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ABSTRACT

Phosphorylated amino acids are involved in many cell regulatory networks; proteins containing
these post-translational modifications are widely studied both experimentally and computationally.
Simulations are used to investigate a wide range of structural and dynamic properties of
biomolecules, such as ligand binding, enzyme-reaction mechanisms, and protein folding.
However, the development of force field parameters for the simulation of proteins containing
phosphorylated amino acids using the Amber program has not kept pace with the development of
parameters for standard amino acids, and it is challenging to model these modified amino acids
with accuracy comparable to proteins containing only standard amino acids. In particular, the
popular ff14SB and ff19SB models do not contain parameters for phosphorylated amino acids.
Here, the dihedral parameters for the side chains of the most common phosphorylated amino acids
are trained against reference data from QM calculations adopting the ff14SB approach, followed
by validation against experimental data. Library files and corresponding parameter files are

provided, with versions that are compatible with both ff14SB and ff19SB.

INTRODUCTION

Phosphorylated proteins are the most common post-translational protein modification.! Coupled
with dephosphorylation, these modifications are critical for regulating many cellular processes in
biology, especially regarding intercellular communication and coordination of complex functions,
as they activate (or deactivate) almost half of enzymes.>? Most commonly occurring on serine,
threonine, and tyrosine side chains, phosphorylation mediates signal transduction pathways for
both eukaryotic and prokaryotic cells.! Phosphorylation forms a phosphoester linkage between the

amino acid residue and the phosphate group at the site of the side chain hydroxyl group oxygen



for serine, threonine, and tyrosine.’ Through a phosphoramidate bond, phosphorylation can also
occur on histidine, which plays a role in a variety of processes, such as prokaryotic two-component
signal transduction, bacterial carbohydrate transport systems, and as intermediates in metabolic
pathways.!> # Phosphorylation can either occur at the ND1 or NE2 site of the histidine, depending
on other structural features of the molecule.’ Understanding phosphorylated histidine is important,
yet enigmatic, because the typical experimental procedures used to detect and preserve
phosphoester amino acids can fail for phosphorylated histidine.* These limitations also can impose
challenges for other phosphorylated amino acids.

Simulations can help fill gaps left by experiments, helping to better understand phosphorylation
and dephosphorylation and their integral roles in activating or deactivating enzymes such as
kinases and phosphatases. Many of these mechanisms and the associated ligand binding have the
potential to be simulated with molecular dynamics (MD).>* MD has been used in many studies
involving phosphorylated amino acids, ranging from medicinal to agricultural research; these
include governing molecular recognition,® altering G-protein signaling,’ and causing
conformational changes in protein loops and helices® with diverse applications, such as studying

10-11 and increasing nutritional attributes of rice starch!?.

Alzheimer’s disease’ and breast cancer,

Amber'® is a widely used package of molecular simulation programs, typically paired with
Molecular Mechanics (MM) force fields for simulating biomolecules. Weiner et al.'* created the
first generation protein force field associated with Amber in 1984, followed by Cornell et al.’s'
second generation force field a decade later (ff94). Cornell et al. created a new charge model using
a 6-31G* basis set and restrained electrostatic potential (RESP) fitting.'® Force fields continued to

develop using this “fixed-charge” model, which assigns a single partial charge to each atom that

includes implicit polarization. Using the same fixed-charge model helps to maintain compatibility



and transferability with other parameter sets, such as those that model nucleic acids or
carbohydrates. Force fields continue to evolve as extensive testing and use reveals weaknesses.
This is particularly true for dihedral parameters, which are employed to account for key orbital
effects and other weaknesses in the model. Dihedral corrections alter the energy profile for rotation
around a bond, and therefore need to be as accurate as possible and are frequently updated. For
example, ff94 was succeeded by the ff99SB!” force field developed by our group to improve
protein backbone dihedral parameters. By training the protein backbone using tetrapeptide model
systems rather than dipeptides, ff99SB remedied the over-stabilization of a-helices seen in
previous force fields,' leading to widespread use.!” In ff14SB,'® we improved protein side chain
behavior, as these dihedral values from ff99 (also used in ff99SB) were fit to small organic
molecules rather than amino acids. ff14SB was trained against using quantum mechanics (QM)
data using conformational grid scans of side chain rotamers for standard amino acids (with
alternate protonation states) while improving transferability of side-chain parameters across
alternate backbone conformations by including both alpha and beta peptide backbone
conformations during training.'® We later developed ff19SB,?! which uses amino-acid specific 2D
dihedral correction map profiles?? (CMAPs) to improve sequence-specific behavior of protein
simulations involving standard amino acids.

While some other force field lineages, such as CHARMM, have modern parameters®® for
phosphorylated amino acids, the most recent parameters for Amber?* pre-date ff14SB (published
by Homeyer et al.?* in 2006 and referred to hereafter as the “HHLS” parameters). The HHLS
parameters>* were taken directly from the general Amber force field (gaff)* and the parm99 data

set!> when available, and the remainder were generated using QM calculations. HHLS includes



only generic dihedral parameters (where a bond between two specific atoms includes a wildcard
on either end), whereas ff14SB-trained side-chain parameters use specific sets of four atom types'®.

Besides these libraries not employing the more recent optimization methods and training data,
other complications arise from mixing these libraries with newer models for standard amino acids.
In particular, ff14SB introduced new atom types, which improved accuracy by separating dihedral
parameters at different locations where transferability was noted to be low. Especially relevant
here, the protein backbone parameters were adjusted via a new CX atom type at the a-carbon.
Older phosphorylated amino acid libraries lack the CX type and thus do not activate the use of the
ff14SB backbone parameters; similar issues arise with ff19SB. This can lead to problems
comparing simulations with a standard vs. a phosphorylated amino acid, since there are
simultaneous changes in both the phosphorylation state and the ¢/y parameters. Thus, new
parameters that use training protocols and atom types consistent with ff14SB and ff19SB are

needed.

PARAMETERIZATION GOALS AND STRATEGY

Specific dihedrals can increase the accuracy of the parameters, as generic dihedrals, such as
those in HHLS, have limited periodicities and generally do not influence the relative energies of
alternate rotamers. The overarching goal of this work is to extend the ff14SB treatment to the
phosphorylated amino acids and provide updated, specific parameters, as well as library files that
are compatible with ff14SB and ff19SB.

The dihedrals for the side chains of the most common phosphorylated amino acids
(phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine, Figure 1) were

parameterized. Both the singly protonated and unprotonated states were included for each amino



acid, as the equilibrium pK, values of the phosphorylated amino acids are close to pH 7 (Table

S1).2628 Histidine can be phosphorylated at either ND1 or NE2, so parameters were trained for

both isomers (Table 1).
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Figure 1. Phosphorylated amino acids for which parameters are reported here. Names for each
atom and residue are indicated. The protonated phosphorylated amino acids have an additional

hydrogen, shown in red. A corresponding figure with atom types is shown in Figure S1.



Table 1. Phosphorylated amino acids, charge states and residue names

Amber
Charge of phosphate Total charge residue
group
name
-1 -1 SIP
Phosphoserine
-2 2 SEP
-1 -1 TIP
Phosphothreonine
2 -2 TPO
-1 -1 Y1P
Phosphotyrosine
-2 2 PTR
Phosphohistidine -1 0 HID
(phosphorylated at ND1) 2 1 0D
Phosphohistidine -1 0 HIE
(phosphorylated at NE2) D) 1 OE

An important goal of this work is to not only parameterize the dihedrals for common
phosphorylated amino acids but also to maximize transferability. Transferability implies that force
field parameters trained on one set of molecules will perform well on different (and often larger)
molecules. Since the parameters between neighboring groups are not explicitly coupled, good
transferability also implies that a set of parameters will work well in all situations where it is
combined with neighboring groups with different chemistry and/or conformations than those that
were present during training. Transferability can be improved by explicitly training parameters in

the context of the diverse surroundings expected to be present during applications. In ff99SB, we



trained the protein backbone ¢ and y parameters in the context of a tetrapeptide that included
neighboring amino acids rather than a single amino acid that lacks the context of a longer protein.!”
In ff14SB, we trained amino acid sidechain parameters in the context of several alternate backbone
conformations to avoid having parameters that are accurate for the conformation used during
training but not for another.'® Where transferability is found to be low, new atom types can be
added to reduce parameter sharing and allow for more specific parameterization, better
reproducing the training data, and improved MM properties. In general, however, adding
additional parameters should be avoided when possible due to the necessary increase in training
data to avoid overfitting.

For the discussion below, it is important to distinguish between a rotatable bond and a dihedral.
While a rotatable bond can be defined using two atoms that each have at least one additional atom
to which they are bonded, a dihedral refers to a specific set of four sequentially bonded atoms
(here, the “dihedral atom quartet”) where the central two atoms in the quartet correspond to the
bond being rotated. Since each atom in the central bond can have multiple additional bonded

atoms, a single rotatable bond can have multiple dihedral atom quartets; thus, multiple dihedrals

can contribute to the energy profile for rotation around that bond. Furthermore, each dihedral
contribution typically uses a function with multiple terms and parameters (such as the truncated
Fourier series used in many MM force fields where the parameters are the amplitudes and phases
of a series of cosine terms with different periodicities).

The MM function calculates the energy for each dihedral, using the dihedral angle value and
dihedral parameters for that dihedral atom quartet; the parameters are obtained from a library based

on the atom types of the dihedral atom quartet (here, the “dihedral atom type quartet”).



Importantly, these dihedral energies are only a correction to the intrinsic MM energy for this
rotation, which may involve intramolecular nonbonded interactions between groups on either side
of the bond or with other molecules such as solvent. Therefore, the dihedral energies are not the

same as the bond rotational energy, and the dihedral amplitudes should not be regarded as

rotational barrier heights. In some situations, the role of the dihedral terms is to shift or reduce the

rotational barrier by being placed out of phase with the original barrier. Casually reducing dihedral
amplitudes can lead to unexpected consequences such as raising barriers, shifting positions of
minima, or changing the preferred rotamer.

Here, we retain the truncated Fourier series dihedral function employed in ff14SB for the
sidechain rotamers of standard amino acids. As in ff14SB, each dihedral includes four cosine terms
with integer periodicities of 1 to 4. Amplitudes and phases of each term were trained for each atom
type quartet. Quartets including hydrogen bonded to carbon were not modified. To account for
symmetry, the amplitudes of some periodicities were zeroed. For instance, the rotatable bonds
connecting the standard side chain to the phosphorous in the deprotonated phosphate groups can
use only three-fold dihedral corrections since there are duplicate sets of four atom types, each
offset by 120°, and the energy profile must maintain that threefold symmetry.

Many of the atom type quartets present in phosphorylated amino acids are also present in
standard amino acids. Any atom type quartets present in standard amino acids were not modified
in this work and retain the same dihedral parameters as ff14SB; those not present in ff14SB were
trained here (Table 2). When multiple quartets were present for a given rotatable bond, the
amplitudes of one of the atom type quartets were zeroed, and one was optimized. This avoids the
instability that often arises in optimizing multiple quartets when many parameter combinations

can give the same net energy for rotation around that bond. For example, the phosphohistidine



NA-P bond is the central rotatable bond in both the CC-NA-P-OP and CR-NA-P-OP dihedrals in
H1D. Here, the amplitude of CR-NA-P-OP was zeroed, and CC-NA-P-OP was optimized. CC-
NA-P-OP was chosen to be optimized instead of CR-NA-P-OP, as CR-NA-P-OP occurs in both
protonation states of both histidines (phosphorylated at the ND1 and NE2 sites). This reduces the
number of rotatable bonds the atom type quartet defines, improving specificity.

As in ff14SB, our training data include conformations with differences in multiple rotatable
bonds to improve transferability; therefore, we simultaneously optimized all dihedral parameters
in that amino acid since the energy differences between conformations cannot be assigned solely

to a single rotatable bond.

Table 2. Information for the new dihedral parameters

Atom type quartets ilindl;m Atom names Periodicities  Fitting group
YIP N-CA-CB-CG
N-CX-CT-CG 4,3,2,1 3
PTR N-CA-CB-CG
N-CX-2C-OR S1P N-CA-CB-0G 4,3,2,1 3
N-CX-3C-OR T1P N-CA-CB-0G 4,3,2,1 3
CA-CB-CG-CD1
YIP
CA-CB-CG-CD2
CX-CT-CG-CA 4,3,2,1 3
CA-CB-CG-CD1
PTR
CA-CB-CG-CD2
S1P OG-P-O1P-H1P
OR-P-OQ-HO T1P OG-P-O1P-HIP 4,3,2,1 3
YIP OG-P-O1P-H1P
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CE1-CZ-OH-P

CA-C-OV-pP PTR 4,3,2,1
CE2-CZ-OH-P

CX-2C-OR-P S1P CA-CB-OG-P 4,3,2,1

CX-3C-OR-P T1P CA-CB-OG-P 4,3,2,1
CE1-CZ-OG-P

CA-C-OR-P YIP 4,3,2,1
CE2-CZ-0OG-P
CZ-OH-P-O1P

C-OV-P-OT PTR CZ-OH-P-O2P 3
CZ-OH-P-O3P
CB-OG-P-O2P

2C-OR-P-OP S1P 3
CB-OG-P-O3P
CB-OG-P-O2P

3C-OR-P-OP T1P 3
CB-OG-P-O3P
CZ-0G-P-O2P

C-OR-P-OP YIP 3
CZ-OG-P-O3P

N-CX-2C-0Z SEP N-CA-CB-0OG 4,3,2,1

CX-2C-0Z-P SEP CA-CB-OG-P 4,3,2,1
CB-OG-P-O1P

2C-0Z-P-OX SEP CB-OG-P-O2P 3
CB-OG-P-O3P

N-CX-3C-0Z TPO N-CA-CB-0G1 4,3,2,1

CX-3C-OZ-P TPO CA-CB-OGl1-P 4,3,2,1
CB-OG1-P-O1P

3C-0OZ-P-OX TPO CB-OG1-P-O2P 3
CB-OG1-P-O3P

CC-NA-P-OP HID CG-NDI-P-O2P 3
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CG-NDI-P-O3P

CG-NDI-P-O1P
H2D CG-NDI1-P-O2P
CG-NDI-P-O3P
CD2-NE2-P-O2P
HIE
CD2-NE2-P-O3P
CW-NA-P-OP CD2-NE2-P-O1P 3 4
H2E CD2-NE2-P-O2P
CD2-NE2-P-O3P
HID ND1-P-O1P-HIP
NA-P-OQ-HO 4,3,2,1 4
HIE NE2-P-O1P-H1P

Some atom type quartets are present in multiple amino acids, requiring simultaneous
optimization of all amino acids that share these dihedral parameters. This improves transferability
compared to training on a single amino acid. As with ff14SB, this is achieved here using “fitting
groups,” which include all amino acids that overlap in any of their atom type quartets; different
fitting groups share no quartets and thus share no parameters. Based on the dihedral definitions,

four fitting groups for the phosphorylated amino acids were required (Table 2).

Methods

Generation of diverse conformations for parameter optimization
To minimize backbone-dependence of side-chain parameters and maximize transferability,

the ff14SB protocol was followed. For both alpha (¢ = -60°, y = -45°) and beta (¢ = -135°, y =

12



135°) backbone conformations, acetyl and N-methyl capped dipeptides of each phosphorylated
amino acid were built using LEaP using their assigned atom types (Figure 2). Further details of
protocols are available in the Supporting Information.

Diverse sets of side chain conformations were generated using two different methods,
depending on the number of rotatable bonds to be optimized. Grid scans were used for side chains
with less than three rotatable bonds to be optimized. The unprotonated phosphohistidines (H2D
and H2E) only have one rotatable bond to be optimized, so grid scans were generated every 10°
for that rotatable bond. For the singly protonated phosphohistidines (H1D and H1E), which have
two rotatable bonds to be optimized, grid scans were generated in two dimensions at every 20° for
each rotatable bond. Due to computational cost, 20° rather than 10° was used here to minimize the
number of total structures. All structures from grid scans were saved for parameter optimization.

Phosphorylated serine, threonine, and tyrosine required optimization of more than two rotatable
bonds. To minimize computational cost, we followed the ffl4SB protocol of generating
conformational diversity using high temperature MD simulations rather than grid scans on the
amino acids with a larger number of rotatable bonds requiring optimization. Details of the high
temperature simulations are provided in the Supporting Information.

The high-temperature simulations generate a large set of structures that is not uniform across
dihedral space. A sparse grid approach was used to extract a smaller, more uniformly distributed
subset of structures for training. For each phosphorylated amino acid (and each protonation state
and backbone conformation), each side chain dihedral values in each structure were mapped onto
a multidimensional grid spaced at 10° (where the number of dimensions is the number of rotatable

bonds being optimized).
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In ff14SB, the five lowest potential energy structures for each grid point were saved, and 500 of
these structures were extracted randomly for parameter optimization.'® However, when this
protocol was followed for the phosphorylated amino acids, there were large gaps in the grid
sampling for some dihedrals (Figure S2), where no structures were chosen, although structures
existed in these gaps before the random selection. Many grid points in these gaps had less than
five structures, so they were underrepresented using the ff14SB approach. The protocol was thus
altered to select only the single lowest potential energy structure for each grid point, and randomly
choose 500 of these structures for optimization. This approach improved the sampling of the sparse
areas (Figure S3). Although there are still some gaps in the grids, forcing structures to adopt
dihedral values in the gap regions resulted in large steric clashes (not shown).

To minimize distortions in the structures generated from the high temperature simulations, we
performed MM relaxation. To reconcile the minor differences in the backbone conformations
induced by the high temperature simulations, a single set of backbone dihedral values was enforced
for each alpha and beta backbone set. Following the ff14SB'® protocol, each structure was
minimized for 100,000 cycles, with the backbone dihedrals restrained to the average value over all
structures in that set. Restraints were also placed on every rotatable bond being optimized. Further

details can be found in the Supporting Information.

OM Optimization

Next, the relaxed high-temperature structures and the structures generated from the 1-D and 2-
D MM grid scans were optimized with QM. Orca 3.1?° was used with default options except for
the specification of TightOpt convergence criteria. Rotatable bonds being optimized were

constrained to maintain the initial dihedral values. These constraints were placed on all the
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backbone dihedrals and the side chain dihedrals being optimized. The QM geometries were
optimized at HF/6-31G**, and single point energies were calculated with MP2/6-31+G**3!,
Selected structures for SEP and H2D were optimized using MP2/6-31+G**; differences from the
HF/6-31G* were noted to range from 0.01 - 0.05 A in bond lengths and 2 - 3 ° in bond angles,

suggesting that the lower-level theory was sufficient for optimizing the larger set.

Filtering structures

During the development of ff14SB, we noted that structures from the high-temperature
simulations could have unfavorable steric and/or very strong electrostatic interactions. MM may
not model these interactions accurately. If these structures were used during parameter
optimization, the dihedral parameters could end up correcting for the inaccurate nonbonded
function, and these corrections would then apply to all structures even when the strong nonbonded
interactions are not present. To avoid this transferability failure, ff14SB eliminated training
structures with atoms that did not share a bond or angle yet adopted a distance less than the sum
of their vdW radii divided by 1.3. Maier et al.'® chose an additional scaling factor to remove
structures where the unsigned Coulombic energy between a side chain atom and another atom
exceeded 42 kcal/mol. Here, these cutoffs did not always leave sufficient structures for training.
Instead, individual cutoffs for Coulomb and Lennard-Jones energies were chosen for each
phosphorylated amino acid that underwent high temperature simulations, guided by the ff14SB

protocol, while ensuring a reasonable number of structures remained (Table S2).

MM Reoptimization
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Maier et al. observed that the fundamental differences between QM and MM modeling of
bonded and nonbonded interactions are likely worsened when MM energies are calculated from
QM-optimized structures without MM reoptimization'®. For example, optimal bond lengths differ
between the models, and calculating MM energy for a QM-optimized structure could lead to large
bond potential energies in MM that can contaminate the training data. Therefore, the QM-
optimized structures were subjected to MM minimization, with the amplitudes set to zero for all
dihedrals being optimized (“MMO0” parameters). Minimization was performed in the gas phase for
1000 cycles or until the RMS gradient was less than 1.0 x 10 kcal mol! A-!. A nonbonded cutoff
of 99.0 A was used (no cutoff). All backbone dihedrals and one sidechain dihedral per rotatable
bond were restrained to the values obtained from the QM optimization, with a force constant of
2.5 x 10° kcal mol™! rad2. MM energies for each conformation were obtained from the final step

of the minimization.

Parameter Optimization

Parameter optimization followed the general protocol used for parameter optimization in ff14SB
and used the relative energies between all pairs of conformations rather than absolute energies as
a target.'® This pairwise calculation is done to avoid using an arbitrary reference structure, whose
choice can bias the resulting parameters.!” Only pairs of the same amino acid with the same
backbone conformation were included. A GPU-based genetic algorithm program, RAGTAG?,
was employed to optimize and report dihedral parameters that minimize the relative energy errors
between MM and QM for all pairs of input conformations. Each chromosome is a full set of

parameters (the amplitude and phase for each periodicity in the truncated Fourier series for each
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atom type quartet). The relative energy error (REE) between a single pair of conformations i and j
is defined as:
REE(),j) = (Eqmi — Eqm,j) — (Emm,i — Emm,j) (1)
where Eqm and Emm are the quantum and molecular mechanics energies of conformations i and j.
The average absolute error (AAE) is calculated as the error in pairwise conformational energies
using MM vs. the energies for the same pair calculated using QM, averaged over conformation

pairs. The AAE is defined as:

2 .
AAE = T 2 X<l REE ) 2)

where N is the number of conformations.

A fitting group in RAGTAG may include multiple backbone conformations, amino acids, or
protonation states, but the AAE includes only conformation pairs for which these properties match.
The objective function, O, represents the error averaged over all backbone conformations and

amino acids/protonation states, and is defined as:

1 . .
0= aminoacids 3 1 «g AAE; pp 3)

Nprofiles

where nprofiles 1S the number of AAE profiles in that fitting group.

RAGTAG is given the list of atom type quartets for which parameters are being optimized, and
for each, the set of periodicities for which amplitudes and phases should be optimized. For each
structure, RAGTAG is given the QM and MM energies and the values of each dihedral angle. The
objective function is minimized using evolution, and the chromosome with the lowest score is
selected as the final parameter set. An Amber frcmod file containing the optimized dihedral
parameters is created upon completion, along with data that quantifies the accuracy of the
optimization; these include the final scores, the relative energy error between each pair of

conformations, and the overall error in the optimization for each dataset.
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RAGTAG was run separately for each of the four fitting groups. For each, the population size
was 2000 chromosomes, and each population evolved for 1000 generations with a probability of

mutation of 0.002 and a crossover rate of 0.8.

Generating Test Set Structures Not Included in Training Data

An initial test of transferability is to ensure that the trained parameters reproduce the
pairwise relative energies for amino acid structures not included in the training set. One hundred
structures were generated for each backbone and protonation state. As with the structures in the
training data, phosphorylated amino acids with one or two rotatable bonds to be optimized were
generated using a QM grid scan, with dihedral values offset by 5° compared to the structures in
the training data. For phosphorylated amino acids with more than two rotatable bonds to be
optimized, an independent set of 100 structures was chosen randomly from the high temperature
simulations using the same grid approach. All structures followed the same optimization and

energy calculation protocols as the structures in the training data.

Generating libraries for use with ff19SB

Although parameterization generally followed the side chain parameterization protocol from
ff14SB, these parameters are compatible with ff19SB as well since ff19SB adopted the side chain
parameters directly from ff14SB. In ff19SB, standard amino acids have a CMAP term that replaces
the ff14SB backbone.?! Leucine was considered to be a better model than alanine, as all amino
acids except alanine and glycine have a y carbon. In ff19SB, histidine and tyrosine use the leucine

CMAP; phosphorylated histidine and tyrosine were also assigned the leucine CMAP. In ff19SB,
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serine and threonine each have their own CMAPs, which were used for phosphorylated serine and

threonine.

Model Systems for Testing Parameter Accuracy
Several systems, including one for each phosphorylated amino acid, were selected to test the
parameters in proteins (Table 3). Analyses included comparing structural properties, such as the

stability of secondary structures and hydrogen bonding that were observed in the experimental

structure.

Table 3. Protein test systems

Protein PDB ID Amber Residue Name
Aspergillus oryzae cutinase 3QPD* SEP
Aurora A Kinase 5DT33% TPO
XLP Protein SAP 1D4W PTR
Vamosespeifephoshomnsis | g o

Each system was simulated under three different conditions: once using the HHLS parameters®*
and ff14SB, once with phosaal4SB and ff14SB, and once with phosaal9SB and ff19SB. To make
a fair comparison, some atom types in the HHLS parameters were modified in order to activate
ff14SB backbone parameters. These modified library and parameter files are provided in the

Supporting Information. Each simulation followed the equilibration and production protocols
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provided in Supporting Information. Production runs were carried out in duplicate to estimate
precision and reproducibility.

CPPTRAJ?7 was used to calculate dihedral angles, assign secondary structures, and evaluate
hydrogen bonding and other key interactions in each simulation. A distance cutoff of 3.0A was
used for hydrogen bonds (acceptor to donor heavy atom), and a distance cutoff of 4.0A between
N-O atom pairs was used for salt bridges. VMD?®® was used for visual analysis and image

generation.

RESULTS

We parameterized the side chain dihedrals for the most common phosphorylated amino acids
(phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine), each at two different
protonation states. After comparing the partial charges for atoms sharing the same atom type, a
new atom type CG was created, representing Cy in both the singly protonated and unprotonated
phosphotyrosine, as described in Supporting Information.

Examining all rotatable bonds without parameters in ff14SB provided 48 dihedral atom quartets,
but only 22 unique atom type quartets to be trained, since multiple dihedrals share atom type

quartets (Table 2).

Parameter training

Training was carried out using acetyl and N-methyl amide capped dipeptides. Structures were
built in both alpha and beta backbone conformations to minimize backbone dependence of side
chain parameters in both methods. As with ff14SB, two different methods were used to generate

diverse conformations of training structures. Grid scans were used to generate side chain variety
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in phosphorylated amino acids with less than three rotatable bonds to be optimized. Otherwise,
high temperature MD simulations generated conformational diversity. To relax distortions in these
structures, we performed a relaxation with MM. Structures were filtered to remove those with
unfavorable steric and/or very strong electrostatic interactions. Geometries of the structures were
optimized with QM at HF/6-31G* and single point energies were calculated with MP2/6-
31+G**3! Additional details are provided in Methods.

RAGTAG,* a GPU-based genetic algorithm program based on the protocol employed for
training ff14SB, was employed to optimize and report the dihedral parameters. The phosphorylated
amino acids were split between four different fitting groups, ensuring that no dihedral parameters
were shared between fitting groups (Table 2).

The average AAE (objective function) for the phosaal4SB parameters over all fitting groups is
0.98 kcal/mol (Table 4). This is comparable to the score of 0.98 kcal/mol obtained during the
optimization of dihedral parameters for standard side chains in ff14SB, indicating that amino acid
phosphorylation did not pose an additional challenge to the training protocol or MM functional
form. A separate score for phosaal9SB was not calculated, as it uses the same side-chain
parameters as phosaal4SB. This score reflects a significant improvement over the HHLS
parameters, which produce an average AAE of 2.55 kcal/mol. However, it is important to note that
the energies of these structures were used to train the new parameters but were not part of the

HHLS training data.

Table 4. AAE calculated for individual amino acids, calculated using the new parameters and

HHLS parameters®* for structures in the training set and alternate conformations
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Training Set Test Set

Amber Residue | Backbone phosaal4SB HHLS Parameters phosaal4SB HHLS Parameters
Name (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)

Alpha 0.94 1.18 1.15 1.21
S1P

Beta 1.41 2.54 1.91 2.51

Alpha 0.07 0.70 0.48 0.79
SEP

Beta 0.19 2.82 0.65 2.66

Alpha 0.89 1.50 1.22 1.57
T1P

Beta 1.31 2.05 1.82 1.94

Alpha 0.59 4.67 1.68 4.69
TPO

Beta 0.46 3.56 1.51 3.47

Alpha 1.97 1.61 1.94 1.69
YIP

Beta 1.40 2.76 1.67 2.83

Alpha 1.85 3.37 2.13 3.48
PTR

Beta 2.10 5.16 2.57 4.98

Alpha 1.49 1.92 1.66 1.99
HID

Beta 1.59 2.33 1.88 2.25

Alpha 0.70 3.50 1.41 3.51
H2D

Beta 0.60 3.71 1.46 3.64

Alpha 0.96 1.20 1.10 1.28
HIE

Beta 0.95 1.64 1.14 1.62

Alpha 0.11 2.34 0.46 2.38
H2E

Beta 0.12 2.44 0.49 2.47

Average 0.98 2.55 1.42 2.55
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We next compared objective functions (average AAE) across different fitting groups.
Outliers can indicate whether a particular group contains amino acids that were difficult to model
using shared parameters, suggesting that dividing them via new atom types could improve the fit.
As expected, the fitting groups with only one protonation state of one phosphorylated amino acid
result in the lowest scores since the parameters can be highly specific (Fitting Group 1: SEP with
an AAE of 0.13 kcal/mol and Fitting Group 2: TPO with an AAE of 0.53 kcal/mol). These fitting
groups also show the most improvement over the HHLS parameters. Fitting Group 4 is comprised
of four different residues (H1D, H2D, H1E, and H2E), but phosaal4SB still provides a good
average AAE of 0.82 kcal/mol. Fitting Group 3, comprised of S1P, T1P, Y1P, and PTR, has the
highest average AAE of 1.48 kcal/mol. Furthermore, Y 1P with an alpha backbone is also the only
case where HHLS provides a lower AAE than phosaal4SB. These results suggest that Fitting
Group 3 may share parameters too broadly. Although Groups 3 and 4 both include four residues,
Group 4 includes only variations of histidine, while Group 3 includes dihedral parameters shared
across phosphorylated versions of serine, threonine, and tyrosine. This suggests that the higher
AAE for Group 3 might reflect poor transferability of parameters across the group. Looking at the
AAE values for individual residues indicates reduced accuracy for singly protonated and
unprotonated phosphotyrosine compared to the other amino acids (Y 1P, PTR; Table 4). However,
PTR shares no dihedral parameters with S1P or T1P, and PTR and Y 1P share only parameters for
x1 and %2, and these employ the newly-created CG atom type not shared with other amino acids.
This minimal overlap in parameters in the fitting group suggests that the reduced accuracy for PTR
and Y1P arises from sources other than dihedral parameter transferability, and may reflect other

issues such as the lack of explicit aromatic ring polarization with repositioning of the phosphate.
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In every case other than the alpha backbone of Y1P, the AAE score for phosaal4SB is
lower than that of HHLS. Overall, the analysis suggests that force field accuracy improves with
phosaal4SB for most amino acids, and that phosphotyrosine might be improved with a more

complex treatment than explored here.

Evaluating structures not included in the training set

We evaluated the performance of parameters on amino acid conformations not included in
the training data (Table 4). 100 additional structures for each residue in each backbone
conformation were selected and optimized as described in Methods. The average AAE score for
these alternate conformations using phosaal4SB is 1.42 kcal/mol, somewhat higher than the 0.98
kcal/mol for the training conformations. This continues to be an improvement over the average
AAE score using the HHLS parameters, which is 2.55 kcal/mol. The only instance of the HHLS
parameters resulting in a lower score than phosaal4SB is Y 1P with an alpha backbone, consistent

with the results from the training set.

Protein simulations

The ultimate test of the force field parameters is evaluating their performance in protein
simulations. This evaluates the transferability of the parameters from isolated amino acids in the
gas phase to the context of protein chains in water. Simulation accuracy was evaluated by
analyzing structural stability, specifically focusing on maintaining the rotamers and local
interactions observed in the experimental structure. The systems selected (Table 3) contain

varying phosphorylated amino acids. Each system was built with the HHLS, phosaal4SB, and
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phosaal9SB parameters for phosphorylated proteins. An equilibration protocol detailed in

Methods was followed before duplicate 4 pus production MD.

Phosphoserine: Aspergillus oryzae cutinase

Cutin, a waxy substance found in plant cell walls, can be hydrolyzed by cutinases.
Aspergillus oryzae cutinase is traditionally used in the fermentation and production of rice wine,
soy sauce, and soybean paste.** Phosphorylation can occur at Ser101, as seen in PDB 3QPD*. In
this structure, Serl101 is at the end of a 12-residue o-helix and points into the active site. The
phosphate oxygens form hydrogen bonds with the NE2 atom of His169, and with the peptide
nitrogen and side chain hydroxyl group of Ser23. We evaluated the ability of simulations using
different parameters to maintain these interactions.

Following simulations, CPPTRAJ?” was used to evaluate the presence of these hydrogen
bonds in the structure, with the structure shown in Figure S4 and simulation results in Table S4.
Precision estimates reflect half the difference between the results of the duplicate runs. With
phosaal4SB, phosaal9SB, and HHLS parameters, the hydrogen bonds between the phosphate
oxygens and the NE2 of His169 and the hydroxyl group of Ser23 were all present during 100% of
the trajectory (with exact data and uncertainties in Table S4). The interaction between the peptide
nitrogen of Ser23 and the phosphate oxygens was observed 99.46% + 0.05%, 96.7% =+ 0.3%, and
96% =+ 2% of the time with phosaal4SB, phosaal9SB, and HHLS parameters, respectively.

A more direct measure of the quality of the new dihedral parameters is evaluating their
ability to maintain the rotamer present in the experimentally determined structure. For all three
parameter sets, the dihedral angles for the parameterized atom type quartets, N-CX-2C-OZ (atom

names N-CA-CB-0G), CX-2C-OZ-P (atom names CA-CB-OG-P), and 2C-OZ-P-OX (atom
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names CB-OG-P-O1P, CB-OG-P-O2P, and CB-OG-P-O2P), remained stable at the
crystallographic values throughout all of the simulations, as shown in Figure S5. With HHLS, the
phosphate group rotates more frequently throughout the simulation (indicating a reduced bond
rotation barrier), but the three peak values remain consistent with the crystal structure. For CX-
2C-0OZ-P, which corresponds to atom names CA-CB-OG-P, the range of angles is shifted modestly
from the crystal structure value. However, the dihedral angles for the rotatable bonds on either side
remain consistent with the crystal structure values. Together, these observations indicate that the

HHLS and revised parameters all provide reasonably stable simulations of this system.

Phosphotyrosine: XLP Protein SAP

SAP is the product of the gene mutated in X-linked lymphoproliferative syndrome (XLP).
With this mutation, the body cannot properly regulate the number of lymphocytes, which leads to
the enlargement of the lymph nodes, liver, and spleen. SAP adopts a single SH2 domain that binds
the cytoplasmic tail of the lymphocyte coreceptor SLAM, and SLAM can be phosphorylated at
Tyr281. Structures have been solved for SAP bound to a peptide corresponding to the SLAM tail
when phosphorylated (1D4W) or unphosphorylated (1D4T).?> SAP binds a site encompassing
Tyr281 in SLAM, irrespective of the phosphorylation state of this site in experiment.*> At residues
279-281, the SLAM peptide backbone forms a short parallel B-sheet interaction with residues 51-
53 in the BD strand of the SAP domain.*

In the crystal structure, the phosphate group of Ptr281 forms hydrogen bonds with the side
chains of Arg32, Ser34, Ser36, and Cys42. The phosphate group also hydrogen bonds with the
peptide nitrogen of Glu35. The aromatic ring of Ptr281 engages in a cation-pi stacking interaction

with the guanidinium group of Arg55 (Figure S6).
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The side chain rotamer for Ptr281, as well as the presence of the B-sheet, cation-pi
interaction, salt bridge, and hydrogen bonds in the simulations, were evaluated and compared
between parameter sets. Most interactions between the Ptr281 side chain and the SAP protein are
stable with all parameter sets (Table S5). All maintained 100% population for the salt bridge
between the phosphate group and Arg32 and the hydrogen bond with Ser34 in their duplicate runs.
The Ser36 hydroxyl interacted with the phosphate group 93.5% + 0.1%, 81% + 1%, and 91% =+
1% of the time with phosaal4SB, phosaal9SB, and HHLS parameters, respectively. A hydrogen
bond between the phosphate and the sulfur of Cys42 was stable in all simulations (95.5-99.7%).

In some cases, reduced stability of the phosphate interactions was noted. A hydrogen bond
between the Glu35 backbone nitrogen and the phosphate group was present 99% of the time in the
simulations using phosaal4SB (+ 0.6%) and HHLS (£ 1%) parameters, but only 55 + 6% of the
time with phosaal 9SB. Both Glu35 and Ser36 are in a flexible loop and do not hydrogen bond
with the phosphate oxygens simultaneously with phosaal9SB as often as phosaal4SB and HHLS.
The cation-pi interaction with Arg55 was observed to be more stable in simulations with the new
parameters. It was present in the simulations with phosaal4SB and phosaal9SB 98.5 + 0.3% and
97 £ 1% of the time, respectively, but only 65 + 6% of the simulation with the HHLS parameters.
This is likely due to the deviation in the dihedral angle of atom names N-CA-CB-CG (Figure S7),
which turns the Ptr ring away from Arg55, as discussed below.

The stability of the parallel B-sheet interaction with the peptide and the BD strand
of the protein (Figure S8) was quantified by calculating secondary structure content with DSSP*
in CPPTRAJ?. In all simulations, the short parallel B-sheet shows a similar population of about

75%, with consistent results between the three sets of parameters, as shown in Figure S8.
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The dihedral angles for the parameterized atom type quartets, N-CX-CT-CG (atom names
N-CA-CB-CQG), CX-CT-CG-CA (atom names CA-CB-CG-CD1 and CA-CB-CG-CD2), and CA-
C-OV-P (atom names CE1-CZ-OG-P and CE2-CZ-OG-P), were calculated throughout the
simulations. In simulations using phosaal4SB and phosaal 9SB, these rotamers remained stable
and consistent with the values in the crystal structure, as shown in Figure S7. However, the
dihedral angles using the HHLS parameters are less stable in two cases. Specifically for CA-C-
OV-P (atom names CE1-CZ-OG-P and CE2-CZ-OG-P), the dihedral angles are unstable and do
not align with the values of the crystal structure. The dihedral angles in the crystal structure are -
75° and 105°. Using the HHLS parameters, the dihedral angles begin in alignment with the values
from the crystal structure, but during both simulations become offset by about 90°. After this
rotation, the dihedral angles average 15° and -165°. Despite this rotation, the phosphate oxygens
maintain their formation of hydrogen bonds with adjacent residues.

The second deviation observed in simulations using the HHLS parameters is the dihedral
angle of atom type quartet N-CX-CT-CG (atom names N-CA-CB-CG), which shifts 25 degrees
from the crystal structure (Figure S7). This leads to a rotation of the ring away from the NH1 and
NH2 nitrogens of Arg55, and significantly reduces the presence of the cation-pi interaction present
in the other simulations (Table S5).

All the observations mentioned above suggest that the new parameters provide improved
accuracy. With HHLS parameters, all three parameterized atom type quartets do not align with the
values from the crystal structure as closely as phosaal4SB and phosaal 9SB. The dihedral angles
for atom type quartet CA-C-OV-P differ from the crystal structures by about 90° for most of the
HHLS simulations, weakening the cation-pi interaction between the Ptr ring and Arg55. These

differences are remedied with phosaal4SB and phosaal9SB. Comparing the duplicate runs with
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each parameter set, the uncertainties in Table S5 are typically ~ 1%, rising to ~ 6% only in cases

where the interactions are less stable.

Phosphothreonine: Aurora A kinase

Aurora A kinase (AURKA) is a major regulator of mitosis, and its activation plays an
important role in numerous cancers.*! Autophosphorylation occurs at Thr164 in a flexible loop
region (PDB 5DT3*). The Tpol64 phosphate forms a salt bridge with Arg57, ordering the
activation loop, which begins activating the kinase.>* Arg57 is located in the aC helix, along with
GIn54, which also interacts with the Tpol164 phosphate. The phosphate forms an additional salt
bridge with Argl32 from the catalytic loop, and a hydrogen bond with the peptide nitrogen of
Argl63 (Figure S9). The simulation stability for these interactions provides a critical evaluation
of parameter accuracy.

The dihedral angles for the parameterized atom type quartets, N-CX-3C-OZ (atom names
N-CA-CB-0G), CX-3C-OZ-P (atom names CA-CB-OG-P), and 3C-OZ-P-OX (CB-OG-P-O1P,
CB-OG-P-O2P, and CB-OG-P-O3P), are stable as shown in Figure S10. The dihedral angle for
atom names N-CA-CB-OG is -25° in the crystal structure, and shifted by an average of 25-30° in
the simulations. However, this shift is consistent throughout all of the simulations. In the crystal
structure, the dihedral angle for atom names CA-CB-OG-P is 129°. With phosaal4SB and
phosaal9SB, the average dihedral angle is 76° and 74°, respectively. While these dihedral angles
do not align with the crystal structure, the experimental density in this region is weak. However,
the key interactions of the phosphate are stable, as discussed below.

Using phosaal4SB, all 3 salt bridges were formed 80 to 100% of the time. Simulations

with phosaal 9SB adopted the salt bridges 80 to 90% of the time. Using HHLS parameters, the salt
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bridges were present 97 to 98% of the time. Notably, the interaction between the peptide nitrogen
of Argl63 and the phosphate group was observed 99-100% of the time in all simulations. (Table
S6).

In summary, the stability of the dihedral values in simulation and the presence of the key
interactions with the phosphate group support the accuracy of the new parameters, and deviations

in specific dihedral values are likely reasonable given the uncertainty in the experimental model.

Phosphohistidine: Mannose-specific phosphotransferase enzyme IIA component
The mitochondrial enzyme succinyl-CoA synthetase (SCS) builds succinyl-CoA from

succinate and coenzyme A using either ATP or GTP as the catalyst.>

The GTP-specific isoform
of SCS from pig heart can be phosphorylated (PDB 1EUD?®) or dephosphorylated (PDB 1EUC>)
at His2590.4

In the crystal structure, the phosphate group of H2e forms helix N-capping interactions
with helices A and B (Figure S11). In helix A, the phosphate oxygens act as hydrogen bond
acceptors for the exposed peptide nitrogens of Ala273p and Gly274p. In helix B, the phosphate
complements the traditional N-capping role of serine at Serl162a, acting as a hydrogen bond
acceptor for the exposed amide N of Gly163a.

The dihedral angles for the parameterized atom type quartet, CW-NA-P-OP (atom names
CD2-NE2-P-O1P, CD2-NE2-P-O2P, and CD2-NE2-P-O3P), remained stable and consistent with
the values in the crystal structure, as shown in Figure S12. H2E dihedral angles for atom type

quartets that were not parameterized (due to their presence in ff14SB) were also calculated (Figure

S12) to verify that re-using the existing parameters is reasonable. These include N-CX-CT-CC
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(atom names N-CA-CB-CG) and CX-CT-CC-NA (atom names CA-CB-CG-NA). With all force
fields, these dihedral angles remain stable and consistent with crystal structure in every run.

In the simulations using all three parameter sets (phosaal4SB, phosaal 9SB, and HHLS), a
phosphate oxygen acted as a hydrogen bond acceptor for the peptide nitrogen of Ala273f 88-94%
of the time (Table S7). The phosphate group interacted with the peptide nitrogen of Gly274f 93-
97% of the time in all simulations. Simulations with both phosaal4SB and HHLS parameters had
the peptide nitrogen of Glyl163a close enough to donate a hydrogen bond to a phosphate oxygen
96-99% of the time, while the simulations using phosaal 9SB had these atoms close enough 83 +
6% of the time. In the crystal structure, the Gly163 initiates helix B. However, this region is more
flexible with phosaal9SB, resulting in reduced hydrogen bonding with the phosphate group.

The new parameters show remarkably similar results to the HHLS parameters here; this is
expected, as H2E only has one atom type quartet that was updated with the new parameters (the

three-fold symmetric phosphate rotation).

CONCLUSIONS

New sidechain dihedral parameters were developed for five phosphorylated amino acids, each
in two protonation states. As with ff14SB, training used both alpha and beta peptide backbone
conformations for training data. The parameters were optimized using QM data for a set of training
structures, with multiple conformations for each combination of phosphorylated amino acid,
protonation state, and backbone. A GPU-based genetic algorithm optimized the parameters,
producing an average absolute error of 0.98 kcal/mol. This aligns with the parameterization of
standard amino acids in ff14SB!'8, which also had an average absolute error of 0.98 kcal/mol.

Testing on structures outside the training set produced an average absolute error of 1.42 kcal/mol.
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This demonstrates improvement over the HHLS parameters, which had an average absolute error
of 2.55 kcal/mol for structures in and outside the training set.

Simulations of proteins containing phosphorylated amino acids using phosaal4SB and
phosaal9SB were consistent with experimental structures, specifically in terms of hydrogen
bonding, dihedral angle stability, and secondary structure. In the two instances where phosaal9SB
did not replicate the observed hydrogen bonding in both the crystal structure and simulations with
phosaal4SB, the standard amino acids that were the hydrogen bond donors were in flexible
regions. However, the phosphate group and corresponding dihedral angles remained stable, and
still formed hydrogen bonds with other nearby residues. In the Aurora A kinase system,
phosaal4SB and phosaal9SB had an atom type quartet that did not align with the crystal structure.
However, the density in the PDB structure was weak and, therefore, should not be overinterpreted.
The dihedral angles remained stable, and the key interactions in the crystal structure and with the

HHLS parameters were maintained.

PARAMETER AVAILABILITY

The optimized dihedral side chain parameters are provided in Amber frcmod files, and the library
files are available for use with the Amber input preparation module LEaP. For use with ff14SB,
users should use frcmod.phosaal4SB, leaprc.phosaal4SB, and phosaal4SB.lib. For use with

ff19SB, users should use frcmod.phosaal9SB, leaprc.phosaal 9SB, and phosaal9SB.lib.

ASSOCIATED CONTENT

Supporting Information.

The following files are available free of charge:
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Additional information regarding training structure generation and selection, simulation

methods, and additional figures (PDF)

Amber-format library, frcemod, and leaprc files for use with Amber and other simulation programs
(text files), including updated HHLS library files suitable for use with ff14SB:

fremod.phosaal4SB
leaprc.phosaal4SB
phosaal4SB.lib
frcmod.phosaal 9SB
leaprc.phosaal 9SB
phosaal9SB.lib
fremod. HHLS 14
leaprc. HHLS 14
HHLS14.1ib
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