolymerization of nylon 6. *Polym. Degrad. Stab.* **2006**, *91*, 1989–1995.

(132) Adams, C. J.; Earle, M. J.; Seddon, K. R. Catalytic cracking reactions of polyethylene to light alkanes in ionic liquids. *Green Chem.* **2000**, *2*, 21–24.

(133) Zhao, Z.; Li, Z.; Zhang, X.; Li, T.; Li, Y.; Chen, X.; Wang, K. Catalytic hydrogenolysis of plastic to liquid hydrocarbons over a nickel-based catalyst. *Environ. Pollut.* **2022**, *313*, 120154.

(134) Zeaiter, J. A process study on the pyrolysis of waste polyethylene. *Fuel* **2014**, *133*, 276–282.

(135) Wang, H.; Yan, R.; Li, Z.; Zhang, X.; Zhang, S. Fe-containing magnetic ionic liquid as an effective catalyst for the glycolysis of poly (ethylene terephthalate). *Catal. Commun.* **2010**, *11*, 763–767.

(136) Zhang, W.; Kim, S.; Wahl, L.; Khare, R.; Hale, L.; Hu, J.; Camaiori, D. M.; Gutiérrez, O. Y.; Liu, Y.; Lercher, J. A. Low-temperature upcycling of polyolefins into liquid alkanes via tandem cracking-alkylation. *Science* **2023**, *379*, 807–811.

(137) Rinaldi, R.; Meine, N.; vom Stein, J.; Palkovits, R.; Schüth, F. Which controls the depolymerization of cellulose in ionic liquids: the solid acid catalyst or cellulose? *ChemSusChem* **2010**, *3*, 266–276.

(138) Wang, H.; Li, Z.; Liu, Y.; Zhang, X.; Zhang, S. Degradation of poly (ethylene terephthalate) using ionic liquids. *Green Chem.* **2009**, *11*, 1568–1575.

(139) Wang, H.; Liu, Y.; Li, Z.; Zhang, X.; Zhang, S.; Zhang, Y. Glycolysis of poly (ethylene terephthalate) catalyzed by ionic liquids. *Eur. Polym. J.* **2009**, *45*, 1535–1544.

(140) Alberti, C.; Enthalter, S. Depolymerization of end-of-life poly(bisphenol A carbonate) via 4-dimethylaminopyridine-catalyzed methanolysis. *Waste Biomass Valorization* **2020**, *11*, 4621–4629.

(141) Alberti, C.; Damps, N.; Meißner, R. R.; Enthalter, S. Depolymerization of end-of-life poly(lactide) via 4-dimethylaminopyridine-catalyzed methanolysis. *ChemistrySelect* **2019**, *4*, 6845–6848.

(142) Delle Chiaie, K. R.; McMahon, F. R.; Williams, E. J.; Price, M. J.; Dove, A. P. Dual-catalytic depolymerization of polyethylene terephthalate (PET). *Polym. Chem.* **2020**, *11*, 1450–1453.

(143) Chikte, S.; Madhamshtiwari, S. Ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate as a greener solvent for degradation of Nylon-6. *J. Adv. Sci. Res.* **2021**, *12*, 306–311.

(144) Iannone, F.; Casiello, M.; Monopoli, A.; Cotugno, P.; Sportelli, M. C.; Picca, R. A.; Cioffi, N.; Dell'Anna, M. M.; Nacci, A. Ionic liquids/ZnO nanoparticles as recyclable catalyst for polycarbonate depolymerization. *J. Mol. Catal. A: Chem.* **2017**, *426*, 107–116.

(145) Das, L.; Xu, S.; Shi, J. Catalytic oxidation and depolymerization of lignin in aqueous ionic liquid. *Front. Energy Res.* **2017**, *5*, 21.

(146) Smith, G.; Dworkin, A.; Pagni, R.; Zingg, S. Brönsted superacidity of hydrochloric acid in a liquid chloroaluminate. Aluminum chloride-1-ethyl-3-methyl-1H-imidazolium chloride. *J. Am. Chem. Soc.* **1989**, *111*, 525–530.

(147) Hui, W.; Zhou, Y.; Dong, Y.; Cao, Z.-J.; He, F.-Q.; Cai, M.-Z.; Tao, D.-J. Efficient hydrolysis of hemicellulose to furfural by novel superacid SO₄H-functionalized ionic liquids. *Green Energy Environ.* **2019**, *4*, 49–55.

(148) Isik, M.; Sardon, H.; Mecerreyes, D. Ionic liquids and cellulose: dissolution, chemical modification and preparation of new cellulosic materials. *Int. J. Mol. Sci.* **2014**, *15*, 11922–11940.

(149) Zhang, Y.; Du, H.; Qian, X.; Chen, E. Y. X. Ionic liquid–water mixtures: enhanced K_w for efficient cellulosic biomass conversion. *Energy Fuels* **2010**, *24*, 2410–2417.

(150) Fu, D.; Mazza, G.; Tamaki, Y. Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues. *J. Agric. Food. Chem.* **2010**, *58*, 2915–2922.

(151) Liu, E.; Segato, F.; Prade, R. A.; Wilkins, M. R. Exploring lignin depolymerization by a bi-enzyme system containing aryl alcohol oxidase and lignin peroxidase in aqueous biocompatible ionic liquids. *Bioresour. Technol.* **2021**, *338*, 125564.

(152) Singh, K.; Mehra, S.; Kumar, A. Metal-based ionic liquids: effective catalysts in aqueous media for the selective production of vanillin from alkali lignin at room temperature. *Green Chem.* **2022**, *24*, 9629–9642.

(153) Pérez, R. L.; Ayala, C. E.; Opiri, M. M.; Ezzir, A.; Li, G.; Warner, I. M. Recycling thermoset epoxy resin using alkyl-methyl-imidazolium ionic liquids as green solvents. *ACS Appl. Polym. Mater.* **2021**, *3*, 5588–5595.

(154) Li, K.; Xu, Z. Application of supercritical water to decompose brominated epoxy resin and environmental friendly recovery of metals from waste memory module. *Environ. Sci. Technol.* **2015**, *49*, 1761–1767.

(155) Okajima, I.; Hiramatsu, M.; Shimamura, Y.; Awaya, T.; Sako, T. Chemical recycling of carbon fiber reinforced plastic using supercritical methanol. *J. Supercrit. Fluids* **2014**, *91*, 68–76.

(156) Mehta, M. J.; Kulshrestha, A.; Sharma, S.; Kumar, A. Room temperature depolymerization of lignin using a protic and metal based ionic liquid system: an efficient method of catalytic conversion and value addition. *Green Chem.* **2021**, *23*, 1240–1247.

(157) Cvjetko Bubalo, M.; Vidović, S.; Radočić Redovniković, I.; Jokić, S. Green solvents for green technologies. *J. Chem. Technol. Biotechnol.* **2015**, *90*, 1631–1639.

(158) Zhang, Q.; Zhang, S.; Deng, Y. Recent advances in ionic liquid catalysis. *Green Chem.* **2011**, *13*, 2619–2637.

(159) Ludwig, R.; Kragl, U. Do we understand the volatility of ionic liquids? *Angew. Chem., Int. Ed.* **2007**, *46*, 6582–6584.

(160) Probert, P. M.; Leitch, A. C.; Dunn, M. P.; Meyer, S. K.; Palmer, J. M.; Abdelghany, T. M.; Lakey, A. F.; Cooke, M. P.; Talbot, H.; Wills, C.; et al. Identification of a xenobiotic as a potential environmental trigger in primary biliary cholangitis. *J. Hepatol.* **2018**, *69*, 1123–1135.

(161) Romero, A.; Santos, A.; Tojo, J.; Rodríguez, A. Toxicity and biodegradability of imidazolium ionic liquids. *J. Hazard. Mater.* **2008**, *151*, 268–273.

(162) Pham, T. P. T.; Cho, C.-W.; Yun, Y.-S. Environmental fate and toxicity of ionic liquids: a review. *Water Res.* **2010**, *44*, 352–372.

(163) Oskarsson, A.; Wright, M. C. Ionic liquids: new emerging pollutants, similarities with perfluorinated alkyl substances (PFASs). *Environ. Sci. Technol.* **2019**, *53*, 10539–10541.

(164) Olah, G. A.; Prakash, G. S.; Sommer, J.; Molnar, A. *Superacid chemistry*; Wiley, 2009.

(165) Zhao, D.; Liao, Y.; Zhang, Z. Toxicity of ionic liquids. *Clean Soil Air Water* **2007**, *35*, 42–48.

(166) Vieira, N. S. M.; Stolte, S.; Araújo, J. M. M.; Rebelo, L. P. N.; Pereiro, A. B.; Markiewicz, M. Acute aquatic toxicity and biodegradability of fluorinated ionic liquids. *ACS Sustain. Chem. Eng.* **2019**, *7*, 3733–3741.

(167) Thamke, V. R.; Tapase, S. R.; Kodam, K. M. Evaluation of risk assessment of new industrial pollutant, ionic liquids on environmental living systems. *Water Res.* **2017**, *125*, 237–248.

(168) Ohno, H.; Fukumoto, K. Amino acid ionic liquids. *Acc. Chem. Res.* **2007**, *40*, 1122–1129.

(169) Vanda, H.; Dai, Y.; Wilson, E. G.; Verpoorte, R.; Choi, Y. H. Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents. *Comptes Rendus Chimie* **2018**, *21*, 628–638.

(170) Beil, S.; Markiewicz, M.; Pereira, C. S.; Stepnowski, P.; Thöming, J.; Stolte, S. Toward the proactive design of sustainable chemicals: Ionic liquids as a prime example. *Chem. Rev.* **2021**, *121*, 13132–13173.

(171) Ventura, S. P. M.; Gonçalves, A. M. M.; Sintra, T.; Pereira, J. L.; Gonçalves, F.; Coutinho, J. A. P. Designing ionic liquids: the chemical structure role in the toxicity. *Ecotoxicology* **2013**, *22*, 1–12.

(172) El-Harbawi, M. Toxicity measurement of imidazolium ionic liquids using acute toxicity test. *Procedia Chemistry* **2014**, *9*, 40–52.

(173) Nicholson, S. R.; Rorrer, J. E.; Singh, A.; Konev, M. O.; Rorrer, N. A.; Carpenter, A. C.; Jacobsen, A. J.; Román-Leshkov, Y.; Beckham, G. T. The critical role of process analysis in chemical recycling and upcycling of waste plastics. *Annu. Rev. Chem. Biomol. Eng.* **2022**, *13*, 301–324.

(174) Kamimura, A.; Shiramatsu, Y.; Kawamoto, T. Depolymerization of polyamide 6 in hydrophilic ionic liquids. *Green Energy Environ.* **2019**, *4*, 166–170.

(175) Dier, T. K.; Rauber, D.; Durneata, D.; Hempelmann, R.; Volmer, D. A. Sustainable electrochemical depolymerization of lignin in reusable ionic liquids. *Sci. Rep.* **2017**, *7*, 1–12.

(176) Kamimura, A.; Shiramatsu, Y.; Murata, K.; Kawamoto, T. Solubility-switchable ionic liquids: A control of hydrophilicity and hydrophobicity using a protective group. *Chem. Lett.* **2018**, *47*, 1079–1081.

(177) Ohkubo, K.; Yanagisawa, K.; Kamimura, A.; Fujii, K. Physicochemical and structural properties of a hydrophobicity/hydrophilicity switchable ionic liquid. *J. Phys. Chem. B* **2020**, *124*, 3784–3790.

(178) Wu, B.; Liu, W.; Zhang, Y.; Wang, H. Do we understand the recyclability of ionic liquids? *Eur. J. Chem.* **2009**, *15*, 1804–1810.

(179) Quintana, A. A.; Sztapka, A. M.; Santos Ebinuma, V. D. C.; Agatemon, C. Enabling sustainable chemistry with ionic liquids and deep eutectic solvents: a fad or the future? *Angew. Chem.* **2022**, *134*, e202205609.

(180) Binnemans, K.; Jones, P. T. Ionic liquids and deep-eutectic solvents in extractive metallurgy: mismatch between academic research and industrial applicability. *J. Sustain. Metall.* **2023**, *9*, 423–438.

(181) Plechkova, N. V.; Seddon, K. R. Applications of ionic liquids in the chemical industry. *Chem. Soc. Rev.* **2008**, *37*, 123–150.