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ABSTRACT  

Phosphorylated amino acids are involved in many cell regulatory networks; proteins containing 

these post-translational modifications are widely studied both experimentally and computationally. 

Simulations are used to investigate a wide range of structural and dynamic properties of 

biomolecules, such as ligand binding, enzyme-reaction mechanisms, and protein folding. 

However, the development of force field parameters for the simulation of proteins containing 

phosphorylated amino acids using the Amber program has not kept pace with the development of 

parameters for standard amino acids, and it is challenging to model these modified amino acids 

with accuracy comparable to proteins containing only standard amino acids. In particular, the 

popular ff14SB and ff19SB models do not contain parameters for phosphorylated amino acids. 

Here, the dihedral parameters for the side chains of the most common phosphorylated amino acids 

are trained against reference data from QM calculations adopting the ff14SB approach, followed 

by validation against experimental data. Library files and corresponding parameter files are 

provided, with versions that are compatible with both ff14SB and ff19SB. 

INTRODUCTION 

Phosphorylated proteins are the most common post-translational protein modification.1 Coupled 

with dephosphorylation, these modifications are critical for regulating many cellular processes in 

biology, especially regarding intercellular communication and coordination of complex functions, 

as they activate (or deactivate) almost half of enzymes.2 Most commonly occurring on serine, 

threonine, and tyrosine side chains, phosphorylation mediates signal transduction pathways for 

both eukaryotic and prokaryotic cells.1 Phosphorylation forms a phosphoester linkage between the 

amino acid residue and the phosphate group at the site of the side chain hydroxyl group oxygen 
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for serine, threonine, and tyrosine.3 Through a phosphoramidate bond, phosphorylation can also 

occur on histidine, which plays a role in a variety of processes, such as prokaryotic two-component 

signal transduction, bacterial carbohydrate transport systems, and as intermediates in metabolic 

pathways.1, 4 Phosphorylation can either occur at the ND1 or NE2 site of the histidine, depending 

on other structural features of the molecule.5 Understanding phosphorylated histidine is important, 

yet enigmatic, because the typical experimental procedures used to detect and preserve 

phosphoester amino acids can fail for phosphorylated histidine.4 These limitations also can impose 

challenges for other phosphorylated amino acids.  

Simulations can help fill gaps left by experiments, helping to better understand phosphorylation 

and dephosphorylation and their integral roles in activating or deactivating enzymes such as 

kinases and phosphatases. Many of these mechanisms and the associated ligand binding have the 

potential to be simulated with molecular dynamics (MD).2-3 MD has been used in many studies 

involving phosphorylated amino acids, ranging from medicinal to agricultural research; these 

include governing molecular recognition,6 altering G-protein signaling,7 and causing 

conformational changes in protein loops and helices8 with diverse applications, such as studying 

Alzheimer’s disease9 and breast cancer,10-11 and increasing nutritional attributes of rice starch12. 

Amber13 is a widely used package of molecular simulation programs, typically paired with 

Molecular Mechanics (MM) force fields for simulating biomolecules. Weiner et al.14 created the 

first generation protein force field associated with Amber in 1984, followed by Cornell et al.’s15 

second generation force field a decade later (ff94). Cornell et al. created a new charge model using 

a 6-31G* basis set and restrained electrostatic potential (RESP) fitting.16 Force fields continued to 

develop using this “fixed-charge” model, which assigns a single partial charge to each atom that 

includes implicit polarization. Using the same fixed-charge model helps to maintain compatibility 
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and transferability with other parameter sets, such as those that model nucleic acids or 

carbohydrates. Force fields continue to evolve as extensive testing and use reveals weaknesses. 

This is particularly true for dihedral parameters, which are employed to account for key orbital 

effects and other weaknesses in the model. Dihedral corrections alter the energy profile for rotation 

around a bond, and therefore need to be as accurate as possible and are frequently updated. For 

example, ff94 was succeeded by the ff99SB17 force field developed by our group to improve 

protein backbone dihedral parameters. By training the protein backbone using tetrapeptide model 

systems rather than dipeptides, ff99SB remedied the over-stabilization of α-helices seen in 

previous force fields,15 leading to widespread use.17 In ff14SB,18 we improved protein side chain 

behavior, as these dihedral values from ff99 (also used in ff99SB) were fit to small organic 

molecules rather than amino acids. ff14SB was trained against using quantum mechanics (QM) 

data using conformational grid scans of side chain rotamers for standard amino acids (with 

alternate protonation states) while improving transferability of side-chain parameters across 

alternate backbone conformations by including both alpha and beta peptide backbone 

conformations during training.18 We later developed ff19SB,21 which uses amino-acid specific 2D 

dihedral correction map profiles22 (CMAPs) to improve sequence-specific behavior of protein 

simulations involving standard amino acids.  

While some other force field lineages, such as CHARMM, have modern parameters23 for 

phosphorylated amino acids, the most recent parameters for Amber24 pre-date ff14SB (published 

by Homeyer et al.24 in 2006 and referred to hereafter as the “HHLS” parameters). The HHLS 

parameters24 were taken directly from the general Amber force field (gaff)25 and the parm99 data 

set15 when available, and the remainder were generated using QM calculations. HHLS includes 
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only generic dihedral parameters (where a bond between two specific atoms includes a wildcard 

on either end), whereas ff14SB-trained side-chain parameters use specific sets of four atom types18. 

Besides these libraries not employing the more recent optimization methods and training data, 

other complications arise from mixing these libraries with newer models for standard amino acids. 

In particular, ff14SB introduced new atom types, which improved accuracy by separating dihedral 

parameters at different locations where transferability was noted to be low. Especially relevant 

here, the protein backbone parameters were adjusted via a new CX atom type at the α-carbon. 

Older phosphorylated amino acid libraries lack the CX type and thus do not activate the use of the 

ff14SB backbone parameters; similar issues arise with ff19SB. This can lead to problems 

comparing simulations with a standard vs. a phosphorylated amino acid, since there are 

simultaneous changes in both the phosphorylation state and the φ/ψ parameters. Thus, new 

parameters that use training protocols and atom types consistent with ff14SB and ff19SB are 

needed. 

 

PARAMETERIZATION GOALS AND STRATEGY  

Specific dihedrals can increase the accuracy of the parameters, as generic dihedrals, such as 

those in HHLS, have limited periodicities and generally do not influence the relative energies of 

alternate rotamers. The overarching goal of this work is to extend the ff14SB treatment to the 

phosphorylated amino acids and provide updated, specific parameters, as well as library files that 

are compatible with ff14SB and ff19SB. 

The dihedrals for the side chains of the most common phosphorylated amino acids 

(phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine, Figure 1) were 

parameterized. Both the singly protonated and unprotonated states were included for each amino 
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acid, as the equilibrium pKa values of the phosphorylated amino acids are close to pH 7 (Table 

S1).26-28 Histidine can be phosphorylated at either ND1 or NE2, so parameters were trained for 

both isomers (Table 1).5  
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Figure 1. Phosphorylated amino acids for which parameters are reported here. Names for each 

atom and residue are indicated. The protonated phosphorylated amino acids have an additional 

hydrogen, shown in red. A corresponding figure with atom types is shown in Figure S1. 
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Table 1. Phosphorylated amino acids, charge states and residue names 

 Charge of phosphate 
group Total charge 

Amber 
residue 
name 

Phosphoserine 
-1 -1 S1P 

-2 -2 SEP 

Phosphothreonine 
-1 -1 T1P 

-2 -2 TPO 

Phosphotyrosine 
-1 -1 Y1P 

-2 -2 PTR 

Phosphohistidine 
(phosphorylated at ND1) 

-1 0 H1D 

-2 -1 H2D 

Phosphohistidine 
(phosphorylated at NE2) 

-1 0 H1E 

-2 -1 H2E 

 

 

An important goal of this work is to not only parameterize the dihedrals for common 

phosphorylated amino acids but also to maximize transferability. Transferability implies that force 

field parameters trained on one set of molecules will perform well on different (and often larger) 

molecules. Since the parameters between neighboring groups are not explicitly coupled, good 

transferability also implies that a set of parameters will work well in all situations where it is 

combined with neighboring groups with different chemistry and/or conformations than those that 

were present during training. Transferability can be improved by explicitly training parameters in 

the context of the diverse surroundings expected to be present during applications. In ff99SB, we 
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trained the protein backbone φ and ψ parameters in the context of a tetrapeptide that included 

neighboring amino acids rather than a single amino acid that lacks the context of a longer protein.17 

In ff14SB, we trained amino acid sidechain parameters in the context of several alternate backbone 

conformations to avoid having parameters that are accurate for the conformation used during 

training but not for another.18 Where transferability is found to be low, new atom types can be 

added to reduce parameter sharing and allow for more specific parameterization, better 

reproducing the training data, and improved MM properties. In general, however, adding 

additional parameters should be avoided when possible due to the necessary increase in training 

data to avoid overfitting. 

For the discussion below, it is important to distinguish between a rotatable bond and a dihedral. 

While a rotatable bond can be defined using two atoms that each have at least one additional atom 

to which they are bonded, a dihedral refers to a specific set of four sequentially bonded atoms 

(here, the “dihedral atom quartet”) where the central two atoms in the quartet correspond to the 

bond being rotated. Since each atom in the central bond can have multiple additional bonded 

atoms, a single rotatable bond can have multiple dihedral atom quartets; thus, multiple dihedrals 

can contribute to the energy profile for rotation around that bond. Furthermore, each dihedral 

contribution typically uses a function with multiple terms and parameters (such as the truncated 

Fourier series used in many MM force fields where the parameters are the amplitudes and phases 

of a series of cosine terms with different periodicities).  

The MM function calculates the energy for each dihedral, using the dihedral angle value and 

dihedral parameters for that dihedral atom quartet; the parameters are obtained from a library based 

on the atom types of the dihedral atom quartet (here, the “dihedral atom type quartet”).  
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Importantly, these dihedral energies are only a correction to the intrinsic MM energy for this 

rotation, which may involve intramolecular nonbonded interactions between groups on either side 

of the bond or with other molecules such as solvent. Therefore, the dihedral energies are not the 

same as the bond rotational energy, and the dihedral amplitudes should not be regarded as 

rotational barrier heights. In some situations, the role of the dihedral terms is to shift or reduce the 

rotational barrier by being placed out of phase with the original barrier. Casually reducing dihedral 

amplitudes can lead to unexpected consequences such as raising barriers, shifting positions of 

minima, or changing the preferred rotamer.  

Here, we retain the truncated Fourier series dihedral function employed in ff14SB for the 

sidechain rotamers of standard amino acids. As in ff14SB, each dihedral includes four cosine terms 

with integer periodicities of 1 to 4. Amplitudes and phases of each term were trained for each atom 

type quartet. Quartets including hydrogen bonded to carbon were not modified. To account for 

symmetry, the amplitudes of some periodicities were zeroed. For instance, the rotatable bonds 

connecting the standard side chain to the phosphorous in the deprotonated phosphate groups can 

use only three-fold dihedral corrections since there are duplicate sets of four atom types, each 

offset by 120°, and the energy profile must maintain that threefold symmetry.  

Many of the atom type quartets present in phosphorylated amino acids are also present in 

standard amino acids. Any atom type quartets present in standard amino acids were not modified 

in this work and retain the same dihedral parameters as ff14SB; those not present in ff14SB were 

trained here (Table 2). When multiple quartets were present for a given rotatable bond, the 

amplitudes of one of the atom type quartets were zeroed, and one was optimized. This avoids the 

instability that often arises in optimizing multiple quartets when many parameter combinations 

can give the same net energy for rotation around that bond. For example, the phosphohistidine 
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NA-P bond is the central rotatable bond in both the CC-NA-P-OP and CR-NA-P-OP dihedrals in 

H1D. Here, the amplitude of CR-NA-P-OP was zeroed, and CC-NA-P-OP was optimized. CC-

NA-P-OP was chosen to be optimized instead of CR-NA-P-OP, as CR-NA-P-OP occurs in both 

protonation states of both histidines (phosphorylated at the ND1 and NE2 sites). This reduces the 

number of rotatable bonds the atom type quartet defines, improving specificity. 

As in ff14SB, our training data include conformations with differences in multiple rotatable 

bonds to improve transferability; therefore, we simultaneously optimized all dihedral parameters 

in that amino acid since the energy differences between conformations cannot be assigned solely 

to a single rotatable bond.  

 

Table 2. Information for the new dihedral parameters 

Atom type quartets Amino 
acids Atom names Periodicities Fitting group 

N-CX-CT-CG 
Y1P N-CA-CB-CG 

4, 3, 2, 1 3 
PTR N-CA-CB-CG 

N-CX-2C-OR S1P N-CA-CB-OG 4, 3, 2, 1 3 

N-CX-3C-OR T1P N-CA-CB-OG 4, 3, 2, 1 3 

CX-CT-CG-CA 

Y1P 
CA-CB-CG-CD1 

4, 3, 2, 1 3 
CA-CB-CG-CD2 

PTR 
CA-CB-CG-CD1 

CA-CB-CG-CD2 

OR-P-OQ-HO 

S1P OG-P-O1P-H1P 

4, 3, 2, 1 3 T1P OG-P-O1P-H1P 

Y1P OG-P-O1P-H1P 
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CA-C-OV-P PTR 
CE1-CZ-OH-P 

4, 3, 2, 1 3 
CE2-CZ-OH-P 

CX-2C-OR-P S1P CA-CB-OG-P 4, 3, 2, 1 3 

CX-3C-OR-P T1P CA-CB-OG-P 4, 3, 2, 1 3 

CA-C-OR-P Y1P 
CE1-CZ-OG-P 

4, 3, 2, 1 3 
CE2-CZ-OG-P 

C-OV-P-OT PTR 

CZ-OH-P-O1P 

3 3 CZ-OH-P-O2P 

CZ-OH-P-O3P 

2C-OR-P-OP S1P 
CB-OG-P-O2P 

3 3 
CB-OG-P-O3P 

3C-OR-P-OP T1P 
CB-OG-P-O2P 

3 3 
CB-OG-P-O3P 

C-OR-P-OP Y1P 
CZ-OG-P-O2P 

3 3 
CZ-OG-P-O3P 

N-CX-2C-OZ SEP N-CA-CB-OG 4, 3, 2, 1 1 

CX-2C-OZ-P SEP CA-CB-OG-P 4, 3, 2, 1 1 

2C-OZ-P-OX SEP 

CB-OG-P-O1P 

3 1 CB-OG-P-O2P 

CB-OG-P-O3P 

N-CX-3C-OZ TPO N-CA-CB-OG1 4, 3, 2, 1 2 

CX-3C-OZ-P TPO CA-CB-OG1-P 4, 3, 2, 1 2 

3C-OZ-P-OX TPO 

CB-OG1-P-O1P 

3 2 CB-OG1-P-O2P 

CB-OG1-P-O3P 

CC-NA-P-OP H1D CG-ND1-P-O2P 3 4 
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CG-ND1-P-O3P 

H2D 

CG-ND1-P-O1P 

CG-ND1-P-O2P 

CG-ND1-P-O3P 

CW-NA-P-OP 

H1E 
CD2-NE2-P-O2P 

3 4 

CD2-NE2-P-O3P 

H2E 

CD2-NE2-P-O1P 

CD2-NE2-P-O2P 

CD2-NE2-P-O3P 

NA-P-OQ-HO 
H1D ND1-P-O1P-H1P 

4, 3, 2, 1 4 
H1E NE2-P-O1P-H1P 

 

 

Some atom type quartets are present in multiple amino acids, requiring simultaneous 

optimization of all amino acids that share these dihedral parameters. This improves transferability 

compared to training on a single amino acid. As with ff14SB, this is achieved here using “fitting 

groups,” which include all amino acids that overlap in any of their atom type quartets; different 

fitting groups share no quartets and thus share no parameters. Based on the dihedral definitions, 

four fitting groups for the phosphorylated amino acids were required (Table 2).  

 

Methods 

Generation of diverse conformations for parameter optimization 

To minimize backbone-dependence of side-chain parameters and maximize transferability, 

the ff14SB protocol was followed. For both alpha (φ = -60°, ψ = -45°) and beta (φ = -135°, ψ = 
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135°) backbone conformations, acetyl and N-methyl capped dipeptides of each phosphorylated 

amino acid were built using LEaP using their assigned atom types (Figure 2). Further details of 

protocols are available in the Supporting Information.  

Diverse sets of side chain conformations were generated using two different methods, 

depending on the number of rotatable bonds to be optimized. Grid scans were used for side chains 

with less than three rotatable bonds to be optimized. The unprotonated phosphohistidines (H2D 

and H2E) only have one rotatable bond to be optimized, so grid scans were generated every 10° 

for that rotatable bond. For the singly protonated phosphohistidines (H1D and H1E), which have 

two rotatable bonds to be optimized, grid scans were generated in two dimensions at every 20° for 

each rotatable bond. Due to computational cost, 20° rather than 10° was used here to minimize the 

number of total structures. All structures from grid scans were saved for parameter optimization. 

Phosphorylated serine, threonine, and tyrosine required optimization of more than two rotatable 

bonds. To minimize computational cost, we followed the ff14SB protocol of generating 

conformational diversity using high temperature MD simulations rather than grid scans on the 

amino acids with a larger number of rotatable bonds requiring optimization. Details of the high 

temperature simulations are provided in the Supporting Information. 

The high-temperature simulations generate a large set of structures that is not uniform across 

dihedral space. A sparse grid approach was used to extract a smaller, more uniformly distributed 

subset of structures for training. For each phosphorylated amino acid (and each protonation state 

and backbone conformation), each side chain dihedral values in each structure were mapped onto 

a multidimensional grid spaced at 10° (where the number of dimensions is the number of rotatable 

bonds being optimized). 
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In ff14SB, the five lowest potential energy structures for each grid point were saved, and 500 of 

these structures were extracted randomly for parameter optimization.18 However, when this 

protocol was followed for the phosphorylated amino acids, there were large gaps in the grid 

sampling for some dihedrals (Figure S2), where no structures were chosen, although structures 

existed in these gaps before the random selection. Many grid points in these gaps had less than 

five structures, so they were underrepresented using the ff14SB approach. The protocol was thus 

altered to select only the single lowest potential energy structure for each grid point, and randomly 

choose 500 of these structures for optimization. This approach improved the sampling of the sparse 

areas (Figure S3). Although there are still some gaps in the grids, forcing structures to adopt 

dihedral values in the gap regions resulted in large steric clashes (not shown). 

To minimize distortions in the structures generated from the high temperature simulations, we 

performed MM relaxation. To reconcile the minor differences in the backbone conformations 

induced by the high temperature simulations, a single set of backbone dihedral values was enforced 

for each alpha and beta backbone set. Following the ff14SB18 protocol, each structure was 

minimized for 100,000 cycles, with the backbone dihedrals restrained to the average value over all 

structures in that set. Restraints were also placed on every rotatable bond being optimized. Further 

details can be found in the Supporting Information. 

 

QM Optimization 

Next, the relaxed high-temperature structures and the structures generated from the 1-D and 2-

D MM grid scans were optimized with QM. Orca 3.129 was used with default options except for 

the specification of TightOpt convergence criteria. Rotatable bonds being optimized were 

constrained to maintain the initial dihedral values. These constraints were placed on all the 
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backbone dihedrals and the side chain dihedrals being optimized. The QM geometries were 

optimized at HF/6-31G*30, and single point energies were calculated with MP2/6-31+G**31. 

Selected structures for SEP and H2D were optimized using MP2/6-31+G**; differences from the 

HF/6-31G* were noted to range from 0.01 - 0.05 Å in bond lengths and 2 - 3 ° in bond angles, 

suggesting that the lower-level theory was sufficient for optimizing the larger set. 

 

Filtering structures 

During the development of ff14SB, we noted that structures from the high-temperature 

simulations could have unfavorable steric and/or very strong electrostatic interactions. MM may 

not model these interactions accurately. If these structures were used during parameter 

optimization, the dihedral parameters could end up correcting for the inaccurate nonbonded 

function, and these corrections would then apply to all structures even when the strong nonbonded 

interactions are not present. To avoid this transferability failure, ff14SB eliminated training 

structures with atoms that did not share a bond or angle yet adopted a distance less than the sum 

of their vdW radii divided by 1.3. Maier et al.18 chose an additional scaling factor to remove 

structures where the unsigned Coulombic energy between a side chain atom and another atom 

exceeded 42 kcal/mol. Here, these cutoffs did not always leave sufficient structures for training. 

Instead, individual cutoffs for Coulomb and Lennard-Jones energies were chosen for each 

phosphorylated amino acid that underwent high temperature simulations, guided by the ff14SB 

protocol, while ensuring a reasonable number of structures remained (Table S2).  

 

MM Reoptimization 
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Maier et al. observed that the fundamental differences between QM and MM modeling of 

bonded and nonbonded interactions are likely worsened when MM energies are calculated from 

QM-optimized structures without MM reoptimization18. For example, optimal bond lengths differ 

between the models, and calculating MM energy for a QM-optimized structure could lead to large 

bond potential energies in MM that can contaminate the training data. Therefore, the QM-

optimized structures were subjected to MM minimization, with the amplitudes set to zero for all 

dihedrals being optimized (“MM0” parameters). Minimization was performed in the gas phase for 

1000 cycles or until the RMS gradient was less than 1.0 x 10-4 kcal mol-1 Å-1. A nonbonded cutoff 

of 99.0 Å was used (no cutoff). All backbone dihedrals and one sidechain dihedral per rotatable 

bond were restrained to the values obtained from the QM optimization, with a force constant of 

2.5 x 105 kcal mol-1 rad-2. MM energies for each conformation were obtained from the final step 

of the minimization. 

 

Parameter Optimization 

Parameter optimization followed the general protocol used for parameter optimization in ff14SB 

and used the relative energies between all pairs of conformations rather than absolute energies as 

a target.18 This pairwise calculation is done to avoid using an arbitrary reference structure, whose 

choice can bias the resulting parameters.17 Only pairs of the same amino acid with the same 

backbone conformation were included. A GPU-based genetic algorithm program, RAGTAG32, 

was employed to optimize and report dihedral parameters that minimize the relative energy errors 

between MM and QM for all pairs of input conformations. Each chromosome is a full set of 

parameters (the amplitude and phase for each periodicity in the truncated Fourier series for each 
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atom type quartet). The relative energy error (REE) between a single pair of conformations i and j 

is defined as: 

REE(i, j) = (EQM,i − EQM,j) − (EMM,i − EMM,j)  (1) 

where EQM and EMM are the quantum and molecular mechanics energies of conformations i and j.  

The average absolute error (AAE) is calculated as the error in pairwise conformational energies 

using MM vs. the energies for the same pair calculated using QM, averaged over conformation 

pairs. The AAE is defined as: 

AAE =  2
N(N−1)

∑ ∑ |REE(i, j)|j<ii   (2) 

where N is the number of conformations. 

A fitting group in RAGTAG may include multiple backbone conformations, amino acids, or 

protonation states, but the AAE includes only conformation pairs for which these properties match. 

The objective function, O, represents the error averaged over all backbone conformations and 

amino acids/protonation states, and is defined as:  

O =  1
nprofiles

∑ ∑ AAEr,bbbb=α,β
amino acids
r=1   (3) 

where nprofiles is the number of AAE profiles in that fitting group. 

RAGTAG is given the list of atom type quartets for which parameters are being optimized, and 

for each, the set of periodicities for which amplitudes and phases should be optimized. For each 

structure, RAGTAG is given the QM and MM energies and the values of each dihedral angle. The 

objective function is minimized using evolution, and the chromosome with the lowest score is 

selected as the final parameter set. An Amber frcmod file containing the optimized dihedral 

parameters is created upon completion, along with data that quantifies the accuracy of the 

optimization; these include the final scores, the relative energy error between each pair of 

conformations, and the overall error in the optimization for each dataset.  
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RAGTAG was run separately for each of the four fitting groups. For each, the population size 

was 2000 chromosomes, and each population evolved for 1000 generations with a probability of 

mutation of 0.002 and a crossover rate of 0.8. 

 

Generating Test Set Structures Not Included in Training Data 

An initial test of transferability is to ensure that the trained parameters reproduce the 

pairwise relative energies for amino acid structures not included in the training set. One hundred 

structures were generated for each backbone and protonation state. As with the structures in the 

training data, phosphorylated amino acids with one or two rotatable bonds to be optimized were 

generated using a QM grid scan, with dihedral values offset by 5° compared to the structures in 

the training data. For phosphorylated amino acids with more than two rotatable bonds to be 

optimized, an independent set of 100 structures was chosen randomly from the high temperature 

simulations using the same grid approach. All structures followed the same optimization and 

energy calculation protocols as the structures in the training data.  

 

Generating libraries for use with ff19SB 

Although parameterization generally followed the side chain parameterization protocol from 

ff14SB, these parameters are compatible with ff19SB as well since ff19SB adopted the side chain 

parameters directly from ff14SB. In ff19SB, standard amino acids have a CMAP term that replaces 

the ff14SB backbone.21 Leucine was considered to be a better model than alanine, as all amino 

acids except alanine and glycine have a γ carbon. In ff19SB, histidine and tyrosine use the leucine 

CMAP; phosphorylated histidine and tyrosine were also assigned the leucine CMAP. In ff19SB, 
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serine and threonine each have their own CMAPs, which were used for phosphorylated serine and 

threonine. 

 

Model Systems for Testing Parameter Accuracy 

Several systems, including one for each phosphorylated amino acid, were selected to test the 

parameters in proteins (Table 3). Analyses included comparing structural properties, such as the 

stability of secondary structures and hydrogen bonding that were observed in the experimental 

structure. 

 

Table 3. Protein test systems  

Protein PDB ID Amber Residue Name 

Aspergillus oryzae cutinase 3QPD33 SEP 

Aurora A Kinase 5DT334 TPO 

XLP Protein SAP 1D4W35 PTR 

Mannose-specific phosphotransferase 
enzyme IIA component 1EUD36 H2E 

 

 

Each system was simulated under three different conditions: once using the HHLS parameters24 

and ff14SB, once with phosaa14SB and ff14SB, and once with phosaa19SB and ff19SB. To make 

a fair comparison, some atom types in the HHLS parameters were modified in order to activate 

ff14SB backbone parameters. These modified library and parameter files are provided in the 

Supporting Information. Each simulation followed the equilibration and production protocols 



 
   

 

 

20 

provided in Supporting Information. Production runs were carried out in duplicate to estimate 

precision and reproducibility. 

CPPTRAJ37 was used to calculate dihedral angles, assign secondary structures, and evaluate 

hydrogen bonding and other key interactions in each simulation. A distance cutoff of 3.0Å was 

used for hydrogen bonds (acceptor to donor heavy atom), and a distance cutoff of 4.0Å between 

N-O atom pairs was used for salt bridges. VMD38 was used for visual analysis and image 

generation. 

 

RESULTS 

We parameterized the side chain dihedrals for the most common phosphorylated amino acids 

(phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine), each at two different 

protonation states. After comparing the partial charges for atoms sharing the same atom type, a 

new atom type CG was created, representing Cγ in both the singly protonated and unprotonated 

phosphotyrosine, as described in Supporting Information.  

Examining all rotatable bonds without parameters in ff14SB provided 48 dihedral atom quartets, 

but only 22 unique atom type quartets to be trained, since multiple dihedrals share atom type 

quartets (Table 2). 

 

Parameter training 

Training was carried out using acetyl and N-methyl amide capped dipeptides. Structures were 

built in both alpha and beta backbone conformations to minimize backbone dependence of side 

chain parameters in both methods. As with ff14SB, two different methods were used to generate 

diverse conformations of training structures. Grid scans were used to generate side chain variety 
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in phosphorylated amino acids with less than three rotatable bonds to be optimized. Otherwise, 

high temperature MD simulations generated conformational diversity. To relax distortions in these 

structures, we performed a relaxation with MM. Structures were filtered to remove those with 

unfavorable steric and/or very strong electrostatic interactions. Geometries of the structures were 

optimized with QM at HF/6-31G*, and single point energies were calculated with MP2/6-

31+G**31. Additional details are provided in Methods. 

RAGTAG,32 a GPU-based genetic algorithm program based on the protocol employed for 

training ff14SB, was employed to optimize and report the dihedral parameters. The phosphorylated 

amino acids were split between four different fitting groups, ensuring that no dihedral parameters 

were shared between fitting groups (Table 2). 

The average AAE (objective function) for the phosaa14SB parameters over all fitting groups is 

0.98 kcal/mol (Table 4). This is comparable to the score of 0.98 kcal/mol obtained during the 

optimization of dihedral parameters for standard side chains in ff14SB, indicating that amino acid 

phosphorylation did not pose an additional challenge to the training protocol or MM functional 

form. A separate score for phosaa19SB was not calculated, as it uses the same side-chain 

parameters as phosaa14SB. This score reflects a significant improvement over the HHLS 

parameters, which produce an average AAE of 2.55 kcal/mol. However, it is important to note that 

the energies of these structures were used to train the new parameters but were not part of the 

HHLS training data. 

 

Table 4. AAE calculated for individual amino acids, calculated using the new parameters and 

HHLS parameters24 for structures in the training set and alternate conformations 
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  Training Set Test Set 

Amber Residue 
Name 

Backbone phosaa14SB 
(kcal/mol) 

HHLS Parameters 
(kcal/mol) 

phosaa14SB 
(kcal/mol) 

HHLS Parameters 
(kcal/mol) 

S1P 
Alpha 0.94 1.18 1.15 1.21 

Beta 1.41 2.54 1.91 2.51 

SEP 
Alpha 0.07 0.70 0.48 0.79 

Beta 0.19 2.82 0.65 2.66 

T1P 
Alpha 0.89 1.50 1.22 1.57 

Beta 1.31 2.05 1.82 1.94 

TPO 
Alpha 0.59 4.67 1.68 4.69 

Beta 0.46 3.56 1.51 3.47 

Y1P 
Alpha 1.97 1.61 1.94 1.69 

Beta 1.40 2.76 1.67 2.83 

PTR 
Alpha 1.85 3.37 2.13 3.48 

Beta 2.10 5.16 2.57 4.98 

H1D 
Alpha 1.49 1.92 1.66 1.99 

Beta 1.59 2.33 1.88 2.25 

H2D 
Alpha 0.70 3.50 1.41 3.51 

Beta 0.60 3.71 1.46 3.64 

H1E 
Alpha 0.96 1.20 1.10 1.28 

Beta 0.95 1.64 1.14 1.62 

H2E 
Alpha 0.11 2.34 0.46 2.38 

Beta 0.12 2.44 0.49 2.47 

Average 0.98 2.55 1.42 2.55 
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We next compared objective functions (average AAE) across different fitting groups. 

Outliers can indicate whether a particular group contains amino acids that were difficult to model 

using shared parameters, suggesting that dividing them via new atom types could improve the fit. 

As expected, the fitting groups with only one protonation state of one phosphorylated amino acid 

result in the lowest scores since the parameters can be highly specific (Fitting Group 1: SEP with 

an AAE of 0.13 kcal/mol and Fitting Group 2: TPO with an AAE of 0.53 kcal/mol). These fitting 

groups also show the most improvement over the HHLS parameters. Fitting Group 4 is comprised 

of four different residues (H1D, H2D, H1E, and H2E), but phosaa14SB still provides a good 

average AAE of 0.82 kcal/mol. Fitting Group 3, comprised of S1P, T1P, Y1P, and PTR, has the 

highest average AAE of 1.48 kcal/mol. Furthermore, Y1P with an alpha backbone is also the only 

case where HHLS provides a lower AAE than phosaa14SB. These results suggest that Fitting 

Group 3 may share parameters too broadly. Although Groups 3 and 4 both include four residues, 

Group 4 includes only variations of histidine, while Group 3 includes dihedral parameters shared 

across phosphorylated versions of serine, threonine, and tyrosine. This suggests that the higher 

AAE for Group 3 might reflect poor transferability of parameters across the group. Looking at the 

AAE values for individual residues indicates reduced accuracy for singly protonated and 

unprotonated phosphotyrosine compared to the other amino acids (Y1P, PTR; Table 4). However, 

PTR shares no dihedral parameters with S1P or T1P, and PTR and Y1P share only parameters for 

χ1 and χ2, and these employ the newly-created CG atom type not shared with other amino acids. 

This minimal overlap in parameters in the fitting group suggests that the reduced accuracy for PTR 

and Y1P arises from sources other than dihedral parameter transferability, and may reflect other 

issues such as the lack of explicit aromatic ring polarization with repositioning of the phosphate.  
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In every case other than the alpha backbone of Y1P, the AAE score for phosaa14SB is 

lower than that of HHLS. Overall, the analysis suggests that force field accuracy improves with 

phosaa14SB for most amino acids, and that phosphotyrosine might be improved with a more 

complex treatment than explored here. 

 

Evaluating structures not included in the training set 

We evaluated the performance of parameters on amino acid conformations not included in 

the training data (Table 4). 100 additional structures for each residue in each backbone 

conformation were selected and optimized as described in Methods. The average AAE score for 

these alternate conformations using phosaa14SB is 1.42 kcal/mol, somewhat higher than the 0.98 

kcal/mol for the training conformations. This continues to be an improvement over the average 

AAE score using the HHLS parameters, which is 2.55 kcal/mol. The only instance of the HHLS 

parameters resulting in a lower score than phosaa14SB is Y1P with an alpha backbone, consistent 

with the results from the training set.  

 

Protein simulations 

The ultimate test of the force field parameters is evaluating their performance in protein 

simulations. This evaluates the transferability of the parameters from isolated amino acids in the 

gas phase to the context of protein chains in water. Simulation accuracy was evaluated by 

analyzing structural stability, specifically focusing on maintaining the rotamers and local 

interactions observed in the experimental structure. The systems selected (Table 3) contain 

varying phosphorylated amino acids. Each system was built with the HHLS, phosaa14SB, and 
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phosaa19SB parameters for phosphorylated proteins. An equilibration protocol detailed in 

Methods was followed before duplicate 4 μs production MD. 

 

Phosphoserine: Aspergillus oryzae cutinase 

Cutin, a waxy substance found in plant cell walls, can be hydrolyzed by cutinases. 

Aspergillus oryzae cutinase is traditionally used in the fermentation and production of rice wine, 

soy sauce, and soybean paste.39 Phosphorylation can occur at Ser101, as seen in PDB 3QPD33. In 

this structure, Ser101 is at the end of a 12-residue α-helix and points into the active site. The 

phosphate oxygens form hydrogen bonds with the NE2 atom of His169, and with the peptide 

nitrogen and side chain hydroxyl group of Ser23. We evaluated the ability of simulations using 

different parameters to maintain these interactions. 

Following simulations, CPPTRAJ37 was used to evaluate the presence of these hydrogen 

bonds in the structure, with the structure shown in Figure S4 and simulation results in Table S4. 

Precision estimates reflect half the difference between the results of the duplicate runs. With 

phosaa14SB, phosaa19SB, and HHLS parameters, the hydrogen bonds between the phosphate 

oxygens and the NE2 of His169 and the hydroxyl group of Ser23 were all present during 100% of 

the trajectory (with exact data and uncertainties in Table S4). The interaction between the peptide 

nitrogen of Ser23 and the phosphate oxygens was observed 99.46% ± 0.05%, 96.7% ± 0.3%, and 

96% ± 2% of the time with phosaa14SB, phosaa19SB, and HHLS parameters, respectively. 

A more direct measure of the quality of the new dihedral parameters is evaluating their 

ability to maintain the rotamer present in the experimentally determined structure. For all three 

parameter sets, the dihedral angles for the parameterized atom type quartets, N-CX-2C-OZ (atom 

names N-CA-CB-OG), CX-2C-OZ-P (atom names CA-CB-OG-P), and 2C-OZ-P-OX (atom 
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names CB-OG-P-O1P, CB-OG-P-O2P, and CB-OG-P-O2P), remained stable at the 

crystallographic values throughout all of the simulations, as shown in Figure S5. With HHLS, the 

phosphate group rotates more frequently throughout the simulation (indicating a reduced bond 

rotation barrier), but the three peak values remain consistent with the crystal structure. For CX-

2C-OZ-P, which corresponds to atom names CA-CB-OG-P, the range of angles is shifted modestly 

from the crystal structure value. However, the dihedral angles for the rotatable bonds on either side 

remain consistent with the crystal structure values. Together, these observations indicate that the 

HHLS and revised parameters all provide reasonably stable simulations of this system.  

 

Phosphotyrosine: XLP Protein SAP 

SAP is the product of the gene mutated in X-linked lymphoproliferative syndrome (XLP). 

With this mutation, the body cannot properly regulate the number of lymphocytes, which leads to 

the enlargement of the lymph nodes, liver, and spleen. SAP adopts a single SH2 domain that binds 

the cytoplasmic tail of the lymphocyte coreceptor SLAM, and SLAM can be phosphorylated at 

Tyr281. Structures have been solved for SAP bound to a peptide corresponding to the SLAM tail 

when phosphorylated (1D4W) or unphosphorylated (1D4T).35 SAP binds a site encompassing 

Tyr281 in SLAM, irrespective of the phosphorylation state of this site in experiment.35 At residues 

279-281, the SLAM peptide backbone forms a short parallel β-sheet interaction with residues 51-

53 in the βD strand of the SAP domain.35  

In the crystal structure, the phosphate group of Ptr281 forms hydrogen bonds with the side 

chains of Arg32, Ser34, Ser36, and Cys42. The phosphate group also hydrogen bonds with the 

peptide nitrogen of Glu35. The aromatic ring of Ptr281 engages in a cation-pi stacking interaction 

with the guanidinium group of Arg55 (Figure S6).  
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 The side chain rotamer for Ptr281, as well as the presence of the β-sheet, cation-pi 

interaction, salt bridge, and hydrogen bonds in the simulations, were evaluated and compared 

between parameter sets. Most interactions between the Ptr281 side chain and the SAP protein are 

stable with all parameter sets (Table S5). All maintained 100% population for the salt bridge 

between the phosphate group and Arg32 and the hydrogen bond with Ser34 in their duplicate runs. 

The Ser36 hydroxyl interacted with the phosphate group 93.5% ± 0.1%, 81% ± 1%, and 91% ± 

1% of the time with phosaa14SB, phosaa19SB, and HHLS parameters, respectively. A hydrogen 

bond between the phosphate and the sulfur of Cys42 was stable in all simulations (95.5-99.7%). 

In some cases, reduced stability of the phosphate interactions was noted. A hydrogen bond 

between the Glu35 backbone nitrogen and the phosphate group was present 99% of the time in the 

simulations using phosaa14SB (± 0.6%) and HHLS (± 1%) parameters, but only 55 ± 6% of the 

time with phosaa19SB. Both Glu35 and Ser36 are in a flexible loop and do not hydrogen bond 

with the phosphate oxygens simultaneously with phosaa19SB as often as phosaa14SB and HHLS. 

The cation-pi interaction with Arg55 was observed to be more stable in simulations with the new 

parameters. It was present in the simulations with phosaa14SB and phosaa19SB 98.5 ± 0.3% and 

97 ± 1% of the time, respectively, but only 65 ± 6% of the simulation with the HHLS parameters. 

This is likely due to the deviation in the dihedral angle of atom names N-CA-CB-CG (Figure S7), 

which turns the Ptr ring away from Arg55, as discussed below. 

 The stability of the parallel β-sheet interaction with the peptide and the βD strand 

of the protein (Figure S8) was quantified by calculating secondary structure content with DSSP40 

in CPPTRAJ37. In all simulations, the short parallel β-sheet shows a similar population of about 

75%, with consistent results between the three sets of parameters, as shown in Figure S8. 
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 The dihedral angles for the parameterized atom type quartets, N-CX-CT-CG (atom names 

N-CA-CB-CG), CX-CT-CG-CA (atom names CA-CB-CG-CD1 and CA-CB-CG-CD2), and CA-

C-OV-P (atom names CE1-CZ-OG-P and CE2-CZ-OG-P), were calculated throughout the 

simulations. In simulations using phosaa14SB and phosaa19SB, these rotamers remained stable 

and consistent with the values in the crystal structure, as shown in Figure S7. However, the 

dihedral angles using the HHLS parameters are less stable in two cases. Specifically for CA-C-

OV-P (atom names CE1-CZ-OG-P and CE2-CZ-OG-P), the dihedral angles are unstable and do 

not align with the values of the crystal structure. The dihedral angles in the crystal structure are -

75° and 105°. Using the HHLS parameters, the dihedral angles begin in alignment with the values 

from the crystal structure, but during both simulations become offset by about 90°. After this 

rotation, the dihedral angles average 15° and -165°. Despite this rotation, the phosphate oxygens 

maintain their formation of hydrogen bonds with adjacent residues.  

The second deviation observed in simulations using the HHLS parameters is the dihedral 

angle of atom type quartet N-CX-CT-CG (atom names N-CA-CB-CG), which shifts 25 degrees 

from the crystal structure (Figure S7). This leads to a rotation of the ring away from the NH1 and 

NH2 nitrogens of Arg55, and significantly reduces the presence of the cation-pi interaction present 

in the other simulations (Table S5).  

All the observations mentioned above suggest that the new parameters provide improved 

accuracy. With HHLS parameters, all three parameterized atom type quartets do not align with the 

values from the crystal structure as closely as phosaa14SB and phosaa19SB. The dihedral angles 

for atom type quartet CA-C-OV-P differ from the crystal structures by about 90° for most of the 

HHLS simulations, weakening the cation-pi interaction between the Ptr ring and Arg55. These 

differences are remedied with phosaa14SB and phosaa19SB. Comparing the duplicate runs with 
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each parameter set, the uncertainties in Table S5 are typically ~ 1%, rising to ~ 6% only in cases 

where the interactions are less stable.  

 

Phosphothreonine: Aurora A kinase 

Aurora A kinase (AURKA) is a major regulator of mitosis, and its activation plays an 

important role in numerous cancers.41 Autophosphorylation occurs at Thr164 in a flexible loop 

region (PDB 5DT334). The Tpo164 phosphate forms a salt bridge with Arg57, ordering the 

activation loop, which begins activating the kinase.34 Arg57 is located in the αC helix, along with 

Gln54, which also interacts with the Tpo164 phosphate. The phosphate forms an additional salt 

bridge with Arg132 from the catalytic loop, and a hydrogen bond with the peptide nitrogen of 

Arg163 (Figure S9). The simulation stability for these interactions provides a critical evaluation 

of parameter accuracy. 

 The dihedral angles for the parameterized atom type quartets, N-CX-3C-OZ (atom names 

N-CA-CB-OG), CX-3C-OZ-P (atom names CA-CB-OG-P), and 3C-OZ-P-OX (CB-OG-P-O1P, 

CB-OG-P-O2P, and CB-OG-P-O3P), are stable as shown in Figure S10. The dihedral angle for 

atom names N-CA-CB-OG is -25° in the crystal structure, and shifted by an average of 25-30° in 

the simulations. However, this shift is consistent throughout all of the simulations. In the crystal 

structure, the dihedral angle for atom names CA-CB-OG-P is 129°. With phosaa14SB and 

phosaa19SB, the average dihedral angle is 76° and 74°, respectively. While these dihedral angles 

do not align with the crystal structure, the experimental density in this region is weak. However, 

the key interactions of the phosphate are stable, as discussed below. 

 Using phosaa14SB, all 3 salt bridges were formed 80 to 100% of the time. Simulations 

with phosaa19SB adopted the salt bridges 80 to 90% of the time. Using HHLS parameters, the salt 
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bridges were present 97 to 98% of the time. Notably, the interaction between the peptide nitrogen 

of Arg163 and the phosphate group was observed 99-100% of the time in all simulations. (Table 

S6). 

In summary, the stability of the dihedral values in simulation and the presence of the key 

interactions with the phosphate group support the accuracy of the new parameters, and deviations 

in specific dihedral values are likely reasonable given the uncertainty in the experimental model.  

 

Phosphohistidine: Mannose-specific phosphotransferase enzyme IIA component 

The mitochondrial enzyme succinyl-CoA synthetase (SCS) builds succinyl-CoA from 

succinate and coenzyme A using either ATP or GTP as the catalyst.36 The GTP-specific isoform 

of SCS from pig heart can be phosphorylated (PDB 1EUD36) or dephosphorylated (PDB 1EUC36) 

at His259α.42  

In the crystal structure, the phosphate group of H2e forms helix N-capping interactions 

with helices A and B (Figure S11). In helix A, the phosphate oxygens act as hydrogen bond 

acceptors for the exposed peptide nitrogens of Ala273β and Gly274β. In helix B, the phosphate 

complements the traditional N-capping role of serine at Ser162α, acting as a hydrogen bond 

acceptor for the exposed amide N of Gly163α. 

The dihedral angles for the parameterized atom type quartet, CW-NA-P-OP (atom names 

CD2-NE2-P-O1P, CD2-NE2-P-O2P, and CD2-NE2-P-O3P), remained stable and consistent with 

the values in the crystal structure, as shown in Figure S12. H2E dihedral angles for atom type 

quartets that were not parameterized (due to their presence in ff14SB) were also calculated (Figure 

S12) to verify that re-using the existing parameters is reasonable. These include N-CX-CT-CC 
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(atom names N-CA-CB-CG) and CX-CT-CC-NA (atom names CA-CB-CG-NA). With all force 

fields, these dihedral angles remain stable and consistent with crystal structure in every run. 

In the simulations using all three parameter sets (phosaa14SB, phosaa19SB, and HHLS), a 

phosphate oxygen acted as a hydrogen bond acceptor for the peptide nitrogen of Ala273β 88-94% 

of the time (Table S7). The phosphate group interacted with the peptide nitrogen of Gly274β 93-

97% of the time in all simulations. Simulations with both phosaa14SB and HHLS parameters had 

the peptide nitrogen of Gly163α close enough to donate a hydrogen bond to a phosphate oxygen 

96-99% of the time, while the simulations using phosaa19SB had these atoms close enough 83 ± 

6% of the time. In the crystal structure, the Gly163 initiates helix B. However, this region is more 

flexible with phosaa19SB, resulting in reduced hydrogen bonding with the phosphate group. 

The new parameters show remarkably similar results to the HHLS parameters here; this is 

expected, as H2E only has one atom type quartet that was updated with the new parameters (the 

three-fold symmetric phosphate rotation).  

 

CONCLUSIONS 

New sidechain dihedral parameters were developed for five phosphorylated amino acids, each 

in two protonation states. As with ff14SB, training used both alpha and beta peptide backbone 

conformations for training data. The parameters were optimized using QM data for a set of training 

structures, with multiple conformations for each combination of phosphorylated amino acid, 

protonation state, and backbone. A GPU-based genetic algorithm optimized the parameters, 

producing an average absolute error of 0.98 kcal/mol. This aligns with the parameterization of 

standard amino acids in ff14SB18, which also had an average absolute error of 0.98 kcal/mol. 

Testing on structures outside the training set produced an average absolute error of 1.42 kcal/mol. 
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This demonstrates improvement over the HHLS parameters, which had an average absolute error 

of 2.55 kcal/mol for structures in and outside the training set. 

Simulations of proteins containing phosphorylated amino acids using phosaa14SB and 

phosaa19SB were consistent with experimental structures, specifically in terms of hydrogen 

bonding, dihedral angle stability, and secondary structure. In the two instances where phosaa19SB 

did not replicate the observed hydrogen bonding in both the crystal structure and simulations with 

phosaa14SB, the standard amino acids that were the hydrogen bond donors were in flexible 

regions. However, the phosphate group and corresponding dihedral angles remained stable, and 

still formed hydrogen bonds with other nearby residues. In the Aurora A kinase system, 

phosaa14SB and phosaa19SB had an atom type quartet that did not align with the crystal structure. 

However, the density in the PDB structure was weak and, therefore, should not be overinterpreted. 

The dihedral angles remained stable, and the key interactions in the crystal structure and with the 

HHLS parameters were maintained. 

 

PARAMETER AVAILABILITY 

The optimized dihedral side chain parameters are provided in Amber frcmod files, and the library 

files are available for use with the Amber input preparation module LEaP. For use with ff14SB, 

users should use frcmod.phosaa14SB, leaprc.phosaa14SB, and phosaa14SB.lib. For use with 

ff19SB, users should use frcmod.phosaa19SB, leaprc.phosaa19SB, and phosaa19SB.lib.  

 

ASSOCIATED CONTENT 

Supporting Information. 

The following files are available free of charge: 
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Additional information regarding training structure generation and selection, simulation 

methods, and additional figures (PDF) 

Amber-format library, frcmod, and leaprc files for use with Amber and other simulation programs 
(text files), including updated HHLS library files suitable for use with ff14SB: 

• frcmod.phosaa14SB 
• leaprc.phosaa14SB 
• phosaa14SB.lib 
• frcmod.phosaa19SB 
• leaprc.phosaa19SB 
• phosaa19SB.lib 
• frcmod.HHLS14 
• leaprc.HHLS14 
• HHLS14.lib 
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