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ABSTRACT: We present the computational methodology that enables the first TQ
rigorous nine-dimensional (9D) quantum calculations of the intermolecular ° A @ 1
bending states of the water trimer, as well as its low-frequency spectrum for direct [ J ’ Y }M )
comparison with experiment. The water monomers, treated as rigid, have their N jgfqum f‘. ﬁ]\ A M ¥
centers of mass (cm’s) at the corners of an equilateral triangle, and the f% = -
intermonomer cm-to-cm distance is set to a value slightly larger than that in the
equilibrium geometry of the trimer. The remaining nine strongly coupled large-
amplitude bending (angular) degrees of freedom (DOFs) enter the 9D bend
Hamiltonian of the three coupled 3D rigid-water hindered rotors. Its 9D
eigenstates encompass excited librational vibrations of the trimer, as well as their
torsional and bifurcation tunneling splittings, which have been the subject of much interest. The calculations of these eigenstates are
extremely demanding, and a sophisticated computational scheme is developed that exploits the molecular symmetry group of the
water trimer, G, in order to make them feasible in a reasonable amount of time. The spectrum of the low-frequency vibrations of
the water trimer simulated using the eigenstates of the 9D bend Hamiltonian agrees remarkably well with the experimentally
observed far-infrared (FIR) spectrum of the trimer in helium nanodroplets over the entire frequency range of the measurements
from 70 to 620 cm™". This shows that most peaks in the experimental FIR spectrum are associated with the intermolecular bending
vibrations of the trimer. Moreover, the ground-state torsional tunneling splittings from the present 9D calculations are in excellent
agreement with the spectroscopic data. These results demonstrate the high quality of the ab initio 2 + 3-body PES employed for the
DOFs included in the bound-state calculations.

[ihl Metrics & More ’ Q Supporting Information

Measured FIR spectrum

Calculation (9D bend)

1. INTRODUCTION

High-resolution microwave and far-infrared (FIR) spectra of
small water clusters in molecular beams, in combination with
high-level electronic structure and quantum dynamics treat-

The water trimer has the cyclic C, equilibrium structure, in
which each water monomer acts as a proton donor to one
monomer and as a proton acceptor to the other.”'' In this
equilibrium structure, shown in Figure 2a, two free, or dangling,
hydrogen atoms (not forming hydrogen bonds) are above the

ments, can provide uniquely detailed information regarding the
hydrogen-bond rearrangement dynamics (HBRD) and cooper-
ativity effects in hydrogen bonding. These features are of central
importance for molecular-level understanding of the structural
and dynamical properties of liquid and solid phases of water and
aqueous solutions."”

For a long time, the focus of both spectroscopic and
theoretical studies was predominantly on the water dimer.”
However, more recently, increasing attention has been directed
at the water trimer, undoubtedly the most important hydrogen-
bonded trimer.”~"" It is the smallest water cluster in which
nonadditive three-body interactions and cooperative hydrogen
bonding can manifest, both of which play a major role in shaping
the energetics, structural, and dynamical properties of liquid and
solid phases of water, and their accurate description is therefore
of fundamental importance.
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plane defined by the three oxygen atoms (up or u) and the third
is below this plane (down or d). The apparent simplicity of this
equilibrium structure, denoted as uud,'” is deceptive. The
topology of the potential-energy surface (PES) of the trimer is in
fact complex, owing to its high symmetry. There are 48
equivalent, isoenergetic minima identical to the equilibrium
structure above, that are accessible without breaking any
covalent bonds or the interconversion between the clockwise
(cw) and counterclockwise (ccw) arrangements of the hydrogen
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bonds of the trimer. What gives rise to the surprisingly rich
HBRD is the presence of the two low-barrier tunneling pathways
linking the 48 equivalent potential minima.'*”'® The one that
has received by far the most attention involves the large-
amplitude torsional or flipping motion of the free O—H bonds
around the hydrogen bonds in the plane of the trimer. If only this
torsional motion is feasible, the corresponding molecular-
symmetry (MS) group is Gg, isomorphic to the Cj, point
group. Under G, each rotation-vibration energy level of the
trimer is predicted to split into four sublevels, two of which are
nondegenerate and two doubly degenerate.'"'® The second
tunneling pathway involves concerted breaking and reforming of
the trimer hydrogen bonds. It is called donor tunneling, and it
involves the interchange of the hydrogen-bonded and free H
atoms of a water monomer. It is also referred to as bifurcation
tunneling, since it proceeds through a transition state where
both protons of a water monomer are donated to a hydrogen
bond with a neighboring monomer.'* If feasible, the bifurcation
pathway results in further splitting of each level in the G5 MS
group into a quartet (AT levels) or sextet (A3, levels), labeled by
the irreducible representations of the MS group G, Such
tunneling splittings of rovibrational transitions have been
observed in the FIR spectra of (H,0); and (D,0)s°
establishing that G, is indeed the appropriate MS group for
such water trimers with no mixed isotopes.”'' The measured
torsional and bifurcation tunneling splittings differ greatly in
magnitude;11 while the torsional manifold of the ground
vibrational state extends to excitation energies up to 90 cm™’,
the ground-state bifurcation tunneling splittings are very small,
40—-300 MHz.

Torsional levels of (H,0); and isotopologues have attracted a
great deal of attention from theorists, and have been calculated
by a variety of approaches for the ground vibrational state of the
trimer. One of them is the three-dimensional (3D) quantum
treatment of the coupled large-amplitude torsional vibrations of
the trimer, in which the only motions considered are those of the
free O—H(D) bonds, constrained to rotate (in 1D) around the
three hydrogen-bonded O—H(D) bonds. All other inter- and
intramolecular vibrations of the trimer are taken to be frozen.
This approach was introduced by Baci¢, Leutwyler, and
coworkers,"'”'® [who extended this treatment to a (3 + 1)-
dimensional model that took into account the coupling between
the torsional motion and the symmetric H-bond stretch'”*’]
and also by van der Avoird and coworkers for the case of the
rotating trimer.'®*"?* In addition, the torsional tunnelin
splittings have been calculated bg the DMC methods,”* >
instanton theory,”®”” and PIMD,”*** but only for the ground
vibrational state of the trimer. Finally, an attempt was made to
calculate the tunneling splittings in the six lowest-frequency
intermolecular normal modes of the trimer using the modified
WKB method.*® However, the normal-mode, harmonic
description employed is not appropriate for these modes
which in reality are highly anharmonic and exhibit large-
amplitude motions. Therefore, the results cannot be expected to
be quantitative and can at best indicate trends.

The water trimer has 21 vibrational modes, of which 9 are
intramolecular and 12 are intermolecular. There are three types
of the latter vibrational modes: torsional (described above),
translational (also referred to as intermolecular stretching or H-
bond stretching), and librational (coupled hindered rotations of
the water monomers). Of course, these labels need to be taken
with caution, as the different types of modes are coupled. Until
rather recently, all FIR spectroscopic studies focused on the

frequency region below 100 cm™" dominated by the manifold of
the torsional states.'" The only exceptions to this were the
observations of the translational band of (D,0); at 142.8 cm™
and four bands measured'" for (H,0); between 510 and 525
cm™". With regard to the latter, three of the bands were assigned
as bifurcation tunneling components of an excited librational
mode.”" The implication of this assignment is that the excitation
of this intermolecular mode increases dramatically the
bifurcation tunneling splitting by several orders of magnitude,
compared to the ground vibrational state.""

Our very limited view of the intermolecular vibrations of the
water trimer was greatly expanded by the recent impressive
study reporting the remarkable far-infrared (FIR) spectrum of
(H,0); in helium nanodroplets.”® The recorded spectrum,
discussed in more detail later, covers the low-frequency region
from 70 to 620 cm™' which includes all three types of the
intermolecular vibrations of the trimer, torsional, intermolecular
stretching, and librational vibrations. Therefore, a plethora of
peaks visible in this FIR spectrum must correspond to the
excitations of these intermolecular vibrations.

The water trimer is the obvious candidate for sensitive testing
of the computed 3-body interactions through comparison of the
intermolecular vibration—rotation-tunneling (VRT) states from
high-level quantum bound-state calculations on a state-of-the-
art 2 + 3-body potential energy surface (PES) of the trimer with
the growing body of spectroscopic data. The newly available FIR
spectrum of this trimer”> of unprecedented scope and level of
detail provides an ideal opportunity for the comprehensive
assessment of the accuracy of any available intermolecular PES
(IPES) of the trimer and guiding its refinement.

However, this task is both formally and computationally
highly demanding, and its realization requires methodology for
computing rigorously the VRT states of water trimer that did not
exist until now. The methods mentioned earlier used to calculate
the torsional tunneling splittings of the trimer are not applicable
to excited intermolecular vibrational states in general. In ref 25,
the intermolecular vibrational states were calculated by means of
the second-order vibrational perturbation theory (VPT2). The
results of the VPT2 calculations were useful for assigning certain
excited states, but in numerous instances only tentative
assignments could be made or none at all. Especially challenging
proved to be the description of the torsional manifolds in excited
translational and librational modes, for which the VPT2 is
largely inadequate. The general problem of calculating
accurately the excited intermolecular vibrational states of the
water trimer, particularly those exhibiting large-amplitude
motions, together with their tunneling splittings remained
unsolved. We cite the final paragraph of ref 25: “However, to
describe the manifold of torsional states for the translational and
librational modes accurately, a treatment of the water trimer in a
12-dimensional model (including all 12 intermolecular modes)
is inevitable. This remains one of the challenges of future
theoretical studies.”

In this paper we make a significant step toward meeting this
challenge, which is considerable. A 21D quantum treatment of
the coupled intra- and intermolecular vibrations of water trimer
is not feasible at the present time (although this may change in
the future). What is feasible now are 12D rigid-monomer fully
coupled quantum calculations of the intermolecular VRT states
of water trimer. We have already performed rigorous 12D
quantum calculations of the coupled intra- and intermolecular
vibrational states of HF trimer’” and HCI trimer.”> The
methodology which enabled these calculations for the first
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time was developed by us recently.”” For the trimers of diatomic
molecules, such calculations are full-dimensional. Thus, the
dimensionality (12D) of the vibrational problem of the water
trimer in the rigid-monomer approximation is something we
have dealt with previously. The assumption of rigid monomers
for computing intermolecular vibrational states of water trimer is
reasonable in view of the large disparity between the
intramolecular stretch and bend frequencies of the water
monomers and the frequencies of the intermolecular vibrations.
The 12D rigid-monomer calculations for the water trimer are
expected to be considerably more difficult than those for the 9D
rigid-monomer HX trimers (X =F, C1)** for two reasons. One is
obviously the higher dimensionality of the former. The second is
the elaborate hierarchy of torsional and bifurcation tunneling
splittings of very different magnitudes that is superimposed on
the VRT states of the water trimer. In contrast, no tunneling
splittings have been observed, in the measured spectra and
quantum calculations, of HX trimers (X = F, Cl).

The computational strategy planned for the rigorous 12D
(rigid monomer) quantum calculations of the VRT states of the
water trimer mirrors that employed in our 9D rigid-monomer
quantum calculations of the intermolecular vibrational states of
the HF trimer.”* The full 12D rigid-monomer VRT Hamiltonian
of the water trimer is partitioned into a 3D frame
(intermolecular stretching) Hamiltonian and a 9D bend
Hamiltonian for three fully coupled 3D rigid-monomer rotors
with the intermonomer center-of-mass-to-center-of-mass (cm-
to-cm) distances fixed. The 9D bending eigenstates of the latter
encompass excited librational vibrations with the torsional and
bifurcation tunneling splittings superimposed on them. Each of
these reduced-dimension Hamiltonians is diagonalized sepa-
rately, the 9D bend Hamiltonian in the basis consisting of
trilinear products of monomer hindered-rotor states. A certain
number of their respective lowest-energy 3D and 9D eigenstates
isincluded in the final 12D product contracted basis in which the
full 12D intermolecular vibrational Hamiltonian (bend + frame)
of the water trimer is diagonalized.

It can be mentioned here that solving for the intermolecular
bending eigenstates of the 9D bend Hamiltonian of the water
trimer is analogous to the earlier 6D quantum calculations of
bending energy levels of the HF trimer by Wang and
Carrington,* also performed for rigid monomers (diatomic in
this case) and fixed intermonomer distances. But the results of
the latter calculations were not intended to be a component of a
higher-dimensional treatment of the HF trimer vibrations, in
contrast to the present eigenstate calculations for the 9D bend
Hamiltonian.

In this work, our focus is on solving the 9D bend problem of
the water trimer. The resulting 9D intermolecular eigenstates
naturally include those arising from the torsional and bifurcation
tunneling splittings in excited intermolecular states of the trimer.
This constitutes the most rigorous, high-dimensional quantum
treatment to date of the excited intermolecular vibrational states
of the water trimer and their tunneling splittings, even without
the inclusion of the intermolecular stretching degrees of
freedom (DOFs). The ab initio 2 + 3-body PES of the water
trimer by Zhang et al.”” is used in the present 9D calculations.
Full-dimensional PIMD calculations on this PES gave the
energies of the levels in the lowest torsional manifold of the
trimer in excellent agreement with experimental values.”

The dimensionality of the bend Hamiltonian, 9D, is much
higher than that of the 3D frame Hamiltonian, making the
determination of its eigenstates much more demanding.

Moreover, the nine DOFs of the bend problem are all large-
amplitude and strongly coupled. In addition, a very large number
of 9D potential-energy matrix elements need to be calculated for
the PES that consists of not only two-body water—water terms
but significant three-body terms as well. Finally, the 9D product
contracted basis in which the 9D Hamiltonian is diagonalized
must be made as efficient and compact as possible, in order to
make the calculations feasible and reasonably fast on multiple
processors. To accomplish all this, an elaborate scheme is
devised, which fully exploits the G4 symmetry of the trimer, and
its comprehensive description later in the paper is lengthy.

It is worth restating that computing the 9D bend eigenstates
provides the key constituents of the 12D basis for the rigorous
full 12D (stretch + bend) quantum calculations of the
intermolecular vibrational states of the water trimer, to be
reported in the near future.

The initial implementation of the newly developed method-
ology made in this work reveals that solving the 9D bend
problem, besides providing the essential component of the final
12D intermolecular basis, already yields a rather accurate and
comprehensive description of the intermolecular bending states
and tunneling of the trimer. The calculated energies of the levels
in the lowest torsional manifold agree very well with the
experimental values. In addition, there is a remarkably good
agreement between the measured FIR spectrum” and the low-
frequency spectrum of the trimer simulated using the 9D
eigenstates in this work. This demonstrates that many of the
most intense transitions in the experimental FIR spectrum are
associated with the excitation of the primarily bending vibrations
in the 9D subspace. Taken together, this implies that (a) the 9D
bend Hamiltonian is physically meaningful in its own right, as it
accounts for many of the most important features of the
intermolecular VRT dynamics of the trimer including the
tunneling splittings in the excited states, (b) the coupling
between the bending and intermolecular stretching vibrations
(the latter frozen in the 9D calculations) is likely to be rather
weak, and (c) the PES* utilized in these calculations is very
accurate, certainly for the monomers in their ground state.

The 9D calculations carried out in this work set the stage for
the rigorous 12D (rigid-monomer) quantum calculations of the
VRT states of the water trimer with full coupling of the
intermolecular stretching and bending DOFs. These calcu-
lations are well under way in our group and the results will be
reported in the near future.

The computational scheme employed in calculating the 9D
bending eigenstates of the water trimer is detailed in Section 2.
Section 3 presents and discusses the results of the 9D
calculations: the resulting low-energy bending states together
with the torsional and bifurcation tunneling splittings. The low-
frequency spectrum of the water trimer simulated using the 9D
eigenstates is also presented in this section and compared to the
measured FIR spectrum of water trimer in He nanodroplets.
Section 4 contains the conclusions and the directions of future
work on this topic.

2. COMPUTATIONAL METHODOLOGY

2.1. Overview. There are two particular challenges to
surmount in computing the intermolecular bending eigenvec-
tors of water trimer via a variational approach. First, the problem
involves nine highly coupled large-amplitude intermolecular
bending DOFs, with the rigid-monomer geometries and the
intermonomer cm-to-cm distances set to the fixed values defined
in Section 2.10. The 9D primitive basis employed to solve the
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Expansion representation

Expansion representation

(2B) (2BI3B])
of Vbend.lol of Vbend,lol
J(2B) _ T (2B) (2B[3B])
Compute monomer Hbend = Toena + Vbend.tol + Vbend,tot
hindered-rotor states
| |
Construct 9D symmetrized ) ) A CB) Construct truncated basis
basis of trilinear HR >| Diagonalize H\_ " of H? eigenstates
product states bend
Expansion representation N _ H0eB) (3B) (2B[3B]) Diagonalize
of Végf{; d Hbend - Hbend + Vbend - Vbend,tot I:Iben J

Figure 1. Flowchart depicting the major steps involved in diagonalizing the water-trimer bend Hamiltonian, I:Ibend. In the figure I:II(,QE‘% is a two-body

portion of Hyeng. Theng is the bend kinetic-energy operator. V(biEd,tot

full two-body approximation to the three-body part of the bend PES, V{

is the full two-body part of the bend potential-energy surface (PES).
3%). “HR” abbreviates “hindered-rotor”.

end*

2B(3B])
benrg,tot

is the

problem must efficiently cover this space, suggesting, ostensibly,
the need for something on the order of 10° such functions.
Second, the IPES™ consists of not just water—water (two-body -
VE22)) terms, but also significant water—water—water (three-
body - VEP) terms. A grid representation of V) suitable for
the calculation of matrix elements in the 9D primitive basis
requires of order 2 X 10'° grid points (with full exploitation of
symmetry). In the calculation of such matrix elements, not only
must V) be computed for each grid point, but all of the 9D
basis functions must be expressed on the grid, as well. These
challenges are of such a magnitude that we have paid particular
attention to trying to mitigate them. In so doing, we have settled
on a scheme involving the following elements, which scheme is
summarized visually in the flowchart of Figure 1.

First, we employ a primitive basis consisting of trilinear
products of monomer hindered-rotor states. The 3D hindered-
rotor states correspond to the rotational eigenstates of a given
monomer in the force-field of two near-by, geometrically fixed
water moieties in an arrangement approximating the equilibrium
geometry of water trimer. In this way we build much of the
dynamics of the water monomers within the trimer into the
primitive basis. In producing these hindered-rotor states we pay
close attention to symmetry so that ultimately the 9D trilinear
hindered-rotor basis functions have well-defined transformation
properties with respect to the operations of G,g, the water-trimer
molecular symmetry group.

Second, we employ this primitive basis to solve that large
portion of the bend problem that consists solely of one-body and
two-body terms. The corresponding Hamiltonian, HZY) s
readily diagonalized into blocks corresponding to the irreducible
representations (irreps) and subirreps (in the case of the 3D
irreps) of Gy These blocks can be straightforwardly
diagonalized individually by an iterative eigensolver (we use
the Chebyshev version™ of filter diagonalization®”), as the
relevant hindered-rotor basis-set sizes required to achieve
acceptable convergence are on the order of 10° to 10° functions
per irrep/subirrep.

Third, we include in ﬁﬁiﬁg not only the pairwise sum over the
two-body water—water bend potential for the trimer, but also a
sum-over-two-body approximation of the three-body portion of
the trimer’s bend PES, which we call bﬁﬁ&iﬁ?. This facilitates the
final step in the diagonalization of the bend Hamiltonian.

Fourth, in that final step we diagonalize the full bend
Hamiltonian, ﬁbend: in a truncated basis of the eigenvectors
obtained by diagonalizing Hﬁi‘j&. The only nonzero off-diagonal
matrix elements in this calculation correspond to those involving
the difference between the three-body PES and our two-body
approximation to that PES — ie, [V — ViZBEED]. The
magnitudes of these matrix elements are such that reasonable
convergence is attainable with basis sets consisting of 10* to 10*
states per irrep/subirrep.

Finally, in order to circumvent the problems associated with
computing the matrix elements of Véﬁ& by quadrature over a
large grid, we represent that function instead as an expansion
over trilinear products of Wigner matrix elements. The number
of expansion coefficients required to represent V{:2) accurately is
orders of magnitude less than the number of values of that
function required for a grid representation sufficiently large to
permit accurate calculation of matrix elements. Further, the
angle integrals involved in matrix element calculations have
analytical solutions when the expansion representation of Vi)
is used.

This scheme, with extensive exploitation of symmetry, allows
for the calculation of low-energy bend eigenstates of the trimer
in reasonable time (a few weeks) with a multiprocessor (ca. 60
processors) computer. Moreover, the methodology is readily
adapted to the problem of computing the full 12D
intermolecular states (bend + frame) of the trimer, which we
will report on in the near future.

2.2. Coordinates and Hamiltonian. The rigid-monomer
vibrational Hamiltonian for water trimer can be obtained by
generalization from the work of Wang and Carrington™® on the
HF trimer. In that work the coordinates employed consist of (a)
the three distances between monomer centers of mass (cm’s,
denoted with C;, I = A, B, C) and (b) the angles that define the
orientations of the monomer moieties with respect to “local” axis
systems embedded in the trimer frame. To define analogous
coordinates here [see Figure 2b], we label the three monomers
A, B, and C and start with the position vectors of the monomer
cm’s measured with respect to an arbitrary origin: ry, rg, and rc.
We then define the inter-cm vectors as

Ry=rp—1r. Ry=r,—r. R-=r,—r

(1)
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(@)

Figure 2. (a) Equilibrium structure of water trimer, corresponding to
the uud arrangement. (b) The coordinates employed for computing the
9D intermolecular bending states of the water trimer. See text for the
definitions. The intermonomer cm-to-cm distances R; (I = A, B, C) are
fixed and the water monomers are taken to be rigid.

The magnitudes of these vectors, R; (I = 4, B, C), constitute the
“frame coordinates”. These inter-cm vectors are then also used
to define the local Cartesian axes (X}, Y, Z,) centered at the cm
of each monomer. First, each Z; axis is defined to be parallel to
R, X Ry (ie, normal to the plane formed by the monomer
cm’s). Second, each X, axis is defined to be parallel to the
bisector of the interior angle of the triangle formed by the
monomer cm’s with vertex at the cm of I. So, with R; = R;/R,;,

% R, + Ry
CT IR, + Ry @)
L Re-R
B= 2
[Rc — Rl 3)
PR
T IRy + R (4)

Finally, Y; = Z; x X;. With the local axes defined, the local-angle
bend coordinates, w; = (¢, 0, x;), are then defined as those
Euler angles required to rotate the local axes (X, Yy, Z;) into the
monomer-fixed axes (X;, J;, ;) via the three-step transformation
defined, for example, in ref 39, pp. 77—79. The monomer-fixed
Cartesian axis systems (each centered at the cm of the relevant
monomer, C;) are, in turn, defined by reference to the vectors
from the monomer cm to the two H nuclei of the monomer: ry; |

and ry ,. In particular, Z; is taken to be antiparallel to the bisector
of the acute angle formed by ry ; and 1y ,
. gty
Z = ———
IrH'1 + "H,zl (3)
#; is taken to be normal to the monomer’s plane
5 = T X Ty
) = ———=
IrHy1 X "H,zl (6)
and &, = j X 2.
With the coordinates defined, one can write the rigid-
monomer vibrational Hamiltonian of the water trimer as

A(Q, R) = Ky, (Q) + Ky(Q, R) + Ke(R) + V'(R)
+ K (@, R) + V(Q, R) (7)

where Q denotes collectively (w,, @z ®c) and R denotes
collectively (R,, Rp, Rc). Expressions for the kinetic-energy

PN N ) ) o
terms K, K, V', and K, for water trimer are identical in form

to those for HF trimer (see ref 38 and also eqs 3—9 of ref 34 and
Section S1). The monomer rotational kinetic-energy operator

IA(M,mt changes, however, in going from HF trimer to water

trimer. For the latter, one has

. A, +4) , . (A, —A))
I<M,r0t = Z [%(ZI - lzl) + %
I=AB,C
A2 ~2 A2
x (@3- 1)+ 4.1 .

where A, Ay, A, are the rigid-rotor monomer rotational
1

constants associated with the principal axes &, j, and %,

2
respectively, I is the operator associated with the square of the
rotational angular momentum of monomer I, and lx, s ZJ& , and lzl

are the operators associated with the projection of the rotational
angular momentum of monomer I along the &, )71, and Zz; axes,

respectively.

Finally, V(Q, R) is the 12D, rigid-monomer potential-energy
surface (PES), where the intramonomer coordinates are fixed to
values given in Section 2.10. The PES we work with here (from
Zhang et al.29) consists of sums over monomer—monomer two-
body terms and a three-body term

V(Q, R) = V@, g, R) + VP (wy, a, R)
+ VP (a, oy, R) + VEI(Q, R) 9)

Note that implicit in eq 9, and also in eq 7, are fixed values for the
geometrical parameters that define the rigid-body monomer
moieties.

In this work, we focus on the 9D water-trimer bend problem
rather than the full 12D intermolecular (frame plus bend)
problem associated with the Hamiltonian of eq 7. To obtain the
relevant bend Hamiltonian we drop those terms in H(Q, R) that
depend only on R and set R, = Ry = R = R in the remaining
terms (see Section 2.10 for R). This ultimately produces the

following bend Hamiltonian for the case of identical monomers
that we treat here

3
A — A2 A2
Fl@ ) = X | By + BOI + 14, = ByJE]
I=1

+ (Ax—Ay) lAz iz 3 Az}

PN (. ly,lx,)] + V(5 R)

(10)
where By = (A, +A,)/2 and B = 1/(MR?) with M the mass of
each monomer. Note that two different types of angular
momentum operators enter into this expression—those that
correspond to projections of rotational angular momentum
along the monomer-fixed axes (I subscripts x;, y;, and z;) and
those that correspond to projections of rotational angular
momentum along the trimer local axes 0 subscripts Xj, Y;, and
Z,). Finally, the 9D bend PE function, V} g, is simply defined as
the function obtained when V(&, R) is evaluated at R; = R for all
I As is the case for the 12D PE function, the bend PE function is

https://doi.org/10.1021/acs.jpca.4c05045
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Table 1. Character Table for G,,

(e 1E 4(ABC)(135)(246) 4(ACB)(153)(264) 3 (12)(34)
A, 1 1 1 1
Ayq 1 e’ €* 1
Ay, 1 e* € 1
T, 3 0 -1
Ay, 1 1 1
Ay, 1 € e* 1
A, 1 €* € 1
T, 3 0 0 -1
e = ei27!/3.

1 (12)(34)(56) 4(ABC)(145236) 4(ACB)(163254) 3(12)
1 1 1 1
1 € e* 1
1 €* € 1
3 0 -1
-1 -1 -1 -1
-1 —€ —e* -1
-1 —e* —€ -1
-3 0 0 1

composed of a sum over three two-body terms and a three-body
term

Viend(€; R) = Vl()if()i(wA’ wg) + Vﬁﬁfﬁ(wsx wc)

+ Vied(@c, @) + ViZi(Q)

= V(@) + VEN(Q) (11)
where VZ)(w),, w)) = V) (g, wj; R),
Vlgiggl,mt = Vlgigc)l(wm wg) + Vl()igzl(wB’ wc)
+ VI we, @) (12)
and VZH(Q) = VEV(Q; R).

2.3. Symmetry of Hy,.ng. The molecular symmetry group of
feasible permutations and inversions of (H,0) and of (D,0); is
well-known (see, for example, ref 11 to be G = {E, E¥} ® G, "
where E is the identity operation and E* is the operator that
inverts all nuclear and electronic coordinates. Above is a
character table for G,, (Table 1), which is isomorphic with the
point group T):

The permutation operations of this group are denoted in the
usual way with A, B, and C representing the O nuclei of
monomers A, B, and C, respectively, and {1, 2}, {3, 4}, and {5, 6}
representing {H nucleus #1, H nucleus #2} of monomers A, B,
and C, respectively. The operations, irreducible representations
(“irreps”), and character table of G,g are easily obtained from
those of G,,. The irreps of the former are denoted in the same
way as those of G, except with an additional right superscript of
plus or minus signifying even or odd parity (i.e., transformation
behavior with respect to E*), respectively.

It is straightforward to show that H,,, 4 of eq 10 is invariant
with respect to the operations of G,s. As such, each eigenvector
of Hy,,4 must transform as one of the irreps of that group.
Moreover, given a basis set consisting of functions that
transform as G,g irreps, the matrix of H,, ;4 in that basis can
be block-diagonalized into blocks corresponding to each irrep.
‘We make use of this fact here in computing the eigenvectors of
Hbend‘

2.4. 9D Basis States as Trilinear Products of Hindered-
Rotor Eigenstates. We construct the 9D functions of the basis
in which the matrix of H,,, is expressed, and ultimately
diagonalized, as products of 3D, hindered-rotor functions:

la, B, v) = la(aw))B(wp)ly () = |Fa(wA)>|F/j(wB)>
X |E(wc));

Note that the order of a, f, y in denoting these states has
meaning. The first symbol refers to a hindered-rotor state

a, ﬂ; Y= 1; R NHR (13)

dependent on @,, the second to one dependent on wy and the
third to one dependent on w(.

The hindered-rotor functions, E,(«),), etc., are computed in
the following way. First, the hindered-rotor, 3D eigenvalue

equation

A (1) N
H, f(l)(wA) = (T, + fol))f(l)(wA) = A(l)f(l)(wA) (14)
is solved. Here,

A - s (A,-4)
Ty = (By + Bp)ly + [A, — Bll, + ———=
A2 A2 3_ 2

x (I, = lyA) - EBFIZA (15)
is that part of the kinetic-energy portion of H,,4 that depends
exclusively on w,, the local angles associated with monomer A.
Vi)(w,) is a 3D, symmetrized potential-energy function
obtained from Vi q:

vi(w,)

6 . — . —
_y V@ @g,) + Vel @c,) + Vim(ay; @, @)
- 6

i=1

(16)

where @g;, @, are the (fixed) Euler angles of monomers Band C
that correspond to i-th version of the six equivalent trimer
geometries obtained by repeated operation of (ACB)(153)-
(264)* on one of the 96 trimer geometries corresponding to the
minimum of V.4 (The set of six @y, @c; that we choose
corresponds to geometries in which hydrogen #4 is the donor in
the B—A hydrogen bond and hydrogen #6 is the donor in the
C—B hydrogen bond.) The operator I:Igl) is invariant to E* and
to the permutation (12). As such, the eigenvectors of eq 14 are
also eigenvectors of these two operators.

Second, a new 3D eigenvalue equation is constructed and
solved by making use of the lowest-energy eigenvector [denoted
FD(@)] from eq 14:

AP (@) = [T, + VPP (@) = 1% D) (17)
where V,®(w,) is the potential felt by monomer A when
monomers B and C are in the hindered-rotor states
corresponding to wave functions ﬁl)(a)B) and ﬂl)(a)c),
respectively:

https://doi.org/10.1021/acs.jpca.4c05045
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Vf)(a)A) = /Vlgifc)i(wm wB)lfl(l)(wB)lz dawg
+ /Vt()ifg(wo ‘U,cx)lfl(l)(wc)I2 do

3B 1 21£(1 2
+ fVéeng(wA, g, a)c)lfl( )(a)B)I Ifl( )(wc)l dwy dw
(18)
The ground state of 121542) is then used to construct a new
potential and new hindered rotor eigenvalue equation in the
same manner in which the ground state of H was used to
construct eq 17. This new equation is solved, and the process is
repeated until the set of A" eigenvalues matches (to within a
em™! or s0) the A"V set. The resulting set of the Ny lowest-
energy hindered-rotor eigenfunctions

E(w) = f"(0); a@=1,., Ny andI =4, B, C

(19)
is then taken as that with which to construct the functions of eq
13.

We computed the hindered-rotor states variationally (see
Section S2 for further details) by using a basis of normalized
symmetric-top rotational eigenstates

~0 2j+1 j im¢, i
lj, k, m) = [Drg,)k(wA)]* = ,/%dg,)k(@a) e e

(20)

wherej=0, ..., jmes M k=—j, —j + 1, .., j, and d,({;,)k are “little-d”
Wigner matrix elements (e.g, see eq 3.57 of ref 39). The
computed states are thus given as expansions over this basis:

Jmax i i
(@) =D D D0 iy ki m) i, kyy mylar)

j=0 ky=—j, m=—j, (21)

2.4.1. Symmetry Considerations in Respect to the
Hindered-Rotor States. Given that f{'(w,) is an eigenvector
of E*, it follows that both |f§l)(a)]_:;)|2 and m(ﬁ(wcﬂl are invariant
with respect to E*. Both, too, are invariant with respect to the H-
exchange operator associated with monomer 4, i.e., (12). Thus,
given the invariance of Vi) (w,, wg) and VW (we, w,) with
respect to these operators, it is clear that Vi(w,), and,
therefore, I:I,(f) , are invariant with respect E* and (12). Hence, all
the HY eigenvectors, f}_(z) (w,), are also eigenvectors of E* and
(12). It is easy to see that these symmetries carry through each
step of the iterative process leading to the set of hindered-rotor
states ultimately used to construct the bend basis. The upshot is
that each hindered-rotor state la(w;)) that composes the 9D
basis is an eigenvector of E* with eigenvalue p, = +1 and also an
eigenvector of the H-exchange operator associated with
monomer I with eigenvalue g, = +1:

Efla(w))) = pla(o)), 1=A,B,C (22)
and

(12)la(ay)) = qala(wA)>

B4la(wy)) = qala(wB)>

($6)la(wc)) = g la(wc)) (23)

2.5. Symmetries of the 9D Primitive Basis States. The
set of la, B, y) primitive basis functions have well-defined
transformation properties with respect to all of the operations of
G,s. We consider those properties below. First, however, it is

important to point out that these basis functions are suitable
only for calculations pertaining to one of the two enantiomeric
forms of the trimer—the two forms distinguished by the way in
which the H-bond donors and acceptors are arranged. In
particular, by virtue of the way in which we compute the
hindered-rotor states (specifically, tracing back to the way in

which we define Vgl) ), the basis states, and our calculations,
apply only to the enantiomer in which monomer A is the proton
donor to monomer C, monomer C is the proton donor to
monomer B, and monomer B is the proton donor to monomer
A. In the context of group theory, the set of basis states we use
does not have well-defined transformation properties with
respect to half of the operations of Gy, the largest molecular
symmetry group possible for the trimer without considering the
breaking of covalent bonds. Given that there is no evidence that
the tunneling between enantiomeric forms of the trimer
produces observable splittings, this limitation is not a mean-
ingful drawback. Indeed, it is an advantage, in that a Gog basis
would certainly have to be larger to achieve the same level of
convergence that characterizes a G, basis of a given size.
Given eqs 22 and 23, the transformation of the la, 3, y) by all
of the operations of G4 that involve just E* and/or any of the H-
exchange operators can be trivially determined, as all of the basis
states are eigenvectors of such operators. Thus, for example,

E'la, ,v) = ppsp e, B, 1) (24)
and
(12)(34)'(1, ﬂ; J’) = qaqﬁla; ﬂ) }’) (25)

To determine the effect of the operations involving the
permutation of monomers on these states, we start with a
consideration of one such operator: (ABC)(135)(246), which
moves monomer B to monomer-A’s position, monomer C to
monomer-B’s position, and monomer A to monomer-C’s
position, all such that monomer B’s new Euler angles
@y = w,, monomer A’s new Euler angles w; = @, and
monomer C’s new Euler angles w/ = wy. The effect of the
operator on la, f3, y) is thus given by’

(ABC)(135)(246)la, B, v) = 1B, v, @) (26)

The effect of all the other operators in the same class as
(ABC)(135)(246) can then be easily determined since these
other operators are each equivalent to the product of two H-
exchange operators with (ABC)(135)(246). For example,
(ABC)(235)(146) = (12)(34) x (ABC)(135)(246). Thus,

(ABC)(235)(146)|(1’ /}: V) = (12)(34)|ﬂ; 14} a) = q/ﬂyV}; I8 a)
(27)

Similarly, the effect of the all the operators in the (ACB)(153)-
(246) class can be determined by starting with

(ACB)(153)(246)|(1’ B, }’) =1, a, ﬂ) (28)

and noting that all the other operations in the same class are each
equivalent to the product of two H-exchange operators with
(ACB)(153)(246). Finally, the operators in the (ABC)-
(145236) class are equivalent to the product of either one or
three H-exchange operators with (ABC)(135)(246), and the
operators of the (ACB)(163254) class are equivalent to the
product of either one or three H-exchange operators with
(ACB)(153)(264). Hence, the transformations by these of

https://doi.org/10.1021/acs.jpca.4c05045
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Table 2. Characteristics of the Symmetry-Adapted Bend Basis States

r {490 ap 9/} Symmetry-adapted basis-ket types” # of Symmetry-adapted states® # of Primitive states
54671 n(n® +2) n®
Atg/tu {1, £1, 1} la, @, a) and “'*'(17%0”(1, £, 7) e 5
A A-l 2 3
[1+€0+ed ] n(n® — 1) n —n
Azg/lu {ilr +1, il} Tla’ /;) 7) T )
A A=l 2 3
[1+e0+€0 ] n(n” — 1) nw—n
Asg/su {£1, =1, +1} Tla, B, 7) e 2
3 3
n n
Tg,a {+1’ -1, _1} |(I, /))7 7) N 7
3 3
n n
Tg,h {_17 +1, _1} Ia} ﬁr J/> - -
2
n’® n®
Tg,; {_17 _1! +1} Ia} /),r 7) -~ -~
3 3
Tu,a {_17 +1, +1} Ia} ﬁr Y) i L
3 3
n n
Tu,h {+1 1_1’ +1} Ia} .Br Y> -~ -
3 3
n n
Tu,c {+1f +1, _1} Ia} ﬁr y) ? 7

“States belonging to I'* irreps have p,pp, = +1. States belonging to I' irreps have p,pyp, = —1. be = 23 and O = (ABC)(135)(246). “Under the
assumption that there are a total of Nyr/4 each of the four symmetry types of hindered-rotor states. See the text. n = Nyg/2.

operators of la, f, y) are also readily determined. As one
example,

(ABC)(145236)la, f3, v)
= (12)(34)(56)(ABC)(135)(246)la, 3, v)
= (12)(34)(56)18, 7, @)
=4,,9,8,7, @) (29)

In this way, and together with the fact that for any operator 0,
the operator O* = E*O, one can determine the transformation
properties of all the primitive 9D basis functions with respect to
all of the operations of Ggq.

With their transformation properties in hand, one can
construct from the primitive basis states G,g-symmetry-adapted
basis states by well-known methods. Table 2 summarizes the
results. Note that primitive basis states with only certain
combinations of g, g4 g, can contribute to symmetry-adapted
states belonging to a particular irrep. Note also that primitive
basis states for which p,pgp, = +1 only contribute to even-parity
irreps and those for which p,pgp, = —1 only contribute to odd-
parity irreps. Finally, note from the Table that we have chosen
particular representations for the T irreps. We will henceforth
refer to T states that transform in the same way as the basis states
designated by the subscripts a, b, and ¢ in Table 2 as belonging to
a, b, or ¢ “sub-irreps” of the T irrep in question.

In the fourth column of Table 2 we list the sizes of the
symmetry-specific basis sets under the assumption that, of the
total number of hindered-rotor states, Ny, one-quarter each
correspond to (py, q,) = (+1, +1), (+1, 1), (=1, +1), and (-1,
—1), respectively. (Clearly, this assumes that Ny is a multiple of
4.) The sizes pertain to, and are equal for, both the even- and
odd-parity irreps associated with a given row in the Table. In the
far-right column of the Table we list the total number of
primitive basis functions for each irrep/subirrep under the same
assumption.

2.6. Solving for the Eigenstates of Hy..q: General
Scheme. The largest impediment to diagonalizing I:Ibend in the
bases we have detailed above arises from the need to deal with
the not-insignificant Viena®P part of that operator. The required
basis-set sizes (of order 10°—10° states) are large enough to
mandate an iterative diagonalization scheme (e.g., filter
diagonalization or Lanczos). In such schemes, one needs to
evaluate the effect of the PE part of the Hamiltonian on a state
vector expressed in the basis-set representation. This is typically
handled by transforming that vector to a grid representation,
multiplying that version of the vector by the PE function’s value
at each grid point, and transforming the result back to the basis-
set representation. This is done on order of hundreds or
thousands of times. The problem is that the size of the 9D grid
required to accurately represent V*® and the state function is so
large (of order 10" points or larger) as to render this scheme
unfeasible.

As a way to circumvent this problem, we have implemented a
two-step approach to the diagonalization of Hyeng. In the first
step we diagonalize, in the basis described in the preceding
subsection, the operator

y(2B) _ A 2B[3B] 3B
Hbend = Hbend + Vl()end,tot) - Vlgengi
— 7 2B 2B[3B]
- Tl':oend + Véen(?l,tot + V}Eend,tot) (30)

where Ty,,qis the kinetic-energy portion of Hy,,q, and V&EBEP is
a sum over two-body approximation terms to V{25):

2B[3B —
Vl()em[i,tojt)(g) =
B[3B B[3B B[3B
Vlgznga ])(wAl wB) + Vl(szgj’ ])(wB' wC) + Vlgzmgs ])(wC’ wA)

3

(31)

where the bﬁg([]m])(a)l,a)]) are given by
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6
b d(wp wy; Wy, )
V0, ) = 3 ,

i=1 6 (32)

and the six sets of fixed angles @y ; (i = 1—6) correspond to the

symmetrically equivalent equilibrium values of wy connected by
repeated application of the pseudorotation operator (ABC)-
(135) (246)*—see, for example, Figure 2a of ref 11. (We include

REP in H&Ed to improve convergence in the final step in the
dlagonahzatlon of the full Hy,q—see below.) The diagonaliza-
tion of H‘Sf_fg is considerably less demanding than the
diagonalization of the full Hy,,q4; the potential matrix elements
are only 6D integrals and many of them have identical values.
The upshot is that this first computation can be readily handled
by an iterative eigensolver.

In the second step, we diagonalize the full

ry (2B) 3B 2B[3B
Hbend - Hbend + [Vlgenc)l Vl(JemEl to]t)] (33)

in a truncated basis comprised of the lowest-energy eigenvectors
of H{®). In this second step the only nontrivial, and the only off-
diagonal, matrix elements that need to be computed are those of

V(3B% V(ZB 3&. One sees now the advantage of including
vgiﬁdiﬁt in Hbend In so doing one reduces (significantly, it turns

out) the overall magnitude of the off-diagonal matrix elements of
Hbend in the H{,eng eigenvector basis compared to the matrix
elements that would obtam if it were not included. As a result,
the size of the Hbend eigenvector bases required to achieve
acceptable convergence in this last step is only of order several
hundreds of states per G,g irr (p /subirrep.

2.7. Diagonalization of H2E),. We diagonalize the matrix of
H®) in the basis of eq 13 by the Chebyshev version of filter
diagonalization (CFD).* In so doing we make use of the fact
that ) can be block diagonalized into 24 blocks (see Section
S$3) corresponding to the different sets of states labeled by irrep
and subirrep and enumerated in Table 2. To exploit the ability to
block-diagonalize within the CFD algorithm we arrange it so
that the initial, random state vector, '), required to start the
procedure belongs to a specific G, irrep or subirrep, I, because
the CFD algorithm applied to such an initial state vector only
produces eigenvectors and eigenvalues associated with the I"
irrep or subirrep.

In implementing the filter diagonalization of H](,em)i one
requlres the evaluation of the repeated effects of operating with
H{,ﬁ}fd on |¥r). We perform all these required evaluations by
computing matrix-vector products, with the matrix elements of
the components of H; (28) computed beforehand.

2.7.1. Computing the Matrix Elements of Toens The matrix
elements of Tbend are of two types, one-body and two-body. The
one-body part involves the operator

2 G= X

I1=A,B,C I=A,B,C

(By + Byl + (A, — BM]iZ

(Ax _Ay) ~2 ~2 3 2
A L EBFIZI] -

The two-body part of ’fbend is given by

ZTI,_Z [ (Ul + by) + 21,0,

I, 8

+ \/_(IXI - YIX))] (35)

where (I, J) = (A, B), (B, C), (C, A). We evaluate the matrix

elements of these operators by first computing, analytically all

A2 A2
the relevant one-body matrix elements of the operators 11 .
2

!

yl)

) Pxp?
] X lY, ,and |, 7, in the set of hindered-rotor states. For any given

one of these operators, O,(w),), the relevant matrix elements are
given by

<a/(a)1)|(51(w1)|a(wl)>
> (@l ki, mp, kyy myla)

jI/,kI,’ml/ jpkllml
X(ji, ki, mlOf(@p)Vj,, ky, my) (36)

and all of the (ji, k{, m{10,(w)lj, k;, m;) are available e analytically.
For the matrix elements of the two-body part of Thend (€9 35)
we use the fact that the (a'(w;), f'(0)IT; (@), wpla(w;),p-
(@;)) can easily be written as a sum over products of already-
evaluated (eq 36) single-body matrix elements. Considerations
of symmetry also significantly reduce the computational effort
associated with obtaining all the required (a’f’ I, Jaf). In
particular, it can be easily shown (see the Section S4) that these
matrix elements are only nonzero if (a) PabpPalp = +1, (b) g, =
4o and (c) g = g5
2.7.2. Computing the Matrix Elements of the V22 (w,w))
and V838 (w,w)). The procedures for computing the matrix
elements of Vgend(a)l,a)]) and V22038 (g, @) are the same. As
such, we provide the details below only for the bend(a)l,w])
matrix-element calculations. Replacing Vbend(wl,a)]) with
V(ZBisB in what follows yields the process by which the
(28138 )(a)l,wj) matrix elements are obtained.
Vgust as with the TI] matrix elements, the (a’,f’,y’'l
bend(a)l,a)])la,ﬁ,y) matrix elements are diagonal with respect
to the indices associated with @y, K # I, J. In addition, one has by

symmetry

<al(wA)) ﬂ'(wB)Wﬁif?i(wA; wB)Ia(wA); ﬂ(ws»
= (a’ (CUB) p (wc)l éif()i(wB) wc)la(wB)) ﬂ(wc»
= <a (wc)) p (wA)|V1§§f?1(wc; wA)Ia(wc)) ﬂ(wA» (37)

and (a’, ﬂ/|V£%E()i|(X, p)=0, ifPaPﬁPa’Pp” =—1,0rq, # qu, or qp *
qp-

ﬁTo evaluate the nonzero matrix elements, rather than working
with a quadrature-grid representation of the functions involved,
we choose instead to work with an expansion of Vf)end(wl,w])
over symmetric-top eigenfunctions (normalized Wigner matrix
elements):

bend(wf’ a)]) = Z Vﬁ,zﬁj)[D,S,, ()T, k](a)])]
Ay (38)

where A; = (j,, k;, m;). The extent of the expansion is defined by
jﬁff;“d: All the Wigner-matrix-element products corresponding
to ji, j; < jmee™ are included (initially). The expansion
coeflicients are given by

veD = [ [V, o)b)!

which we compute by quadrature.
The matrix elements of interest are then given by

( w;)D, (J]k (w]) do, da)]
(39)
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(@, pvEBla, p)
= X VEXIDY, Fla)(pIID,), 16)

Ay (40)

The one-body matrix elements on the rhs of eq 40 can be
computed analytically by making use of eq 21 above and eqs
3.118 of ref 39. Thus, for example, one has

@IDY ey = Y, X, (alf, K, m)(, k, mla)

ik ,m' jk,m

X fDVS/k/(w)[DrEt];,k ()] [D(’-,)k(w)]>l< dw = Z
7K

(0, K, K, mla)
jk,m
9 \/(217 + 1)@+ D)@+ (f

8n? m —m —m
y (1 i ]

K-k -k )

where the quantities in large parentheses are 3-j symbols. To
simplify notation going forward, we define

(J,

1= @i o) )

so that eq 40 can be re-expressed as

/1
<(){ ﬂl l()?éfc)](wl’ w])la’ ﬂ) Z gf‘ﬁ]) a,a /},/1
Al (43)

One can further exploit symmetry to reduce the number of
terms that need to be computed in eq 43—see Section SS.
Specifically, only those terms in the summation on the rhs of that
equation that correspond to even k; and k; values are nonzero.
Further,

B4 %4

QB)dy Y _
VLT T} Iyt d et BB (44)

/11,/1] a,at pLp
where 1, = (jl, —k;, m;) and /T] = (j], —k;, m]). eq 44 can be
used to reduce the number of terms in eq 43 by about a factor of
2.

2.7.3. Matrix-Vector Products. In computing the matrix-
vector products required to implement CFD

(2B) ~ (2B) /
(@, B, NHpord¥) = D (a, B, 7iFyil, B, 1)
a,py
x{a', ', y'1¥) (45)

we make use of the structure of I:Iéjfg (see eq 30) to significantly
reduce the computational cost. In particular, we multiply
separately the [} vector with the matrices corresponding to Tj,
I=A4,B,Cand (T, + V), (1)) = (4 B), (B ), (C 4),
respectively, and then add the results (we will henceforth
abbreviate [ bend(a)b 0)])"' bend )(wb a)])] as Vp ]) Thus,
instead of having to loop over six indices, as suggested by eq 45,
the multiplications involving the one-body operators can be
effected by looping over only four indices, and those involving
the two-body operators by looping over only five. In addition,
the relevant operator matrices in our symmetry-specific CFD

runs are substantially reduced relative to the sizes they would
have if symmetry were not taken into account. For example, for

the A:g irrep, the only part of the full (@, ﬂ'l(’f}J + Vi la, B)
matrix that is relevant is that for which the basis states have H-
exchange eigenvalues g = 45 =4q,, =4, = t1 (See Table

2.) Further, that much-reduced matrix, can be block-
diagonalized into two blocks—those for which
BBy = B,b, = +1 — which further reduces the cost of the

multiplication by about a factor of 2. Finally, there are
restrictions on the values of the two indices (in the case of the
one-body operators) or the single index (in the case of the two-
body operators) that do not correspond to any of the operator-
matrix indices but must be looped over to effect the matrix-
vector multiplication. An example is the index y in the
multiplication

(a, B, yI(TA’B + V, p)I¥)

= Y (o, fi(Tyg + Vapla, B3, B, 1)
a,p (46)

eq 46 must be evaluated for numerous values of y. However,
these values are limited by symmetry. For the Alz case referred to
above, for example, the only relevant values of y in eq 46 are
those for which q, = +1 (only such ly) contribute to the Afjg

basis). In addition only ly) corresponding to p = +1 are

relevant for the blocks of the (T, 5 + V, ;) matrix correspond-
ing to pap/j = pwp/j, = +1.
Finally, for all of the A irreps one can further reduce the

computational cost of matrix-vector operations by virtue of the
following relations, which we prove in Section S6:

<(X, ﬂ; ylfA'Wr) = 5<ﬂ) 14 alfC'Wr) = 5*<7; a, ﬂ'ﬁ;'yﬁ—)

(47)
and
(a, p, yl(fA,B + VA,B)h//r>
=P, 7, al(fC,A + VC,A)h//r>
= 5*<}’; a, ﬁl(TB,c + Vs,c)"l’y) (48)

where 8 = (+1, ¢/3, ¢*/3) for I equal to A,-type, A,-type,

and Aj-type irreps, respectively. As a result of these relations, one

need only compute say, (a,ﬁ,yl'f"Aly/r> and

(a, B, yI(TA'A'B + V, plyp) for all relevant @, 3, y to obtain

trivially the effects of operating with all of the other components

of I:Ib(:n; on ly.), as well.

2.8. Diagonalization of the Full Hbend With the
eigenvectors and eigenvalues of HgEzI computed, we then
diagonalize Hbend in a truncated basis of low-energy H; ﬁeﬁg
eigenvectors. Denoting the latter associated with a given Gy

irrep or subirrep I as o)
or=1,..N,

lor) = D la, B, ¥)a, B, Yloy), ..
apy (49)

one has for the matrix elements of Hbend for the I" block of the
Hamiltonian (which is block-diagonal with respect to the I'):
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J. Phys. Chem. A XXXX, XXX, XXX—XXX


https://pubs.acs.org/doi/suppl/10.1021/acs.jpca.4c05045/suppl_file/jp4c05045_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpca.4c05045/suppl_file/jp4c05045_si_001.pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.4c05045?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

The Journal of Physical Chemistry A

pubs.acs.org/JPCA

N1y ’ 3B
<6F|Hbend|61"> - E(fr(s(rr or + <6F|Vk()em)ilal">
’ 2B[3B
- <Ur|Vk()en£,to]tlal"> (50)

where E,_is the eigenvalue of loy-) with respect to ﬁéffj . Clearly,

the main tasks in diagonalizing I:Ibend in this scheme are the

evaluation of the Vlgifg and V&ﬂ?ﬂ) matrix elements in the lop)

bases.

2.8.1. Evaluation of the VEE, Matrix Elements. The size of
the 9D grid required to evaluate by uadrature the integrals
associated with the matrix elements of V{>F) in eq 50 is of order 2
X 10" points. (For example, with j,,, = 12 for the primitive,
single-site basis set (see eq 20), the w; angle grid for that site
should ostensibly consist of 14 X (26)* = 9464 points. Thus, the
full 9D angle grid for this j,,, should consist of (9464)* points.
Symmetry can be used to reduce this size by about a factor of

(3B)

48.) Such evaluation requires (a) computing and storing V>4
on such a grid, (b) transforming all the relevant lo-) (on the
order of 5 X 10” in number) to the grid and storing the results,
and (c) performing sums over the grid points for all of the

3B)

required V; bend matrix elements. The storage requirements to
implement this approach are very demanding. Given this, we

have chosen to work with Vézfc)l represented as an expansion over
products of normalized Wigner matrix elements in order to
evaluate the necessary matrix elements.

Analogous to eq 38 for the two-body PES terms, one can write

for VSB)

end

éinﬁ(wp wy, wg)

> v 1%, (@)D (@) TID), ()T

Ay
(1)
where
/Eiﬁj),ﬂk f/ Vbend(a)l’ w]’ a)K) ( I) k (w])
~(j
X D"{I‘:le(a)]) dw; dow; dwy (52)

We evaluate these coeflicients by quadrature. The matrix
elements in eq 50, making use of the definition in eq 42, can then
be written as

/1v7(3B) ~ 2 Nt (3B)
<O'r|Vbend|0r> = <O'r|a ] ﬂ N >[ Z V;LA,AB,AC
a,py AarApidc

) A
Z (T(lAaTﬁBﬁTy y<a ﬂ; }’lf’r))]

a,py

(83)

The significant advantage of this approach is that the memory
needed to store the terms involved in eq 53 is readily available
with current technology. However, the evaluation of eq 53,
which has to be done on the order of 10° times, is daunting, as it
requires summing over nine indices each of which runs over ca.
100 values or more. Thus, one seeks ways to evaluate the
summations efficiently and, if possible, reduce the number of
terms in those summations.

As to the former, we first evaluate Z(l,/)’,yT‘i:’x,aT‘;ﬁ,/}T‘f/%y(al b,
ylor) for all necessary o', ', ¥/, an initial set of 14, A, A¢ values,
and an initial lop). This can be done efficiently in a now-standard
type of procedure, as follows. First,

B _ p
”/7 ZTaAa(aﬂ}/lar)

(54)
is evaluated for all @, f, y. Then
(lﬁ I— Z TlBﬁF(l "Br
(88)
is evaluated for all &', f#, y. Finally,
B A A
Z Ty ; (1/ 7 — Z TaAaT/fB/}T;/ y<a) B, vlor)
apy (56)

is evaluated for all @', #', . The cost of this procedure goes as
3n* (rather than n°) where n is the number of single-site
hindered-rotor eigenstates used to construct the symmetry-
specific 9D basis. We multiply each of the quantities given by eq

S6byV 53 A) ) Store the result, and repeat the entire process for

the next set of A, 4z, 4 values. These new values of

Vﬁjﬁbc Za,ﬂ# TaAaTﬂ I/,Tﬂc (a, B, Yloy) (for all o, B/, 7') are
added to the first ones, and the whole procedure is repeated until
all of the 4,, 43, A values have been covered. The end result is
the evaluation of

@, B, y'vlor)

— (3B) 4 /1
- Z AJBJ Z TaA a /}B/}Ty Cy<a1 ﬁ! 7|6F>
AnApAc a,py (57)

for all relevant &', ', y'. These quantities are then contracted

with the (o{la’, ', ') for all 6 to obtain (ar'lVézf‘)ilaﬁ for all

o The entire process is repeated for each loy), and all required
matrix elements are thus obtained. This algorithm is easily

parallelized, and we have performed the V( ) matrix-element
calculations required for this work by using open—MPI running
on 60 processors.

In respect to minimizing the number of terms in the 4,, A, A
summation on the rhs of eq 57 we do two things. First, we exploit

symmetry. As detailed in Section 2.10 below, the expansion we
)

use for V3B (see eq 51) leads to 4,, A, A summations that

nominally consist of (455)3 ~ 9.4 x 10’ terms. However, as we
show in Section S7, when I' is an A irrep this number can be
reduced in eq S7 by about a factor of 48 (without
approximation), and when I is a T subirrep, it can be reduced
by about a factor of 16. Second, we use the fact that many of the

E" /12; ) expansion coefficients (after aggregating by symmetry)

are very small relative to the ones that contribute the most to the

v (3B)

Viong €xpansion. In particular, we include only those 4,, 45, A¢
values in eq 57 that correspond to expansion coeflicients with
magnitudes above a predetermined threshold. This approx-
imation reduces the number of 4, A, A terms in eq 57 to the
neighborhood of 10* to 10°. We address the effect of this
approximation on the accuracy of the 9D eigenvector results
below in Section 2.10.

2.8.2. Evaluation of the VEZE38) Matrix Elements in the loy)

Bases. Compared to the evaluation of the Vﬁif()i matrix elements,

2B[3B])

endtor 107) is much less expensive. The

computing the <O'1L|V£
relevant matrix-element pieces in the primitive hindered-rotor

basis, (a’, f'IV. éif([fB])(wI, a)])la, B), are already available from
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~ (2B
the procedure used to diagonalize Hb(eni. One can immediately
use these to obtain the desired quantities. For example,

(VB @y, wp)lor)

= Y (opla, B, 1) D, IV wy,, wp)lar, B

a\py a,p

x{a, B, ylor) (58)

Similar relations are easily obtained for the matrix elements of

V,giﬂw]) (wg, w¢) and for those of V,giﬂlw])(a)c, ).

2.8.3. Eigenstates of Hy,,,4. With the matrix elements of Hy, 4
in a given irrep/subirrep lop) block computed, we then
diagonalize that matrix directly. We label the resulting
eigenvectors and corresponding eigenvalues Ikr) and E,_ (kr =

1, .., N, respectively. The eigenvectors can be expressed as

expansions over the lop) basis states or over the hindered-rotor

la, B, v) basis:

Ik} = z lop-){orlkr) = z la, B, y){a, B, vIkp)

r a,ﬁ;}’ (59)

where

(a, B, i) = ), {a, B, vlor){oplkr)
or (60)

2.9. Calculation of Electric-Dipole Transition Mo-
ments. With the eigenvectors of I:Ibend in hand there are
numerous ways by which one can characterize the correspond-
ing states. Space limitations preclude us from doing this in
anything like comprehensive fashion in this work. However, one
thing we do include here is a calculation of dipole-moment
matrix elements corresponding to transitions from lower-energy
bend eigenstates to higher-energy ones. To perform these
calculations we assume that the trimer dipole operator is the
vector sum of the permanent dipoles of the three constituent
monomers. In that case, the trimer’s dipole operator is given by
g = —pu(2, + 25 + 2c), where y is the magnitude of water
monomer’s ground-state permanent dipole moment.

We are interested in the components of ji along the “global”
trimer-fixed axes (X, ¥, Z) (defined in ref 38, Section 3). We
thus need the direction cosines between the global axes and the
three sets of local axes (X;, Y;, Z,), I = A, B, C, with respect to
which the bend coordinates, w;, are defined. The direction

cosines, which we denote as c}(’lg, where] =A,B,C,j=1,2,3
correspond to X, ¥;, and Z,, respectively, and k = 1, 2, 3

correspond to X,7,and Z, respectively, are easily determined
from the axis definitions. One then has for the component of i
along the kth global axis

3
me=—n D X (@)
I=A,B,C j=1 (61)

where (%), = sin 6; cos ¢y, (2;), = sin 8; sin ¢}, and (2;); = cos ;.
The matrix element of y; between initial bend state lk;) and final
bend state Ik;) can then be expressed as

3
(el i) = = 5 12 X k(g la) x (ke B, 7)

=1 da By

(@ B, 1K) + 20 2 BBz, 18)

BB ay
x (kla, B, ), B, vl + 2 D0 Q1))
7 ap
X <Ki|a1 B, 7,><a) B, }’le>] (62)

eq 62 can be readily evaluated by first computing by quadrature
the single-monomer, hindered-rotor matrix elements <a'|(21)}-|a>

for all &, o', and then using the results in eq 62. We present the
results of these calculations in the form of the simulated
absorption spectrum of the trimer shown in Section 3.2.3,
wherein the intensity of each |Kf> « lx;) transition is taken as

o [kl )P

2.10. Summary of Computational Parameters. We list
here the values of the various parameters used to produce the
results presented below. We took the H and O masses to be
1837.153 au and 29 156.946 au, respectively. The OH monomer
bond distance was set at 1.84371 bohrs, and the monomer bond
angle at 104.43°, corresponding to the averaged structure of the
isolated water monomer in its ground state.*’ The intermo-
nomer cm-to-cm distance was taken to be R = 5.4 bohrs, which
corresponds to its expectation value in ground state of the 3D
frame Hamiltonian of the water trimer. The value chosen for ji .,
in computing the hindered-rotor states was 12. For Ny we used
200. (We also did limited calculations with Ny = 240 and 280 in
order to check convergence.) The number of hindered-rotor
functions of each of the four possible (p , qa) symmetries

equaled Nyp/4. The la, f, 7) bases employed in the

~ (2B
diagonalization of Héen; consequently consisted of 500,000
functions per irrep/subirrep. In diagonalizing Hy, 4 the loy-)
basis sets all consisted of the 500 lowest-energy functions of a
given irrep/subirrep.
Finally, the parameters relevant to the expansion representa-

tions of Vﬁfﬁ, Véﬁﬂml) , and Véiﬂ are given in Table 3. In the

Table 3. Details of the Expansion Representations of

(2B[3B])

Vlngr)l(wli a)]), Viend (@, a)]), and Véifg(wm wg, @)

coeff . AV/

j::p;and N;xa};(and /cm—l Nexpand em~!

VED (ay, o) 10 793,881 001  S11,31S 105
10 793,881 0.01 196,271 0.02

Véiﬁc[]w])((ul , m])

6 12,326,391 10.0 427,433 216

(3B)
Vbend (U}A’ Wp, (UC)

Table, j&%2, the largest j; value in the expansion, defines the
total possible number of nonzero terms, N2 in each
expansion. The actual number of expansion terms relevant to
any given calculation, N*®™, depends on the choice of the
coeflicient-threshold value, coeff ; , the value below which
expansion terms (aggregated by symmetry) were set to zero.
Last, for each set of expansion parameters we quote the root-
mean-squared deviation, AV, of the expansion-computed
potential-energy values from those computed from the relevant

PES function.
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Table 4. Computed Bifurcation-Tunneling Splittings of Low-Energy A" Torsional Levels of H,

1)y AE; g AE(A,,)" AE(T,)
Af(1) 0.007 —200.0 —-66.7
Af(2) 145.48 77.9 25.9
AF(3) 207.68 -135.2 —45.0
Af(4) 271.60 —2599.4 —866.6
A7(1) 89.86 1023 342
AT (2) 151.37 774.1 257.9
AT (3) 154.52 —531.1 -177.6
AT (4) 243.81 8522 279.9

“Average energy of the torsional level in cm™" relative to the ﬁb(:f; ground state at —4012.162 cm™

pubs.acs.org/JPCA
r (2B)
end
AE(T,) AE(4;,) B rms
66.7 200.1 133.4 0.01
—26.0 -77.8 —=S51.9 0.02
45.1 135.1 90.1 0.07
866.2 2599.8 1733.0 0.20
—-34.0 —102.4 —68.2 0.08
—258.1 —=773.8 —516.0 0.13
176.8 532.0 354.4 0.43
—286.1 —846.0 —566.1 3.08

1 PALl splitting energies are relative to the

average energy of the torsional level. The splittings, as well as the # and rms values, are in MHz. The definitions of # and rms are given in the text.

Table 5. Computed Bifurcation-Tunneling Splittings of Low-Energy A}’ ; Torsional Levels of F,

T AEq* AE(AZg/Sg)b AE(Az,/3.) AE(T)
A1) 68.34 -7.1 7.1 —89.8
AF5(2) 150.54 —1295.3 1295.9 —414.5
AF5(3) 229.60 —-247.7 247.7 —553.6
Af(4) 276.15 —2333.1 23332 —588.5
Ay (1) 24.01 49.0 —49.0 —76.1
A35(2) 193.69 -75.6 75.3 —587.2
A35(3) 215.29 —420.8 420.8 —276.6
Ay 5(4) 271.04 2527.3 —2540.0 —3254.4

r (2B)

end
AE('I:S) AE(T) AE(T,) p ] rms
94.5 —-94.5 89.7 4.7 92.1 0.01
1277.6 —-1277.4 413.1 863.7 845.6 0.41
718.7 -717.9 5582.7 165.2 635.7 0.32
2144.2 —2144.7 588.7 15588.5 1366.5 0.19
43.4 —43.5 76.1 —-32.7 59.8 0.02
637.7 —636.9 586.8 50.3 612.1 0.26
§57.1 —556.2 275.7 280.5 416.4 0.33
1578.0 —1549.4 32512 —1689.1 2408.2 8.48

“Average energy of the torsional level in cm™ relative to the ﬁé:fg ground state at —4012.162 cm™". bAll splitting energies are in MHz and are

relative to the average energy of the torsional level.

3. RESULTS AND DISCUSSION

3.1. Results of the Diagonalization of H{2%),. The
eigenvectors of H{2®), the lor), are useful primarily as
constituents of an efficient basis with which to diagonalize the
full Ay, 4. For that purpose we employ up to 500 loy-) for each

G,girrep, I'. For the A irreps this includes states with energies up

to about 1300 cm™" above the I:Ib(:fd) ground state. For the T
irreps the states extend up to about 1000 cm™ above that
ground state. There seems little purpose to enumerate all of
these states here. However, there is some value in examining
some of the characteristics of those states with the lowest
energies, as these states contribute overwhelmingly to the low-

energy I:Ibend eigenstates that interest us. As such, we present a

listing of the 30/80 lowest-energy I:Ié:f; eigenvalues of each of
the A/T G,g irreps in Tables S1—S8. In those Tables, in addition
to energies, we also present information pertaining to the
efficiency of the hindered-rotor basis in covering the space of
these eigenstates. Specifically, we sum up the total contribution
of the 100 highest-contributing symmetry-adapted HR basis
functions to each eigenstate. We find that these contributions are
routinely >80%. Bearing in mind that the basis-set sizes that we
use for the irrep/subirrep are of order 10° states, one sees that a
small fraction of each basis contributes overwhelmingly to each
low-energy eigenstate.

~ (2B
It is also valuable to consider some of the lowest-energy Hb(mj

eigenstates by grouping them together according to the Gg
torsional levels to which they correspond. Figure 4 shows the

torsional level structure and the bifurcation substructure,
together with tunneling splitting parameters corresponding to

H,,,4- For torsional levels of Af G4 symmetry the eight pertinent

member states are of A[S, AL, T; (triply degenerate) and T3

1g7
(triply degenerate) G, symmetry. Hence, there are four distinct
energies corresponding to such levels. For torsional levels of

A} symmetry the 16 member states are of Azig/3g (doubly
degenerate), A}, 5, (doubly degenerate), Tgi (triply degener-
ate), Tgi (triply degenerate), T (triply degenerate), and T}
(triply degenerate) symmetry. Hence, for these torsional levels
there are six distinct energies. The substructure of these
torsional levels arises from the effect of non-negligible
bifurcation tunneling in the species, and the splitting patterns
due to such tunneling have been extensively investigated

13,14,26,42

A (2B
elsewhere. Given that Héen; is invariant to the

~ (2B
operations of G,s one would hope that our Hb(enj—eigenstate
results would conform to these patterns. The principal unknown

in this regard is whether the separate I:Ié:fci diagonalizations
corresponding to different irreps converge in similar fashion,
such that small computed energy differences between the states
of different irreps belonging to the same torsional level can be
trusted to be meaningful.

Tables 4 and 5 present results from our calculations that speak
to this issue. Table 4 lists the energies of the tunneling
components for the lowest-four levels of AT and of A7 G
symmetry. The splitting of such levels should conform to a

https://doi.org/10.1021/acs.jpca.4c05045
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pattern defined by a single energy parameter, 3, wherein the

energies of the Alg, T, Ty and A,, component states are given,

respectively, by —%ﬂ, —g, +§, +%ﬁ, relative to the average

energy of the level (see, e.g., Table S of ref 42, and Table 4 of ref
11. In Table 4 we present the torsional energies and the value of
B fitted to the calculated energies for each level and the root-
mean-squared deviation (“rms”) of those energies from the ideal
pattern implied by the value of 3. One notes that for these levels
the computed splitting patterns conform very well to those
expected from theory.

Table S lists the energies of the tunneling components for the
lowest-four levels of A /; and A3 /; G symmetry. The splitting of
these levels is expected from theory to depend on two energy

parameters, f and J, and to conform to the pattern —%ﬂ,

() (2= (2= 9) (200 o2y e

T, T, Ty Ty and Ay, /3, component states, respectively.*” We
have derived from the data values of f and 6 for each level and
have compared the ideal level structure based on these values
with the computed splittings. The £ and 6 values, as well as the
rms deviation of the computed energies from the ideal splitting
pattern, are given in Table S for each level. Here, too, one notes
the good agreement between the computed splittings and the
pattern expected from theory.

For computed I-Alb(ezf; levels higher in energy than the ones
pertaining to Tables 4 and 5 there is a trend toward less
conformity with the theoretical splitting patterns referred to
above. There are two likely reasons for this. First, the theoretical
patterns rest on several assumptions that might be reasonably
expected to break down with increasing excitation energy.*”
Indeed, experimental results'' indicate significant deviations
from those patterns for bend levels at excitation energies larger
than those listed in Tables 4 and S. Second, it is also possible that

the similar rates of convergence of the I:Ib(jfj calculations which
hold for the eigenenergies of the lowest-energy torsional levels,
do not apply for the states of higher-energy levels.

While our principal aim here is to obtain and, ultimately,

assess the results of the diagonalization of the full Hy, g, it is

perhaps of some interest to compare select ﬁéff; results with
available experimental ones. The latter includes the excitation
energies corresponding to the A;/5(1), A2+/3(1) and A[ (1)
torsional energy levels, and the bifurcation-tunneling-splitting
parameters corresponding to the Aj(1) — A7(1), A{(1) -
A3/3(1), and A3/5(1) = Aj/5(1) far-infrared bands.*’ In respect
to the former, one sees from Table 7 that the computed
excitation energies are too large by about 3% to 6% (1.3 to 2.8
cm™"). We shall see below that the corresponding discrepancies
are reduced significantly when the full A, 4 eigenvalues are
considered. As for bifurcation-tunneling-splitting parameters—
the quartet splittings (ie, I8(k") — B(k')I) and (k) values
derived from k' < k’’ transitions—one sees from Table 8 that
the computed values agree in respect to order-of-magnitude with
values obtained from experiment.

Finally, it is pertinent to consider in more detail the degree of

~ (2B
convergence of the Hb(em; results. We have assessed this by
computing the A;; level structure for three different primitive-

basis-set sizes: the 500,000-function basis set corresponding to
the results quoted above, along with basis sets containing

864,000 and 1,372,000 functions. Table S9 presents the relevant
results. In brief summary, the absolute energies of the computed
ground state decrease by about 0.09 cm™' in going from the
smallest basis to the largest, whereas such decrease increases to
about 0.74 cm™" for state #20 (AE ~ 517 cm™!), and to about

1.3 cm™ for state #40 (AE ~ 653 cm™"). Essentially all of the

- ~ (2B
Hy,,q results presented below were obtained by using Héeng

eigenstates corresponding to the 500,000-function bases.
Hence, we estimate convergence errors of about 1 cm™! (at
least in respect to limitations imposed by the size of the primitive
basis) for eigenenergies of H,, 4 having AE =~ 600 cm™', with
such error being an order of magnitude smaller for states nearer
the bottom of the level structure. R

3.2. Results of the Diagonalization of Hy.4. 3.2.1. Con-
vergence Attributes. Extensive listings of the computed
eigenenergies of Hy,,q are compiled in Tables S10—S17. The
results correspond to the 30 lowest-energy eigenstates for each
of the eight A irreps (up to about AE = 600 cm™") and the 80
lowest-energy eigenstates for each of the four T irreps (up to
about AE = 590 cm™"). In addition to the AE values, there is also
listed for each state in the Tables the basis-state norm,
BSN, = o™ lkp)* corresponding to the largest basis-state
(IloP™)) contributor to each eigenstate (k). The latter

numbers, particularly for the lowest-energy states, are routinely

~ (2B
greater than 0.9, testament to the efficiency with which the Hb(eng

-eigenstate bases cover the space of the low-energy H,, 4
eigenstates.

One universal feature of the Hj 4 eigenvalues is that each is

~ (2B
roughly 50—60 cm ™" more positive than the Hb(en; eigenvalue of
the basis state that dominates in contributing to it. This is due in

part to the fact that the diagonal matrix elements,

<61—|[V12253 — Véig([fﬂ)]aﬁ, that contribute to the matrix of

H,,,, in the o) basis are much larger in amplitude (typically by
a factor close to 100) than the off-diagonal elements of the
matrix. Hence, the diagonal elements dominate in determining

~ (2B ~
the change from H}Eeni eigenvalues to H,, 4 eigenvalues. In

addition, the (arl[Vézfg - Vﬁgfgf,]t)]lor) values are all positive

and mostly in the range of 50 to 60 cm™'. That they are positive
is attributable to the fact that Véifc[l‘sﬂ) generally overestimates
the attractiveness of (is more negative than) the true 3-body
term at a given 9D point because the former potential function is
defined with one monomer fixed in a low-energy position (see
eq32). The 50—60 cm™" diagonal elements constitute a measure
of the extent of that overestimation.

It is worth pointing out that we have tested an algorithm

similar to that employed here to diagonalize Hy, 4, but with

Véﬁf&?ﬂ) term included used as

eigenstates of H,fffi without the
the basis. The efficiency of that algorithm is notably worse than
the present one, and significantly larger lo}-) bases are required to
achieve a given level of convergence. The upshot is that the

V7 (2BI3BI) ;

complication of including Vi i in the algorithm is more than

compensated for by the enhanced performance that results from
its inclusion.

Figure 3 presents information pertaining to the convergence
behavior of Hy,, 4 eigenstates with respect to the sizes of the
irrep-specific lop) basis sets. The figure pertains to the states
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Figure 3. Computed H, 4 energy eigenvalues of the states of the A7(1)

Gg level of Hy 4 vs the size, N, of the basis. The energies corresponding
to a given state are all relative to the computed energy of that state for N
=500: Af;g(l) state (green line), Al state (blue diamonds), T;(l) state

(red line), T7(1) state (black squares).

comprising the ground-state torsional level: A;:g(l), Af(1),
T;(I), and T (1) and shows plots of the difference of the

computed energy of each state for a given basis set size, N, minus
the corresponding energy for N = 500 vs N (i.e.,
Er(N) — E(500) vs N). There are two points to note about
these data. First, the A states are quite well-converged at N =
500, but the T states are slightly less so. Second, the A states have
very close to the same convergence rates, as do the T states, but
those rates are different for the different classes of irreps. Similar
behavior is exhibited by the A and T states comprising the other
low-energy torsional levels. Such behavior can be understood by
noting that the lo-) level structures for I = A;—; and A" are very

similar, as are those for I' = T; and Tf, but the A and T level

structures are significantly different from one another (see
Tables S1—S8). Given this, one clearly cannot obtain mean-
ingful bifurcation-splitting patterns for the ground-state and
other low-energy levels by blindly using differences in the

N ~ (2B
computed H, 4 energies as they were used above with the Hé )

end
energies. However, one can have some confidence in the
computed energy differences between the A states of a given
level and those between the T states of a given level (at least to
within an order of magnitude). And, one can use those energy
differences to obtain significant features of the splitting patterns,
as we do in what follows.

3.2.2. Energetics of the Hy,.,q Level Structures. Table 6

presents the Hy 4 results in a manner similar to the presentation

of the low-energy I:Ié:f; results of Tables 4 and S, while Figure 4
shows the torsional states and bifurcation splitting parameters of
the ground vibrational state. The Tables list the AE,,; of the G4
levels and the values of bifurcation-splitting parameters
associated with each level (/8 in the case of the A" levels and f
and & in the case of the A}, levels). To obtain the AE,,, value
for a given A;" level we computed [E(Ali) + E(A[;)1/2 — E,,
where E(A;—;,) and E(A[) are the energies of the Af—;, and A{
states within that level and E, = —3968.752 cm™" is the ground-

Table 6. Energy Characteristics of the Lowest-Energy
Torsion/Libration Levels of I:Ibend

G irrep N  AE, . /cm™'¢ p/MHz 6/MHz  A"/MHz
A 1 0.005 1029 - -
2 146.61 -32.5 - -
3 207.03 58.0 - -
4 274.31 1046.1 - -
N 277.51 358.4 - -
6 316.19 3027.0 - -
AS) 1 23.14 —03 443 2.5
2 193.40 55.8 440.5 13.0
3 216.30 233.7 367.4 17.7
4 273.86 —1236.0 1784.4 19.4
S 310.83 —3741.7 4240.2 219
6 324.59 741.2 748.6 0.9
A;/3 1 66.16 47.7 79.2 11.9
2 151.52 669.0 600.9 4.5
3 229.54 148.2 535.8 4.7
4 280.19 1075.2 935.9 9.8
S 314.26 633.2 661.7 554
6 321.18 —201.4 1188.3 11.1
Al 1 87.37 20.7 - -
2 152.08 —404.1 - -
3 154.35 292.1 - -
4 244.88 —428.4 - -
N 318.02 872.7 - -
6 328.06 —1650.9 - -
1 b

“Energies relative to the ground-state energy of —3968.752 cm™".
A=|5g—5l=|5u—5|.

Torsion Bifurcation
|u7
p y
T-
e J
874 cm” ‘ + B=21MHz
" 88.1cm™ Ay
87.1cm T+
T
20K 7+ N
Ayt k=£2) ‘ 2 e Ax
_— . A" A3
66.2 cm™ % Tg ) b
64.9 cm™! T | 2 B =48 MHz
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Figure 4. Calculated (9D ﬁbend in this work and 21D PIMD?’) and
experimental43 torsional and bifurcation tunneling splittings in the
ground vibrational state of the water trimer.

state energy. The bifurcation-splitting parameter f for such
levels was obtained by using S = [E(4}.) — E(Af—é)]/?a.
Similarly, for the A}, levels we used

AElevel = [E(Azig) + E(A;_;)]/Z — EO an d
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p=1EA;) — E(A;;)]/S. For these latter levels 0 was also
computed from the average splittings of the T; and the T states
within the 6=1[5+461/2,
8, = IE(T) — E(T)I/2 and §, = IE(TY) — Ey(T)I/2,
and El(Tgi), EZ(T;), E,(TF) and E,(T%) are the two Tgi and

two T, energies, respectively, that contribute to the level.

level: where

The assignment of the levels in Table 6 is not trivial for any but
the lowest-energy one of each symmetry. These latter clearly
correspond to the four pseudorotational torsional levels created
by the hydrogen-flip tunneling splitting of the ground vibrational
state—i.e, k = 00, ilo, 120, and 3°. However, the floppiness of
the trimer, with its 48 equivalent and accessible minimum-
energy geometries, presents significant challenges to the
assignment of the higher-energy states, even with the
corresponding (highly delocalized) eigenstates in hand. In
fact, the task of assignment is involved enough that we choose to
take it up in a later paper. That said, there are several further
points about the Hj 4 results that can be considered here.

First, one can compare computed energy levels with
experimental and other computational results. The energies of
the three lowest-energy excited pseudorotational levels are well-
characterized by experiment. Moreover, those ener§ies have
been computed in full dimensionality by Zhang et al,’ by using
path-integral molecular dynamics with the PES that they
calculated, and which is employed in this work as well. Table
7 and Figure 4 present such comparisons. One notes that the

Table 7. Comparison Between Calculated and Experimental
AE,,,,/cm™" Results

G level op A% 9D A" 2iDPIMD’  ExptS
A7 (D[ = =1°] 240 231 219 2.7
Af (D[ = 2] 683 662 649 65.6
ATk = 3] 89.9 874 88.1 87.1

“This work. “Reference29 “Reference 43

~ (2B
éeng results already agree with the measured data to within 3—

6% (1.3—2.8 cm™"), while the discrepancy decreases to 0.3—2%
(0.3—0.6 cm™) for the Hy 4 results. Note that this excellent
agreement is partially fortuitous and probably involves error
cancellations, since our 9D model gives slightly better agreement
with the measured data than the 21D PIMD simulation by
Zhang et al.”’ We are currently investigating this possibility by
extending calculations on the trimer from the 9D bend problem
treated here to the full 12D intermolecular (rigid-monomer
approximation) problem.

Second, one can compare computed bifurcation-splitting
parameters with those obtained from experiment. We do this in

Table 8 and Figure 4. As with the I:Ilfff; results one sees that in

this regard the full A, 4 results are, at best, in semiquantitative
agreement with those from experiment. That said, the variation
from level to level in the computed bifurcation splittings (see
Table 6) is considerably larger than the differences between the
computed and experimental results in Table 8. In short, there is
some promise in the idea that one can make use of the present
computational results to correlate the magnitude of the
bifurcation splittings associated with a given level with the
nature of the vibration to which that level corresponds. We

Table 8. Comparison Between Calculated and Experimental
Bifurcation-Splitting Parameters, Given in MHz

oD Hé:f;a 9D Hyepg Expt.”
Quartet splittings
1Pk = 3°) — pk = 0% 202 82 289.0
1Pk = +2°) — Bk = 0%l 129 24 253.46
1Pk = +2°) — plk = +1°) 37 35 38.88
0 values
k=41 60 44 147
k=420 92 79 119

“This work. “Reference 43

pursue this idea in a follow-up work focused on the assignment
of the bend states computed here.

3.2.3. The Absorption Spectrum Calculated from the
Eigenstates of H,,, Calculation of the trimer’s bend
eigenstates allows us to make direct spectroscopic comparisons
with experiment. In particular, we compute the absorption
spectrum of the water trimer by using the results of Section 2.9,
with the goal of comparing it to the FIR spectrum of the trimer in
helium nanodroplets, measurements made at the ultracold
temperature of 0.37 K.** At that temperature all transitions in
the measured spectrum originate from the k = 0 torsional level.
Electric-dipole selection rules allow the A;;g /u = Agg/y and

T;/u - Tg_/u parallel transitions, while the perpendicular

transitions are Alz/u—>A2+g/u; A;;;/u_’A;[;/u and

T;/M - Tg+/u. In terms of G4 symmetry, the selection rules are

Al — A] for the parallel transitions and A;" — A2+/3 for the
perpendicular transitions.

Calculated spectra are shown in Figures 5 and 6. Each is
obtained by using

1
I(B) = Y ——gI;_exp| ——————
(E) (;Zf) s\ 21 & P 25

where E_; = E; — E, is the transition energy of the lk;) < Ik;)

(63)

transition, I;_; = 22:1 I(Kil/,tkIKJ()I2 is the transition intensity
(see Section 2.9),s = 1.5 cm™" for Figure S and s— 0 for Figure 6
is a line width parameter, and g is the nuclear spin statistical
weight of Ik;). The nuclear spin statistical weights are the

following: g(Alp =1, g(A;;) =11, g(Tg+) =9 and

g(T,) =3.

In Figure Sa, the calculated spectrum is compared to the
experimental one from ref 25, and in Figure Sb the parallel/
perpendicular character of the bands is shown. It is apparent at a
glance that the match between the two spectra in Figure Sa is
impressive both visually and in terms of alignment of the
individual computed and measured peaks over the entire range
of the measured FIR spectrum. Such a level of agreement is
remarkable given the fact that the present calculations do not
include the intermolecular stretching vibrations of the trimer.
From this, one can conclude that (1) most of the transitions
visible in the experimental FIR spectrum arise from the
excitation of what are primarily the bending vibrations of the
trimer, (2) intermolecular bending and stretching vibrations are
weakly coupled, (3) the PES by Zhang et al.”” is of high accuracy,
and (4) the rigid-monomer approximation is apparently

https://doi.org/10.1021/acs.jpca.4c05045
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Figure S. (a) Top: measured FIR spectrum of the water trimer by the
Havenith group. Adapted with permission from ref. 25 Copyright 2024
John Wiley and Sons. (a) Bottom: spectrum calculated from the 9D
eigenstates of I:Ibend in this work. Note that the calculated spectrum
includes only the intermolecular bending transitions, while the
measured spectrum contains intermolecular stretching transitions as
well. (b) Parallel and perpendicular components of the calculated
spectrum.
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Figure 6. Calculated bend transitions in the range of the spectrum
measured by the Saykally group.®” The transition quartets marked by
stars and diamonds correspond to bifurcation components within two
distinct excited A; torsional levels. See text for details.

adequate to the purpose of characterizing the intermolecular
level structure of the trimer.

Notwithstanding the above, it is evident from Figure Sa that
several peaks present in the measured FIR spectrum, e.g,, at 185
em™!, 210/215 cm™!, and at 266 cm™’, are missing from the
computed spectrum. Given the frequencies involved, it is highly
likely that these transitions are associated with the intermo-
lecular stretching excitations not included in the 9D bending
calculations herein. We expect that work currently in progress in
our group, involving calculations that include all 12
intermolecular degrees of freedom of the trimer, will directly
address this issue.

It is also notable in Figure Sa that relative intensities in the
computed and observed spectra are not always in agreement.
There are two likely sources for this. First, the approximation
that we have made concerning the nature of the trimer’s dipole
operator (see Section 2.9) may be at fault. In future work we will
investigate the effect of including induced-dipole terms in the
dipole operator. Second, the relative intensities in the He-
nanodroplet mass-depletion spectrum may not match those in

the corresponding absorption spectrum given that the former is
an action s.pectlrurn,25 the signal of which depends on more than
just the probability of photon absorption.

Apart from the nanodroplet spectrum, a second interesting
comparison of our calculated spectra with experimental results
can be made. The Saykally group has reported supersonic-beam
absorption spectra in the 510 to 525 cm™ spectral region.”’
Their observation of four parallel bands at 517.2, 517.5, 523.9,
and 525.3 cm™! has been tentatively interpreted by them as
evidence for very large (several cm™) bifurcation tunneling
splittings associated with the excitation of an out-of-plane
librational mode of the trimer. Our computed results
corresponding to this spectral region lend some support for
this view, with a twist. In particular, as shown in Figure 6, we find
a cluster of parallel bands near 514 cm™ and a second cluster
near 525 cm™'. The former can be readily assigned by wave
function analysis to transitions from the A;" ground-state Gg
level to a single A; excited-state level. Similarly, the structure
near 525 cm ™' corresponds to transitions from the ground-state
level to a second, different A; level. The structure of each cluster
indicates very substantial bifurcation-tunneling splittings, as the
515 cm™" features span about 0.6 cm™’, and the 525 cm™
features span about 1.9 cm™. In short, the calculated results
support an interpetation whereby the observed ~517 cm™" and
~525 cm™! features arise from excitations to different A, levels,
which are indeed characterized by cm™'-magnitude bifurcation-
tunneling splittings. As to the nature of these excited levels, we
anticipate having more to add in an upcoming study focused on
the characterization of the bend eigenstates.

One last feature of the calculated spectra is worthy of note.
Namely, we find evidence for the violation of G4 dipole selection
rules due to Fermi-resonance interactions between nearby states
of the same T symmetry. For example, level transitions of the
form A" — A" are not allowed under Gy selection rules,
whereas A" — A2+/3 transitions are. And, our calculations do
indeed show that such forbidden transitions have zero intensity
when the excited A;" level is energetically isolated. However,
when it is close in energy to an A;'/3 level, the T; component

states of the former (e.g, see Figure 4) can couple effectively
with those of the latter, as can the corresponding T\ states of the
two levels. Via such coupling, states of the A, level borrow
perpendicular-band absorption intensity from those of the A2+/3
level. A completely analogous situation obtains when an excited
Aj); level (which is Gg-forbidden in a transition from the
ground-state A;" level) is in proximity with an excited A, level
(which is Gg-allowed in a transition from the ground state). In
that case T, components from the two levels can be couple
strongly, as can T, components, and states of the A, /5 level can
borrow parallel-band absorption intensity from the A; level.

We see two clear examples of intensity borrowing in our
calculated spectra, both of which correspond to perpendicular

bands. In one case an A;r and an A;r/3 level are on top of each
other at AE ~ 3504 cm™, and the T;/

borrow about one-quarter of the absorption intensity of the

. states of the former

latter in transitions from the ground-state T;/u components. In
the second case, an A;" level is on top of an A2+/3 level at

AE ~ 432.5cm™". The intensity borrowing in this case amounts
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to about one-sixth of the total T-to-T intensity in transitions
from the ground-state level.

Notably, the bifurcation-tunneling splitting pattern for the
bands of a level that gains intensity by the borrowing mechanism
will be anomalous because the A states of the “dark” level cannot
participate in the borrowing: There are no A states of common
symmetry between the levels and, hence, no possibility of Fermi-
resonance interaction. The A states of the dark level therefore do
not contribute to the spectrum, unlike those of a regular allowed
level.

4. CONCLUSIONS

We have presented the computational methodology for rigorous
9D quantum calculations of the intermolecular bending states of
the water trimer. In this approach, the water monomers are
assumed to be rigid, with their cm’s forming an equilateral
triangle, and the intermonomer cm-to-cm distance is set to the
expectation value of the ground state of the reduced-dimension
3D intermonomer stretching Hamiltonian. The remaining nine
strongly coupled, highly anharmonic large-amplitude intermo-
lecular bending (angular) DOFs are accounted for in the 9D
bend Hamiltonian of the three fully coupled 3D rigid-water
rotors. Solving for its 9D intermolecular eigenstates serves a 2-
fold purpose. First, these eigenstates encompass excited
librational vibrations together with their torsional and
bifurcation tunneling splittings. Consequently, their accurate
calculation constitutes the most rigorous, high-dimensional
quantum treatment to date of the intermolecular vibrational
states of the water trimer and the tunneling splittings in its
excited states. Second, select low-energy 9D bend eigenstates,
together with a certain number of lowest-energy 3D
intermolecular stretching (or frame) eigenstates of the 3D
frame Hamiltonian, comprise the final 12D product contracted
basis for diagonalizing the full 12D intermolecular (bend +
frame) vibrational Hamiltonian of the water trimer in the rigid-
monomer approximation. Such calculations are ongoing in our
group. In both the 9D calculations in this work and the 12D
calculations under way, the high-quality 2 + 3-body PES of the
water trimer by Zhang et al.”” is employed.

Calculating accurate eigenstates of the bend Hamiltonian
having nine coupled large-amplitude intermolecular DOFs
presents serious challenges. The high dimensionality of the
problem demands that the final basis for the diagonalization of
this 9D Hamiltonian is made maximally compact and efficient
without sacrificing accuracy, in order to make the calculations
feasible in a reasonable time. To achieve this, the basis needs to
incorporate as much of the dynamics of the trimer as possible.
This goal is accomplished by means of an elaborate computa-
tional scheme which fully exploits the G4 molecular symmetry
group of the water trimer. Its central element are two cycles of
generating contracted basis functions. In the first, 3D hindered-
rotor states are obtained as the (3D) eigenstates of the rotating
rigid-water monomer (its cm fixed) experiencing the potential of
the two neighboring water monomers in the arrangement close
to the equilibrium geometry of the water trimer. In the next step,
a primitive basis of trilinear products of the hindered-rotor
functions is used to diagonalize the 9D bend Hamiltonian,

denoted as I:Ié:fg , for the potential that includes only the 2-body

interaction terms and the 2-body approximation of the 3-body
interaction term. In the final step, the full 9D bend Hamiltonian

H,,,, whose potental includes both 2- and 3-body terms, is

~ (2B
diagonalized in the truncated basis of the eigenvectors of Hb(en;

giving the desired 9D bending eigenstates.

The simulated low-frequency spectrum of the water trimer
computed in this work using the 9D eigenstates of H,,,4 shows
remarkable agreement with the experimental FIR spectrum of
the trimer in He nanodroplets™ over its entire range, both
visually and in terms of the excellent match between the
individual computed and measured spectral peaks. The fact that
this is achieved although the present treatment does not include
the intermolecular stretching vibrations of the trimer leads to the
conclusion that most peaks in the measured FIR spectrum
correspond to the intermolecular bending vibrations of the
trimer, and that their coupling with the intermolecular stretching
modes is weak. At a finer level of detail, the ground state
torsional tunneling splittings computed in 9D in this work agree
extremely well with experimental results from ref 43 and the full-
dimensional PIMD calculations.”” On the other hand, the
agreement of our 9D calculated bifurcation tunneling splittings
with the spectroscopic data*’ is only semiquantitative. Finally,
the comparison between the present 9D calculations and the
spectroscopic data for the water trimer points to the high quality
of the ab initio IPES of Zhang et al,,”” at least in the 9D subspace
of the bending vibrations probed in this work.

It is clear that the methodology for rigorous quantum 9D
calculations of the bending eigenstates of the water trimer
introduced in this work is already capable of providing a
description of excited intermolecular trimer vibrations, and the
associated tunneling splittings, with an unprecedented scope
and level of accuracy and detail. This also gives us the tool to test
the quality of the intermolecular PESs of water trimer far more
comprehensively than has been possible previously.

Two immediate tasks remain for the near future. One of them
is the analysis and assignment of the 9D bending eigenstates
calculated in this work. This problem is very challenging, due to
the high dimensionality of the eigenstates, their large-amplitude
character, and strong coupling among the DOFs involved. But, it
is important to gain understanding of the nature of the bending
excitations, especially since they figure so prominently in the
measured and calculated FIR spectra of the water trimer. The
second task is extending the current 9D methodology to 12D, by
including rigorously the intermolecular stretching vibrations and
their coupling to the bending DOFs. This will enable a complete,
fully coupled 12D quantum treatment of the intermolecular
vibrations and tunneling splittings of the water trimer (for rigid
monomers), as well as simulating the trimer FIR spectrum in
12D. Such calculations are nearing completion; the method-
ology employed and the 12D results will be reported in the near
future.
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