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ABSTRACT: Ionic liquids (ILs) are a promising medium to assist lonic Liquid Physicochemical Deconstruction
in the advanced (chemical and biological) recycling of polymers, Chemical Design Properties Performance
owing to their tunable catalytic activity, tailorable chemical @ 5 O

functionality, low vapor pressures, and thermal stability. These @ v

unique physicochemical properties, combined with ILs” capacity to

&

also minimizing unwanted side reactions. In this Viewpoint, we
the interplay between IL chemistry and deconstruction thermodynamics, deconstruction kinetics, IL recovery, and product recovery.
toxicity, and environmental persistence. By analyzing IL-mediated polymer deconstruction across a breadth of macromolecular

solubilize plastics waste and biopolymers, offer routes to

deconstruct polymers at reduced temperatures (and lower energy a— a— @
discuss the use of ILs as catalysts and mediators in advanced ‘

We also consider several potential environmental benefits and concerns associated with employing ILs for advanced recycling over
systems, we identify recent innovations, current challenges, and future opportunities in IL application toward circular polymer

inputs) versus conventional bulk and solvent-based methods, while ‘
recycling, with an emphasis on chemical recycling, by examining .

bulk- or solvent-mediated deconstruction techniques, such as reduced chemical escape by volatilization, decreased energy demands,
economies.

lastics are ubiquitous in modern society owing to their low macromolecules (e.g., through chain scission and cross-linking,

cost and widely tunable properties that can be leveraged as well as inducing color changes), severely limiting the
across many industries. Since reaching commercial viability in potential number of cycles for the polymers’ reuse and
the 1950s, plastics production has grown faster than that of downgrading the potential applications of the recycled
other manufactured materials." The widespread use of plastics materials. >~ ¢ Additionally, the cost and effort associated
has improved quality of life and replaced alternative materials with separating plastics waste to produce high purity streams
due to generally lower energetic and environmental costs in for mechanical recycling constrains the process to plastics with
primary production;2’3 however, the lack of appropriate limited additives in configurations that are easily separable
infrastructural and societal systems for plastics waste manage- from mixed waste streams.'” As a consequence, only certain
ment has become a significant burden.”” To date, most plastics types of plastics, primarily polyethylenes and poly(ethylene
waste has been directed to landfills, incinerated, or leaked into terephthalate) (PET), are widely recycled.18

the environment,' where it can persist for years as micro-
plastics and in other forms.”” This problem, combined with a
reliance on fossil fuel resources for monomer feedstocks,®
energy costs associated with plastics synthesis and processing,”
and public awareness,'”"" has invigorated interest and research
in methods to capture and repurpose plastics waste.

The most prevalent strategy for reconditioning end-of-life
plastics is mechanical recycling.'>'* In mechanical recycling,
mixed plastics waste streams are typically separated by
chemical identity, and the resultant homogeneous plastics
streams are ground, melted, pelletized, and reused for new
applications.”'” Generating plastics materials from mechanical
recycling outputs can offset demand for virgin petrochemical
feedstocks and lower environmental burdens from plastics
waste;* however, mechanical recycling alters the underlying

In recent years, increased attention has been devoted to
advanced recycling processes as an alternative or complement
to mechanical recycling.'”*° More specifically, polymers
subjected to advanced recycling can be depolymerized to
their constituent monomers that can be used to regenerate the
original macromolecules or deconstructed into other small
molecules or oligomers that serve as feedstocks for synthesiz-

Received: May 10, 2023 oM
Accepted: June 26, 2023
Published: July 30, 2023

© 2023 The Authors. Published b
Ameericl;n %ﬁemlilcaissgcietz https://doi.org/10.1021/acsmacrolett.3c00276

W ACS PUbl ications 1058 ACS Macro Lett. 2023, 12, 1058—1070


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ty+Christoff-Tempesta"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Thomas+H.+Epps+III"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsmacrolett.3c00276&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.3c00276?ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.3c00276?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.3c00276?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.3c00276?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/amlccd/12/8?ref=pdf
https://pubs.acs.org/toc/amlccd/12/8?ref=pdf
https://pubs.acs.org/toc/amlccd/12/8?ref=pdf
https://pubs.acs.org/toc/amlccd/12/8?ref=pdf
pubs.acs.org/macroletters?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsmacrolett.3c00276?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/macroletters?ref=pdf
https://pubs.acs.org/macroletters?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/
https://pubs.acs.org/page/policy/editorchoice/index.html

ACS Macro Letters

pubs.acs.org/macroletters

Scheme 1. Chemical Design of ILs Can Be Harnessed to Impart Desired Physicochemical Properties and, in Turn, Impact

Deconstruction Performance
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ing new materials. Herein, we focus primarily on

chemical recycling, which may offer a strategy to “close the
loop” on the plastics life cycle if (1) chemical recycling can
efficiently achieve high yields of valuable chemicals, feedstocks,
and building blocks; and (2) societal and infrastructural
changes enable the capture of plastics more effectively at their
end-of-life.”***

The principles that underpin the chemical recycling of
plastics similarly have found use in the deconstruction and
valorization of biopolymers to create sustainable small-
molecule feedstocks.”™** Biopolymer deconstruction offers a
pathway to using renewable, carbon-neutral materials in place
of petroleum-derived compounds.zg’29 In some cases, the waste
streams from biomass-intensive industrial processes (e.g,
lignin from pulping operations) may serve as the inputs for
polymer deconstruction to produce commercially useful small
molecules, lessening the environmental impact of existing
manufacturing by reducing waste.’” Products resulting from
biopolymer deconstruction, including phenolics and sugar
alcohols, are useful as, e.g, biofuels, commodity chemicals,
pharmaceuticals, and monomers for sustainable plastics.’’**

Chemical recycling may be performed in bulk with neat
polymers or in solvent. Neat deconstruction (e.g., bulk thermal
depolymerization, pyrolysis) often requires high temperatures
and significant energy input (e.g., from pulling a high vacuum)
and can be prone to the formation of unwanted byproducts,
owing to the harsh conditions.”*™*® Pyrolysis deconstruction
kinetics are further hampered by heat and mass transfer effects
that progressively slow the deconstruction rate as the polymer
dimensionality (e.g., thickness) increases.”””® Neat polymer
deconstruction may be aided by catalysts to enable new
chemical routes for producing small molecules or to reduce
heat or pressures needed in bulk recycling strategies.'®*’
However, the catalysts used in these processes may be
expensive, are impeded by common polymer additives, and
can be difficult to separate from deconstruction byproducts for
regeneration.l(”39

In contrast, solvent-mediated chemical recycling can enable
deconstruction pathways with reduced energy demands versus
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bulk processes and more efficient mixing between catalysts and
substrates to enhance deconstruction outcomes (e.g,, kinetics
and selectivity).”"™* Unfortunately, many solvent-based
processes are hindered by limited solubility for combinations
of catalysts and polymers or multipolymer waste streams.**
Solvent selection also is constrained by solvent boiling points
relative to the temperature at which deconstruction effectively
proceeds,” ™" significantly limiting the library of potential
solvents for a given materials stream. For cases in which a
solvent-mediated route for a deconstruction is identified,
solvent escape, flammability, and costs associated with solvent
recovery and recycling can further limit implementation.**~>°

Ionic liquids (ILs), conventionally defined as compounds
composed entirely of ions with melting points below 100 °C,>"
have unique physicochemical properties that could address
some of the abovementioned hurdles to solvent-based
chemical recycling. ILs are generally more thermally stable
(e.g, higher boiling and decomposition temperatures) than
molecular solvents and can effectively solubilize a broad range
of polymer and nonpolymer species.””>” Notably, the chemical
design of ILs also can be harnessed to impart catalytic
properties for chemical transformations,”* ™" a promising
feature to facilitate polymer deconstructions. Herein, we
discuss the current understanding of the chemical design-
property-performance relationships of ILs for polymer
deconstruction to uncover opportunities and challenges in
the application of ILs for chemical recycling (Scheme 1).

B IL DESIGN DETERMINES PHYSICOCHEMICAL

PROPERTIES

ILs can fulfill one or several roles in a deconstruction reaction,
including as a solvent, catalyst or cocatalyst, or reactant.
Consequently, they can partially or entirely replace the
nonpolymeric components of a deconstruction milieu. In this
section, we discuss the physicochemical properties of ILs that
are important to polymer deconstruction. As a note to the
reader, ILs are often referred to by acronyms due to their long
chemical names arising from their complex chemical nature. In
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Figure 1. Chemical identity and combination of constituent ions determine the physicochemical properties of an IL. Cation (above) and anion
(below) chemical structures of ILs discussed in this Viewpoint and the corresponding abbreviations are compiled here and showcase the breadth of

chemistries used in IL design.

this Viewpoint, we adopt the common naming convention
“[cation abbreviation][anion abbreviation]” and summarize
major chemical names and structures in Figure 1. We direct
readers to this figure and the abbreviations list at the end of the
manuscript for full chemical names rather than defining each
IL as it is introduced in the manuscript.

This Viewpoint considers IL systems spanning a wide range
of IL subclassifications, including (but not limited to) aprotic
ILs, protic ILs, acidic ILs, basic ILs, and task-specific ILs.
Aprotic ILs are comprised of cations and anions that combine
to form liquids without proton dissociation; in contrast,
counterions in protic ILs transfer protons between Brensted
acids and bases.”® Acidic and basic ILs take on acidic and basic
characteristics, respectively, governed by the chemical
functionalities that may be present on the cation, anion, or
both.>” Task-specific ILs harness chemical design to incorpo-
rate functional groups into IL chemistries that impart reactivity
or physicochemical properties desirable for targeted applica-
tions.”’ ILs often belong to several of these subclassifications
because of overlaps between these categories (e.g., a protic IL
optimized for polymer deconstructions with acidic character-
istics).59 More recently, deep eutectic solvents, combinations
of compounds that liquefy due to hydrogen-bonding (rather
than ionic) interactions, have risen in interest as potential
alternatives to ILs.”" Additionally, ionic systems that liquefy
below deconstruction operating temperatures, but above 100
°C, have been investigated as catalysts for deconstruction.®*™%*
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Such systems are outside the scope of this Viewpoint because
they do not meet the classical definition of ILs, but we direct
readers to the available literature for more information.**~%*
ILs are renowned for their broad solubilities of organic and
inorganic species, which can provide versatility to deconstruc-
tion reactions.””*® Solubility parameters like the Hildebrand
and Hansen parameters are widely used to predict the
solubility of polymers (and other organic species) in molecular
solvents based on a “like dissolves like” description.®”
However, such parameters are broadly unreliable in describing
the solubility of polymers in ILs.***® For example, the
solubility of poly(methyl methacrylate) varies widely among
ILs with near-identical Hildebrand solubility parameters.”” As a
result, researchers have turned their attention toward multi-
parameter solubility models to describe polymer solubility in
ILs. Of note, the hydrogen-bonding behavior of ILs has
emerged as a dominant characteristic in quantifying the
capacity of ILs to dissolve polymers.”” The Kamlet—
Abraham—Taft scale, which combines parameters for polarity,
hydrogen-bond-donating character, and hydrogen-bond-ac-
cepting character, has found increasing prominence in the
prediction of IL solvation properties.””~"> This scale can
explain qualitative observations that acidic and basic ILs readily
dissolve basic and acidic polymers, respectively, when IL
polarities are broadly similar.””’* Computational screening of
IL—polymer interactions has further supported that hydrogen-
bond interaction energies have the strongest influence on

https://doi.org/10.1021/acsmacrolett.3c00276
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Figure 2. Physicochemical properties of ILs are sensitive to temperature. (a) ILs approach room-temperature viscosities of molecular solvents like
squalane at temperatures within 100 K of room temperature.***® (b) The vapor pressures of ILs are orders of magnitude below those of molecular

. 86,96—100
solvents across experimental temperature ranges.

polymer dissolution in ILs, followed by electrostatic and van
der Waals forces.”” Interactions arising from the IL anions and
cations were found to have similar impacts on polymer
solubilities.”®

Viscosity is also an important consideration in IL systems.
ILs’ ambient- or near-ambient-temperature viscosities typically
range from 10 to 500 mPa-s, one to two orders of magnitude
higher than common molecular solvents, creating challenges
with IL handling at room temperature.”® The high viscosity of
ILs is largely attributable to a combination of hydro§en-
bonding, electrostatic, and van der Waals interactions.”®”"®
Consequently, there is significant potential to use the chemical
design of ILs to control viscosity.”” For example, increasing the
carbon chain length in alkyl IL cations results in a predictable
increase in the room-temperature viscosity of imidazolium-
based ILs.*” Anion selection also can influence room-
temperature viscosity over an order of magnitude.*” The
presence of impurities further strongly impacts the viscosity of
ILs. Notably, water loadings as low as 1.5 wt % can reduce IL
viscosities over an order of magnitude,81 and the chemical
identity of ILs can be chosen to control IL equilibrium and
saturated water contents.”> Thus, the presence of water and
other impurities in ILs should be thoroughly characterized and
may be exploited to control viscosities for deconstruction
reactions.

The viscosities of ILs also demonstrate a notable sensitivity
to temperature, with easier handling (e.g., significantly lower
viscosities) at elevated temperatures (Figure 2a).**** For
example, the viscosity of [Bmim][PF,] drops from ~376 (at 20
°C) to ~24 mPa-s (at 87 °C),** the latter of which is below the
room-temperature (20 °C) 29 mPa-s viscosity of squalane.*’
Although current understanding supports the observation that
the high-temperature viscosities of ILs fall below room-
temperature viscosities of common molecular solvents,*>**
there exists limited literature that quantitatively examines the
high-temperature (>100 °C) viscosities of ILs. Given the
importance of viscosity in deconstruction reactions, the
experimental characterization of IL viscosities at deconstruc-
tion temperatures is worthy of further investigation to enable
direct comparison to molecular solvents.*>*°

ILs are widely known for their thermal stability that arises
from intermolecular cohesion,®’ enabling the use of ILs in
high-temperature deconstructions, such as the depolymeriza-

tion of Nylon-6 at 300 °C.** However, IL decomposition
temperatures are most often obtained through thermogravi-
metric analysis (TGA), a technique that is impacted by a
variety of experimental parameters (e.g, heating rate, gas
choice and flow rate, sample purity) and may not be

89,90
290 As one

representative of deconstruction conditions.
example, the reported TGA-based decomposition temperature
of [Emim][NTf,] varies significantly from 410—455 °C,*” and
isothermal experiments on the same IL indicate 1% mass loss
within 1 h below 300 °C and within 10 h below 250 °C.”!
Though these degradation temperatures surpass the boiling
points of most organic solvents to enable high-temperature
deconstructions,” researchers are nonetheless encouraged to
quantify IL decomposition or vaporization under representa-
tive reaction conditions to ensure IL loss is fully considered in
a deconstruction system.

ILs are commonly acknowledged for having “negligible

93-95
vapor pressures’,

and although this notion is not strictly
accurate, ILs’ extraordinarily low vapor pressures relative to
molecular solvents make them attractive for deconstruction
setups by potentially enabling process intensification (e.g.,
simultaneous depolymerization and monomer distillation;
Figure 2b).°*?°7'% As one point of reference, the vapor
pressure of dimethyl sulfoxide ranges from approximately 10"
to 10*° Pa from 25 to 180 °C,* while the vapor pressure of
[Bmim][PF¢] ranges from approximately 107'° to 107%* Pa
from 25 to 225 °C.”” It should be noted that there is significant
experimental difficulty in obtaining reliable vapor pressure
measurements for ILs, and consequently, there is broad
dispersity in reported values for a given IL system.'’!
Nevertheless, these low vapor pressures reduce the risk of
losing solvent to evaporation during deconstruction, minimize
the release of volatile organic compounds (VOCs), and offer
lower flammability than many molecular solvents.'**~'**
Limited IL volatility can be harnessed to evaporate the
resultant small molecules from a reaction mixture and drive the
equilibrium toward deconstruction, offering facile separation of
products from the starting material and the chosen IL
(discussed in more detail later).'”
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Table 1. Comparison of IL-Mediated Polymer Deconstruction Performance to Other Systems”

polymer

[desired small molecule from
deconstruction ]

IL system

comparative deconstructions

poly(ethylene terephthalate)
[bis(hydroxyethyl) terephthalate]
![dimethyl terephthalate]

poly(3-hydroxybutyrate)
[crotonic acid]

poly(bisphenol A carbonate)
[bisphenol A]

chitin

[levulinic acid]

poly(lactic acid)
[methyl lactate]
lethyl lactate]

Nylon-6
[caprolactam]

"l aminocaproic acid]

polyethylene

[liquid and gaseous alkanes]

[Bmim][ZnCl,]""*
conversion: 98%
yield: 83%

Sh, 180 °C

[Emim][Ac]"*
conversion: quantitative
yield: 97%

1.5 h, 140 °C

[HDBU][LAc]'"”
conversion: quantitative
yield: 99%

1h, 120 °C

[C;8SO;Hmim][HSO,]""!
conversion: not reported
yield: 67%

S h, 180 °C, deionized water

[Bmim][HSO,]"**
conversion: 97%
yield: 93%

3 h, 115 °C, methanol

[PP13][NTf,] + DMAP'>’
conversion: not reported
yield: 86%

1 h, 300 °C, N, atmosphere

[Emim][AIC1,]"**

conversion: not reported

"[liquid and gaseous hydrocarbons]  yield: 95 wt %
72 h, 120 °C, mixed with acidic
cocatalyst

catalytic glycolysis' "’

conversion: quantitative
yield: 60%
1 h, 185 °C, organocatalyst

pyrolysis'>!

conversion: 99%

yield: 84%

0.5 h, 290 °C, 150 mbar

pyrolysis'*®

conversion: 70%

yield: 10%

0.28 h, 550 °C, N, atmosphere

acidic hydrolysis'**

conversion: not reported
yield: 38 wt %
0.5 h, 190 °C, microwave

catalytic methanolysis'>’
conversion: quantitative
yield: 100%

8 h, 80 °C, Ar flow

acidic hydrolysis'*
conversion: not reported
yield: 949%™

8 h, 40 vol % HCI

catalytic hydrogenolysis'*®

conversion: quantitative

acidic hydrolysis'*°

conversion: quantitative
yield: quantitative'
5 h, 150 °C, 10 M H,SO,

basic hydrolysis'*>

conversion: 74%

yield: 25%

4 h, 190 °C, 4 M NaOH

basic alcoholysis'>

conversion: quantitative

yield: 95%

0.58 h, 40 °C, catalytic NaOH,
tetrahydrofuran

biphasic acidic hydrolysis'*®
conversion: 74%

yield: 29%

1 h, 150 °C

solvothermal ethanolysis'*®
conversion: quantitative
yield: 999"

1 h, 260 °C, N, atmosphere
hydrothermal '
conversion: quantitative
yield: 85%

1 h, 300 °C, subcritical H,O, Ar
atmosphere

pyrolysis'**
conversion: 97%

yield: 97 wt %Y
0.75 h, 450—470 °C, N, flow

yield: quantitative

12 h, 280 °C, 30 bar H,
atmosphere

“Conversion describes the loss in mass of the starting polymer as a result of undergoing deconstruction, and yield describes the amount of captured
small-molecule products relative to the theoretical maximum of product. Conversions and yields selected for this table are from the most optimized
conditions in each report and provided on a mass and molar basis, respectively, unless otherwise noted. The conditions included in each cell are
intended to give context for, rather than exhaustively describe, the deconstruction parameters and environment.

B IL PHYSICOCHEMICAL PROPERTIES IMPACT
DECONSTRUCTION PERFORMANCE

The catalytic properties of ILs can be tailored through
chemical design to enable efficient polymer deconstructions,
often producing small-molecule products at higher yields and
lower energy demands than those of prototypical strategies
(Table 1). An increasing body of literature indicates that the
acidic or basic nature of ILs dictates IL-mediated deconstruc-
tion performance, in contrast to deconstruction in molecular
solvents in which monomer solubility has a dominant role.*’
For example, the base-catalyzed deconstruction of poly(3-
hydroxybutyrate) (PHB) proceeds rapidly to high yield in the
presence of the basic [Emim][Ac] IL (97 mol % yield, 90 min,
140 °C), but does not occur with the less basic [Emim][Cl] IL
(Figure 3a).'*® A similar trend is revealed in the alcoholysis of
polycarbonate (PC) in which highly basic [HDBU]-based ILs
produce near quantitative yields of bisphenol A (BPA),
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whereas neutral or acidic ILs yield less BPA (0—90 mol
%)."”” The optimized IL-mediated PC deconstruction provides
significant advantages in yield and reaction conditions over PC
pyrolysis. For instance, pyrolysis is prone to significant
byproduct formation that in turn demands extensive
separations to obtain BPA but with lower yields (10 mol %
yield, 550 °C, 17 min, N, atmosphere).' %"

Acidic ILs have likewise demonstrated efficient use in acid-
catalyzed deconstructions, as in the depolymerization of
PET.'” Currently, only limited examples are available that
compare the acid-catalyzed deconstruction performance of ILs
with differing acidities for plastics systems. However,
investigations of biopolymer deconstructions with systematic
changes in IL chemistry find that increasing IL acidity
enhances acid-catalyzed deconstruction performance.''”'"!
For example, the ether cleavage rate during lignin deconstruc-
tion increases as the acidity of the IL increases." "’ Similarly,

https://doi.org/10.1021/acsmacrolett.3c00276
ACS Macro Lett. 2023, 12, 1058—-1070
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(a) Base-catalyzed depolymerization
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Figure 3. Small-molecule yields are well correlated with the acidity or
basicity of the ILs used in polymer deconstructions. Here, selected
examples show the influence of counterion acidity or basicity in (a)
the base-catalyzed deconstruction of poly(3-hydroxybutyrate)'*® and
(b) the acid-catalyzed deconstruction of chitin.'"’

the yield of levulinic acid from the acid-catalyzed deconstruc-
tion of chitin is well-correlated to the Bronsted acidities of the
IL medium (Figure 3b)."'" These results underscore the
impact of incorporating acidic or basic characteristics into IL
design for catalyzing the corresponding deconstruction
mechanism.

The effect of IL acidity or basicity on deconstruction
performance can be complicated by steric effects in IL design.
In the base-catalyzed deconstruction of PET by amino acid—
based ILs, the least sterically hindered glycine-containing
[Ch][Gly] IL demonstrated notably higher small-molecule
yields (43 mol % yield) vs lysine-containing [Ch][Lys] (24
mol % yield) or alanine-containing [Ch][Ala] (0 mol % yield)
ILs with similar anion acid dissociation constants under the
same conditions (6 h, 150 °C).'""> Similarly, in the
aforementioned alcoholysis of PC, equivalently acidic ILs
with differing steric hindrances showed markedly different
catalytic activities. For example, the sterically hindered
[HTEA][LAc] yielded just 10 mol % BPA, while the less
bulky [Hmim][LAc] _}rielded 90 mol % BPA under identical
reaction conditions."’

The ability to disrupt inter- and intramolecular hydrogen
bonding in polymeric systems offers another vital parameter in
IL design to enhance deconstruction. Hydrogen bonding
between ILs and PET influences, among other parameters,
backbone PET bond lengths and angles, charge densities, and
electronegativities, synergistically promoting PET deconstruc-
tion.""? For example, [Ch][Ac] with a calculated 453 kJ/mol
binding strength to PET model dimers deconstructed PET at a
94 wt % conversion to a small-molecule product in 83 mol %
yield.113 In contrast, [Ch][Cl] at a comparatively weaker 424
kJ/mol binding strength deconstructed PET with a 3 wt %
conversion to no capturable small-molecule product.''® This
effect is particularly important for polymers with properties
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that are dominated by hydrogen-bonding effects (e.g.,
polyamides).""*

Metallic atoms also can be added into the design of ILs,
often in the form of metal salts, to promote deconstruction.
These metals can coordinate with hydrogen-bonding groups in
condensation p017ymers to cause rapid deconstructions with
high yields."'>~""” For example, [Bmim][ZnCl,] ILs have been
used as the deconstruction medium for PET with an 83 mol %
yield of bis(hydroxyethyl) terephthalate (5 h, 180 °C).""® This
performance falls between typical outcomes for PET
deconstruction by catalytic glycolysis''® and acidic hydrol-
ysis,'*" but it avoids the potentially complicated removal of
catalysts or the use of concentrated acids (e.g,, 10 M sulfuric
acid) needed to achieve high yields. Similarly, synergistic
effects between the cation and anion of a [Bmim][FeCl,] IL
result in higher deconstruction catalytic activities at lower
temperatures for PET versus either the analogous metal-free
[Bmim][Cl] IL or the FeCl, salt alone."*” The incorporation
of metallic atoms into ILs also has shown promise for
polyolefin deconstruction.'*® For instance, a Lewis acid
chloroaluminate-based IL facilitated the upcycling of poly-
ethylene to liquid alkanes by enabling simultaneous cracking
and alkylation. This system achieved quantitative polyethylene
conversion to isoalkanes within 6 h at 70 °C, and the small-
molecule outputs phase-separated from the IL reaction milieu
to enable facile recovery of the product.'*®

It is worth noting that several experimental parameters
interact with IL design to determine the effectiveness of IL-
mediated deconstruction. For example, temperature plays a
controlling role in overcoming the activation energy to enable
catalytic reactions.**'*” The concentration of the polymer
species also has a critical role in its IL-mediated deconstruc-
tion. In general, increasing polymer concentrations in ILs
increases the polymer degradation rate, as in the deconstruc-
tion of PET."*® However, high polymer concentrations (e.g.,
>40 wt % polymer in IL) can impede deconstruction when
hydrogen bonding is possible between the IL and the polymer,
as demonstrated in the deconstruction of PHB.'”® The
presence of impurities, especially water, also can influence
deconstruction thermodynamics.'>"*” In PET glycolysis,
water loadings as low as 4 wt % can halve reaction conversion
(1 atm, 180 °C, 8 h) due to the coordination of water protons
with the IL anions."”” The same effect transpires at higher
water loadings (25—50 wt %) in the deconstruction of PHB
but is less influential at lower water loadings (2.5 wt %).'°

In short, the chemical design of ILs can be exploited to
enhance catalytic deconstruction through control of IL acidity/
basicity, sterics, hydrogen bonding, and reactive sites. These
characteristics can be tuned through changes to experimental
parameters, namely, temperature, polymer concentration, and
impurities. Researchers are thus offered a wide experimental
design space when ILs are used for deconstruction.

B ILS SOLUBILIZE AND SYNERGIZE NON-IL

CATALYSTS

The previous section discussed how ILs can be used in
isolation as simultaneous deconstruction catalysts and
solubilizing agents. Here, we describe how ILs find additional
utility in enhancing the performance of non-IL catalysts in the
deconstruction of plastics and biopolymers.

At the simplest level, ILs may be used as high-temperature-
stable, polymer-dissolving solvents for deconstructions involv-
ing non-IL catalysts. Among organic catalysts, 4-dimethylami-

https://doi.org/10.1021/acsmacrolett.3c00276
ACS Macro Lett. 2023, 12, 1058—-1070


https://pubs.acs.org/doi/10.1021/acsmacrolett.3c00276?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.3c00276?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.3c00276?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.3c00276?fig=fig3&ref=pdf
pubs.acs.org/macroletters?ref=pdf
https://doi.org/10.1021/acsmacrolett.3c00276?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Macro Letters

pubs.acs.org/macroletters

(a) Organic Catalysts

H 2 >
%N\/\/\)q; [PP13][NTf,], DMAP
(b) Inorganic Catalysts
/@\ [NBug][CI], ZnO >
(c) Enzymes
Lignin >

[Ch][Gly], Lignin Peroxidase,

Aryl Alcohol Peroxidase

(0}

Cy
Yield: Quantitative
HO OH
OH o~ O H
@ + i/o\ + E Yield: Up to 16 wt %

Yield: 86 mol %

Figure 4. ILs may be combined with other catalysts to mediate deconstruction reactions. (a) Organic catalysts like DMAP are used effectively in
ILs to depolymerize polyesters and polyamides like Nylon-6.">" (b) ILs can enhance the catalytic properties of inorganic catalysts, such as zinc
oxide in the deconstruction of PC."** (c) Typically recalc1trant biopolymers like lignin can be dissolved in ILs for enzyme-mediated

deconstructions that are challenging in molecular solvents.'®

nopyridine (DMAP) has found significant use as a
deconstruction catalyst. Low loadings (<10 wt % relative to
monomer) of DMAP are recognized to catalyze trans-
esterification and alcoholysis reactions, leading to its use in
the deconstruction of PC, poly(lactic acid), and PET."*~'**
Specific combinations of ILs and DMAP were found to
enhance the yield of caprolactam from Nylon-6 depolymeriza-
tion at 300 °C over ILs alone, indicating a synergistic effect
may be present when ILs and DMAP are used in tandem for
deconstructions.'*”'*? Though [PP13][NTf,] catalyzed
Nylon-6 depolymerization to caprolactam to 55 mol % yield
in 6 h, a mixture of [PP13][NTf,] and DMAP was able to
improve the depolymerization yield to 86 mol % yield under
the same conditions (Figure 4a)."*?

The capacity of ILs to simultaneously solubilize organic and
nonorganic species also has been of great interest for chemical
recycling by enabling efficient interactions between ionic or
metallic catalysts and end-of-life polymers. For example, zinc
oxide nanoparticles in [NBu,][Cl] are capable of quantitively
depolymerizing PC to BPA in 7 h at 100 °C (Figure 4b); in
this reaction, the IL likely acts as a basic cocatalyst.'**
Similarly, [Emim][Ac] can solubilize cobalt chloride and
niobium pentoxide catalysts to deconstruct lignin into a variety
of commercially useful aromatic compounds, including vanillin,
guaiacol, and syringol.'*

Combining ILs with highly acidic cocatalysts offers a
pathway to enhance deconstruction by harnessing Brensted
superacidity.'**'*” A notable example of this behavior is the
cracking of low- and high-density polyethylene (LDPE,
HDPE) by chloroaluminate(IIl)-based ILs.'*> These ILs in
conjunction with acidic cocatalysts like sulfuric acid were
capable of deconstructing LDPE and HDPE into low
molecular weight hydrocarbons, including propane, butane,
and methylbutane.”> PE was powdered to increase surface
area and enhance deconstruction kinetics, and efficient stirring
was required above 180 °C to disperse molten polyethylene
within the IL milieu.'*” The study further identified reaction
temperature as a handle to influence product composition by
achieving greater yields of high activation energy products at
elevated temperatures. Hydrocarbon products were obtained
in 60—95 wt % yields and separated by solvent extraction,
offering a pathway to reuse the IL."**
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Finally, enzyme-mediated deconstruction is an emerging
area of advanced recycling that exploits the high selectivity of
enzymes to convert polymers into desirable small-molecule
species. ILs are particularly useful in enzyme-mediated
deconstruction due to the ability of ILs to solubilize or swell
a breadth of species.'**'*” This feature is especially useful for
biopolymers that are recalcitrant in the aqueous milieu
typically needed for enzyme catalysis. For example, [Emim]-
[Ac] can efficiently extract lignin from cellulose; this cellulose
is then enzymatically digestible in the IL."*" Similarly, the
unreactive nature of lignin in water makes it challenging to
deconstruct enzymatically in aqueous media. Biocompatible
ILs such as [Ch][Gly] can overcome this obstacle by
concomitantly solubilizing lignin and enabling the enzymatic
deconstruction of lignin to low-molecular-weight products
(Figure 4c). 15t
B ILS MAY LOWER THE ENVIRONMENTAL IMPACTS
OF ADVANCED RECYCLING

The use of ILs in advanced recycling can lower the
environmental impacts of polymer deconstruction relative to
neat or organic-solvent-mediated systems if the recycling
process is designed to fully recover the ILs after deconstruc-
tion. In this section, we describe the features of ILs that offer
improvements in IL implementation over common chemical
recycling methods, discuss strategies to reclaim ILs from
deconstruction processes, and examine environmental chal-
lenges that must be addressed when using ILs for
deconstructions at scale.

A key challenge in pyrolytic and solvent-based deconstruc-
tions is the need for extensive energy input to reach
deconstruction temperatures and pressures (whether at high
pressure to assist deconstruction or under vacuum to prevent
byproduct formation)."*” ILs can enable significant energy
savings by facilitating deconstruction under more benign
conditions. For example, IL catalytic behavior has been
demonstrated to depolymerize epoxy thermosets and carbon
fiber epoxy composites at 150 °C and atmospheric pressure, >
versus the 350—500 °C temperatures and 120—325 atm
pressures typlcal of analogous solvent-mediated ap-
proaches."**">> With improvements in IL design, more
examples of IL-mediated room-temperature deconstructions
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may be realized, as seen in the recent deconstruction of lignin
to vanillin at 10—20 wt % yields in metal-containing ILs.'>*'>°

The release of solvents from industrial processes is estimated
to result in 60% of global industrial emissions and 30% of VOC
emissions.">’ Incorporating ILs in place of more volatile
solvents for industrial processes, including in deconstruction
methods, offers a pathway toward offsetting this environmental
impact.'>">® ILs can be designed for deconstructions to this
end to minimize IL-derived environmental impact; for
example, shortening alkyl chains in IL cations increases an
IL’s boiling point, and anion selection can modulate IL boiling
points over 100 °C for equivalent cations.'**">’

In 2018, an imidazolium-based IL was discovered in soil
samples near a landfill in the United Kingdom that could
trigger an autoimmune chronic liver disease bg replacing
biological components of mitochondrial proteins.'®” IL toxicity
is not yet well characterized, but emerging understanding
about the hazards of ILs to animal and human health suggests
the need for safeguards to prevent environmental re-
lease.'**™'%* To highlight some significant findings to date,
imidazolium-based ILs are acutely toxic to bacteria at
concentrations well below those of molecular solvents, !
and ILs have been linked to injury among several bacterial and
aquatic species.'”> ILs generally exhibit limited biodegrad-
ability and high water solubility, which enables their transport
to, and persistence in, drinking water reservoirs. "% As a
result, ILs have shown some similarities to perfluoroalkyl
substances.'®> Many commonplace ILs also rely on toxic or
corrosive chemicals for sourcing counterions. For example,
fluorinated anions used widely in IL design may be derived
from highly reactive superacids that are obtained through
hazardous syntheses (e.g, HF chemistry).'®* Such fluorinated
anions in ILs demonstrate limited pathways for environmental
decomposition and may have significant cytotoxicity. "%

As the increasing use of ILs across applications, including
polymer deconstructions, may lead to intentional or uninten-
tional environmental discharges,167 future IL design should
consider environmental impacts and methods for biodegrada-
tion as a parameter of research. These developments may work
in tandem with the sourcing of IL components from
sustainable feedstocks. For example, the design of ILs from
renewable organic compounds (e.g., amino acids, citric acid,
acetic acid) and nontoxic minerals may help overcome
negative IL environmental impacts.'**”"”" Further research
should also elucidate IL chemistries that can minimize toxicity
while meeting 2performance requirements for targeted
applications."”""”* In the meantime, it is imperative that ILs
used in polymer deconstructions are fully contained within the
engineering system and separated from the resulting products
to enable complete reuse.

To this end, two separation methods dominate in the
literature for isolating ILs from monomers and small molecules
from deconstruction: distillation and liquid—liquid extraction.
Distillation harnesses the low vapor pressures of ILs to
evaporate molecular products from the deconstruction reaction
vessels. This strategy has the secondary benefit of driving
reaction equilibria toward small-molecule species by actively
removing the volatile deconstruction products as they are
formed. Distillation for product recovery has been demon-
strated in the deconstruction of polyesters'® and nylons,*
among others. In contrast, liquid—liquid extraction relies on
the preferential dissolution of ILs into water over molecular
organic solvents to separate ILs and organic products into
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aqueous and organic phases, respectively. These phases are
then concentrated to remove the solvents and recover the
dissolved IL and small-molecule products. It is worth noting
that the need to distill solvents to reclaim components after
liquid—liquid separation may require a higher net energy input
than directly distilling deconstruction products from an IL;
differences in energy demands between the two strategies
could be revealed by a process model combined with life-cycle
analysis to evaluate impacts for a specific polymer deconstruc-
tion.'”® Liquid—liquid extraction for small molecule recovery
from ILs has been shown for, e.g.,, Nylon-6 and Iignin.]74’]75

Advances in IL design and separation techniques may prove
useful for the translation of IL-mediated polymer deconstruc-
tions to more polymer species or lower energetic costs. For
example, recently developed solubility-switchable ILs may
become of interest for expanding the library of targetable
polymers. These ILs are capable of undergoing a simple,
reversible chemical reaction (e.g, protection—deprotection
reaction) that induces a marked shift in an IL’s hydro-
philicity."'*'”*!7%'”7 Such ILs could be harnessed to solubilize
and depolymerize hydrophobic plastics, undergo a switching
reaction to become hydrophilic, and then be separated from
the small-molecule products via liquid—liquid extraction.
Membrane separation, crystallization, electrodialysis, and
adsorption also have been demonstrated as potential options
for IL recovery and may find future use in deconstruction
processes.178’179

Historically, a mismatch between the attributes of interest
for laboratory-scale IL study and industrial-scale IL deploy-
ment have limited the translation of ILs to commercial
practice."® For example, high IL viscosities, limited IL
material-property and environmental impact data, and
substantial IL raw material costs have hindered the develop-
ment of IL-based processes.'®® While this Viewpoint has
addressed several of these considerations for IL-mediated
polymer deconstructions—e.g., lowered IL viscosities at
elevated temperatures relevant to deconstructions, strategies
to separate monomers from ILs for recyclability, chemical
motifs to enhance thermal stability—further effort is needed to
tackle outstanding concerns for IL use at a commercial scale.
Continued investigations into IL toxicity will be needed for
regulatory approval, and ongoing IL chemistry development
will be needed to reduce IL costs for batch reactions.'*”'®'
Technoeconomic analysis is also important to validate the
utility of ILs in industrial unit operations by identifying savings
arising from IL recyclability and opportunities for process
intensification.'”” Additionally, learnings from ongoing pilots
of IL-based systems will undoubtedly inform future consid-
erations for IL design and implementation.'®'

ILs overcome significant environmental challenges in
polymer chemical recycling by lowering energy inputs to
achieve deconstruction and minimizing VOC release by
replacing volatile molecular solvents. However, the persistence
of ILs in aquatic environments and emerging concerns about
IL toxicity to biotic health underscore the need to
appropriately contain ILs in deconstruction setups and
prioritize environmental considerations in future IL design.
Methods to separate ILs from deconstruction products,
therefore, become critical in recovering and reusing ILs to
prevent environmental leakage while enabling circular life
cycles.
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B CONCLUSIONS

ILs offer broad utility for the deconstruction of plastics and
biopolymers for chemical and advanced recycling and
upcycling. Control over IL chemical design enables the
customization of physicochemical properties to target catalytic
performance, decomposition temperatures, and polymer
solubilities for specific deconstruction applications. This
bottom-up control in turn governs deconstruction yields and
kinetics, cocatalysis, and facile separation of resulting products
from ILs. Recent advances in IL design show promise for
efficient deconstructions at lower energy demands than many
existing strategies, yet pressing challenges in the environmental
impact upon leakage and thermal decomposition should be
addressed to facilitate the widespread implementation of ILs in
chemical recycling. In short, ILs may find application as a
cornerstone of circular polymer economies with continued
research and development.
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B ABBREVIATIONS

BPA, bisphenol A; [Bmim][BF,], 1-butyl-3-methylimidazo-
lium tetrafluoroborate; [Bmim][NTf,], 1-butyl-3-methylimi-
dazolium bis(trifluoromethane)sulfonimide; [Bmim][FeCl,],
1-butyl-3-methylimidazolium tetrachloroferrate; [Bmim]-
[HSO,], 1-butyl-3-methylimidazolium hydrogen sulfate;
[Bmim][PF;], 1-butyl-3-methylimidazolium hexafluorophos-
phate; [Bmim][ZnCl;], 1-butyl-3-methylimidazolium trichlor-
ozincate; [C;SO;Hmim][HSO,], 1-methyl-3-(3-sulfopropyl)-
imidazolium hydrogen sulfate; [Ch][Ac], cholinium acetate;
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[Ch][Ala], cholinium alanate; [Ch][Cl], cholinium chloride;
[Ch][Gly], cholinium glycinate; [Ch][Lys], cholinium lysi-
nate; DMAP, dimethylaminopyridine; [Emim][Ac], 1-ethyl-3-
methylimidazolium acetate; [Emim][AICL,], 1-ethyl-3-methyl-
imidazolium tetrachloroaluminate; [Emim][Cl], 1-ethyl-3-
methylimidazolium chloride; [Emim][NTf,], 1-ethyl-3-meth-
ylimidazolium bis(trifluoromethane)sulfonimide; [HDBU], 8-
hydrogen-1,8-diazabicyclo[5.4.0]-undec-7-enium; HDPE,
high-density polyethylene; [Hmim][LAc], 1-methylimidazo-
lium lactate; [HTEA][LAc], triethylammonium lactate; IL,
ionic liquid; LDPE, low-density polyethylene; [NBu,][Cl],
tetrabutylammonium chloride; PC, polycarbonate; PET, poly-
(ethylene terephthalate); PHB, poly(3-hydroxybutryate);
[PP13][NTf,], N-methyl-N-propylpiperidinium bis-
(trifluoromethane)sulfonimide; TGA, thermogravimetric anal-
ysis; VOC, volatile organic compound
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