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Abstract—The emergence of 360-video streaming systems has
brought about new possibilities for immersive video experiences
while requiring significantly higher bandwidth than traditional
2D video streaming. Viewport prediction is used to address
this problem, but interesting storylines outside the viewport are
ignored. To address this limitation, we present SAVG360, a novel
viewport guidance system that utilizes global content information
available on the server side to enhance streaming with the best
saliency-captured storyline of 360-videos. The saliency analysis is
performed offline on the media server with powerful GPU, and
the saliency-aware guidance information is encoded and shared
with clients through the Saliency-aware Guidance Descriptor.
This enables the system to proactively guide users to switch
between storylines of the video and allow users to follow or break
guided storylines through a novel user interface. Additionally,
we present a viewing mode prediction algorithms to enhance
video delivery in SAVG360. Evaluation of user viewport traces
in 360-videos demonstrate that SAVG360 outperforms existing
tiled streaming solutions in terms of overall viewport prediction
accuracy and the ability to stream high-quality 360 videos under
bandwidth constraints. Furthermore, a user study highlights the
advantages of our proactive guidance approach over predicting
and streaming of where users look.

Index Terms—360-video, Viewing mode prediction, Viewport
guidance, Tile-based adaptive streaming

I. INTRODUCTION

In recent years, 360-videos have become increasingly pop-
ular due to their ability to provide viewers with an immersive
multimedia experience that allows them to change viewing
directions within a 360-degree sphere space. This trend has
been driven by the rapid development of 360-degree capturing
devices and Head Mounted Displays (HMDs), as well as
the availability of 360-video streaming services on popular
online and on-demand platforms such as Twitch and YouTube.
Consequently, there has been a growing demand for high-
quality 360-video content, prompting research into how to
deliver such content efficiently in streaming systems, including
viewport guidance systems.

Users can consume 360-degree content through a 2D display
or a Virtual Reality HMD. However, in both cases, viewers
can only see a limited portion of the 360-degree content
within their viewport, which is approximately 20% of the total
content. This means that, to display a similar number of pixels
in the limited-sized viewports, the entire 360-video requires a
much higher resolution than conventional 2D videos, resulting
in high bandwidth requirements for streaming 360-videos.

To reduce bandwidth demands without compromising video
quality in the user’s potential viewport, researchers have

proposed viewport prediction-based streaming systems. These
systems, such as [1-5], stream only tiles within or nearby the
predicted viewport with high-quality. However, these systems
only utilize limited client-side perceived information, which
includes only the user’s historical viewports, resulting in users
missing interesting content or storylines within the entire
video. To address this issue, viewport guidance algorithms
[6-10] have been proposed, which leverage video content
information in the 360-degree sphere space across the entire
video to guide users’ viewport to interesting content. However,
these algorithms either prohibit user interaction to choose their
own preferred content and storylines or need to recompute
future viewport paths online when users deviate from the
guidance, making them less feasible for end-to-end streaming.
This presents two major challenges: how to conduct viewport
guidance in 360-video streaming and how to enhance video
delivery with global guidance information.

To address these challenges, we present SAVG360, a
Saliency-aware Viewport-guidance-enabled 360-video Stream-
ing System for 2D displays. SAVG360 leverages an advanced
media description called Saliency-aware Guidance Descriptor,
which encodes pre-computed saliency information in video’s
meta data. The descriptor is requested by the clients, guiding
users to storylines capturing the most salient regions in the
video timeline. Additionally, SAVG360 offers a hybrid watch-
ing mode that allows users to switch between guidance mode
and free mode. In guidance mode, SAVG360 actively guides
the user’s viewport, while in free mode, users can manually
switch their viewport. Additionally, the client employs a
viewing-mode-based viewport prediction mechanism to en-
hance streaming with viewport guidance, which accurately
predicts the user’s future viewing mode, thereby improving
prediction precision and tile-bitrate selection decisions.

Our contributions in this work are: (1) providing a novel
user interface that allows users to switch between guidance
and free mode to choose video storylines, (2) proposing an
advanced media presentation description method that encodes
guidance information in the Saliency-aware Guidance Descrip-
tor, (3) proposing a novel Saliency-aware Viewport Guidance
algorithm for 360-videos and a streaming system based on
the guidance, and (4) proposing a viewing mode prediction
mechanism that enhances the accuracy of viewport prediction
and the performance of tile-bitrate selection.

This paper is organized as follows: Section II and III
covers related work and backgrounds; Section IV details



the SAVG360 system architecture; Section V presents the
saliency-aware viewport guidance algorithm; Section VI
presents the viewing-mode-based viewport prediction and tile-
bitrate selection mechanism; Section VII presents experimental
results, and Section VIII concludes the paper.

II. RELATED WORK
A. Saliency Detection in 360-video

Saliency Detection refers to the task of identifying visually
prominent regions in images or videos. In [11], saliency
detection methods are classified into two main categories:
Salient Object Detection (SOD) and Eye Fixation Prediction
(FP). The goal of SOD [12] is to detect uniformly highlighted
salient objects and clear object boundaries that attract people
attention. On the other hand, FP [13, 14] methods aim to
predict sparse eye fixation locations that capture regions where
people actually look in images or videos. Our work focuses
on FP Saliency Detection, specifically in the context of 360-
videos. Several efforts have been made to study 360-video
saliency detection. [15] proposes a novel U-net-based spher-
ical convolutional neural network for 360-videos, where the
convolutional kernel is defined on a spherical crown. And in
[16], a spatial-temporal network in CubePadding is proposed
for 360-videos, using a video dataset with saliency heatmap
annotations. These models can be directly incorporated into
SAVG360 to compute saliency features in the videos.

B. Viewport Prediction in 360-video

Viewport prediction involves predicting a user’s future view-
ing direction based on viewport history of the user or other
users’ viewing trajectory. This enables the player to download
only the content appearing in the viewport or reduce the video
resolution outside of the viewport instead of fetching the whole
360-video. Some methods rely solely on viewport data from
single viewer, such as [17] that uses linear regression and
[18] that uses recent samples that monotonically increase or
decrease. Other methods correlate the viewport trajectory of
other users, such as [2], which uses multiple-object tracking
algorithm to predict that people’s viewports might follow
object trajectories, and [1,19], which simply relies on the
historical view traces of users. While viewport prediction is
a useful technique, one of its disadvantages is that wrong
predictions can significantly affect the quality of experience of
viewers, as the system may send the wrong content with high
resolution and the correct content that users are interested in
with low resolutions. In the SAVG360, we also employ view-
port prediction, but combine it with viewing mode prediction
to enhance the accuracy of traditional prediction methods.

C. Viewport Guidance for 360-video

To improve user experience, viewport guidance aims to
guide the user towards interesting content within the 360-
degree sphere space. Unlike viewport prediction, which pre-
dicts the user’s future viewing direction, viewport guidance
automatically switches the viewport based on saliency in-
formation. Several methods have been proposed to achieve
this goal. Pano2Vid [6] trains a capture worthiness model to
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Fig. 1: Scanpaths, sampled frames and grids.

extract a guided path from the 360-degree sphere space which
generates a normal field-of-view (NFoV) video that resemble
human-captured videos. The 360Pilot [7] uses object detection
to generate a list of candidate objects and then selects the main
object to adjust the NFoV using RNN. [9,10] generate an
optimal camera path based on saliency to navigate the user’s
viewport and enhance the watching experience. While these
works perform viewport guidance locally on the client side,
our work aims to integrate viewport guidance into an end-to-
end 360-video streaming system.

D. 360-video Streaming

360-video streaming has become popular due to its im-
mersive and interactive viewing experience. Researchers have
explored various ways to enhance the streaming quality and
user experience of 360-video. Some studies [20—24] have pro-
posed novel video encoding techniques that prioritize salient
regions of the 360-video to improve the overall quality of
experience. Other studies [1,2,4,17,25,26] have developed
algorithms to optimize the streaming bitrate allocation and
tile-based delivery of 360-videos. SAVG360 differs from these
existing systems in that it delivers video for a hybrid watching
mode that integrates viewport guidance, as opposed to free
mode where users manually choose the viewport.

ITI. BACKGROUNDS

A. 360-video

Traditionally, 360-videos are segmented temporally into
chunks, each of which has the same time duration. Each chunk
is further spatially divided into tiles, which share the same
duration as the corresponding chunk, but only occupy a small
spatial portion. Each tile is encoded into various quality levels,
and can be downloaded and decoded independently. During
video playback, the portion of the 360-degree spherical video
content that is visible to the user is called the viewport. And
the center of the viewport is called the viewpoint.

B. Viewport Guidance

To facilitate viewport guidance, we need a data structure
which stores the corresponding recommended next viewpoint
for the current timestamp and viewpoint. However, continuous
values of time and viewpoint location cannot be accommo-
dated using finite space offer by any data structure. Therefore,
temporal and spatial information is represented discretely.
Specifically, as shown in Figure 1, we use sampled frames
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Fig. 3: The system architecture of SAVG360.

Fsampled — (£ .}, which are sampled with time interval
AT, in order to divide time into several intervals. Additionally,
we use grids to spatially divide the equirectangular frames into
W by H cells. And a viewpoint sequence (or scanpath) rep-
resents a sequence of grids P, , = {p;, pi+1, ..., pr }, Which are
the viewpoints corresponding to the sampled frames spanning
from f; to f.

IV. SYSTEM OVERVIEW
A. User Interface

Figure 2 shows the user interface of SAVG360. The
interface is comprised of a saliency-aware viewport-guidance-
enabled 360-video player which includes two main compo-
nents: the main window and side windows.

The major viewing area is the main window, which displays
the viewport of users. In the main window, guidance mode is
deployed, where the system automatically guides the viewport
based on a pre-computed saliency path descriptor. However,
SAVG360 is designed to also provide users with freedom to
choose their own viewing path instead of forcing them to
follow one single guided path. To this end, we implement a
hybrid interactive viewing mode: The users can switch from

guidance mode to free mode by simply dragging a mouse to
show different views. If there is no mouse activity for a certain
duration, the system will switch back to the guidance mode.

In addition, SAVG360 has two side windows that com-
pensate for the limited viewport span in the main window.
The side windows display interesting video contents that are
not visible in the current viewport. By clicking the “Follow
1 or 2” button, users can jump their viewport to the contents
displayed in the first or second side window, respectively. This
action automatically switches the users to free mode.

B. System Architecture

Figure 3 shows a server and a client of SAVG360, which
incorporates DASH with advanced meta data descriptors, a
modified video storage mechanism, and a controller to deliver
a high-quality user experience.

The server stores meta data and video data for each video.
For Meta data, existing DASH-based video streaming systems
typically provide MPD files with video chunk encoding infor-
mation to support tile-based streaming and save bandwidth.
However, as the popularity of 360-videos increased, the need
for advanced meta data descriptors has emerged. To address
this need, Spatial Relationship Descriptors (SRDs) have been
introduced, allowing users to request only “visible” tiles. How-
ever, SRDs do not include information on guiding the user’s
viewport to interesting content in the 360-degree sphere space.
To enable a saliency-aware viewport guidance mechanism in
the player, we introduce a Saliency-aware Guidance Descriptor
(SAGD) with two components: the Guidance Lookup Table
and the Recommended Scanpaths. The server generates the
SAGD, and SAGD components support automatic viewport
switching on the main window and content selection on the
side windows, respectively. Figure 4 illustrates the media
descriptive layers of SAVG360, which incorporate advanced
meta data descriptors to enhance user’s viewing experience.

As discussed in Section IV-A, users are able to switch
between two modes, namely the guidance mode and the free
mode. In the free mode, users are allowed to freely drag the
viewport to any location in the equirectangular coordinate.
When the user switches back to guidance mode, the system
recommends the next viewpoint based on pre-computed in-
formation stored in the Guidance Lookup Table. The lookup
table is regularly queried at the beginning of each time interval
and can also be queried when the system switches back from
free mode to guidance mode. Based on the query results,
the system guides the viewpoint at a uniform speed until it
reaches the next recommended viewpoint at the beginning of
the subsequent time interval. Additionally, the Recommended
Scanpaths provide several (up to m = 4) viewpoint sequences
for each video chunk. These sequences cover interesting and
diverse content in the viewport, centered around the viewpoints
during the corresponding chunk.

For video data, we have made modifications to the video
storage of tile-based 360-video streaming systems to enable
the implementation of side windows. In addition to conven-
tional elements like chunks and tiles, recommended 2D con-
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Fig. 4: Meta data representation of SAVG360.

tent, i.e., the projected 2D video of each viewpoint sequence
in the Recommended Scanpaths, is encoded at the lowest
available quality level and added to the video data.

The client in SAVG360 is similar to typical DASH clients,
but with modifications to the playback buffer and an advanced
controller. In the playback buffer, recommended 2D contents
are stored alongside downloaded tiles and queued for playback
on the side windows. When a video chunk starts playing,
the player queries the Recommended Scanpaths meta data to
locate recommended 2D contents that are not visible within the
user’s current viewport, and displays them in the side windows.
In addition, an advanced viewing-mode-driven controller is
implemented in DASH clients of SAVG360. When the client
receives meta data from the server, it performs a series of func-
tions within the control plane. Firstly, it predicts user’s future
viewing mode based on the user’s viewing mode and viewport
history. Then, it uses both the Guidance Lookup Table and
traditional viewport prediction mechanisms to predict user’s
future viewport. Next, the client maps the predicted future
viewport to tiles using SRD, and passes this tile-based future
viewport representation to the tile-bitrate selection module.
Finally, the tile-bitrate selection module uses MPD to request
the appropriate quality of tiles and recommended 2D contents
for future video chunks from the server.

V. SALIENCY-AWARE VIEWPORT GUIDANCE ALGORITHM

In this section, we present the saliency-aware viewport
guidance algorithm that provides information stored in meta
data for the hybrid viewing mode on the client-side. The
guidance algorithm is structured into two key components. The
first component involves a main-window guidance algorithm,
which determines the optimal recommended viewpoint con-

sidering user’s current viewport and timestamp. The second
component encompasses a side-window scanpath recommen-
dation algorithm aimed at generating recommended scanpaths
for individual chunks.

A. Main-window Guidance Algorithm

Utilizing saliency scores for each sampled frame, we have
devised a comprehensive main-window guidance algorithm.
This algorithm determines the subsequent recommended view-
point for any given current viewpoint during each sampled
frame, stored in the Guidance Lookup Table.

The objective of viewport guidance is to enhance the user’s
perception of saliency during video playback. To achieve this
goal, we introduce the concept of the accumulated perceived
saliency score. This score is calculated through the follow-
ing steps: Given a continuous segment of sampled frames
represented as FmePled ={fi, fix1, .-, fr}, a corresponding
sequence of viewpoints is denoted as P;, = {pi, pi+1, .., Pr }-
The accumulated perceived saliency score SeqSal; (P, ) for
this viewpoint sequence P ,. is computed as:

r—1
d t (3 ) 1
SeqSaly (P ) ZPSal (pi) az o p+1 p). (1)

In particular, to calculate the accumulated perceived saliency
score for a given viewpoint sequence, we aggregate PSal; (p;),
which represents the weighted average saliency score of all
grids within the viewport centered around each p;. The weight
diminishes as the distance from the grid to the viewport
center increases. Furthermore, we introduce a penalty term
to address the velocity at which the viewpoint shifts, thus
averting abrupt transitions between different salient regions.
This penalty term is modulated by parameter «, controlling
the degree of smoothness’s impact on the overall score.

The problem of main-window guidance can be defined as
identifying a sequence of viewpoints P, ,, = {pi, Pi+1,---sPn}
in the sampled frames Fsampled {fis fixty s fu}
that maximizes the accumulated perceived saliency score
SeqSal; n(P; ), given a current timestamp within the time
interval [(i — 1)AT,iAT) and a user viewpoint situated at
the equirectangular grid p;. This problem can be effectively
solved through dynamic programming, which calculates the
optimal sequence P7, = {p;,p},y,...,p;} with the highest
accumulated score. The dynamic programming process oper-
ates in reverse, from the last to the initial sampled frame.
Critical information from the process, including the time
interval [(i — 1)AT,¢AT), the current viewpoint p;, and the
subsequent viewpoint in the optimal sequence pj, ,, is stored
in the Guidance Lookup Table, which is shown in Fig 4b.

B. Side-window Scanpath Recommendation

The proposed main-window guidance algorithm is designed
to direct users toward interesting content within 360-videos,
considering constraints related to viewport movement. How-
ever, these constraints could potentially result in the algorithm
overlooking interesting events that may occur in the near future
but are situated far from the current viewport in the main



window. To address this limitation, SAVG360 incorporates
side windows, which are employed to display interesting
content that currently lies beyond the viewport’s scope. As
elaborated in Section IV-B, the creation of side windows is
facilitated by the utilization of the Recommended Scanpaths
stored in the video meta data. Notably, each chunk contains
several viewpoint sequences in the Recommended Scanpaths.
These sequences are sorted in order of their accumulated
perceived saliency scores. Consequently, when a chunk is
about to play, the relevant video content from the first two
viewpoint sequences, not currently visible in the viewport, are
retrieved and presented within the two side windows.

The problem of formulating recommended viewpoint se-
quences for each chunk involves identifying several sequences
with maximum accumulated perceived saliency scores and
limited overlapping regions. The intuition behind is to make
video contents consumed by users capture more salient and
diverse regions in all candidate viewing paths. Dynamic pro-
gramming is adopted to compute and store, from the last frame
to the initial frame, the optimal recommended path with the
highest accumulated score. In the system implementation, the
generated viewpoint sequences are stored within the Recom-
mended Scanpaths, as shown in Fig 4c.

VI. VIEWPORT PREDICTION AND RATE ADAPTATION
WITH VIEWING MODE PREDICTION

In this section, we present a viewport prediction and rate
adaptation mechanism in the controller (see details in Fig 3)
of SAVG360. First, the controller utilizes the user’s viewing
mode and viewport history to predict the user’s future view-
port. Subsequently, the predicted viewport is passed to the tile-
bitrate selection module, which decides appropriate quality of
tiles for a future video chunk.

A. Viewport Prediction

Based on viewport guidance, the client is capable of en-
abling a hybrid viewing mode for 360-videos. In this mode,
users have the option to watch the video in guidance mode,
which switches their viewport based on the Guidance Lookup
Table. If the users continue to follow the guidance mode in the
next several video chunks, i.e., they do not switch to free mode
by dragging a mouse or change the viewport to side windows
by clicking the “follow” button, the system can accurately
predict the upcoming viewport by repetitively querying the
Guidance Lookup Table for the subsequent viewport center.

To harness the advantages of the guidance mode, we
present a two-stage algorithm towards viewport prediction in
SAVG360. The first stage is a Deep-Learning-based approach
that predicts the user’s future viewing mode. Based on this
viewing mode prediction result, the second stage predicts
user’s future viewport.

In the first stage, the algorithm takes information related to
the user’s current viewing mode and her viewport history as
inputs. Specifically, the inputs include the user’s viewing states
while watching the last hw (history window) chunks, and the
states for each chunk include: (1) Viewing-mode switching

flag: whether the user remains in the guidance mode from
the beginning to the end of the chunk. (2) Ending viewport:
the location of user’s viewport at the end of the chunk. (3)
User viewing time within individual recommended scanpath:
duration for which the user’s viewpoint in the main window
follows each of the recommended scanpaths, and deviates
from any recommended scanpaths. Then the 1D-CNN model
forecasts the likelihood prob_vm, that the user will continue
to follow the guidance in several subsequent video chunks.

In the second stage, the user will either i) follow the
guidance with probability prob_vm, where a tile will be
viewed if it is covered by the guidance or ii) switch into
free mode with probability 1 — prob_vm, where the viewport
will be predicted by traditional 360-degree viewport prediction
methods. Therefore, we can predict the viewing probability of
each tile ¢, denoted as prob;, as shown in Equation 2:

prob; = prob_vm - In(t) + (1 — prob_vm) - prob_vp; (2)

where In(t) is 1 if tile ¢ is visible to the user when the user
follows the guidance and O otherwise. prob_vp; represents the
viewing probability of tile ¢ predicted by a traditional method,
e.g., Linear Regression [17] and Navigation Graph [1].

B. Tile-bitrate Selection

In this section, we formulate the tile-bitrate selection as
an optimization problem, which is supplied with Viewport
Prediction results, estimated throughput, and current buffer
status. Let us consider a video chunk containing M tiles, each
of which has @) quality levels with corresponding bitrates r; ;
and perceived quality u; ; for the ¢-th tile at the j-th quality
level. The goal is to determine the optimal quality level [; for
each tile, which maximizes the sum of perceived quality while
adhering to the constraints of throughput and buffer. This is
defined as:

M
lter[rll%’w Y2 prob; - ug j -
st. XM or < BW

Here, prob, represents the viewing probability of each tile,
which is estimated using the proposed viewing-mode-based
viewport prediction mechanism. To ensure seamless playback,
the constraint BW is set to be the product of the estimated
throughput and the current buffer size, where the throughput is
estimated using the throughput predictor of RobustMPC [27].
The problem can be solved as a Multiple-choice Knapsack
problem [28], which can be efficiently solved by dynamic pro-
gramming [19]. The computational complexity of the dynamic
programming solution is O(BW - M - @), and BW can be
discretized to reduce the decision space.

VII. PERFORMANCE EVALUATION
A. Methodology

Dataset: the video dataset used in our study consists of
23 360-videos sourced from two datasets: [6] and [29]. To
generate meta data for these videos, we apply pre-computed
viewport guidance with a time interval length of AT = 2 sec-
onds and a grid division of W = 45 and H = 80. The videos
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are then divided into chunks lasting 2 seconds each, which are
further divided into tiles of various configurations, including
2x4, 4x6, and 6x8. We encode each tile independently into five
different qualities using ffmpeg [30]. And we use PSNR as the
perceived quality u; ; in the tile-bitrate selection module.

Survey-based evaluation: we have implemented SAVG360
using the code from existing 360-video player [31] and made
SAVG360 available for participants in the evaluation through a
web interface. Each participant watched each of the collected
videos and contributed two viewport trajectories, one under
free mode and the other under hybrid mode, and assigned
grades to them. The user IDs, trajectories, and scores of ten
participants were stored in our database.

Trace-driven simulation: To evaluate the two-stage view-
port prediction algorithm, we simulate the network that trans-
mits the video data using real network traces from the
3G/HSDPA [32] and Oboe [33] datasets. In the simulation, we
compare the two-stage algorithm with baselines. The experi-
ment also serves as an ablation study to show the importance
of the viewing mode prediction (the first stage).

Hyper-parameter settings: During the training process,
we use 80% of the viewing trajectories from all users in
the user study to train the CNN model for viewing mode
prediction, as well as the model related to viewport prediction
(Linear Regression (LR) and Navigation Graph (NG)), while
the remaining 20% are utilized for evaluating the performance
of the proposed viewing-mode-based viewport prediction. It’s
worth noting that our proposed viewing mode prediction aims
to optimize viewport prediction. In contrast, systems like
Pano [20] and SalientVR [21] focus on enhancing video
delivery post viewport prediction. Thus, we compare our
viewing mode prediction with viewport-based methods, and
our viewing mode prediction can be seamlessly integrated with
Pano and SalientVR. We train the viewing mode prediction
model to look ahead lookahead = 1,2,3 chunks using the
mode-based states and viewport history of the most recent
hw = 5 chunks. For the viewport prediction method LR,
we use viewport history in the past 10 seconds to predict
the future viewport in 0.4 seconds, with the prediction result
being used iteratively to predict the viewport in the distant
future. Additionally, we set the client-side buffer limit to be 6
seconds, which causes the controller to pause downloading to
drain the buffer when the buffer size exceeds the limit, which

| TP | FP | TN | FN

Lookahead=1 | 582% | 5.8% | 32.1% | 3.9%
Lookahead=2 | 56.3% | 7.7% | 33.0% | 3.0%
Lookahead=3 | 53.5% | 9.0% | 33.8% | 3.7%

TABLE I: Performance of Viewing Mode Prediction: TP(True
Positive), FP(False Positive), TN(True Negative), FN(False
Negative).

means the controller makes downloading requests of at most
3 chunks after the current chunk.

B. Survey-based Evaluation

Figure 5a displays the Mean Opinion Score (MOS) ratings
provided by users for each video. It can be observed that in
16 out of 23 videos, the hybrid viewing mode receives higher
MOS than the free mode, while in the remaining 7 videos,
the free mode obtains higher MOS. This discrepancy may be
attributed to the imperfection of saliency and its potential to
provide inaccurate guidance.

Figure 5b illustrates the distribution of user ratings for free
mode and hybrid mode. The proposed hybrid mode receives
100% more full scores (5) than free mode, but it also obtains
more low scores. Thus, it can be concluded that viewport
guidance has the potential to enhance the viewing experience,
but it may also have a negative impact at times.

C. Viewport Prediction

Before considering network variation, we evaluate the per-
formance of viewport prediction methods (NG, LR) and assess
how they can benefit from being combined with Viewing
Mode Prediction (VMP). In this regard, the performance of
viewing mode (free or guidance) prediction is measured to
determine the extent to which it can improve the accuracy of
viewport prediction by predicting when users are following the
guidance mode. Table I presents the performance of VMP on
the test set with varying lookahead values (1, 2, and 3 chunks),
where a positive prediction is made when the probability
that the user will continue following guidance (prob_uvm)
is greater than 0.5. The results show that the performance
of VMP is influenced by the lookahead value, as higher
values result in increased FP rates and decreased TP rates.
Nonetheless, the model still achieves a high recall rate of
94% even with a lookahead value of 3 chunks, demonstrating
its ability to accurately identify when users are following
the guidance mode. This implies that the combination of
VMP with viewport prediction methods can lead to improved
accuracy when users adhere to guidance mode.

We evaluate viewport prediction algorithms by:

$M prob - g;
Zi\iLgt ’
where g; is the ground truth that has O for non-visible tiles and
1 for visible tiles, and prob; is a predicted probability that tile
t will be shown in the future chunk. Figure 6 illustrates the
mean precision of viewport prediction methods for different
lookahead values (1, 2, and 3 chunks) and tile configurations.
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(a) The precision of viewport prediction
under tile configuration 2x4.

(b) The precision of viewport prediction
under tile configuration 4x6.

(c) The precision of viewport prediction
under tile configuration 6x8.

Fig. 6: The precision of different viewport prediction methods including LR(Linear Regression), LR+VMP(Viewing Mode
Prediction), NG(Navigation Graph), NG+VMP, under various tile configurations.
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Fig. 7: V-PSNR and rebuffer ratio in HSDPA with different tile
configurations. (Error bars show 95% confidence intervals.)
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The results demonstrate that combining VMP with LR and NG
can improve prediction accuracy by 4%-20% due to the high
recall rate of VMP, which significantly enhances the accuracy
of viewport prediction when users follow the guidance. In
particular, LR performs well for 1 chunk future prediction,
but its accuracy drops significantly as the lookahead value
or number of tiles increases. However, combining LR with
VMP enhances prediction accuracy for both near and distant
future predictions and for all tile configurations, with the
improvement increasing with the increase in lookahead value
or number of tiles. For NG, the accuracy is relatively stable
across different lookahead values and tile configurations, but
combining it with VMP can still lead to an improvement in
precision by 4%-11%.

D. Quality of Experience (QoE)

To assess the impact of viewing mode prediction on QoE
under various network conditions, we evaluate the perfor-
mance of different viewport prediction methods using average
viewport PSNR (V-PSNR) and rebuffer ratio.

The results of V-PSNR and rebuffer ratio achieved by
SAVG360 with different viewport prediction methods in HS-
DPA traces are presented in Figure 7. The results reveal that
using LR to predict users’ viewports results in a decrease in
average video quality due to its inaccurate prediction. How-
ever, the use of VMP along with LR significantly improves

w
=]
=)
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Tile Configuration Tile Configuration

(a) V-PSNR. (b) Rebuffer ratio.

Fig. 8: V-PSNR and rebuffer ratio in Oboe with different tile
configurations. (Error bars show 95% confidence intervals.)
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the V-PSNR in all tile configurations, achieving an increase of
10% under 6x8 and 8% under 4x6, without adding rebuffer.
NG tends to predict and stream more tiles, resulting in high
rebuffer ratios when the video is split into many tiles (4x6 or
6x8). However, when combined with VMP, the rebuffer ratio
can be significantly reduced by 47%-58%.

Figure 8 shows the metrics of different viewport predic-
tion methods under Oboe traces. We can observe that both
LR+VMP and NG+VMP achieve higher V-PSNR and lower
rebuffer ratios compared to LR and NG, respectively, for all
tile configurations. Specifically, when using a tile configuration
of 6x8, the combination of LR with VMP results in an im-
provement of 4.2 dB in V-PSNR, while only slightly increasing
the rebuffer ratio by 1.2%, as compared to using LR alone.
Similarly, when using NG with the same tile configuration,
the rebuffer ratio is initially high at 5.1%. However, when
combined with VMP, the ratio is significantly reduced to only
2%, with a slight increase in V-PSNR of 1.2 dB. These results
demonstrate the effectiveness of the proposed viewing mode
prediction mechanism in improving the performance of 360-
video delivery and user watching experience.

VIII. CONCLUSION
Streaming 360-videos requires a much higher data rate
compared to non-360-videos. Previous works have attempted
to solve this problem by predicting user viewports, but this



approach may result in a suboptimal user experience due to
missed interesting storylines. To address this issue, we present
SAVG360, a novel Saliency-aware Viewport-guidance-enabled
360-video Streaming System that integrates viewport guidance
into the 360-video streaming process. Experimental results
demonstrate that SAVG360 yields higher MOS compared to
free mode, and viewing mode prediction can significantly
improve 360-video delivery and quality of experience.

ACKNOWLEDGMENT

This work was funded by the National Science Foundation
under grant contracts NSF 1835834, NSF 1900875, NSF
2106592. Any results and opinions are our own and do not
represent views of National Science Foundation.

[1]

[2]

[3]

[4]

[5]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

REFERENCES

J. Park and K. Nahrstedt, “Navigation graph for tiled media
streaming,” in Proceedings of the 27th ACM International Conference
on Multimedia, ser. MM °19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 447-455. [Online]. Available:
https://doi.org/10.1145/3343031.3351021

J. Park, M. Wu, K.-Y. Lee, B. Chen, K. Nahrstedt, M. Zink, and
R. Sitaraman, “Seaware: Semantic aware view prediction system for
360-degree video streaming,” in 2020 IEEE International Symposium
on Multimedia (ISM), 2020, pp. 57-64.

A. T. Nasrabadi, A. Samiei, and R. Prakash, “Viewport prediction
for 360° videos: A clustering approach,” in Proceedings of the
30th ACM Workshop on Network and Operating Systems Support
for Digital Audio and Video, ser. NOSSDAV °20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 34-39. [Online].
Available: https://doi.org/10.1145/3386290.3396934

F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan, “Flare: Practical
viewport-adaptive 360-degree video streaming for mobile devices,” in
Proceedings of the 24th Annual International Conference on Mobile
Computing and Networking, ser. MobiCom *18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 99-114. [Online].
Available: https://doi.org/10.1145/3241539.3241565

F. Qian, L. Ji, B. Han, and V. Gopalakrishnan, “Optimizing 360 video
delivery over cellular networks,” in Proceedings of the 5th Workshop
on All Things Cellular: Operations, Applications and Challenges, 2016,
pp. 1-6.

W. Bares, V. Gandhi, Q. Galvane, and R. Ronfard, “Pano2vid: Auto-
matic cinematography for watching 3600 videos,” in Proc. Eurograph.
Workshop Intell. Cinematogr. Editing, 2017, p. 1.

H.-N. Hu, Y.-C. Lin, M.-Y. Liu, H.-T. Cheng, Y.-J. Chang, and M. Sun,
“Deep 360 pilot: Learning a deep agent for piloting through 360 sports
videos,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 1EEE, 2017, pp. 1396-1405.

Y.-C. Su and K. Grauman, “Making 360 video watchable in 2d: Learning
videography for click free viewing,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 1EEE, 2017, pp.
1368-1376.

K. Kang and S. Cho, “Interactive and automatic navigation for 360 video
playback,” ACM Transactions on Graphics (TOG), vol. 38, no. 4, pp.
1-11, 2019.

S. Cha, J. Lee, S. Jeong, Y. Kim, and J. Noh, “Enhanced interactive
360° viewing via automatic guidance,” ACM Transactions on Graphics
(TOG), vol. 39, no. 5, pp. 1-15, 2020.

W. Wang, Q. Lai, H. Fu, J. Shen, H. Ling, and R. Yang, “Salient
object detection in the deep learning era: An in-depth survey,” 2019.
[Online]. Available: https://arxiv.org/abs/1904.09146

G. Ma, S. Li, C. Chen, A. Hao, and H. Qin, “Stage-wise salient
object detection in 360 omnidirectional image via object-level semantical
saliency ranking,” IEEE Transactions on Visualization and Computer
Graphics, vol. 26, no. 12, pp. 3535-3545, 2020.

V. Sitzmann, A. Serrano, A. Pavel, M. Agrawala, D. Gutierrez, B. Masia,
and G. Wetzstein, “Saliency in vr: How do people explore virtual envi-
ronments?” IEEE transactions on visualization and computer graphics,
vol. 24, no. 4, pp. 1633-1642, 2018.

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

[28]

[29]

[30]
(31]

(32]

(33]

H. Lv, Q. Yang, C. Li, W. Dai, J. Zou, and H. Xiong, “Salgcn: Saliency
prediction for 360-degree images based on spherical graph convolutional
networks,” in Proceedings of the 28th ACM International Conference on
Multimedia, 2020, pp. 682-690.

Z. Zhang, Y. Xu, J. Yu, and S. Gao, “Saliency detection in 360° videos,”
in The European Conference on Computer Vision (ECCV), September
2018.

H.-T. Cheng, C.-H. Chao, J.-D. Dong, H.-K. Wen, T.-L. Liu, and
M. Sun, “Cube padding for weakly-supervised saliency prediction in
360° videos,” in 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2018, pp. 1420-1429.

L. Xie, Z. Xu, Y. Ban, X. Zhang, and Z. Guo, “360probdash: Improving
qoe of 360 video streaming using tile-based http adaptive streaming,” in
Proceedings of the 25th ACM international conference on Multimedia,
2017, pp. 315-323.

L. Sun, F. Duanmu, Y. Liu, Y. Wang, Y. Ye, H. Shi, and D. Dai, “A two-
tier system for on-demand streaming of 360 degree video over dynamic
networks,” IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, vol. 9, no. 1, pp. 43-57, 2019.

L. Xie, X. Zhang, and Z. Guo, “Cls: A cross-user learning based
system for improving qoe in 360-degree video adaptive streaming,” in
Proceedings of the 26th ACM international conference on Multimedia,
2018, pp. 564-572.

Y. Guan, C. Zheng, X. Zhang, Z. Guo, and J. Jiang, “Pano: Optimizing
360 video streaming with a better understanding of quality perception,”
in Proceedings of the ACM Special Interest Group on Data Communi-
cation, 2019, pp. 394-407.

S. Wang, S. Yang, H. Li, X. Zhang, C. Zhou, C. Xu, E Qian,
N. Wang, and Z. Xu, “Salientvr: saliency-driven mobile 360-degree
video streaming with gaze information,” in Proceedings of the 28th
Annual International Conference on Mobile Computing And Networking,
2022, pp. 542-555.

D. Baek, H. Kang, and J. Ryoo, “Sali360: design and implementation
of saliency based video compression for 360 video streaming,” in
Proceedings of the 11th ACM Multimedia Systems Conference, 2020,
pp. 141-152.

M. Xiao, C. Zhou, Y. Liu, and S. Chen, “Optile: Toward optimal
tiling in 360-degree video streaming,” in Proceedings of the 25th ACM
international conference on Multimedia, 2017, pp. 708-716.

C. Zhou, M. Xiao, and Y. Liu, “Clustile: Toward minimizing bandwidth
in 360-degree video streaming,” in IEEE INFOCOM 2018-1EEE Con-
ference on Computer Communications. 1EEE, 2018, pp. 962-970.

Y. Zhang, P. Zhao, K. Bian, Y. Liu, L. Song, and X. Li, “Drl360: 360-
degree video streaming with deep reinforcement learning,” in /EEE IN-
FOCOM 2019-1EEE Conference on Computer Communications. 1EEE,
2019, pp. 1252-1260.

L. Sun, F. Duanmu, Y. Liu, Y. Wang, Y. Ye, H. Shi, and D. Dai,
“Multi-path multi-tier 360-degree video streaming in 5g networks,” in
Proceedings of the 9th ACM multimedia systems conference, 2018, pp.
162-173.

X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over http,” in Proceed-
ings of the 2015 ACM Conference on Special Interest Group on Data
Communication, 2015, pp. 325-338.

P. Sinha and A. A. Zoltners, “The multiple-choice knapsack problem,”
Operations Research, vol. 27, no. 3, pp. 503-515, 1979.

A. Nguyen and Z. Yan, “A saliency dataset for 360-degree videos,” in
Proceedings of the 10th ACM Multimedia Systems Conference, 2019,
pp. 279-284.

F. Bellard, “Ffmpeg multimedia system,” FFmpeg.[Last accessed:
November 2015]. https://www. ffmpeg. org/about. html, 2005.
“Simple360Player Demo slawrence.github.io,”
https://slawrence.github.io/simple-360-player/, [Accessed 29-08-2023].
H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen, “Commute
path bandwidth traces from 3g networks: analysis and applications,”
in Proceedings of the 4th ACM Multimedia Systems Conference, 2013,
pp. 114-118.

Z. Akhtar, Y. S. Nam, R. Govindan, S. Rao, J. Chen, E. Katz-Bassett,
B. Ribeiro, J. Zhan, and H. Zhang, “Oboe: Auto-tuning video abr algo-
rithms to network conditions,” in Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication, 2018, pp.
44-58.



