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Abstract. Two tantalizing invariants of a combinatorial code C ⊆ 2[n] are cdim(C) and
odim(C), the smallest dimension in which C can be realized by convex closed or open sets,
respectively. Cruz, Giusti, Itskov, and Kronholm showed that for intersection complete
codes C with m+ 1 maximal codewords, odim(C) and cdim(C) are both bounded above by
max{2,m}. Results of Lienkaemper, Shiu, and Woodstock imply that odim and cdim may
differ, even for intersection complete codes. We add to the literature on open and closed
embedding dimensions of intersection complete codes with the following results:
• If C is a simplicial complex, then cdim(C) = odim(C),
• If C is intersection complete, then cdim(C) ≤ odim(C),
• If C ⊆ 2[n] is intersection complete with n ≥ 2, then cdim(C) ≤ min{2d + 1, n − 1},
where d is the dimension of the simplicial complex of C, and

• For each simplicial complex ∆ ⊆ 2[n] with m ≥ 2 facets, the code S∆ := (∆∗ (n+1))∪
{[n]} ⊆ 2[n+1] is intersection complete, has m + 1 maximal codewords, and satisfies
odim(S∆) = m. In particular, for each n ≥ 3 there exists an intersection complete
code C ⊆ 2[n] with odim(C) =

(
n−1

b(n−1)/2c

)
.

A key tool in our work is the study of sunflowers: arrangements of convex open sets in
which the sets simultaneously meet in a central region, and nowhere else. We use Tverberg’s
theorem to study the structure of “k-flexible” sunflowers, and consequently obtain new lower
bounds on odim(C) for intersection complete codes C.

1. Introduction

In [6], Curto, Itskov, Veliz-Cuba, and Youngs introduced convex codes to mathematically
model stimulus reconstruction from neural data, particularly in the context of hippocampal
place cells. Classifying and understanding convex codes have been active areas of recent
mathematical research, bringing together tools and perspectives from topology [4, 21], alge-
bra [9, 11, 22], and discrete geometry [2, 12, 13, 16, 19]. A complete classification of convex
codes is far out of reach for the moment, but progress can yield new techniques for analyzing
neural data, as well as a deeper understanding of the mathematical theory of convex sets. In
this paper, we give new bounds on the open and closed embedding dimensions of intersection
complete codes, and families of examples where these bounds are tight. In particular, we
provide infinite families of intersection complete codes for which open embedding dimension
grows exponentially in the number of neurons, while closed embedding dimension grows only
linearly.
Before stating our results we recall some definitions and frame our main questions of study.

A convex code (see Definition 1.1 below) is a special case of a combinatorial code, which is a

Date: November 16, 2021.
2010 Mathematics Subject Classification. 32F27, 52A20, 52C99, 52A35.
Department of Mathematics. University of Washington, Seattle, Wa 98195.

Jeffs’ research is supported by a graduate fellowship from NSF grant DGE-1761124.
1



2 R. AMZI JEFFS

collection of subsets of [n] := {1, . . . , n}. Due to the biological motivation behind our work,
we think of the elements of [n] as neurons, and each element of a code as recording a set of
neurons which fired together in a small window of time.

The elements of a code are called codewords, and for concision we often omit braces and
commas when writing codewords. For example, we may write 124 instead of {1, 2, 4}. The
weight of a codeword is simply the number of neurons it contains. We will often think of a
code as a partially ordered set under containment—for example, we may speak of maximal
codewords, which are not properly contained in any other codeword. When writing down a
specific code, we will bold the maximal codewords.

Codes can arise abstractly when one wishes to describe how a certain collection of sets
covers a space, as follows. Let X be a set and U = {U1, . . . , Un} a collection of subsets of
X. One may form the code of U in X, a combinatorial code whose codewords describe how
the Ui intersect and cover one another:

code(U , X) :=

{
σ ⊆ [n]

∣∣∣∣
⋂

i∈σ

Ui \
⋃

j∈[n]\σ

Uj 6= ∅

}
.

The region
⋂

i∈σ Ui \
⋃

j∈[n]\σ Uj is called the atom of σ, and denoted by Aσ
U . The space X

is called the ambient space or stimulus space, and the Ui are called receptive fields or firing
regions. Note that the receptive fields are indexed by neurons. If C = code(U , X), then the
collection U is called a realization of C in X. For concision, we will write Uσ for

⋂
i∈σ Ui (and

similarly define Vσ when working with various Vi), and adopt the convention that U∅ = X.
Unless otherwise specified, throughout this paper the ambient space will be Rd, and the

Ui will be (possibly empty) convex sets that are either all open, or all closed. We will write
code(U) instead of code(U ,Rd) when the ambient dimension is clear. We will also adopt the
usual convention in the study of convex codes that ∅ is contained in all codes, i.e. that there
is always a point in the ambient space not covered by any Ui. In our examples we illustrate
open sets with a solid border so that our figures are clean and readable. The accompanying
text will always specify whether we are regarding the sets in question as open or closed.
Finally, we will always assume n ≥ 1 (i.e. that we are not working with an empty set of
neurons).

Definition 1.1. A code C ⊆ 2[n] is called an open convex code if it has a realization consisting
of convex open sets in Rd. Similarly, C is called closed convex if it has a realization consisting
of closed convex sets in Rd.

Example 1.2. The figure below shows a realization in R2 of the (open/closed) convex code
C = {123, 12, 23, 2, 3, ∅}. The atom A23

U is highlighted in grey.

In the neuroscientific context mentioned above, open convex codes are of greater interest
than closed convex codes, since receptive fields have been experimentally observed to be
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full-dimensional (see [4, Figure 1] for example). However, we will also study closed convex
codes in this paper to build on the work of [3], and to contrast their behavior to that of open
convex codes. Moreover, it is of broad mathematical interest to develop our understanding
of closed convex sets and their intersection patterns, since they are ubiquitous in fields such
as optimization and discrete geometry (see for example [1, Section 3], [20, Chapters 6 and
8], and [23, Chapter 8]).

The study of convex codes asks two main questions. First, given a code C ⊆ 2[n], when
can we find a (closed or open) convex realization of C? Second, if we can find
a realization, what is the smallest dimension in which we can do so? Formally,
we wish to investigate the open and closed embedding dimensions of combinatorial codes,
described below.

Definition 1.3. Let C ⊆ 2[n] be a code. The open embedding dimension of C, denoted by
odim(C), is the smallest d so that C has a realization in Rd consisting of convex open sets, or
∞ if no convex open realization exists. Similarly, the closed embedding dimension, denoted
by cdim(C), is the smallest dimension in which C has a closed convex realization, or ∞ if
none exist.

Remark 1.4. The study of open and closed embedding dimension generalizes the the study
of d-representable simplicial complexes, a classical topic in discrete geometry (see [25] for
a survey). A simplicial complex ∆ is said to be d-representable if one can find a collection
U of convex sets in Rd such that for each σ ⊆ [n] we have σ ∈ ∆ if and only if Uσ 6= ∅
(equivalently, ∆ is the smallest simplicial complex containing code(U)). In this context the
requirement that all sets in U be open or closed is immaterial; one may work with open or
closed convex sets interchangeably. Thus the differences that can arise between open and
closed embedding dimensions of codes (which we will see starkly in Corollary 6.3) provide
interesting evidence that the study of convex codes significantly generalizes the study of
d-representable complexes.

Note that the convex realization in Example 1.2 is not minimal with respect to dimension,
since we could flatten the Ui into (closed or open) intervals to obtain a realization in R1.
Thus odim(C) = cdim(C) = 1 for C = {123, 12, 23, 2, 3, ∅}.

In this paper we will study codes that are intersection complete: the intersection of any
two codewords is again a codeword. An important result of [3] is that intersection complete
codes are always open and closed convex. More specifically, we have the following:

Theorem 1.5 (Special case of Theorem 1.2 of [3]). Let C ⊆ 2[n] be an intersection complete
code with m+ 1 maximal codewords. Then

max{odim(C), cdim(C)} ≤ max{2,m}.

We will prove a new bound on closed embedding dimension which improves the bound
in Theorem 1.5 for many intersection complete codes (see Theorem 1.9). In contrast to the
closed case, we will show that the bound odim(C) ≤ max{2,m} can be tight for any choice
of m ≥ 2 (see Theorem 1.11). Except where stated otherwise, every code we work with in
this paper is intersection complete.

A special case of intersection complete codes is that of a simplicial complex. For simplicial
complexes, open and closed embedding dimensions are equal. Although this result is well
known among the neural codes community, we are not aware of any written proofs. We
provide one below.
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Theorem 1.6. Let C ⊆ 2[n] be a simplicial complex. Then cdim(C) = odim(C).

Proof. In Theorem 1.8, we will show that cdim(C) ≤ odim(C). Thus we just need to prove
that odim(C) ≤ cdim(C). Let V = {V1, . . . , Vn} be a closed realization of C in Rcdim(C).
By intersecting all the Vi with a sufficiently large closed ball, we may assume that they
are bounded, and hence compact. For each nonempty codeword c ∈ C, choose a point
pc ∈ A

c
V . By compactness, each pc has positive distance to any set Vi that does not contain

it. Likewise, any choice of σ, τ ⊆ [n] for which Vσ and Vτ are disjoint, the sets Vσ and Vτ

must have positive distance between one another. Thus we may choose ε such that replacing
the Vi by their Minkowski sums with an open ε-ball neither causes any Vi to cover some pc it
did not before, nor causes disjoint Vσ and Vτ to intersect. This creates a collection of convex
open sets whose code contains all the codewords of C, and no new maximal codewords. Since
C is a simplicial complex, this is exactly a convex open realization of C. �

Example 1.7. Consider the code C = {123,34, 12, 13, 23, 1, 2, 3, 4, ∅}, and note that C is a
simplicial complex. The lefthand side of the figure below shows a realization of C in R2 with
closed convex sets, as well as possible choices of points pc for c ∈ C as used in the proof
above. The righthand side shows the open realization given in the proof above, which results
from adding a small ε-ball to each Vi.

Can the above techniques be extended to realizations of codes that are not simplicial
complexes? The answer in general is no, even for intersection complete codes, a fact which
was first observed implicitly in the results of [13, 19]. Corollary 6.3 will yield a plethora of
examples of intersection complete codes on n neurons that are closed convex in Rn−1, but
not open convex in Rn−1. For such codes, adding an ε-ball to sets in a closed realization in
Rn−1 will always fail to produce an open realization.

The following theorems are the main contributions of this work, and give us a handle on
how open and closed dimension behave for intersection complete codes.

Theorem 1.8. Let C ⊆ 2[n] be an intersection complete code. Then cdim(C) ≤ odim(C).

It is known that this inequality may be strict for intersection complete codes C ⊆ 2[n], as
mentioned above. In fact, the gap may be quite large: Theorem 1.9 implies that cdim(C) ≤
n− 1, while Corollary 6.3 says that odim(C) may be exponential in n.

Theorem 1.9. Let C ⊆ 2[n] be an intersection complete code with n ≥ 2, and d be one
less than the weight of the largest codeword in C (i.e. d = dim(∆(C))). Then cdim(C) ≤
min{2d+ 1, n− 1}.

This bound is known to be tight. For every d ≥ 0, [24] describes a d-dimensional simplicial
complex on n vertices whose closed embedding dimension is exactly 2d + 1 (which, in the
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family given, is the same as min{2d + 1, n − 1}). Our proof of Theorem 1.9 is inspired
by a construction of Wegner and Perel'man which was originally used to show that every
d-dimensional simplicial complex is (2d+ 1)-representable (see [25, Theorem 3.1]).
Interestingly, the bound in Theorem 1.9 does not hold for odim(C). In fact, Theorem

1.11 below gives us a way to construct numerous examples of intersection complete codes for
which odim(C)� min{2d+ 1, n− 1}.

Definition 1.10. Let ∆ ⊆ 2[n] be a simplicial complex. Define S∆ ⊆ 2[n+1] to be the code

S∆ := (∆ ∗ (n+ 1)) ∪ {[n]},

where ∆ ∗ (n+ 1) denotes the cone over ∆ with apex n+ 1.

Theorem 1.11. Let ∆ ⊆ 2[n] be a simplicial complex with m ≥ 2 facets. Then S∆ is an
intersection complete code with m+ 1 maximal codewords, and odim(S∆) = m.

A key tool in proving Theorem 1.11 is an application of a “sunflower theorem” that we
proved in [13]. In this paper, we will generalize this theorem to “k-flexible” sunflowers of
convex open sets, defined formally below. These are collections of convex open sets which
have a common intersection, but no more than k of which overlap outside of this common
intersection.

Definition 1.12. Let U = {U1, . . . , Un} be a collection of convex sets in Rd and let C =
code(U). The collection U is called a k-flexible sunflower if [n] ∈ C, and all other codewords
have weight at most k. The Ui are called petals and U[n] is called the center of U .

The following theorem tells us that if a k-flexible sunflower U in Rd has “enough” petals,
then sampling a point from each petal and taking the convex hull always covers a point in
the center of U . Our proof of this theorem is given in Section 7 and relies on an application
of Tverberg’s theorem.

Theorem 1.13. Let U = {U1, . . . , Un} be an open k-flexible sunflower in Rd. Suppose that
n ≥ dk + 1, and for each i ∈ [n] let pi ∈ Ui. Then conv{p1, . . . , pn} contains a point in the
center of U . Moreover, if d ≥ 2 this result may fail when n < dk + 1.

By considering a set of line segments in R2 which meet at a point, one can see that this
result does not hold for closed convex sets.

Example 1.14. Consider the open 2-flexible sunflower {U1, U2, U3, U4, U5} in R2 below. The
center of this sunflower is the unit square highlighted in dark gray. Note that d = 2,
k = 2, and n = 5. Thus n ≥ dk + 1, and so Theorem 1.13 applies. Indeed, any choice of
p1 ∈ U1, . . . , p5 ∈ U5 has the property that conv{p1, p2, p3, p4, p5} intersects the center of the
sunflower. One choice of such points is shown below.
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Observe that deleting U5 yields a 2-flexible sunflower in R2 for which the conclusion of
Theorem 1.13 does not hold: the set conv{p1, p2, p3, p4} does not intersect the center of
{U1, U2, U3, U4}.

In Section 2 we will recall some relevant background material. The subsequent sections are
devoted to proving the theorems stated above, with one self-contained section per theorem.
An exception to this is Section 5, which provides important supporting results and context
for Section 6.

Section 8 describes a new family Tn of intersection complete codes, and initiates the study
of their open embedding dimensions. The codes Tn are related to sunflowers, but the theorems
that we prove regarding sunflowers are not sufficient to precisely determine odim(Tn).

Section 9 provides a unifying capstone to our results. We examine the families of codes
from Sections 5, 6, and 8 in the context of a partially ordered set PCode consisting of all
neural codes, which was first introduced in [14]. We show that the bound on open embedding
dimension from Theorem 1.11 can be proven combinatorially using this partial order. We
also generalize Definition 1.10, and apply Theorem 1.13 to prove a generalization of Theorem
1.11, viewing these results through the lens of PCode.

2. Background and Preliminaries

Throughout this paper we will assume familiarity with standard concepts in topology and
convex geometry; for example the interior, closure, and boundary of a set in Rd, convex
hulls, hyperplanes, and halfspaces (see [20, Chapter 1]). Recall that each hyperplane H in
Rd may be given an orientation, so that we can speak of the (open) halfspaces H> and H<

consisting of points lying on the positive and negative sides of H, respectively. We will also
use H≥ and H≤ to denote the (closed) non-negative and non-positive respective halfspaces
associated to H. For any convex set U ⊆ Rd and any boundary point p of U , one can find a
supporting hyperplane through p: an oriented hyperplane H containing p with U ⊆ H≥.
Below, we provide additional background on convex codes, simplicial complexes, and poly-

topes.

2.1. Convex Codes. In Section 1 we gave a brief overview of the theory of convex neural
codes. We will need one additional concept related to neural codes, described below.

Definition 2.1. Let C ⊆ 2[n] be a code, and let σ ⊆ [n]. The trunk of σ in C is

TkC(σ) := {c ∈ C | σ ⊆ c}.
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A subset of C is called a trunk if it is empty, or equal to TkC(σ) for some σ ⊆ [n]. When
σ = {i} we will call TkC(σ) a simple trunk, and denote it TkC(i).

We introduced trunks in [14] and used them (and a consequent notion of morphism) to
define a convenient partial order on neural codes, in which convex codes form a down-set.
We will make use of this partial order to contextualize our results in Section 9.
It is worth briefly justifying our requirement that realizations consist of all closed or all

open sets. As mentioned in Section 1, openness is a natural requirement from the perspective
of neuroscience, in which receptive fields are full-dimensional and do not terminate in sharp
boundaries. From a mathematical perspective, requiring closed or open sets is also natural,
so that we may think of the receptive fields as a collection of closed or open sets covering
some topological subspace of Rd. A further reason to place topological constraints on the
sets in our realizations is the following: in [8], it was shown that every code has a realization
consisting of convex sets (possibly neither open nor closed). Thus topological constraints are
imperative to make the overall question of classifying convex codes meaningful.

2.2. Simplicial Complexes. For our purposes, an (abstract) simplicial complex is just a
code that is closed under taking subsets (i.e. a subset of a codeword is again a codeword). If
∆ ⊆ 2[n] is a simplicial complex, the maximal codewords may be called facets, the codewords
called faces, and elements of [n] called vertices. Observe that every simplicial complex is
uniquely specified by its facets together with the vertex set [n]. In contrast to the usual
theory of simplicial complexes, we allow the case in which i is a vertex but {i} /∈ C.
The dimension of a simplicial complex ∆, denoted by dim(∆), is one less than the size of

the largest face in ∆. If ∆ ⊆ 2[n] is a simplicial complex, and m > n, the cone over ∆ with
apex m is the simplicial complex

∆ ∗m := {σ ⊆ [m] | σ \ {m} ∈ ∆}.

That is, ∆ ∗m is the simpicial complex whose facets are the facets of ∆ with m added to
them. Finally, for any code C ⊆ 2[n], the simplicial complex of C, denoted by ∆(C), is the
smallest simplicial complex containing C.

2.3. Polytopes and Polytopal Complexes. A polytope is the convex hull of a finite set
of points in Rd, or equivalently a bounded intersection of finitely many closed halfspaces.
The dimension of a polytope is the dimension of its affine hull. The (proper) faces of a d-
dimensional polytope in Rd are its intersections with supporting hyperplanes; faces consisting
of a single point are called vertices, and maximal faces are called facets. We will also consider
the empty set to be a proper face of any polytope P , and its associated supporting hyperplane
to be any hyperplane that does not intersect P .

One can partially order the faces of a polytope by inclusion to form its face poset. Two
polytopes are called combinatorially equivalent if their face posets are isomorphic. Every
polytope P ⊆ Rd admits a dual polytope P ∗ ⊆ Rd, which has the property that the face
poset of P ∗ is isomorphic to the dual of the face poset of P (i.e. one obtains the face poset
of P ∗ by turning the face poset of P upside down).

A polytope is called d-neighborly if the convex hull of any d of its vertices is a face.
Conveniently, d-neighborly polytopes with an arbitrarily large number of vertices can always
be found in R2d (e.g. the cyclic polytope; see [26, Corollary 0.8]).
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A polytopal complex in Rd is a finite set of polytopes P with the properties that (i) if
P ∈ P , then any face of P is also in P , and (ii) the intersection of two polytopes P1, P2 ∈ P
is a face of both P1 and P2. Polytopes in P are called faces.

Each polytopal complex P has a face poset, consisting of all faces in P partially ordered
by containment. Two polytopal complexes are called combinatorially equivalent if their
face posets are isomorphic. Maximal faces in P are called facets, and if all facets have the
same dimension then P is called pure. Finally, we say that a polytopal complex P in Rd is
full-dimensional if it has a facet of dimension d.

Given a d-dimensional polytope P ⊆ Rd and a facet F of P , one can form a pure, full-
dimensional polytopal complex in Rd−1 called the Schlegel diagram of P based at F . Roughly,
one does this by “looking through” the facet F to project all other faces of P into Rd−1. The
key fact about Schlegel diagrams that we will need is the following: as a polytopal complex,
the Schlegel diagram is combinatorially equivalent to the complex of all proper faces of P ,
but with F removed. For further background on polytopes and polyhedral complexes, we
refer the reader to [26, Chapter 5].

3. Closed Embedding Dimension is Bounded by Open Embedding Dimension

To begin our investigation, we recall a useful characterization of intersection complete
codes in terms of their realizations. This fact has been observed before in various forms, for
example [5, Theorem 1.9].

Proposition 3.1. A code C ⊆ 2[n] is intersection complete if and only if the following holds:
for all σ ∈ ∆(C) \ C and all (possibly non-convex) realizations U = {U1, . . . Un} of C there is
some i ∈ [n] \ σ with Uσ ⊆ Ui.

Proof. First suppose that C is intersection complete, and has a realization U = {U1, . . . , Un}.
Let σ ∈ ∆(C)\C and define c0 =

⋂
c∈TkC(σ)

c. The trunk TkC(σ) is nonempty since σ ∈ ∆(C),
and c0 ∈ C since C is intersection complete. By construction, σ is a subset of c0. In fact, σ
is a proper subset of c0 since σ /∈ C. Thus we may choose i ∈ c0 \ σ.

We claim that Uσ ⊆ Ui. Indeed, since c0 is the unique minimal element of TkC(σ), every
codeword containing σ also contains i. This implies that Uσ ⊆ Ui.

For the converse, we prove the contrapositive. Suppose that C is not intersection complete,
so there exist c1 and c2 in C such that c1∩c2 /∈ C. Define σ = c1∩c2 and note that σ ∈ ∆(C)\C.
Then choose any (possibly non-convex) realization U = {U1, . . . , Un} of C, and let i ∈ [n]\σ.
Observe that i is contained in at most one of c1 and c2. Since Uσ contains Uc1 and Uc2 , it
follows that there is a point in Uσ that is not contained in Ui. This proves the result. �

In addition to Proposition 3.1, we will need the following “trimming” operation, which
was also employed in [17].

Definition 3.2. Let U ⊆ Rd be any set and ε > 0. The trim of U by ε is the set

trim(U, ε) := {p ∈ U | Bε(p) ⊆ U},

where Bε(p) is the closed ball of radius ε centered at p.

Proposition 3.3. If U ⊆ Rd is convex and open, then trim(U, ε) is convex and open for any
ε > 0. Moreover, cl(trim(U, ε)) ⊆ U .
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Proof. Let p ∈ trim(U, ε). Since Bε(p) is a closed subset of U and U is open and convex,
there exists δ > 0 such that Bε+δ(p) ⊆ U . This implies that the open ball of radius δ centered
at p is contained in trim(U, ε). Thus p is an interior point of trim(U, ε), so trim(U, ε) is open.
Next let p and q be points in trim(U, ε). By convexity of U , the Minkowski sum C =

pq+Bε(0) is contained in U . For any r on pq, this implies that Bε(r) ⊆ C ⊆ U . Thus r lies
in trim(U, ε), proving that trim(U, ε) is convex.

For the final statement, observe that no boundary point of U is a boundary point of
trim(U, ε). Thus all boundary points of trim(U, ε) lie in U , and so the closure cl(trim(U, ε))
must be a subset of U . �

Proposition 3.4. Let U and V be sets in Rd. Then trim(U ∩V, ε) = trim(U, ε)∩ trim(V, ε).
If U ⊆ V , then trim(U, ε) ⊆ trim(V, ε).

Proof. The first statement follows from the fact that Bε(p) is contained in both U and V
if and only if it is contained in their intersection. The second statement is immediate from
Definition 3.2. �

A notion of non-degeneracy for realizations was introduced in [3]. Intuitively, non-degeneracy
requires that the different regions in the realization do not get too close to one another, unless
they intersect. The formal definition is given below.

Definition 3.5 ([3]). A collection U = {U1, . . . , Un} of convex sets in Rd is called non-
degenerate if the following two conditions hold:

(i) For all σ ∈ code(U), the atom Aσ
U is top dimensional (i.e. its intersection with any

open set is either empty, or has nonempty interior).
(ii) For all nonempty σ ⊆ [n], we have

⋂
i∈σ ∂Ui ⊆ ∂Uσ.

When U is a collection of convex open sets, [3] proved that (ii) implies (i). We will show
that trimming a convex open realization of an intersection complete code C by a sufficiently
small ε yields a non-degenerate realization of C.

Lemma 3.6. Let C ⊆ 2[n] be an intersection complete code, and let U = {U1, . . . , Un} be a
convex open realization of C. Then there exists ε > 0 such that the sets Vi = trim(Ui, ε) form
a non-degenerate convex open realization of C.

Proof. For each codeword c ∈ C, choose a point pc ∈ A
c
U . Observe that we may choose ε

small enough that Bε(pc) ⊆ Uc for all c ∈ C. We claim that this suffices. Note that by choice
of ε, pc ∈ Vc for all c ∈ C. In particular, if Uσ is nonempty then so is Vσ.
To prove that C = code({V1, . . . , Vn}), we must show for all nonempty σ ⊆ [n] that Uσ is

covered by {Ui | i ∈ [n] \ σ} if and only if Vσ is covered by {Vi | i ∈ [n] \ σ}. Suppose first
that Uσ is covered by {Ui | i ∈ [n] \ σ}. Since C is intersection complete, Proposition 3.1
implies that there exists some i ∈ [n] \ σ with Uσ ⊆ Ui. But by Proposition 3.4 trimming
commutes with intersections and preserves containment, and so Vσ ⊆ Vi as desired.

For the converse, we prove the contrapositive. Suppose that Uσ is not covered by {Ui | i ∈
[n] \ σ}. Then σ ∈ C and we may consider the point pσ. By choice of ε, pσ is in Vσ but not
any Ui with i ∈ [n]\σ. Since Vi ⊆ Ui, this implies that pσ is not covered by {Vi | i ∈ [n]\σ}.
This proves that C = code({V1, . . . , Vn}).
To see that the Vi form a non-degenerate realization, we must check (ii) of Definition 3.5.

For any nonempty σ ⊆ [n], let p be a point in
⋂

i∈σ ∂Vi. Observe that since the closure of
any Vi is contained in Ui, the point p lies in Uσ. Hence Uσ is nonempty. We may choose a
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point q ∈ Vσ, and consider the line segment pq. Since p is a boundary point of all Vi with
i ∈ σ, the line segment pq is contained in Vi except for the point p. But this implies that
all points on the line segment except p lie in Vσ. Thus p is a boundary point of Vσ and the
result follows. �

Remark 3.7. Note that we only used intersection completeness of C once in the proof of
Lemma 3.6, namely in the second paragraph so that we could apply Proposition 3.1. The
third paragraph of the proof shows that, independent of intersection completeness, the code-
words of C all appear as codewords in the trimmed realization. Likewise, the fourth paragraph
proves non-degeneracy of the trimmed realization without using intersection completeness.
Thus if C is any code with a convex open realization U , then we may trim U by some small
ε > 0 to obtain a non-degenerate realization of a code D with C ⊆ D ⊆ ∆(C).

Example 3.8. Below we show the construction used in the proof of Lemma 3.6 (and in turn
in the proof of Theorem 1.8) for two realizations of intersection complete codes.

The first is the code {123, 1, 2, 3, ∅}. In the figure below the Ui already formed a non-
degenerate open realization, but trimming them slightly does not change the realized code.

The figure below shows a degenerate open realization of the code {13,14,23,24, 1, 2, 3, 4, ∅}.
This realization is degenerate since U1 and U2 are disjoint but share boundary points, and
similarly for U3 and U4. On the lefthand side, we have labeled the regions corresponding to
maximal codewords. On the right we have labeled each of the sets in the trimmed realization.

The importance of non-degeneracy is the following: when U is a non-degenerate collection
of convex open sets, taking the closures of these sets does not change the code of the collection
(see [3, Theorem 2.12]). With this, we are ready to prove Theorem 1.8.

Theorem 1.8. Let C ⊆ 2[n] be an intersection complete code. Then cdim(C) ≤ odim(C).

Proof. Let U = {U1, . . . , Un} be an open realization of C in Rodim(C). By Lemma 3.6, we may
assume that U is non-degenerate by possibly trimming the sets in the realization. By [3,
Theorem 2.12], the realization consisting of closures of the Ui is a closed convex realization
of C. Thus cdim(C) ≤ odim(C). �

Example 3.9. Trimming an open realization may fail when a code is not intersection complete.
The following shows an open convex realization of the code {123, 12, 13, ∅} with labeled
atoms, and a trimming of that realization. One can observe that no matter how small we
choose ε, trimming this realization always yields an arrangement in which part of V1 is not
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covered by V2 and V3.

Of course, we could have drawn a better realization of this code. However, we are not always
so lucky. There are examples of open convex codes where trimming will fail for any convex
open realization—see for example [3, Section 2.3], which describes a code for which every
convex open realization is degenerate.

4. Closed Embedding Dimension is Bounded by min{2d+ 1, n− 1}

Throughout this section, let us fix a (possibly not intersection complete) code C ⊆ 2[n],
and let d = dim(∆(C)). Let us also assume that n ≥ 2. This avoids the possibility that
C = {1, ∅} (this code is intersection complete, but does not satisfy Theorem 1.9 because its
closed embedding dimension is 1, while min{2d+ 1, n− 1} = 0).

We will attempt to build a realization of C using closed convex sets satisfying the bound
of Theorem 1.9. As we will prove in Lemma 4.6, this construction will succeed if and only
if C is intersection complete. This result echoes [3, Lemma 5.9], but our approach allows us
stronger control over the dimension of the ambient space. Our approach is inspired by the
construction described in [25, Theorem 3.1].

Throughout this section we will refer to the intersection completion of C, which is the code
containing all intersections of codewords in C. Note that C is intersection complete if and
only if it is equal to its intersection completion. To begin building our attempted realization,
we need to introduce several combinatorial objects.

Lemma 4.1. Let m = min{2d + 1, n − 1}. There exists a pure, full-dimensional polytopal
complex P in Rm with n facets {P1, . . . , Pn} and the following property: each choice of d+1
distinct facets of P determines a unique nonempty face of P by taking the intersection of
the chosen facets. In particular, code({P1, . . . , Pn}) contains all σ ⊆ [n] with |σ| ≤ d+ 1.

Proof. First, recall that there exists a full-dimensional (d+ 1)-neighborly polytope in Rm+1

with n+1 vertices. Whenm = 2d+1, one example is the cyclic polytope, and whenm = n−1
the n-simplex suffices. Let P ⊆ Rm+1 be a polytope dual to a (d + 1)-neighborly polytope
with n + 1 vertices. Let F1, . . . , Fn, Fn+1 be the facets of P , and observe by neighborliness
of the dual that any d + 1 facets of P meet in a unique nonempty face of P (nonemptiness
follows from the fact that in the neighborly polytope dual to P , any d+ 1 or fewer vertices
are the vertices of a face which is not the whole polytope). Consider the Schlegel diagram
of P in Rm based at the facet Fn+1. For 1 ≤ i ≤ n, define Pi to be the image of Fi in
the Schlegel diagram. We claim that the complex P with facets {P1, . . . , Pn} is the desired
polytopal complex.

Each Pi is full-dimensional since each Fi has dimension m. Hence P is pure and full-
dimensional. Furthermore, for any nonempty σ ⊆ [n] with |σ| ≤ d + 1, the facets Pi with
i ∈ σ meet at a unique nonempty face of P (since the Schlegel diagram preserves intersections
and nonemptiness). A point in the relative interior of this face will not lie in any Pj with
j /∈ σ, and so σ ∈ code(P). This proves the result. �



12 R. AMZI JEFFS

For the remainder of this section, let us fix a polytopal complex P with facets {P1, . . . , Pn}
as given by Lemma 4.1. So far we have a fixed code C, and a fixed complex P . We begin to
relate these two objects to each other below. For σ ⊆ [n], recall that Pσ denotes

⋂
i∈σ Pi.

• For each nonempty σ ⊆ [n] with |σ| ≤ d+ 1, fix a point pσ in the relative interior of
Pσ, and
• For each i ∈ [n], define Vi := conv{pc | c ∈ TkC(i)}.

These objects are illustrated in Example 4.7 below. For now, we observe two facts that
we will make use of in the lemmas below:

(1) Since the various Pσ with |σ| ≤ d + 1 are distinct faces of P , pσ ∈ Pi if and only if
i ∈ σ, and

(2) For all i ∈ [n], Vi ⊆ Pi, and as a consequence Vτ ⊆ Pτ for all nonempty τ ⊆ [n].

The following lemmas build the connection between the sets Vi and the structure of our fixed
code C.

Lemma 4.2. Let σ ⊆ [n] with |σ| ≥ 2, and let i ∈ σ. Let H be a supporting hyperplane for
the proper face Pσ of Pi. Then Vi ∩H = conv{pc | c ∈ TkC(σ)}.

Proof. Consider the points {pc | c ∈ TkC(i)}, the convex hull of which is equal to Vi by
definition. Since Vi ⊆ Pi, we see that Vi ⊆ H≥. Thus Vi ∩ H is the convex hull of all
points in {pc | c ∈ TkC(i)} which lie in H. If c ∈ TkC(i) but σ 6⊆ c, then we may choose
j ∈ σ \ c, noting that pc /∈ Pj. In particular, pc ∈ Pi but pc /∈ Pσ. Thus pc lies in H> when
σ 6⊆ c. On the other hand, if σ ⊆ c then pc ∈ Pσ ⊆ H. Thus Vi ∩ H is the convex hull of
{pc | c ∈ TkC(σ)} as desired. �

Lemma 4.3. Let σ ⊆ [n] be nonempty. Then Vσ = conv{pc | c ∈ TkC(σ)}.

Proof. Let C = conv{pc | c ∈ TkC(σ)}. Then C ⊆ Vσ since each pc with c ∈ TkC(σ) lies in
Vj for all j ∈ σ. For the reverse inclusion, we consider two cases. If σ = {i} then C = Vi and
the result is immediate. Otherwise, |σ| ≥ 2 and we may choose i ∈ σ and H a supporting
hyperplane for the face Pσ of Pi. Observe that Vσ ⊆ Vi ∩ Pσ ⊆ Vi ∩H, and by Lemma 4.2
Vi ∩H = C, proving the result. �

Lemma 4.4. Let σ and τ be nonempty subsets of [n]. Then Vσ is a face of Vτ if and only if
TkC(σ) ⊆ TkC(τ). Furthermore, Vσ is a proper face of Vτ if and only if TkC(σ) is a proper
subset of TkC(τ).

Proof. First suppose that TkC(σ) ⊆ TkC(τ). This implies that every codeword that contains
σ also contains τ , and so TkC(σ) = TkC(σ∪ τ). Lemma 4.3 then implies that Vσ = Vσ∪τ , and
so it suffices to prove that Vσ∪τ is a face of Vτ . We may reduce to the case in which τ ⊆ σ,
that is, it suffices to prove that Vσ is a face of all Vi with i ∈ τ . If σ = {i} then τ = {i} and
the result is immediate. Otherwise, |σ| ≥ 2, and for any i ∈ τ we may choose a hyperplane
H supporting the face Pσ of Pi. Lemma 4.2 implies that H ∩ Vi = conv{pc | c ∈ TkC(σ)},
and Lemma 4.3 implies that this set is Vσ. Thus Vi ∩H = Vσ and Vσ is a face of Vi for all
i ∈ τ as desired.

To prove that TkC(σ) ⊆ TkC(τ) whenever Vσ is a face of Vτ , we argue by contrapositive.
If TkC(σ) 6⊆ TkC(τ) then there exists c ∈ C with σ ⊆ c but τ 6⊆ c. Consider the point pc.
Since τ 6⊆ c, there exists i ∈ τ \ c, and we see that pc /∈ Pi. But Vτ ⊆ Vi ⊆ Pi, so pc /∈ Vτ .
On the other hand, pc ∈ Vσ, so Vσ is not contained in Vτ , and thus cannot be a face of Vτ .
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We can now prove the final sentence in the lemma. If Vσ is a proper face of Vτ , then
TkC(σ) is a subset of TkC(τ). If this containment were not proper, then Vτ would be a face
of Vσ, a contradiction. Conversely, if TkC(σ) is a proper subset of TkC(τ) then Vσ is a face
of Vτ . If Vσ were not a proper face, then we would have Vσ = Vτ , which in turn implies
TkC(τ) ⊆ TkC(σ), a contradiction. This proves the result. �

Lemma 4.5. Let σ ⊆ [n] be nonempty. Then σ lies in the intersection completion of C if
and only if the following holds: TkC(σ) is nonempty and properly contains TkC(σ ∪ {i}) for
all i ∈ [n] \ σ.

Proof. If σ is an intersection of codewords in C, then there must be a codeword containing
σ, and thus TkC(σ) is nonempty. If there exists i ∈ [n] \ σ such that TkC(σ) = TkC(σ ∪{i}),
then every codeword of C containing σ also contains i. This is a contradiction, since σ is the
intersection of all codewords in C that contain it.

For the converse we consider two cases. If σ = [n] and TkC(σ) is nonempty then [n] ∈ C
and the result follows. Otherwise σ is a proper subset of [n]. Since TkC(σ) is nonempty
and properly contains TkC(σ ∪ {i}) for all i ∈ [n] \ σ, for every i ∈ [n] \ σ we may choose a
codeword ci with σ ⊆ ci and i /∈ ci. The intersection of all such ci is σ, proving the result. �

Lemma 4.6. The set V = {V1, . . . , Vn} is a closed realization of the intersection completion
of C. In particular, V is a realization of C if and only if C is intersection complete.

Proof. Let Ĉ denote the intersection completion of C. We argue for each nonempty σ ⊆ [n]

that σ ∈ Ĉ if and only if σ ∈ code(V). By Lemma 4.5 it suffices to argue that σ ∈ code(V)
if and only if TkC(σ) is nonempty and TkC(σ ∪ {i}) is a proper subset of TkC(σ) for all
i ∈ [n] \ σ. By Lemma 4.3 and Lemma 4.4, this condition is equivalent to the requirement
that Vσ is nonempty, and Vσ∪{i} is a proper face of Vσ for all i ∈ [n] \ σ. This is in turn
equivalent to the statement that Vσ is nonempty and not covered by {Vi | i ∈ [n] \σ}, which
happens if and only if σ ∈ code(V), proving the result. �

Example 4.7. To make the construction in Lemma 4.6 concrete, we give an example for the
intersection complete code C = {123, 12, 1, 2, 3, ∅}. We choose P in R2 with facets P1, P2, P3

which are triangles meeting at a common vertex. This is shown below on the left, and the
various pσ are shown with labeled dots. The righthand side of the figure illustrates the closed
convex realization V = {V1, V2, V3} constructed in the proof of Lemma 4.6. The sets V1 and
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V2 are triangles, and V3 is the line segment from p3 to p123.

Theorem 1.9. Let C ⊆ 2[n] be an intersection complete code with n ≥ 2, and let d =
dim(∆(C)). Then cdim(C) ≤ min{2d+ 1, n− 1}.

Proof. In this section we have chosen a polytopal complex P in Rmin{2d+1,n−1}, and used it
to construct a collection V = {V1, . . . , Vn} of closed convex sets. Lemma 4.6 says that V
realizes C if and only if C is intersection complete. This proves the result. �

In Section 6, we will see that this bound on closed embedding dimension may fail dra-
matically for open embedding dimension. Before proving this, we use Section 5 to recall a
theorem from [13], and show that it is equivalent to a statement about the open embedding
dimension of a family of intersection complete codes.

5. A Code Version of the Sunflower Theorem

In this section we recall a result regarding sunflowers of convex open sets. In Section
6, we will use this result to build a family of intersection complete codes with large open
embedding dimension.

Definition 5.1. Let U = {U1, . . . , Un} be a collection of convex sets in Rd and let C =
code(U). The collection U is called a sunflower if [n] ∈ C, and C \ {[n]} contains only
codewords of weight at most 1. That is, a sunflower is just a 1-flexible sunflower. As in
Definition 1.12, we will call the Ui petals and U[n] will be called the center of U .

Theorem 5.2 (Sunflower Theorem, [13]). Let d ≥ 1, let U = {U1, . . . , Ud+1} be a convex
open sunflower in Rd, and for each i ∈ [d+1] choose a point pi ∈ Ui. Then conv{p1, . . . , pd+1}
contains a point in the center of U .

Note that the result above fails when we consider a sunflower with d petals in Rd. In
particular, one may take an infinite rectangular prism about each coordinate axis to form a
sunflower whose center is a hypercube at the origin. In this situation, choosing the pi to be
sufficiently large positive multiples of the coordinate basis vectors yields points in each petal
whose convex hull does not touch the center of the sunflower.
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The sunflower theorem may be restated purely in the language of convex codes. We do
this below in order to simplify our discussion in the following section, and also to foreshadow
our applications of Theorem 1.13 in Section 9.3.

Definition 5.3. For n ≥ 1, define Sn ⊆ 2[n+1] to be the code consisting of the following
codewords: [n], all singleton sets, all pairs {i, n+ 1} for 1 ≤ i ≤ n, and the empty set.

Example 5.4. Let us look at the first few Sn:

S1 ={12, 1, 2, ∅},

S2 ={12,13,23, 1, 2, 3, ∅},

S3 ={123,14,24,34, 1, 2, 3, 4, ∅}.

These have convex open realizations in R1,R2, and R3 respectively, illustrated below. The-
orem 5.5 below says that these realizations are minimal in dimension.

Note that Sn is an intersection complete code. The sunflower theorem can be restated as
follows:

Theorem 5.5 (Sunflower Theorem, Code Version). For all n ≥ 1, odim(Sn) = n.

Proof. When n = 1, we have Sn = {12, 1, 2, ∅}, which can be realized by two overlapping
intervals in R1. For n ≥ 2, Sn has n + 1 maximal codewords, and so by [3, Theorem 1.2]
Sn has an open realization in Rn. We will show that it does not have an open realization in
Rn−1. Suppose for contradiction that there exists an open realization U = {U1, . . . , Un+1} of
Sn in Rn−1. Observe that {U1, . . . , Un} is a sunflower, and Un+1 intersects Ui for all i ∈ [n].
Thus for each i ∈ [n] we may choose pi ∈ Ui ∩ Un+1. The convex hull conv{p1, . . . , pn} is
contained in Un+1, but by Theorem 5.2 this convex hull also meets U[n]. Thus Un+1 ∩ U[n] is
nonempty. Since [n+ 1] is not a codeword in Sn this is a contradiction. �

In the following section we build on the family Sn to construct a family of intersection
complete codes on n neurons whose open embedding dimension is

(
n−1

b(n−1)/2c

)
.

6. A Family of Codes with Large Open Embedding Dimension

In this section, we will associate to every simplicial complex ∆ ⊆ 2[n] an intersection
complete code S∆ ⊆ 2[n+1]. As long as ∆ has at least two facets, the open embedding
dimension of S∆ is exactly the number of facets in ∆. To start, recall the following definition.

Definition 1.10. Let ∆ ⊆ 2[n] be a simplicial complex. Define S∆ ⊆ 2[n+1] to be the code

S∆ := (∆ ∗ (n+ 1)) ∪ {[n]},

where ∆ ∗ (n+ 1) denotes the cone over ∆ with apex n+ 1.

We start with some straightforward structural observations about the code S∆.
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Proposition 6.1. The code S∆ is intersection complete. If ∆ ( 2[n] and has m facets, then
S∆ has m+ 1 maximal codewords. In particular, odim(S∆) ≤ max{2,m}.

Proof. First note that S∆ is a simplicial complex, plus the codeword [n]. Adding a single
codeword to a simplicial complex always yields an intersection complete code, so S∆ is
intersection complete.

Let F1, . . . , Fm be the facets of ∆. Observe that each maximal codeword of S∆ is either
a facet of ∆ ∗ (n + 1), or equal to [n]. The facets of ∆ ∗ (n + 1) are just Fi ∪ {n + 1} for
i ∈ [m]. Since ∆ ( 2[n], [n] is an additional a maximal codeword of S∆, so S∆ has m + 1
maximal codewords in total. The bound odim(S∆) ≤ max{2,m} then follows immediately
from [3, Theorem 1.2]. �

Theorem 1.11. Let ∆ ⊆ 2[n] be a simplicial complex with m ≥ 2 facets. Then S∆ (as given
by Definition 1.10) is an intersection complete code with m + 1 maximal codewords, and
odim(S∆) = m.

Proof. By Proposition 6.1 we know that S∆ is intersection complete, has m + 1 maximal
codewords, and satisfies odim(S∆) ≤ m. Thus it suffices to show that S∆ does not have
an open realization in Rm−1. Suppose for contradiction that we had such a realization
U = {U1, . . . , Un+1}.
Label the facets of ∆ as F1, . . . , Fm, and for each i ∈ [m] define Vi = UFi

. Lastly, define
Vm+1 = Un+1. Now observe that the pairwise intersection of any two distinct Vi with i ∈ [m]
is U[n] since [n] is the only codeword of S∆ that properly contains more than one Fi. Thus
{V1, . . . , Vm} is a sunflower. Note that Vm+1 intersects each petal of this sunflower since
Fi ∪ {n+ 1} is a codeword of S∆ for all i ∈ [m]. However, Vm+1 does not intersect U[n] since
[n] is not a face of ∆ (recall m ≥ 2).

We have constructed an open sunflower {V1, . . . , Vm} in Rm−1 and a convex open set Vm+1

which intersects each petal of the sunflower but not its center. Equivalently, {V1, . . . , Vm+1}
is a convex open realization of Sm in Rm−1. This contradicts Theorem 5.5, and so odim(S∆)
must be equal to m as desired. �

Corollary 6.2. For any n ≥ 2 and 1 ≤ m ≤
(

n−1
b(n−1)/2c

)
, there exists an intersection complete

code on n neurons with m + 1 maximal codewords, and open embedding dimension equal to
m.

Proof. For m = 1, the code {1, ∅} suffices. For m ≥ 2 we apply Theorem 1.11. Among
all

(
n−1

b(n−1)/2c

)
subsets of [n − 1] with size b(n − 1)/2c, we may select m. Letting ∆ be the

simplicial complex with these subsets as its facets, we see that S∆ is the desired code. �

Corollary 6.3. There is a family of codes En ⊆ 2[n] such that odim(En) grows at least as

fast as 2n−1

n
.

Proof. By Corollary 6.2, we may choose En so that odim(En) =
(

n−1
b(n−1)/2c

)
. Observe that

n
(

n−1
b(n−1)/2c

)
≥ 2n−1 since there are no more than

(
n−1

b(n−1)/2c

)
subsets of [n − 1] of size i for

i = 0, 1, . . . , n− 1. Thus
(

n−1
b(n−1)/2c

)
≥ 2n−1

n
, proving the result. �

Qualitatively, these results are very surprising. The codes S∆ are “almost” simplicial
complexes (we have added the single codeword [n] to a simplicial complex), but their open
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embedding dimensions grow exponentially faster than that of any simplicial complex. Strik-
ingly, these codes provide the first example of codes whose embedding dimension (open or
closed) is larger than n− 1.

Remark 6.4. From the perspective of the neuroscience which motivates the study of convex
codes, Corollary 6.3 has the following interpretation: theoretically, n neurons may “recog-
nize” dimensions that are exponentially large in n. Whether such a phenomenon ever occurs
in experimental data could be an interesting avenue of investigation.

7. Flexible Sunflowers

In this section our goal is to investigate k-flexible sunflowers of convex open sets. These
are a generalization of sunflowers in which we allow petals to overlap outside the center
of the sunflower, but no more than k at a time. For sunflowers, we saw in Theorem 5.2
that sampling a point in each petal and taking the convex hull always yielded a point in
the center of the sunflower if we had enough petals relative to our ambient dimension. We
will see that the same holds for k-flexible sunflowers, and the minimum number of petals
needed is proportional to k, as well as the ambient dimension (see Theorem 1.13 below).
Qualitatively, the more flexibility we allow in a sunflower, the larger the number of petals we
need to sample in order to guarantee that the convex hull of the sampled points intersects
the center of the sunflower.

Our proofs rely heavily on the assumption that we are working with open sets, and the
results of this section do not apply to sunflowers of closed convex sets. Indeed, taking n line
segments in the positive quadrant of R2 which meet at the origin yields a closed sunflower
for which the conclusion of Theorem 1.13 does not hold.

To begin, let us recall the definition of a k-flexible sunflower.

Definition 1.12. Let U = {U1, . . . , Un} be a collection of convex sets in Rd and let C =
code(U). The collection U is called a k-flexible sunflower if [n] ∈ C, and all other codewords
have weight at most k. The Ui are called petals and U[n] is called the center of U .

We start with a family of examples. For each d ≥ 2 and k ≥ 1, Proposition 7.1 describes
a k-flexible sunflower U in Rd with dk petals in which we can sample points from each petal
whose convex hull does not contain a point in the center of U .

Proposition 7.1. For all d ≥ 2 and k ≥ 1, there exists an open k-flexible sunflower U =
{U1, . . . , Un} in Rd with n = dk, and points p1, . . . , pn with pi ∈ Ui, such that conv{p1, . . . , pn}
does not contain a point in the center of U .

Proof. For k = 1, we begin with an open unit hypercube in Rd centered at the origin, and
let Ui be the Minkowski sum of this hypercube with a line segment from the origin to a large
positive multiple of ei. We can see that the Ui form a d-petal sunflower, and our desired pi
are just the large multiples of ei.

For k ≥ 2, we can take the sunflower described above and duplicate each of the d petals
k times. This creates a k-flexible sunflower, and the same sampling of points (with each
duplicated k times) satisfies the proposition. �

Remark 7.2. One might argue that the construction above is unsatisfying. Should we not
stipulate that petals diverge in different directions, or at least are distinct? It turns out we
can address these concerns. Start with the usual coordinate-direction sunflower whose center
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is a unit hypercube, as described above. If k = 1 we are done. Otherwise, choose a cyclic
permutation σ of [d], for example i 7→ i + 1 mod d. Then, we can duplicate each petal in
our coordinate-direction sunflower k times, but when duplicating the i-th petal we “skew”
it slightly in the direction of −eσ(i). If each duplicated petal is skewed a different amount,
our petals will diverge from one another. As long as we skew a small enough amount, this
yields a k-flexible sunflower from which we can sample the desired pi.

This construction is illustrated below for k = 3 and d = 2:

We now turn our attention to proving Theorem 1.13. We will see that some technical
lemmas regarding k-flexible sunflowers together with Tverberg’s theorem are enough to prove
the theorem. We start by showing that the center of every open k-flexible sunflower admits
a set of supporting halfspaces with two properties: first, the common intersection of the
halfspaces closely approximates the center (in the sense that the common intersection is
contained in the closure of the center), and second, any one of these halfspaces contains all
but at most k of the petals.

Definition 7.3. Let U = {U1, . . . , Un} be a k-flexible sunflower in Rd with center U . A
point b ∈ ∂U is called well-supported if it is not in the boundary of Ui ∩ ∂U (considered as
a subset of the topological space ∂U) for any i ∈ [n].

Lemma 7.4. Let U = {U1, . . . , Un} be a k-flexible sunflower in Rd with center U . The set
of well-supported points is dense in ∂U .

Proof. Consider the sets Ui ∩ ∂U in ∂U . For each of these sets, the set of non-boundary
points in ∂U is dense and open when considered as a subset of ∂U . The set of well-supported
points is just the intersection of non-boundary points of Ui ∩ ∂U in ∂U for all i, and a finite
intersection of dense open sets is again open and dense. Thus the well-supported points are
dense in ∂U . �

Lemma 7.5. Let U ⊆ Rd be a convex open set. Let B be a dense subset of the boundary
of U , and for each b ∈ B let Hb be a supporting hyperplane to U at b. Then

⋂
b∈B H>

b is

contained in U .

Proof. Consider any point p /∈ U . Since U is open and p lies a positive distance away from
U , the intersection of int(conv({p} ∪ U)) with ∂U is a relatively open nonempty subset of
∂U , and thus contains some b ∈ B because B is dense. Since int(conv({p}∪U)) is open, the
line segment pb can be extended so that it ends at a point q ∈ U , as shown in the following
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figure.

Now, consider the supporting hyperplane Hb. We have U ⊆ H>
b . In particular, H>

b contains
q but not b. Since b lies between q and p, we see that H>

b does not contain p. Thus
p /∈

⋂
b∈B H>

b and the lemma follows. �

Lemma 7.6. Let U = {U1, . . . , Un} be an open k-flexible sunflower in Rd with center U , and
let b ∈ ∂U be well-supported. Let Hb be a supporting hyperplane for U at b. Then Ui ⊆ H>

b

for all i ∈ [n] such that b /∈ Ui. In particular, H>
b contains all but at most k petals of U .

Proof. Suppose not, so that there exists i ∈ [n] such that b /∈ Ui and Ui is not contained
in H>

b . Since Ui is open, we may assume that there exists a point p ∈ Ui strictly on the

negative side of Hb. Then choose any point q ∈ U , and consider the line segment qb. All
points on this line segment other than b lie in U . For each r ∈ qb with r 6= b, note that
the line segment pr is contained in Ui. Moreover, since U is convex and q lies in U while
p lies outside of U , this line segment intersects the boundary of U in a unique point. The
set of these intersection points forms a subset of Ui ∩ ∂U whose closure contains b. This is
illustrated in the figure below, with the points in Ui ∩ ∂U converging to b shown in the bold
curved line segment.

But since b /∈ Ui, this implies that b is a boundary point of Ui ∩ ∂U in ∂U . This contradicts
the fact that b is well-supported, and so Ui ⊆ H>

b whenever b /∈ Ui. Since U is k-flexible, b
belongs to no more than k petals of U , and thus H>

b contains all but at most k petals. �

Finally, we recall Tverberg’s theorem. After stating this theorem, we are ready to prove
Theorem 1.13.

Theorem 7.7 (Tverberg’s theorem). Let d ≥ 1, r ≥ 2, and n = (d+1)(r− 1) + 1. For any
set of n points P = {p1, . . . , pn} in Rd, there is a partition of P into r parts P1, . . . , Pr such
that

⋂r
i=1 conv(Pi) 6= ∅.

Theorem 1.13. Let U = {U1, . . . , Un} be an open k-flexible sunflower in Rd. Suppose that
n ≥ dk + 1, and for each i ∈ [n] let pi ∈ Ui. Then conv{p1, . . . , pn} contains a point in the
center of U . Moreover, if d ≥ 2 this result may fail when n < dk + 1.

Proof. It suffices to prove the first statement for n = dk + 1. Let U denote the center of U .
Suppose for contradiction that the theorem does not hold, so that conv{p1, . . . , pn} does not
contain a point in U . Since the Ui are open, we may uniformly translate the pi away from U
by a small positive distance, and choose a separating hyperplane H between conv{p1, . . . , pn}
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and U such that H does not contain any boundary point of U . Moreover, we can replace
each pi by the intersection of the line segment pip with H, so that all pi lie inside H.
Now, H has dimension d− 1, so we may apply Tverberg’s theorem to our points pi with

r = k + 1. We obtain a partition P1, . . . , Pk+1 such that
⋂k+1

i=1 conv(Pi) 6= ∅. Choose any
point p lying in this intersection, and observe that p ∈ H.

Let B be the set of well-supported points in ∂U , and choose supporting halfspaces {H>
b |

b ∈ B} as per Lemma 7.6. Recall by Lemma 7.6, that for any b ∈ B, the halfspace H>
b

contains all Uj (and thus pj) except for at most k. In particular, there must be some Pi such
that H>

b contains all points in Pi, and hence also their convex hull. Thus p ∈ H>
b for all

b ∈ B. But by Lemma 7.4 and Lemma 7.5, this implies that p ∈ U . Since p ∈ H and H was
constructed not to contain U or any of its boundary points, this is a contradiction.

To prove the second part of the theorem, recall that Proposition 7.1 shows that when
d ≥ 2 and n = dk, we can choose an open k-flexible sunflower U in Rd and points in each
petal whose convex hull does not intersect the center of U . This proves the result. �

Remark 7.8. Note that when k = 1, Theorem 1.13 is the same as Theorem 5.2 (the usual
Sunflower Theorem), and the application of Tverberg’s theorem in the proof above reduces
to an application of Radon’s Theorem. Thus the fact that Theorem 1.13 generalizes Theorem
5.2 is directly analogous to the fact that Tverberg’s theorem generalizes Radon’s.

Remark 7.9. In terms of neuroscientific motivation, flexible sunflowers are natural to inves-
tigate. Allowing some codewords beyond singletons, but of a fixed weight, accounts for some
tolerance to error in data gathering and also captures a wider range of possibilities. We hope
that flexible sunflowers may yield meaningful bounds on dimensions in experimental data.

Theorem 1.13 has implications regarding the open embedding dimensions of intersection
complete codes, which we will illustrate in Section 9.3, in particular by generalizing the
families Sn and S∆ that were defined in Sections 5 and 6 respectively.
We conclude with a corollary which examines the extremal case in which we have a k-

flexible sunflower U with n = dk petals for which Theorem 1.13 fails. In this case Theorem
1.13 implies code(U) must contain at least one codeword of weight k, but we can actually
say something slightly stronger:

Corollary 7.10. Let U = {U1, . . . , Un} be an open k-flexible sunflower in Rd. Suppose that
n = dk, and there exist points p1, . . . , pn such that pi ∈ Ui and conv{p1, . . . , pn} does not
contain a point in the center of U . Then code(U) contains at least d distinct codewords of
weight k.

Proof. We work by induction on k. When k = 1 the result is clear since if there are fewer
than d codewords of weight k in code(U) then some Ui is equal to the center of U , and
so some pi lies in the center of U , a contradiction. For k ≥ 2, suppose for contradiction
that code(U) contains fewer than d codewords of weight k. For each of these codewords c,
select some petal Ui with i ∈ c. Deleting these Ui yields a (k − 1)-flexible sunflower, and
since we have deleted fewer than d petals our new (k − 1)-flexible sunflower has more than
d(k−1) petals. But the same choice of pi yields a collection of points whose convex hull does
not contain a point in the center of this (k − 1)-flexible sunflower, contradicting Theorem
1.13. �
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8. Tangled Sunflowers

For n ≥ 1 we construct a family of intersection complete codes Tn ⊆ 2[2n], and investigate
the open embedding dimensions of these codes. The code Tn is constructed so that its
realizations consist of two sunflowers with n petals that are “tangled” in the sense that the i-
th petal of the first sunflower meets the i-th petal of the second, and no other incidences occur.
We use the sunflower theorem (Theorem 5.2) to prove the following: for any d ≥ 1 there exists
n such that odim(Tn) = d. Thus for every d ≥ 1, one of the Tn codes describes an arrangement
of convex open sets which can be achieved in Rd but not a smaller dimension. Beyond
this statement and some basic bounds, however, determining the exact open embedding
dimension of Tn remains an open problem, ripe for future investigation.

Definition 8.1. Let n ≥ 1. Define Tn ⊆ 2[2n] to be the code consisting of the following
codewords:

(i) {2k − 1, 2k} for k = 1, 2, . . . , n,
(ii) {1, 3, 5, . . . , 2n− 1} and {2, 4, 6, . . . , 2n},
(iii) all singletons, and
(iv) the empty set.

For each n define tn := odim(Tn).

Observe that codewords of type (i) and (ii) are the maximal codewords in Tn for n ≥ 2;
in particular Tn has n + 2 maximal codewords. Furthermore observe that Tn is intersection
complete, and hence open convex. Thus tn is finite for all n.
Moreover, note that the odd-numbered sets in any realization of Tn form an n-petal sun-

flower, as do the even-numbered sets. These two sunflowers are “tangled,” in that their
petals are matched and the matched petals overlap each other.

Example 8.2. The first four Tn are given below:

T1 = {12, 1, 2, ∅},

T2 = {13,24,12,34, 1, 2, 3, 4, ∅},

T3 = {135,246,12,34,56, 1, 2, 3, 4, 5, 6, ∅}.

T4 = {1357,2468,12,34,56,78, 1, 2, 3, 4, 5, 6, 7, 8, ∅}.

These have open convex realizations in R1,R2, R3, and R3 respectively.

We will see that in fact each of the realizations in Example 8.2 is minimal with respect to
dimension. That is, t1 = 1, t2 = 2, t3 = t4 = 3. To build towards this result, we first prove
some general results about the minimal embedding dimensions {tn | n ≥ 1}.
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Proposition 8.3. For all n ≥ 1, tn ≤ tn+1 ≤ tn + 1. That is, the sequence {tn | n ≥ 1} is
weakly increasing and changes by at most 1 at each step.

Proof. The inequality tn ≤ tn+1 follows from the fact that a realization of Tn can be obtained
from a realization of Tn+1 by simply deleting U2n+1 and U2n+2. To prove the inequality
tn+1 ≤ tn + 1 we argue that if Tn is open convex in Rd, then Tn+1 is open convex in Rd+1.

Since Tn is intersection complete, we may apply Lemma 3.6 to obtain an open convex
realization U = {U1, . . . , U2n} of Tn in Rd in which disjoint Uσ have positive distance between
them. We will use this to create an open convex realization of Tn+1 in Rd+1. To start, identify
Rd with the subspace of Rd+1 in which xd+1 = 0, and define W1 = U1 ∩U3 ∩ · · · ∩U2n−1 and
W2 = U2 ∩ U4 ∩ · · · ∩ U2n. We may assume that the origin lies in W1. Now choose a vector
w ∈ W2 and a small positive ε, and define a collection V = {V1, V2, . . . , V2n+2} as follows:

Vi =





{v + γed+1 | v ∈ Ui and 0 < γ < ε} for i = 1, 3, . . . , 2n− 1,

{v + γ(ed+1 − w) | v ∈ Ui and 0 < γ < ε} for i = 2, 4, . . . , 2n,

{v + γed+1 | v ∈ W1 and γ > 0} for i = 2n+ 1,

{v + γ(ed+1 − w) | v ∈ W2 and γ > 0} for i = 2n+ 2.

This construction is shown below when d = 2. The set V2n+1 is a vertical prism over W1,
and the set V2n+2 is the skewed prism over W2. The remaining Vi are ε-thick prisms over the
corresponding Ui, with even Vi skewed at the same angle as V2n+2. The origin is represented
by the black dot.

We claim that the collection V is an open convex realization of Tn+1. First, observe that
all Vi are open and convex in Rd+1. To see that they form a realization of Tn+1, we must
check that the odd Vi and even Vi both form sunflowers, and that only the appropriate petals
intersect one another.

For the odd Vi, note that {V1, V3, . . . , V2n−1} is a sunflower since the odd Ui form a sun-
flower. Adding V2n+1 to this collection preserves the sunflower property since V2n+1 is simply
the product of W1 with an open ray. Similar logic holds for the even Vi: we see that
{V2, V4, . . . , V2n} forms a sunflower, and the additional petal V2n+2 only overlaps any other
petal in the region {v + γ(ed+1 − w) | v ∈ W2 and 0 < γ < ε}, which is the intersection of
all the petals.

To see that the petals overlap in the correct manner, first note that V2i−1∩V2i is nonempty
for i = 1, . . . , n since the same holds for U2i−1 ∩ U2i. For V2n+1 ∩ V2n+2, simply note that
ed+1 ∈ V2n+1 ∩ V2n+2 so the intersection is nonempty. Thus we have at least the appropri-
ate overlapping between the petals of our two sunflowers, and it remains to show that no
additional overlap has been introduced.

For this it suffices to argue that for all j < k with different parity, the sets Vj and Vk are
disjoint unless j = 2i − 1 and k = 2i. We know that this property holds for the Ui, and
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since we chose a nondegenerate realization we know that disjoint Ui have positive distance
between them. Except for V2n+1 and V2n+2, all the Vi are simply a slightly thickened Ui,
possibly with a small skew by the vector w. By choosing ε small enough, we can assume
that the skew does not overcome the distance between disjoint Ui, so the Vi satisfy the same
disjointness for i = 1, 2, . . . , 2n. This leaves the case of V2n+1 and V2n+2. For these, observe
that all Vi with i ≤ 2n contain only points whose (d + 1)-st coordinate is between 0 and
ε. As discussed previously, the only points in V2n+1 and V2n+2 whose (d + 1)-st coordinate
satisfies these constraints are those in the center of the respective sunflowers. Thus neither
of these sets overlap any petals they should not, and we have indeed formed an open convex
realization of Tn+1 in Rd+1. This proves the result. �

Theorem 8.4. For all n, tn ≥ dn/2e. In particular, the sequence {tn | n ≥ 1} is unbounded.

Proof. Let d = dn/2e−1. We must show that Tn does not have an open convex realization in
Rd. Suppose for contradiction that such a realization existed, consisting of sets {U1, . . . , U2n}.
Define V1 = U1 ∩ U3 ∩ · · · ∩ U2n−1 and V2 = U2 ∩ U4 ∩ · · · ∩ U2n. Observe that V1 and V2 are
disjoint, nonempty, convex, and open. Thus we can choose a hyperplane H separating V1

and V2.
Choose p1 ∈ V1 and p2 ∈ V2, and for k ∈ [n] choose a point qk ∈ U2k−1 ∩ U2k (this

intersection is nonempty since {2k − 1, 2k} is a codeword in Tn). Now, for k ∈ [n] consider
the line segments Lk = p1qk and Mk = qkp2. The union Lk ∪Mk forms a path that begins
on one side of H and ends on the other, so for all k either Lk or Mk contains a point in H
(and possibly both do). By choice of d and pigeonhole principle, either at least d+ 1 of the
line segments {Lk} contain a point in H, or at least d+1 of the line segments {Mk} contain
a point in H.

Without loss of generality, we may assume that at least d+ 1 of the {Lk} contain a point
pk in H. The convex hull of these pk lies in H, and therefore does not intersect the center
V1 of the sunflower {U1, U3, . . . , U2n−1}. But Lk ⊆ U2k−1, so each pk lies in the petal U2k−1.
Since there are at least d+1 points pk, Theorem 5.2 implies that their convex hull (and thus
H) must intersect V1, a contradiction. �

Corollary 8.5. The sequence {tn | n ≥ 1} takes on all positive integer values.

Proof. We know that t1 = 1. Theorem 8.4 implies that the sequence is unbounded, and
Proposition 8.3 tells us that it increases by at most 1 at each step. Thus it must achieve
every positive integer value. �

In the remainder of this section, we determine tn for all n ≤ 5. The arguments used below
are concrete, but seem difficult to generalize.

Proposition 8.6. The code T3 does not have an open convex realization in R2, but does have
an open convex realization in R3.

Proof. An open convex realization of T3 in R3 is given in Example 8.2. Thus we just have
to argue that T3 does not have an open convex realization in R2. Suppose for contradiction
that {U1, U2, U3, U4, U5, U6} is such a realization of T3 in R2. Choose points q1 ∈ U1∩U2, q2 ∈
U3 ∩ U4, and q3 ∈ U5 ∩ U6. Note that {U1, U3, U5} and {U2, U4, U6} are both sunflowers and
that {q1, q2, q3} is a set containing one point from each petal for both of these sunflowers.
By Theorem 5.2 the triangle conv{q1, q2, q3} contains a point p1 ∈ U1 ∩ U3 ∩ U5 and p2 ∈
U2 ∩ U4 ∩ U6. Since all the Ui are open sets, we may assume that {p1, p2, q1, q2, q3} is in
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general position. The set of points {p1, q1, q2, q3} can be visualized as follows:

Now, p2 falls in the interior of one of the three triangular regions surrounding p1. Suppose
that p2 lies in the interior of conv{p1, q1, q2} (i.e. the top right triangle above). Then consider
the line segment L = p2q3, observing that L is contained in U6. The line segment Lmust cross
either the line segment p1q1 ⊆ U1 or p1q2 ⊆ U3. In the former case we see that U6 ∩ U1 6= ∅,
and in the latter U6 ∩ U3 6= ∅. But there is no codeword in T3 containing {1, 6} or {3, 6}, so
both of these situations lead to a contradiction. Thus T3 is not convex in R2. �

The lemma below will allow us to prove that t5 ≥ 4 by showing that if T5 has an open con-
vex realization in R3, then T3 has an open convex realization in R2, contradicting Proposition
8.6.

Lemma 8.7. Given five points in R3 in general position, there exists a plane H containing
three of the points and with the remaining two points on opposite sides of H.

Proof. Up to affine transformation we may assume that our set of points is {0, e1, e2, e3, p}
where p is a point none of whose coordinates are zero. We consider two cases. First suppose
that one of the coordinates of p is negative. By permuting our coordinates we can assume this
is the last coordinate. Then choose H = span{e1, e2}. This contains the three points 0, e1,
and e2. Moreover since e3 has positive last coordinate and p has negative last coordinate,
they lie on opposite sides of H and the lemma follows.

Otherwise every coordinate of p is positive. In this case, write p = (x, y, z) and choose H =
span{e3, p}. Observe that H contains the three points 0, e3, and p, and that v = (y,−x, 0)
is a normal vector to H. We see that v · e1 > 0 and v · e2 < 0, so the remaining two points
e1 and e2 lie on opposite sides of H. This proves the result. �

Proposition 8.8. The code T5 does not have an open convex realization in R3.

Proof. Suppose for contradiction that we have an open convex realization U = {U1, U2, . . . , U10}
of T5 in R3. For i = 1, . . . , 5, choose a point pi in the open set U2i−1 ∩ U2i, such that all pi
are in general position. Applying Lemma 8.7 to these five points, we obtain a hyperplane H
which contains three of them, and with the remaining two on opposite sides. By permuting
the labels on our realization of T5, we may assume that p1, p2, and p3 all lie in H.

Now, consider the two tetrahedra ∆1 = conv{p1, p2, p3, p4} and ∆2 = conv{p1, p2, p3, p5}.
The vertices of these tetrahedra belong to distinct petals of the sunflowers {U1, U3, . . . , U9}
and {U2, U4, . . . , U10}, so by Theorem 5.2 each of these tetrahedra contain a point in the
center of both of these sunflowers. Since the tetrahedra lie on opposite sides of H, each of
the centers of these two sunflowers contains a point on each side of H. But the center of a
sunflower is convex, and so H itself must contain a point in the center of each of the two
sunflowers.

With this observation, consider the set V = {V1, . . . , V6} where Vi = Ui∩H. Since H ∼= R2,
we can regard this set as an open convex realization of a code in R2. We claim that in fact
this code is T3. To verify this, it suffices to show that (i) {V1, V3, V5} and {V2, V4, V6} are
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both sunflowers and (ii) that V1 ∩ V2, V3 ∩ V4, and V5 ∩ V6 are nonempty, and that (iii) no
other petals overlap.

Condition (i) follows from the fact that the Vi are subsets of the Ui and that the sunflowers
making up the realization of T5 both have centers that intersect H. Condition (ii) follows
by considering the points p1, p2, and p3, which all lie in the desired respective intersections.
Condition (iii) is a consequence of the fact that the the petals of the Ui sunflowers overlap
appropriately.

However, this is a contradiction: T3 is not convex in R2 by Proposition 8.6. Thus T5
cannot be convex in R3. �

Corollary 8.9. The sequence tn begins as follows:

n 1 2 3 4 5
tn 1 2 3 3 4

Proof. Clearly t1 = 1 since T1 is convex in R1 but has more than one codeword, so is not
convex in R0. The code T2 has a realization in R2 as given in Example 8.2, but has no
realization in R1 since any realization contains a non-crossing loop. Thus t2 = 2.
Note that t3 ≤ 3 and t4 ≤ 3 by Example 8.2, and both bounds are tight by Proposition

8.6 and monotonicity of the tn. By Proposition 8.8 we know that t5 ≥ 4, and simultaneously
Proposition 8.3 implies that t5 ≤ t4 + 1 = 4. This proves the result. �

The proofs presented in Propositions 8.6 and 8.8 are both somewhat ad hoc and do not
seem ripe for generalization. Determining tn for n ≥ 6 remains an open problem, perhaps of
significant difficulty.

9. Contextualizing Our Results via Code Minors

In this section we will situate our results in the framework of code morphisms and minors.
We begin in Section 9.1 by recalling several basic definitions and results regarding morphisms
and minors, following the most recent treatment of this material which appears in [15,
Chapters 3 and 4]. In Section 9.2 we explain how the families of codes Sn, S∆, and Tn relate
to one another in the framework of minors. We then generalize the codes Sn and S∆ as well
as their accompanying results in Section 9.3.

9.1. Minors of Codes. In [14], we introduced a framework of morphisms for neural codes.
Morphisms allow us to define a notion of “minors” for codes, analogous to (but not a gener-
alization of) minors of graphs or matroids. Morphisms and minors have a strong relationship
to convexity (see Theorem 9.3 below), and provide a useful context in which to state and
compare results about convex neural codes.

For the definition below, recall from Definition 2.1 that a trunk in a code C is a set of the
form TkC(σ) := {c ∈ C | σ ⊆ c} for some σ ⊆ [n].

Definition 9.1. Let C and D be codes. A function f : C → D is called a morphism if the
preimage of any proper trunk in D under f is a proper trunk in C. An isomorphism is a
morphism with an inverse function that is also a morphism.

Definition 9.2. We say that a code D is a minor of a code C if there exists a surjective
morphism f : C → D.
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The relation “D is a minor of C” forms a partial order on isomorphism classes of codes. We
denote the resulting partially ordered set by PCode, and write D ≤ C when D is a minor of
C. Note that morphisms and minors are defined in a purely combinatorial manner. However,
minors can be used to understand geometric information about realizations of codes, as the
following theorem indicates.

Theorem 9.3. The following properties are minor-closed (that is, if C has one of the prop-
erties below, then so does every D ≤ C):

• Open convexity in Rd,
• Closed convexity in Rd,
• Non-degenerate open/closed convexity in Rd (see Definition 3.5),
• Intersection completeness.

Theorem 9.3 follows from a more general observation, first noted by Caitlin Lienkaemper:
if C ⊆ 2[n] is a code with a (possibly not convex or open) realization U = {U1, . . . , Un} in a
space X, then there is a bijection

{ Minors of C } ←→





Codes that can be
realized in X using
sets of the form Uσ



 .

For details on this result, see [15, Section 4.2] and [18, Section 4].
Theorem 9.3 implies that intersection completeness is an isomorphism invariant, and that

restricting our attention to intersection complete codes amounts to restricting to a minor-
closed family in PCode. Throughout the rest of this section, we will examine exclusively
intersection complete codes, with the partial order inherited from PCode. We will focus on
the open embedding dimensions of these codes.

One can visualize minors as stratifying intersection complete codes into different “layers”
according to their open embedding dimensions, as sketched in the figure below. In the figure,
“Open convex in Rd” simply refers to codes whose open embedding dimension is equal to d.

Note that {∅} is the only intersection complete code whose open embedding dimension is
zero. For any d ≥ 1, however, there are infinitely many intersection complete codes with
open embedding dimension d.
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The figure above is slightly misleading: each “layer” of codes with open embedding di-
mension d is not finitely thick. Indeed, each layer may contain chains that are infinitely long
(“tall”), and antichains that are infinitely large (“wide”).

Our aim in Section 9.2 will be to understand where the codes we have constructed in
this paper sit inside this partial order. In Section 9.3, we will provide some more general
examples and results using Theorem 1.13.

We will make heavy use of the following definition and proposition, which give a combi-
natorial description of all morphisms. For details, see [15, Section 3.2].

Definition 9.4. Let C ⊆ 2[n] be a code, and for i ∈ [m] let Ti ⊆ C be a proper trunk.
The morphism determined by the trunks {T1, . . . , Tm} is the map f : C → 2[m] given by
f(c) = {i ∈ [m] | c ∈ Ti}.

Proposition 9.5. The map described in Definition 9.4 is a morphism from C to 2[m]. More-
over, every morphism arises in this way. Formally, for codes C ⊆ 2[n] and D ⊆ 2[m], and
any morphism f : C → D, f is the morphism determined by the trunks {Ti := f−1(TkD(i)) |
i ∈ [m]} (restricted to the range D). Equivalently, for all c ∈ C,

f(c) = {i ∈ [m] | c ∈ f−1(TkD(i))}.

9.2. The codes Sn,S∆, and Tn in PCode. Let us begin by establishing a relationship
between codes of the type Sn and the type S∆. Recall that Sn is a special case of S∆—in
particular, Sn = S∆ where ∆ is n points. More generally, we have the following:

Proposition 9.6. Let ∆ ⊆ 2[n] be a simplicial complex with m facets. Then there exists a
surjective morphism S∆ → Sm. In particular, Sm ≤ S∆.

Proof. Let F1, . . . , Fm be the facets of ∆. For i ∈ [m] define Ti = TkS∆
(Fi), and define

Tm+1 = TkS∆
(n+1). We claim that Sm is the image of S∆ under the morphism f determined

by the trunks {T1, T2, . . . , Tm+1}. Recall from Definition 1.10 that the codewords of S∆ are:

• σ for σ ∈ ∆,
• σ ∪ {n+ 1} for σ ∈ ∆, and
• [n].

The images of these codewords under f are as follows:

• f(σ) is equal to ∅ if σ is not a facet of ∆, and equal to {i} if σ = Fi,
• f(σ ∪ {n+ 1}) is equal to {m+ 1} if σ is not a facet of ∆, and equal to {i,m+ 1} if
σ = Fi, and
• f([n]) = [m] since [n] contains all facets of ∆, but does not contain m+ 1.

But comparing these images to Definition 5.3, we see that these are exactly the codewords
of Sm, proving the result. �

Remark 9.7. One way to think of Proposition 9.6 is as follows. The set

{S∆ | ∆ is a simplicial complex with m facets}

inherits a partial order from PCode, and with this inherited order Sm is the unique minimal
element of the set. Theorem 1.11 says that for m ≥ 2 all of these live in the “layer” of codes
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with open embedding dimension m. We can visualize this situation as follows.

It is also worth noting the following, regarding the codes Tn described in Section 8.

Proposition 9.8. For any n ≥ 1, Tn ≤ Tn+1. In particular, the codes {Tn | n ≥ 1} form a
chain in PCode.

Proof. Given a set of neurons σ ⊆ [n], one can form a natural “restriction” of a code C ⊆ 2[n]

by mapping c 7→ c ∩ σ. This restriction is a morphism (see [14, Section 2]). In the case of
the codes Tn ⊆ 2[2n], one can note that Tn is the image of Tn+1 under the restriction map
with σ = [2n] ⊆ [2n+ 2]. This surjective morphism from Tn+1 to Tn implies that Tn ≤ Tn+1

as desired. �

9.3. Generalizing Sn and S∆ using Theorem 1.13. We begin with a definition general-
izing that of S∆.

Definition 9.9. Let D ⊆ C ⊆ 2[n] be intersection complete codes. We define

SC/D := C ∪ {[n]} ∪ {d ∪ {n+ 1} | d ∈ D} ⊆ 2[n+1].

Note that choosing D = {minimal nonempty codewords in C}∪{∅} always satisfies the above
conditions. In this case, we will let SC/min denote SC/D.

Qualitatively, SC/D is the result of forming a flexible sunflower using the codewords in
C, and then “gluing” the petals of that sunflower to a new set Un+1 along codewords in
D. Observe that S∆ of Definition 1.10 is equal to S∆/∆ in this notation. Also, if C =
{{1}, {2}, . . . , {n}, ∅}, then we see Sn of Definition 5.3 is equal to SC/min.

Proposition 9.10. Let D ⊆ C ⊆ 2[n] be intersection complete codes. The code SC/D is
intersection complete. If D has m maximal codewords and does not contain [n], then SC/D
has m+ 1 maximal codewords. In particular, odim(SC/D) ≤ max{2,m}.

Proof. Codewords in SC/D come in three types: codewords from C, the codeword [n], and
those of the form d ∪ {n + 1} where d ∈ D. Since C and D are intersection complete, the
intersection of two codewords of the same type always yields another codeword of that type
(and hence lying in SC/D). This leaves the intersections of codewords of different types. The
intersection of a codeword in C with [n] is simply the same codeword in C. The intersection
of d ∪ {n+ 1} with [n] is just d, which lies in SC/D since D ⊆ C. Finally, the intersection of
c ∈ C with d ∪ {n+ 1} is c ∩ d, which lies in C since since C is intersection complete.

For the second part of the statement, note that if d is a maximal codeword of D, then
d∪{n+1} is a maximal codeword of SC/D. Since [n] /∈ D, the codeword [n] is also a maximal



EMBEDDING DIMENSION PHENOMENA IN INTERSECTION COMPLETE CODES 29

codeword of SC/D, yieldingm+1 total maximal codewords. The bound on odim(SC/D) follows
immediately from [3, Theorem 1.2]. �

The following proposition provides a generalization of Theorem 5.5 to the codes SC/min.

Proposition 9.11. Let C ⊆ 2[n] be an intersection complete code that contains every single-
ton set. Then

odim(SC/min) ≥

⌈
n

dim(∆(C)) + 1

⌉
.

Proof. We start with a degenerate case: if n = 1, then C = {∅, 1} and SC/min = {12, 1, 2, ∅}.
In this case odim(SC/min) = 1, while n = 1 and dim(∆(C)) + 1 = 1. We see that the bound
given above is satisfied as desired.

Otherwise, n ≥ 2. In this case, let {U1, . . . , Um+1} be an open convex realization of SC/min

in Rd. Since the minimal nonempty codewords of C are all singletons, the code SC/min consists
of codewords from C, the codeword [n], codewords of the form {i, n+ 1} where i ∈ [n], and
lastly the codeword {n + 1}. Since [n] is a codeword, the sets {U1, . . . , Un} all meet in a
central point. In particular, {U1, . . . , Un} is a k-flexible sunflower, where k is the largest
weight of a codeword in C other than possibly [n]. In particular k ≤ dim(∆(C)) + 1, with
equality if [n] /∈ C.

But consider the set Un+1. This set does not meet U[n] since [n + 1] is not a codeword
of SC/min. However, it does touch each Ui since {i, n + 1} is a codeword. If we choose
pi ∈ Ui ∩ Un+1, then the convex hull of {p1, . . . , pn} is contained in Un+1 and therefore does
not contain a point in the center of {U1, . . . , Un}. By Theorem 1.13, such a sampling of pi
cannot be chosen if n ≥ dk + 1. Therefore we must have n ≤ dk. Rearranging, this implies
d ≥ dn/ke. Using the inequality k ≤ dim(∆(C)) + 1 yields the result. �

The added assumption in Proposition 9.11 that C contains all singletons is not too restric-
tive, since adding singletons to an intersection complete code always maintains intersection
completeness.

Continuing our pattern of generalizations, the proposition below is analogous to Theorem
1.11 and its second part generalizes Proposition 9.6.

Proposition 9.12. Let D ⊆ C ⊆ 2[n] be intersection complete codes. Let m ≥ 2 be the
number of maximal codewords in D, and let k be the largest number of maximal codewords
in D whose union lies in ∆(C). Then there exists an intersection complete code E ⊆ 2[m]

containing all singleton sets such that (i) k = dim(∆(E))+1, and (ii) there exists a surjective
morphism SC/D → SE/min. In particular, SE/min ≤ SC/D and m ≥ odim(SC/D) ≥

⌈
m
k

⌉
.

Proof. We will mirror the proof of Proposition 9.6. Let F1, . . . , Fm be the maximal codewords
of D. For i ∈ [m] define Ti = TkSC/D

(Fi), and define Tm+1 = TkSC/D
(n + 1). Let us

consider the image of SC/D under the morphism f determined by {T1, . . . , Tm+1}. Recall
from Definition 9.9 that the codewords of SC/D come in the following types:

• c for c ∈ C,
• d ∪ {n+ 1} for d ∈ D, and
• [n].

The images of these codewords under f are as follows:

• f(c) is equal to {i ∈ [m] | c contains Fi},
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• f(d ∪ {n + 1}) is equal to {m + 1} if d is not equal to some Fi, and is equal to
{i,m+ 1} if d = Fi,
• f([n]) = [m] since [n] contains all maximal codewords in D, but not n+ 1.

Let E ⊆ 2[m] be the collection of codewords in the first bullet above, i.e. E is the image of C
under f . Since the image of an intersection complete code is again intersection complete, we
see that E is intersection complete. Moreover, E contains every singleton set since f(Fi) =
{i}.

The image of SC/D under f therefore contains codewords in E , codewords of the form
{i,m + 1} for all i ∈ [m], the codeword {m + 1}, and [m]. But these are exactly the
codewords of SE/min. Thus SE/min is the image of SC/D under f .
To prove the result, it remains to show that k = dim(∆(E)) + 1. The codewords in E are

of the form f(c) = {i ∈ [m] | Fi ⊆ c}. Thus a codeword in E corresponds to a collection of
maximal codewords in D all of which are contained in some c ∈ C. A codeword in E with
largest weight thus corresponds to a largest possible collection of maximal codewords in D
whose union is contained in ∆(C). The largest such collection has size k by definition, so
any largest codeword in E has weight k, proving the result. �

Remark 9.13. Generalizing Remark 9.7 from the last section, we see that among all codes
of the form SC/D with parameters m and k as described in Proposition 9.12, the minimal

elements are always of the form SE/min where E ⊆ 2[m] contains all singletons, and k =
dim(∆(E)) + 1. The following diagram shows this:

These results use Theorem 1.13 to provide a more complete picture of the open embedding
dimensions of intersection complete codes. There is still much to be done, however. As one
example, the bound m ≥ odim(SC/D) ≥

⌈
m
k

⌉
of Proposition 9.12 leaves quite a large gap for

k ≥ 2. Sharpening this bound based on the combinatorial structure of C and D would be a
natural task of interest.

10. Conclusion

We have seen a number of phenomena arise in the closed and open embedding dimensions
of intersection complete codes. Some of these, like Theorems 1.6, 1.8, and 1.9, gave us
improved control over the embedding dimensions. Others, like Theorem 1.11, showed that
embedding dimension may be difficult to control. With Theorem 1.13, we developed new
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tools to understand open embedding dimension using k-flexible sunflowers, but the picture
is still far from complete.

One direction for future work would be to search for analogous phenomena among codes
that are not intersection complete. One could start with the following.

Question 10.1. Does there exist a code C with odim(C) < cdim(C) <∞?

Theorem 1.8 tells us that such a code cannot be intersection complete. There are examples
due to [10, 3] of codes with odim(C) < cdim(C) =∞. These examples rely on a compactness
argument to construct contradictory line segments of minimum distance in a hypothetical
closed realization, proving cdim(C) =∞. A similar approach, paired with a classic convexity
theorem that depends on dimension such as Radon’s theorem, could yield a positive answer
to Question 10.1, and also possibly Question 10.2 below.

Question 10.2. Little is known about whether closed embedding dimension can be large
relative to the number of neurons, n. A few open areas to investigate are the following, in
increasing order of difficulty:

• Does there exist a code C ⊆ 2[n] for which cdim(C) is finite, but larger than n− 1?
• Does there exist a family of codes {Cn ⊆ 2[n] | n ≥ 1} such that cdim(Cn) grows faster
than any linear function of n?
• Does there exist a family of codes {Cn ⊆ 2[n] | n ≥ 1} such that cdim(Cn) grows faster
than any polynomial function of n?

Note that Theorem 1.9 tells us that if such codes exist, they cannot be intersection complete.
We have provided an affirmative answers to the odim versions of the above questions via the
family S∆, and in particular Corollary 6.3.

Regarding the tangled sunflower codes Tn of Section 8, there is much to be done. A good
first step would be to improve the embedding dimension bounds that we currently have, or,
more ambitiously, find an exact characterization of the embedding dimension.

Question 10.3. Does there exist an explicit characterization of the open embedding dimen-
sions tn described in Definition 8.1? Can we improve the bounds of dn/2e ≤ tn ≤ n?

One might also consider codes that describe more than two sunflowers whose petals are
“tangled” (i.e. incident) in some way. This would be a significantly more complicated
problem, but perhaps of some interest. Another generalization would be to consider a notion
of tangled flexible sunflowers. This would be even more challenging to investigate, but would
perhaps be more relevant to applications in experimental data.

Question 10.4. In Section 9 we contextualized our results via a partial order on codes,
denoted by PCode. In this partial order, both odim and cdim are monotone functions. In
[14] we showed that a code is intersection complete if and only if it lies below a simplicial
complex in PCode. An interesting question is thus the following: do the simplicial complexes
lying above an intersection complete code C in PCode determine odim(C)? That is, among
the simplicial complexes lying above C in PCode, does one have minimal embedding dimension
equal to odim(C)?

A positive answer to the above question would reduce the problem of determining open
embedding dimension for intersection complete codes to the problem of determining open
embedding dimension for simplicial complexes, which is very closely tied to the well-studied
problem of determining when a complex is d-representable, as described in [25, Section 1.2].
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Note that the answer to Question 10.4 cannot be positive when we replace odim with cdim.
Open and closed embedding dimension for simplicial complexes are always the same (recall
Theorem 1.6), but the code S3 already shows that closed dimension and open dimension are
different for intersection complete codes. In particular, cdim(S3) = 2 while odim(S3) = 3.
Thus the simplicial complexes that S3 is a minor of do not determine its closed embedding
dimension, at least not simply as the minimum of their closed embedding dimensions, which
must be at least 3.

In the proof of Theorem 1.11 (see Section 6), we showed that odim(S∆) was equal to the
number of facets in ∆ by showing that any realization of S∆ gives rise to a realization of the
code Sm described in Section 5. Later, in Proposition 9.6, we translated this argument to
the context of minors, demonstrating a surjective morphism from S∆ to Sm. This technique
could be generalized to analyze arbitrary codes as follows. Given a code C, look for the
largest m so that there is a surjective morphism C → Sm (i.e. the largest m so that Sm is a
minor of C). This largest m then provides a lower bound on the open embedding dimension
of C.

Importantly, this method is distinct from existing techniques for providing lower bounds
on odim(C), which rely on homological information obtained from ∆(C) (see for example [7]).
In contrast, the sunflower approach is completely agnostic to homology of ∆(C). Whether
sunflowers of convex open sets could be useful in analyzing experimental data may be an
interesting open question. As a start, it would be useful to determine whether searching for
specific minors of a given code can be done in a computationally feasible manner.

Question 10.5. Given a code C ⊆ 2[n], is there an efficient algorithm to determine the
largest m so that Sm is a minor of C? More generally, for what pairs of codes C ⊆ 2[n] and
D ⊆ 2[m] can one efficiently recognize whether or not D is a minor of C?
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lyn Phillipson, and Anne Shiu. Gröbner bases of neural ideals. International Journal of Algebra and

Computation, 28(4):553–571, 2018.
[10] Sarah Ayman Goldrup and Kaitlyn Phillipson. Classification of open and closed convex codes on five

neurons. Advances in Applied Mathematics, 112:101948, 2020.
[11] Sema Gunturkun, Jack Jeffries, and Jeffrey Sun. Polarization of neural rings. Journal of Algebra and

Its Applications, 19(8), 2019.
[12] Vladimir Itskov, Alexander Kunin, and Zvi Rosen. Hyperplane neural codes and the polar complex.

In Nils A. Baas, Gereon Quick, Markus Szymik, Marius Thaule, and Gunnar E. Carlsson, editors,
Topological Data Analysis - The Abel Symposium, 2018, Abel Symposia, pages 343–369. Springer, 2020.

[13] R. Amzi Jeffs. Sunflowers of convex open sets. Advances in Applied Mathematics, 111:101935, 2019.
[14] R. Amzi Jeffs. Morphisms of neural codes. SIAM Journal on Applied Algebra and Geometry, 4:99–122,

2020.
[15] R. Amzi Jeffs.Morphisms, Minors, and Minimal Obstructions to Convexity of Neural Codes. PhD thesis,

University of Washington, Seattle, 2021. Available online at http://hdl.handle.net/1773/48062.
[16] R. Amzi Jeffs and Isabella Novik. Convex union representability and convex codes. International Math-

ematics Research Notices, 2019.
[17] R. Amzi Jeffs, Mohamed Omar, Natchanon Suaysom, Aleina Wachtel, and Nora Youngs. Sparse neural

codes and convexity. Involve, a Journal of Mathematics, 12(5):737–754, 2015.
[18] Alexander Kunin, Caitlin Lienkaemper, and Zvi Rosen. Oriented matroids and combinatorial neural

codes. arXiv e-prints: 2002.03542, page arXiv:2002.03542, 2020.
[19] Caitlin Lienkaemper, Anne Shiu, and Zev Woodstock. Obstructions to convexity in neural codes. Ad-

vances in Applied Mathematics, 85:31–59, 2017.
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