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RECOGNIZING AND REALIZING INDUCTIVELY PIERCED CODES

Ryan Curry,* R. Amzi Jeffs,! Nora Youngs,* and Ziyu Zhao*

ABSTRACT. We prove algebraic and combinatorial characterizations of the class of induc-
tively pierced codes, resolving a conjecture of Gross, Obatake, and Youngs. Starting from an
algebraic invariant of a code called its canonical form, we explain how to compute a piercing
order in polynomial time, if one exists. Given a piercing order of a code, we explain how to
construct a realization of the code using a well-formed collection of open balls, and classify
the minimal dimension in which such a realization exists.

1 Introduction

Given a collection U = {U1,...,U,} of convex sets in R%, one may combinatorially record
how these sets intersect and cover one another by computing the code of the collection U,
defined as

code(U :e{ Cln )mU\ U U#@}
i€ j€n\o
= {o C [n]| there exists p € R? with p € U; if and only if i € o}.

Above, [n] & {1,2,...,n}. Observe that code(d) is a subset of the Boolean lattice 2.
The collection U is called a realization of code(U), and the region (e, Ui \ Ujep o Uj s
called the atom of o in the realization Y. Elements of a code are called codewords. With
this terminology, the codewords of code(U) are exactly the subsets of [n] whose atoms are
nonempty in the realization U.

In 2013 Curto, Itskov, Veliz-Cuba, and Youngs [6] initiated the study of open convex
codes, which are the codes that have realizations consisting of convex open sets. Their work
was motivated by the neuroscientific study of place cells, and for this reason it is typical to
refer to the indices in [n] as neurons, and think of R? as a stimulus space in which the various
U; are the place fields where each neuron is active. Codes are a granular tool for capturing
the intersection and covering patterns of a collection of sets, and so the study of codes that
have realizations consisting of convex sets is of purely mathematical interest as well. Indeed,
work in this direction has led to novel theorems in discrete geometry, interesting constructive
results, and rich families of extremal examples [4, 5, 14, 3, 10, 12, 2, 7, 11].
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Figure 1: A realization of code C' in the plane, with the atom of 12 highlighted in gray.

Ezample 1. Consider the code C = {123,45,12,1,2,4,5,0} on five neurons. Here we are
eliminating brackets and commas in codewords to make our notation more concise—for
example, 123 represents {1,2,3}. We will adopt this convention elsewhere as well. Code C
is convex; Figure 1 shows a realization of C using open balls in the plane.

Our work focuses exclusively on realizations consisting of convex open sets, and for
this reason we use the more concise term convex code in place of “open convex code." An
efficient characterization of all convex codes is unfortunately out of the question; recent work
by Kunin, Lienkaemper, and Rosen [13] indicates that recognizing whether or not a code is
convex is NP-hard, even in R%. One way around this problem is to restrict to a simpler class
of codes. For example Cruz, Giusti, Itskov, and Kronholm [4] gave a construction showing
that every intersection complete code' is convex.

In this vein, our work treats the class of k-inductively pierced codes, which can be
built up iteratively from certain intervals of codewords (see Definition 2 below). We give an
algebraic and geometric characterization of k-inductively pierced codes (Theorem 6), proving
a conjecture of Gross, Obatake, and Youngs [9]. Furthermore, we exactly characterize the
minimum dimension in which an inductively pierced code has a well-formed realization by
open balls (Theorem 13); in particular, this shows that all inductively pierced codes are
certainly convex. Importantly, all of our characterizations are efficient in the following
sense: given the canonical form of a code, we can compute a piercing order in polynomial
time if one exists, and a piercing order allows us to quickly compute the smallest dimension
in which a code can be realized by a well-formed collection of open balls. This is discussed
in Section 4. To present our results formally, we first require some additional background.

Inductively Pierced Codes. For any o C 7 C [n], the interval between o and 7 is the set
lo,7] = {yC[n]| o Cy <}

The rank of an interval [o, 7] is equal to |7\ o|. Given a code C C 2[") and a neuron i € [n], we
will often consider the code C\ i, called the deletion of i, which is obtained by deleting i from
every codeword in C where it appears. For any o C [n], we let C\ o denote the code obtained

LA code is intersection complete if for any 01,02 € C, we have o1 N o2 € C also.
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by successively deleting the neurons i € o from C. Geometrically, if U = {Uy,...,U,} is
a realization of C then deleting U; from this realization for all ¢ € o yields a realization of

C\o.

Informally, a k-inductively pierced code is one which can be built up as a union of
intervals with rank at most k that fit together appropriately.

Definition 2. Let C C 2" be a code and let i € [n] be a neuron. We say that i is an
(abstract) k-piercing of C if there exist o C 7 C [n] \ {i} so that

(i) [o, 7] has rank k,
(i) [o, 7] is contained in C \ ¢, and

(iii) C = (C\i)UoU{i},7U .

We say that [0, 7] is the interval associated to the piercing, and every element of this in-
terval must appear both with and without ¢; these must also be the only appearances of
i. Informally, neuron 7 only occurs within o, and only interacts with the neurons in 7\o
- but must interact with those neurons in every possible combination. A code C C 2/ is
k-inductively pierced if C = {0}, or there exists a neuron i € [n] which is a k’-piercing of
C for some k' < k, and C \ i is k-inductively pierced. A code is called simply inductively
pierced if it is k-inductively pierced for some value of k.

From the definition, every k-inductively pierced code admits an ordering i1 < i <
--+ < iy of the neurons in [n] so that for each j, the neuron i; is a k’-piercing of the code
C\ {ij41,...,in} for some k' < k. We call such an order a k-piercing order (or merely
piercing order); note that there is no requirement that such an ordering be unique.

Ezxample 3. Consider again the code C from Example 1. Here, neuron 3 is a 0-piercing of C,
with associated interval [12,12]. Neuron 5 is a 1-piercing of C with associated interval [(), 4],
and symmetrically, 4 is a 1-piercing of C with interval [(}, 5]. Neither neuron 1 nor neuron 2
are a k-piercing for any k. However, either would be a valid 1-piercing of C\3. The code C
is inductively pierced, with many possible orderings. For example, both 1 <2 <3 <4 <5
and 1 < 4 < 2 <5 < 3 are possible piercing orders.

Inductively pierced codes were previously studied by Gross, Obatake, and Youngs [9].
Motivated by the study of Euler diagrams, their work focused on 0-, 1-, and 2-inductively
pierced codes and their possible realizations in the plane. We note that our definition of
inductively pierced codes differs from theirs in notation, but is equivalent. Our notation will
allow us to more easily characterize inductively pierced codes, and describe their realizations
in higher dimensions.

The Neural Ideal. Curto, Itskov, Veliz-Cuba, and Youngs [6] introduced an algebraic
approach to understanding codes and their realizations. Their approach used pseudo-
monomials in the polynomial ring Fy[z1,. .., x,], which are polynomials that have the form
[lico i [l e, (1 — ;) where o and 7 are disjoint subsets of [n]. It will be useful to par-
tially order pseudo-monomials by divisibility, so that in particular we can pick out minimal
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pseudo-monomials from a given set. Each o C [n] can be associated to an indicator pseudo-

monomial
def
Po = sz H (1—zj).
€0 j€[n]\o
These indicators allow us to uniquely associate each code to an ideal in Fa[z1,. .., x,)].

Definition 4 ([6]). Given a code C C 2!, we define the neural ideal Jo C Faolzy, ..., x,] as

follows:
def

Je = (po|o EC).

The canonical form of Je, denoted CF(J¢), is the set of minimal pseudo-monomials in Je.

Although the definition of J¢ uses indicator pseudo-monomials, which have de-
gree equal to n, the elements of the canonical form can in general have much lower de-
gree. The pseudo-monomials in Je have the following important geometric interpretation:
[Lico i [l e, (1 — ;) is an element of Je if and only if (¢, Ui € Uje, U; in every (possibly
not convex or open) realization Y = {Uy,...,U,} of C. Thus CF(J¢) can be regarded as a
minimal description of the intersection and covering information in any realization of C.

Additionally, Je¢ provides a generalization of the well-studied Stanley-Reisner ideal
[15, 17] of a simplicial complex: if C is a simplicial complex then CF(.J¢) consists of monomi-
als corresponding to minimal non-faces of C, and the neural ideal J; is the Stanely-Reisner
ideal of C (see |6, Section 4.4]). The ideal Jz and the canonical form are both unique to a
particular code, and can be used to characterize codewords. Using a slight abuse of notation,
we can evaluate polynomials in Je on elements of 2", where f (o) is computed by setting
x; = 1if i € o, and x; = 0 otherwise. We make use of the following useful facts: given
o C [n], we have ¢ € C if and only if f(o) =0 for all f € J¢ and if and only if f(o) =0 for
all f e CF(Jc)

Conventions. We are interested in using the canonical form to study inductively pierced
codes and their realizations. To streamline our work, we will adopt several conventions,
which we explain below.

(1) Every code contains () as a codeword. This means that sets in a realization do
not cover all of R%, and in particular we may restrict our attention to realizations
consisting of bounded sets. Algebraically, this means that Hie[n](l — ;) is not in J¢
(corresponding geometrically to the convention that [,y U; = R?) and hence CF(Jc)
does not contain any pseudo-monomial that is entirely a product of (1 — z;) terms.

(2) Every neuron appears in some codeword. This means that no set in a realization
is empty. Algebraically, this means that x; is not in J¢ for any i € [n].

(3) No two neurons appear in exactly the same codewords. This means that
no two sets in a realization are equal. Note that if two neurons did have identical
behavior, deleting one does not change whether or not a code is realizable, and so this
assumption does not affect our analysis. Algebraically, this means that for any ¢ # j
we do not have both z;(1 — z;) and z;(1 — ;) in Je.
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Note that every code C C 2[") can be associated to a code D satisfying (2) and (3) above,
so that D is convex if and only if C is convex. Essentially, up to permutation, any neurons
that do not appear could be forgotten, and likewise if two neurons have identical behavior
one of them can be discarded.

Characterizing Inductively Pierced Codes. Note that our conventions (1) and (2) imply
that every pseudo-monomial in CF(J¢) has degree at least two. We say that a code C is
degree two if every pseudo-monomial in CF(J¢) has degree exactly two. Gross, Obatake,
and Youngs [9] showed that under the conventions (1)—(3), every 2-inductively pierced code
is degree two. Their techniques imply the more general result that any inductively pierced
code is degree two. We will postpone the proof of this and our other results until Section 2.

Proposition 5. If C C 2" is inductively pierced, then C is degree two—that is, all elements
of CF(J¢) have degree two.

Following [9], we associate each degree two code C C 2/ to a graph G(C) called the
general relationship graph of C, which has vertex set [n] and an edge ij whenever CF(J¢)
does not contain any pseudo-monomial whose two variables are x; and ;. Geometrically, ij
is an edge in G(C) if and only if U; and Uj intersect and neither contains the other in every
realization of C. It turns out that the general relationship graph determines whether or not
C is inductively pierced.

Below, recall that a graph is chordal if it can be built up by successively adding
simplicial vertices, whose neighborhood among previously added vertices is a clique. The
reverse of the order in which these vertices are added is called a perfect elimination order.

Theorem 6. A code C C 21" is inductively pierced if and only if C is degree two and G(C) is
chordal. If k is the smallest integer so that C is k-inductively pierced, then the largest clique
in G(C) has size k + 1.

Computing Piercing Orders. Theorem 6 gives a positive resolution to a conjecture of
Gross, Obatake, and Youngs [9]. However, we would like to not only characterize inductively
pierced codes, but also find a way to recognize them efficiently. To this end, we introduce a
second auxiliary object associated to a degree two code. Given a degree two code C, let P(C)
be the partially ordered set whose elements are [n] and which has comparability relation
defined by
i < jin P(C) if and only if x;(1 — z;) € CF(J¢).

Recall that CF(J¢) cannot contain both z;(1 —z;) and z;(1 — z;) by convention (3), so this
relation is antisymmetric. Moreover, if we have i < j < k in P(C), then z;(1 — z;) and
2j(1— =) both lie in Je, and so z;(1 —zy) = (2;(1 — ;) (1 — x) + i (25 (1 — xp)) lies in Je.
In fact, z;(1 — zy) lies in CF(J¢) since C is degree two, hence this relation is transitive, and
defines a partial order. As previously noted in the discussion on the neural ideal, we have
z;(1 — ;) in Je if and only if U; C Uj in every realization of C, so P(C) can be regarded as
capturing pairwise containments of sets in any realization of C.

We will use P(C) and G(C) to identify piercings of C, and thus find piercing orders.
It turns out that piercings of C correspond to elimination neurons, defined below.

JoCG 14(1), 174-194, 2023 178



Journal of Computational Geometry jocg.org

Definition 7. Let C C 2[ be a degree two code. We say that a neuron 7 € [n] is an
elimination neuron if i is both a simplicial vertex in G(C) and a minimal element in P(C).

Proposition 8. Let C C 2" be a degree two code. Then a neuron i € [n] is a k-piercing of
C if and only if i is an elimination neuron with k neighbors in G(C).

Note that Proposition 8 already provides a novel characterization of piercing orders:
they are the linear orders on [n] whose reverse is simultaneously a perfect elimination order
of G(C) and a linear extension of P(C).

Proposition 9. Let C C 2" be a code, and suppose that a neuron i € [n] is a piercing of
C. Then C is inductively pierced if and only if C \ i is inductively pierced.

Propositions 8 and 9 will let us argue that not only can we find piercings efficiently,
but also that we will also never “get stuck" when trying to build a piercing order. In other
words, a piercing order may be computed greedily. For a full discussion of this algorithm,
see Section 4. For now, we summarize our realization results.

Realizing Inductively Pierced Codes. Since inductively pierced codes have a significant
amount of combinatorial structure, it is reasonable to hope that they admit structured
realizations. Rather than seek realizations by arbitrary convex open sets, we seek realizations
by open balls. This can be achieved from any piercing order, and we can easily characterize
the dimension in which such realizations exist. Below we make the additional requirement
that our realizations are well-formed, in the sense that the boundaries of sets intersect
generically.

Definition 10. A collection S = {S1,S55,...,8,} of (d — 1)-dimensional spheres in R? is
called well-formed if for every k < d the intersection of k-many spheres from S is either
empty, or a (d — k)-dimensional sphere, and the intersection of (d + 1)-many spheres from
S is empty. A collection of open balls is called well-formed if their boundaries comprise a
well-formed collection of spheres.

The above definition of well-formed spheres mirrors the definition of well-formed
curves used by Gross, Obatake, and Youngs [9] and the literature on Euler diagrams. Indeed,
a collection of well-formed circles in R? is a special case of a collection of well-formed curves.
To characterize the exact dimensions in which an inductively pierced code admits a well-
formed realization by open balls, we require two combinatorial definitions.

Definition 11. Let C C 2" be a degree two code, and suppose that the largest clique in
G(C) has size k + 1. For every o C [n] of size k on which G(C) is a clique, the attaching set
of o consists of all i € [n] \ o such that o U{i} is a (k + 1)-clique.

Note that the attaching set of ¢ is always an independent set, as an edge between
two of its elements would yield a clique of size k + 2 in G(C).

Definition 12. Let C C 2/ be a degree two code, and suppose that the largest clique in
G(C) has size k+ 1. We say that C is splittable if the following holds for every o C [n] of size
k on which G(C) is a clique: the attaching set of o can be partitioned as AU B so that P(C)
restricted to the attaching set consists of two disjoint total orders on A and B respectively.
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Figure 2: (a) The graph G(C) associated to C. (b) The Hasse diagram of P(C).

Theorem 13. Let C C 21" be an inductively pierced code, and let k > 1. If the largest clique
in G(C) has size k + 1, then

(I) C has a well-formed realization by open balls in RFTT,
(II) C has such a realization in R¥ if and only if C is splittable, and

(I1I) C does not have such a realization in R¥~1.

Note that Theorem 13 disregards 0-inductively pierced codes. These codes are simple
to realize since their realizations consist of sets that are either pairwise disjoint or nested,
which can always be managed in R'.

Example 14. Consider the following code:

C ={13459,1347,1478,123, 16,
1345, 1359, 1459, 134, 135, 145, 137, 147, 148, 159, 178, 12, 13, 14, 15,17, 18,1, 2, 0}.

Above, the maximal codewords appear on the first line and the remaining codewords are
listed on the second line. This code is 2-inductively pierced, and the natural linear order on
{1,2,...,9} is a piercing order. It further turns out that C is splittable. Note, for example,
that the attaching set of {3,4} is {5,7,9}, and the partition {5,9} U {7} has P(C) a total
order on each part. Figure 2 shows G(C) and P(C). Item (II) of Theorem 13 implies that C
has a well-formed realization by open balls in R?, and Figure 3 shows such a realization.

Example 15. Consider the following code:

¢ ={123,124, 125,
12,13,14,15,23,24,25,1,2,3,4,5,0}.

This code is 2-inductively pierced; indeed, the natural linear order is a piercing
order, and the largest clique in G(C) has size three. However, this code is not splittable.
The attaching set of o = {1,2} is {3,4, 5} and this set cannot be partitioned into two linearly
ordered subsets in P(C), since P(C) is an antichain on this set. Thus, Theorem 13 implies
that this code cannot be realized with open balls in R?, but such a realization is possible in
R3. One such realization in R? is shown in Figure 4.
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Figure 3: A well-formed realization of C by open balls in R2.

2 Characterizing Inductively Pierced Codes

To begin, we justify several important statements about the canonical form, which may be of
general interest. First, we describe the effect of eliminating a neuron in any (not necessarily
inductively pierced) code. We then characterize how a piercing impacts the canonical form,
again without assuming that the code in question is inductively pierced. This yields a short
proof of Proposition 5, establishing that every inductively pierced code is degree two.

Lemma 16. For any code C C 2", the canonical form of C \nC 2n=1 consists of exactly
the pseudo-monomials in CF(J¢) which do not depend on the variable x,; that is,

CF(Jevn) = CF(Je) \ {f € CF(J¢) | o or (1 — x,) divides f}.

Proof. Let f be any pseudo-monomial that does not depend on x,. Observe that f(o) =0
if and only if f(o \ {n}) = 0 for every o C [n]. Thus f vanishes on every codeword of C
if and only if f vanishes on every codeword of C \ n. Since the pseudo-monomials in the
neural ideal of a code are exactly those which vanish on every codeword, we conclude that
J € Je, if and only if f € Je. Consequently, the minimal pseudo-monomials in Je\,, are
the minimal pseudo-monomials in J¢ that do not depend on x,,, proving the result. O

Lemma 17. Let C C 21" and let n be a k-piercing of C with associated interval [0, 7]. Then

CF(Je) = CF(Jovn) U{znzi | i € [n— 1\ 7} U{xn(l —a5) | j € 0} (%)
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Figure 4: A realization of C in R3, consisting of two intersecting unit balls U; and Us, with
Us, Uy, and Us as smaller, disjoint balls centered at points on the circle where the boundaries
of U7 and Uy meet.

Proof. By definition of k-piercing, the codewords of C containing n form an interval [o U
{n},7 U {n}]. Hence n only appears in codewords that contain ¢, and contain no neuron
i € [n]\ 7. Consequently, x,(1 — z;) € J¢ for all i € o and z,x; € J¢ for every i ¢ T.
Our conventions (1)—(3) forbid Je from containing any degree one polynomials, and so
these pseudo-monomials are minimal in Jg, and hence lie in CF(J¢). Lemma 16 shows
that CF(Je\,) is obtained from CF(J¢) by deleting any pseudo-monomials in CF(J¢) that
depend on x,. Putting all of this together, we have

CF(Je) 2 CF(Jovn) U{@pri | i € [n =1\ 7} U{zn(1 —5) | j € 0}

For the reverse containment, it will suffice to show that every pseudo-monomial
in Je is a multiple of one of the pseudo-monomials in the union of the three sets above.
Equivalently, we must show the following.

Claim: If f is a pseudo-monomial that is not a multiple of some pseudo-monomial in
CF(Joyn) U {znzi|ien-—1\1}U{z,(1—2;)|j€o}
then f(c) # 0 for some codeword c € C.

Case 1: f does not depend on z,. Here Lemma 16 implies that f does not lie in J¢\,,. Hence
there is a codeword ¢’ € C\n with f(¢’) # 0. By the definition of a k-piercing, every ¢’ € C\n
is also a codeword of C.

Case 2: (1 — z,) divides f. We may write f = (1 — x,)g for some pseudo-monomial g that
does not depend on x,. Since f is not a multiple of any pseudo-monomial in CF(Jc\n), we
must have g ¢ Je\,- Hence there is a codeword ¢’ € C\n with g(c’) # 0. But by the definition
of a k-piercing, ¢ is also a codeword of C, and furthermore we have f(c¢') = g(c’) # 0 since
¢’ does not contain n.
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Case 3: x, divides f. We can write f = x,g where g is a pseudo-monomial that does not
depend on x,,. Since f is not a multiple of z,z; for any i € [n — 1]\ 7, we know that z; does
not divide g for any i € [n — 1] \ 7. Similarly, since f is not a multiple of any z,(1 — z;)
for j € o, we know that (1 — ;) does not divide g for any j € 0. Consequently, for some
disjoint 7/ C 7 and ¢’ C [n — 1] \ o we have

g=]]= [ -

e’ jEd’

By the definition of a k-piercing, C contains the entire interval of codewords [cU{n}, TU{n}].

In particular, ¢ < ¢ U7/ U {n} is a codeword of C. We see directly that f(c) # 0, so the
claim follows in this case as well, establishing the lemma. O

Proposition 5. If C C 21" is inductively pierced, then C is degree two—that is, all elements
of CF(J¢) have degree two.

Proof. This follows from Lemma 17 by induction. Note that the base case is easy as there is
a unique code on one neuron that satisfies conventions (1)—(3) in the introduction, namely
C = {1,0}, and in this case CF(J¢) = 0, so C is (vacuously) degree two. O

We now prove Proposition 8, to establish that piercings correspond to elimination
neurons. As we will see, this implies that the graph G(C) associated to an inductively pierced
code is chordal. We are then able to prove Theorem 6, which shows that, in fact, any degree
two code whose corresponding graph is chordal must be inductively pierced.

Below we will work with degree two codes C, and the associated graph G(C) and
partial order P(C). For any neuron ¢ € [n], we use the notation N (i) for the neighborhood
of i in G(C), and I(7) for the order ideal of 7 in P(C). That is,

N@) E{j € [n]| iand j adjacent in G(C)}, and
1) ={j €[] | j<iin PC)}.

Proposition 8. Let C C 2" be a degree two code. Then a neuron i € [n] is a k-piercing of
C if and only if i is an elimination neuron with k neighbors in G(C).

Proof. Up to permutation, it suffices to establish that n is a k-piercing of C if and only if
n is an elimination neuron with & neighbors in G(C). First suppose that n is a k-piercing
of C with associated interval [o,7]. By (x) from Lemma 17, (1 — x,,) is not a factor of any
pseudo-monomial in CF(J¢), and so n is minimal in P(C). The equation (%) also implies
that the neighborhood of n in G(C) is exactly 7 \ o, which has k elements. It remains to
argue that these neighbors form a clique. Let i,7 € 7\ o, and note from the definition of
a k-piercing that o, o U {i}, o U {j}, and o U {7, j} are all codewords of C. The pseudo-
monomials (1 — z;)(1 — x;), (1 — z;), z;(1 — x;), and x;x; respectively do not vanish
on these codewords, and hence do not lie in CF(J¢). Since these are the only degree two
pseudo-monomials involving x; and x;, we conclude that no pseudo-monomial in CF(Je)
has variables indexed by 7 and j. Hence ¢ and j are adjacent in G(C), and the neighbors of
n form a clique as desired.

JoCG 14(1), 174-194, 2023 183



Journal of Computational Geometry jocg.org

We now argue that if n is an elimination neuron with & neighbors in G(C), then n is
a k-piercing of C. Let 0 = I(n) and let 7 = I(n) U N(n). Note that 7\c = N(n), which has
size k. Since N (n) is a clique, for every pair of neurons in N(n) there is no pseudo-monomial
in CF(J¢) whose variables are indexed by these neurons. To show that n is a k-piercing, we
must verify two claims, which together show parts (ii) and (iii) of Definition 2 are satisfied.

Claim 1: [o,7U{n}] CC. Let v € [o,7 U {n}]. It will suffice to show that every pseudo-
monomial in CF(J¢) vanishes on «. First consider the pseudo-monomials that depend on
Zp. Since n is minimal in P(C), every pseudo-monomial in CF(J¢) that depends on x,, is of
the form x,z; with i ¢ 7, or z,(1 — x;) with j € 0. In both cases the second term in the
pseudo-monomial vanishes since o C v C 7 U {n}.

It remains to consider pseudo-monomials that do not depend on x,,. Here it suffices
to consider the case where n ¢ ~, since adding or removing n will not affect the vanishing of
the pseudo-monomial in question. First consider those of the form z;x;. Since the neighbors
of n in G(C) form a clique on 7\ o, one of ¢ or j lies outside 7\ 0. If i lies in o, then
Zn(1 — ;) lies in CF(J¢), and hence

Tn(zixj) + (2n(l — 25))2; = Tpxj

lies in Je. This implies that j ¢ 7 by (%), and in particular j ¢ v. Hence z;x; vanishes on
7.

Finally, consider a pseudo-monomial in CF(J¢) that has the form x;(1 — x;) where
i,J € [n — 1]. Suppose for contradiction that this pseudo-monomial does not vanish on ~.
Then i € v and j ¢ ~. In particular, i € 7 and j ¢ 0. We will argue that i and j both lie in
7\ o, contradicting the fact that G(C) is a clique on these neurons. It suffices to show that
i ¢ o and j € 7. Note that if i € o then z,(1 — z;) € J¢, and so

(1= i) (1 = 25) + xpai(1 = 25) = 20 (1 — ;)

lies in CF(J¢), contradicting the fact that j ¢ o. Similarly, if j ¢ 7 then z,z; lies in J¢,
and so
Tnixj + Tpxi(l — x5) = Ty

lies in CF(J¢) contradicting the fact that ¢ € 7. Hence ¢ and j both lie in 7\ o, contradicting
the fact that G(C) is a clique on this set. We conclude that [o,7 U {n}] CC.

Claim 2: If ce C and n € ¢, then ¢ € [c U {n},7U{n}]. Here we use the fact that every
pseudo-monomial in CF(J¢) vanishes on ¢, together with (x). For all j € o, the pseudo-
monomial z,(1 — z;) vanishes on ¢, so we must have o C c. Likewise, for every j ¢ 7U {n}
the monomial x,,x; vanishes on ¢, and so ¢ C 7 U {n}. This proves the result. O

Lemma 18. Let C be a degree two code, and let i,j € [n] be such that j < i in P(C). Then

N(j) C I(i) UNG).

Proof. Suppose for contradiction that j is adjacent to some neuron ¢ that lies in neither I(7)
nor N (7). Since ¢ does not lie in N (i), there must be a pseudo-monomial f € CF(J¢) that
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depends on x; and xy. Since ¢ does not lie in I(7), the only possibilities are f = z;x; or
f=ai(1—x¢). But j <1, and so z;(1 —x;) lies in CF(J¢). Multiplying x;(1 — z;) by either
x¢ or 1 —xp and adding it to z; f, we obtain a pseudo-monomial in CF(J¢) that depends on
j and ¢, contradicting the fact that j and ¢ are adjacent in G(C). O

We are now ready to prove Theorem 6, and establish our characterization of induc-
tively pierced codes.

Theorem 6. A code C C 2 is inductively pierced if and only if C is degree two and G(C) is
chordal. If k is the smallest integer so that C is k-inductively pierced, then the largest clique
in G(C) has size k + 1.

Proof. If C is k-inductively pierced, then our previous work immediately indicates the re-
quired conditions hold. Indeed, Proposition 5 guarantees that C is degree two. Furthermore,
Proposition 8 shows that a k-piercing order corresponds (in reverse) to a perfect elimina-
tion order on the vertices of G(C) in which each simplicial vertex has at most k neighbors,
implying that G(C) is chordal with maximum clique size at most k + 1.

It remains to prove the converse: if C is degree two and G(C) is chordal with all
cliques having size at most k + 1, we must argue that C is k-inductively pierced. Using
Proposition 8, we will find an elimination neuron i € [n] with at most & neighbors in G(C),
and prove that C\i is still degree two with G(C \ ) chordal and all cliques having size at
most k + 1. This allows us to inductively obtain a k-piercing order for C.

Since G(C) is chordal, G(C) contains at least one simplicial vertex. Choose such a
vertex i € [n]| that is minimal amongst all simplicial vertices in P(C)—that is, there is no
simplicial vertex j < i. We will show that in fact ¢ is minimal in P(C); that is, I(i) = 0.

Let G’ be the induced subgraph of G(C) on the vertex set N (i) U I(7). Since every
j € I(i) is not adjacent to ¢ in G(C), it will suffice to show that G’ is a clique. For
contradiction, suppose that G’ is not a clique. Since G(C) is chordal, any induced subgraph
is chordal. Every chordal graph that is not a clique contains two non-adjacent simplicial
vertices? and hence there is a vertex j that is simplicial in G’ and not adjacent to 1.

We must have j < ¢, and by Lemma 18 we have N(j) C N(i)UI(7). In particular, the
neighborhood of j in G’ is the same as its neighborhood in G. But since this neighborhood
is a clique, this contradicts our choice of ¢ as a minimal simplicial vertex.

Hence we can find a neuron ¢ € [n] that is simplicial in G(C) and minimal in P(C).
Up to permutation, we can assume ¢ = n. Since the largest clique in G(C) is size k + 1, we
conclude that n has ¥’ < k neighbors in G(C). By Proposition 8, n is a k’-piercing of C. By
() we see that C \ n is degree two, that G(C \ n) is obtained from G(C) by deleting n, and
that P(C\ n) is obtained from P(C) by deleting n. Hence we may conclude inductively that
C \ n is k-inductively pierced, and the result follows. O

We conclude with a proof of Proposition 9, establishing that piercing orders may be
constructed greedily.

2This result is well-known in the chordal graph literature; see for example the proof of Theorem 8.3.27
in [18].
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Proposition 9. Let C C 2" be a code, and suppose that a neuron i € [n] is a piercing of
C. Then C is inductively pierced if and only if C \ i is inductively pierced.

Proof. 1t suffices to consider the case i = n. The reverse implication is clear, and it remains
to argue that if C is inductively pierced then so is C \ n. By Theorem 6, it suffices to show
that C \ n is degree two, and that G(C \ n) is chordal. By (x), CF(Je\,) € CF(Jc), and so
C \ n is degree two. Moreover, G(C \ n) is the induced subgraph of G(C) on the vertex set
[n —1]. Since G(C) is chordal so is G(C \ n), and the result follows. O

3 Realizing Inductively Pierced Codes

Below, we will make use of existing results regarding set-theoretically independent collections
of open balls in R%—in our language, a collection U = {Uy,Us,...,U,} of balls is set-
theoretically independent whenever code(/) is the full power set 2[". For concision, we will
use the simpler term independent. We will need the following facts regarding collections of
independent balls:

(1) The largest size of a collection of independent balls in R? is d + 1. This was first
established by Rényi, Rényi, and Suranyi [16].

(ii) Let {Uy,...,Us} be a collection of k < d independent balls in R?. Then the intersection
of the boundaries of the U; is a (d — k)-dimensional sphere S. In particular, the Uj;
are a well-formed collection of balls. This result appears as Theorem 1 in a paper by
Anusiak [1].

(iii) In the situation of item (ii), S is the set of common limit points of all atoms in the
realization U (Theorem 3 of [1]).

(iv) In the situation of item (ii), suppose additionally that k& = d, and let U1 be
any ball. Then S = {p,q} is a O-dimensional sphere, and the collection of balls
{U1,...,Uq,Uz41} is independent if and only if the closure of Ugyq contains exactly
one of p or ¢ (Theorem 2 of [1]).

To build well-formed realizations of inductively pierced codes, we will use the follow-
ing geometric analogue of an abstract piercing.

Definition 19. Let U = {U1, ..., Uy,} be a realization of C C 2[" in R%. An interval [o, 7] C C
is called pierceable at a point p € R? if the codewords which arise in any small neighborhood
of p are exactly those in [0, 7]. Equivalently, [0, 7] is pierceable at p if and only if p is a limit
point of the atom of every codeword in [0, 7| and no others.

Given a collection {Uy,...,Uy,} of well-formed (but not necessarily independent)
balls in R, and a point p € R?, it will be convenient to assign p to a vector p(p) of length n
on the symbols {+,0, —}, as follows. The i-th coordinate of p(p) will record whether p lies in
the interior, boundary, or complement of the closure of U;, with +, 0, and — denoting these
respective possibilities. With this notation, an interval [0, 7] is pierceable at p if and only if
p(p) has +’s in the coordinates of o, 0’s in the coordinates of 7\ o, and —’s everywhere else
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(note that to establish this we need to use item (iii) above on the collection of balls indexed
by 7\ o). With this observation, we can prove the following technical lemma.

Lemma 20. Let 1 < k <d, and let {Uy, ..., Uy} be a collection of independent balls in R?.
Then every interval [o, ] C 2Kl s pierceable at some point.

Proof. Let p be a point in the intersection of the boundaries of all U;, noting that such a
point exists because k < d. Observe that p(p) is the all zeroes vector. We wish to find a
point whose vector has + for each index in o, 0 for each index in 7\ o, and — for all other
indices (that is, a pierceable point). To achieve this, for every i = 1,2, ..., k, we will replace
p by a new point, so that our new point has the correct symbols in the first ¢ indices, and
0’s in the remaining indices.

Let ¢ € [k], and assume that p(p) has the correct symbols in indices less than i, and
0’s for indices equal to ¢ and larger. Then p lies in the intersection of the boundaries of all
U; with j > i, as well as the U; with j < i and p(p) equal to zero in the j-th index. Let
S denote the intersection of these boundaries (setting S = R? if there are no boundaries
being intersected). Observe that OU; NS is a sphere with codimension one in S, and that
it contains p. Thus OU; divides S into two nonempty halves, one contained in U; and the
other contained in the complement of the closure of U;, and p is a limit point of each of
these halves. By moving p slightly inside S, we do not change p(p) except possibly at the
i-th index. If i € o, we move p so that it lies in the interior of U;; if @ € [k] \ 7 we move p so
that it lies in the complement of the closure of U;. Otherwise, we do not move p. This yields
a point whose first ¢ indices have the correct symbols, and by performing this operation for
all 7 € [k] we obtain a point with the desired p(p), proving the result. O

The following lemma allows us to perform a (geometric) k-piercing in R? so that
all previously pierceable intervals remain pierceable, and all new intervals are also pierce-
able, provided that £ < d. By applying this lemma repeatedly, we will prove Lemma 22,
establishing a slightly stronger version of part (I) of Theorem 13.

Lemma 21. Let C C 2" be a code, and let 1 < k < d. Suppose that the neuron n is a
k-piercing of C with associated interval [o, 7], and let D = C\ n. If D has a well-formed
realization {Uy,...,U,_1} by open balls in R, and [0, 7] is pierceable at point p in this
realization, then for any sufficiently small open ball U, centered at p the following hold:

(i) {Ui,...,Un} is a well-formed realization of C by open balls,

(ii) every interval in D that was pierceable in the original realization is also pierceable in
this new realization, and

(iii) every interval in C whose top element contains n is pierceable in this new realization.

Proof. Ttem (i) is immediate since [o, 7] is pierceable at p. The point p must lie on the
common intersection of the boundaries of all U; with ¢ € 7\ . This common intersection
is a sphere S of dimension at least one since k < d. The point p lies in the interior of all U;
with j € o, and in the complement of the closure of all U; with j € [n]\ 7. The same is true
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for all points in a small neighborhood of p, and hence S contains an infinite set of points at
which [o, 7] is pierceable. For every interval [0/, 7] in D that was pierceable in our original
realization (including the interval [o, 7] itself), choose a point p’ # p at which this interval
was pierceable. Choosing U,, small enough that its closure avoids all such p’ guarantees item
(ii); this can be done as there are only finitely many p’.

For item (iii), define v = (7 U {n}) \ o and observe that the U; with ¢ in v comprise
a collection of k + 1 < d independent balls. Each interval [¢/,7'] in C with n € 7/ must be a
subset of [o,7 U {n}]. Up to removing the indices in o, such an interval corresponds to an
interval in 27, which is pierceable by Lemma 20. Since n € 7, the point where this interval
is pierceable lies in the closure of U,. In particular, this point lies in the interior of all U;
with ¢ € o, and in the complement of the closure of all U; with j € [n — 1] \ 7. Hence the
interval [0/, 7] is pierceable at this point in our new realization, proving the result. O

Lemma 22. Let C C 21" be a k-inductively pierced code. Then C has a well-formed realiza-
tion by open balls in RETL with the following property: every interval of rank at most k in
C is pierceable at some point.

Proof. We may assume that the natural linear order on n is a piercing order, and proceed
by induction on n, applying Lemma 21 at each step. The base case n = 1 is immediate by
choosing any open ball U; in R¥t1. For the inductive step, one must only note that the
intervals described in items (ii) and (iii) account for all intervals of rank at most k in C.
Indeed, when performing a k-piercing, the only new intervals of rank at most k that are
introduced to the code are those of the form [0/, 7/ U {n}], which are covered by case (iii),
while case (ii) covers all previously introduced intervals of rank at most k. O

We now turn our attention to the task of performing geometric k-piercings in R¥.
Since the intersection of k-many independent spheres in R¥ is a 0-dimensional sphere con-
sisting of only two points, not every k-piercing can be realized geometrically in R*. However,
when a code is splittable (recall Definition 12), certain k-piercings can be achieved. We say
that an interval [o, 7] in a splittable code C is accessible if it has rank less than k, or if it has
rank exactly k£ and the following holds: the intersection of o with the attaching set AU B
of 7\ o is equal to A or B.

Lemma 23. Let k > 1, let C C 2" be an inductively k-pierced code, and suppose that C
is splittable. Then C has a well-formed realization by open balls in RF, with the following
property: every accessible interval in C is pierceable at some point.

Proof. By relabeling, we can reduce to the case where the natural linear order on [n] is a
piercing order. Similarly to the proof of Lemma 22, we will proceed by induction on n. For
the base case n = 1, any open ball U; in R¥ has every interval pierceable, and the result
follows. For n > 2, define D = C \ n, let [0, 7] be the interval associated to the k-piercing of
C by n, and let {Uy,...,U,—1} be a realization of D satisfying the conclusion of the lemma.
If [0, 7] has rank less than k (i.e. n is a k’-piercing of C with &’ < k) then Lemma 21 yields
a realization of C with the desired properties.
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This leaves the case that [o, 7] has rank exactly k. In this case, let A LI B be the
attaching set of 7\ o in C, and assume without loss of generality that n € A. Since C is
splittable and n is minimal in P(C), n is less than every a € A and is not comparable to
any b € B. It follows that o contains A and no elements of B. Noting that the attaching
set of 7\ o in Dis A\ {n} U B, we see that the interval [0, 7] is accessible in D, and by
inductive hypothesis there exists a point p where this interval is pierceable in the realization
{Ul, cey Unfl}.

Consider a small open ball U, centered at p. By making U, small enough, we can
guarantee that {Ui,...,U,} is a well-formed realization of C by open balls, and that every
interval in D that was pierceable remains pierceable, except possibly the interval [o, 7] itself.
Moreover, Lemma 20 guarantees that any new intervals [0/, 7] of rank & or less with n € 7/
are pierceable in our new realization as well. The only remaining interval in C which could
be accessible is [0, 7]. Observe that this interval is accessible in C if and only if B = (.
In this case, the 0-dimensional sphere which is the intersection of the boundaries of all U;
indexed by 7 \ ¢ will consist of p and a point ¢, and the interval [o, 7] will be pierceable
at both these points in the realization of D. The set U, must avoid the point ¢, lest the
spheres indexed by (7 \ ¢) U {n} not form an independent collection, and so [0, 7] remains
pierceable at ¢ in our constructed realization of C. This proves the result. O

The above lemmas give the required constructive results for Theorem 13, and it
remains to establish the theorem’s restrictions on well-formed realizations of inductively
pierced codes—namely that if C has a well-formed realization by open balls in R* then C
must be splittable, and that realizations in R¥~! are not possible.

Lemma 24. Let C C 2" be an inductively pierced code, suppose that the largest clique in
G(C) has size k + 1, and suppose that C has a well-formed realization by open balls in RF.
Then C is splittable.

Proof. Let o be the set of vertices of a clique of size k in G(C). In any well-formed realization
of C in R¥ by balls, the intersection of the boundaries of the balls indexed by ¢ will be a
0-dimensional sphere consisting of two points, p and ¢q. The balls indexed by the attaching
set of o must each contain exactly one of p or ¢ in their closure. Let A be the set of neurons
whose associated open balls contain p, and let B be the neurons whose associated balls
contain ¢. Clearly S = AU B.

It remains to argue that P(C) is a total order on A and B respectively, and that no
element of A is comparable to any element of B. To see that P(C) is a total order on A,
first recall that the attaching set of o is an independent set in G(C). Hence if i,j € A, then
CF(J¢) contains one of the pseudo-monomials x;(1 — x;), z;(1 — z;), or z;x;. Since U; and
U, share the point p, the pseudo-monomial x;z; does not occur in CF(J¢), and we conclude
that ¢ and j are comparable in P(C). Since any pair of elements in A are comparable, P(C)
is a total order on A. A symmetric argument establishes that P(C) is a total order on B.
Finally, note that if i € A and j € B, then ¢ and j are not comparable in P(C) because Uj;
contains p while U; does not, and symmetrically U; contains ¢ while U; does not. O
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Lemma 25. Let C C 2" be an inductively pierced code, and suppose G(C) contains a clique
of size k + 1. Then C does not have a well-formed realization by open balls in RFT.

Proof. By relabeling we may assume that G(C) has a clique on [k 4+ 1]. The fact that
C is inductively pierced implies that the restriction of C to [k + 1] is the full power set
2k+1 Tndeed, up to ignoring the indices outside of [k + 1], any piercing order successively
builds sub-intervals of 2t1) with ranks 0, 1, ..., k+ 1, each of which are contained in C. We
conclude that if C had a well-formed realization by open balls in R¥~1, then the balls indexed
by [k + 1] would form an independent collection. But the largest collection of independent
balls in R¥~1 has size k. This proves the result. O

Theorem 13. Let C C 2" be an inductively pierced code, and let k > 1. If the largest clique
in G(C) has size k + 1, then

(I) C has a well-formed realization by open balls in RFT!,
(II) C has such a realization in R¥ if and only if C is splittable, and

(III) C does not have such a realization in R¥~1,

Proof. Lemma 22 established a realization of the desired form for (I). Lemmas 23 and 24
established the reverse and forward implications needed for (II) respectively. Finally, Lemma
25 established (III). O

4 Computing Piercing Orders and Concluding Remarks

Motivated by the work of Gross, Obatake, and Youngs [9], we have provided a complete
characterization of inductively pierced codes. Additionally, we have shown that inductively
pierced codes can be realized with open balls (and hence are convex), and we have exactly
characterized the smallest dimension in which such realizations exist. A consequence of our
characterization is that an inductively pierced code C C 2/ is not only convex, but can be
realized with convex sets in dimension n — 1 or less. This strongly contrasts the general
situation for convex codes: Jeffs [10] showed that there are codes C C 2["! which can only
be realized in dimensions that are exponential in terms of n.

Within our results and their proofs, we have developed an implicit algorithm for a)
recognizing if a code is inductively pierced, b) computing a piercing order, ¢) determining
the minimal dimension in which the code may be realized with open balls, and d) producing
such a realization. We summarize this algorithm below. Recall that the codes we work with
satisfy the mild requirements (1)—(3) outlined in the introduction.

Algorithm for computing a piercing order.

1. Compute CF(J¢).
Note: Current algorithms for this are not necessarily efficient—see for example the
discussion by Garcia, Puente, Kruse, Liu, Miyata, Petersen, Phillipson, and Shiu [8,
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Page 1. We conjecture below that CF(J¢) can be computed efficiently when C is
inductively pierced, even if we do not know this a priori.

2. Verify that C is degree two. If not, then C is not inductively pierced.
3. Form G(C) and P(C) from CF(.J¢).

4. Search for an elimination neuron i € [n] (recall Definition 7). This can be done in O(n?)
time by computing the neighborhood of each neuron in G(C) and checking whether
it is simplicial, and then comparing all simplicial vertices according to P(C) to find a
minimal one. If no elimination neuron exists, then C is not inductively pierced.

5. Perform a permutation of [n] so that n is our elimination neuron. Record this permu-
tation and the clique consisting of n and its neighbors.

6. Delete n from G(C) and P(C) to obtain G(C \ n) and P(C \ n) respectively. Repeat
from Step 4 until no neurons remain, tracking the permutations from each time that
we perform in Step 5.

7. Compose the recorded permutations and apply to the original linear ordering to obtain
a piercing order for C. The smallest value of k£ for which C is k-inductively pierced is
size of the largest clique recorded in an instance of Step 5, minus one.

8. Determine if C is splittable. Each clique of size k£ will be contained in one of the
(k + 1)-cliques recorded in Step 5, so there are at most n(k + 1) such cliques to check.
For each, we can compute its attaching set and check whether it is possible to partition
it as in Definition 12.

9. If C is splittable, we form a realization in RF. Otherwise, we form a realization in
RE+L. To realize C by open balls, sequentially add open balls according to the piercing
order. Lemmas 21, 22, and 23 determine the points on the boundaries of these balls
where subsequent balls should be added to form the appropriate code.

Conjecture 26. Fiz d > 2. Given a code C C 2", there is a polynomial-time algorithm to
determine whether or not every pseudo-monomial in CF(J¢) has degree at most d. Here, the
input to the algorithm is a list of the codewords in C, with each codeword given as a binary
vector of length n.

Note that when CF(J¢) consists of pseudo-monomials with degree bounded by a
fixed constant d, there is a polynomial-time algorithm for determining CF(J¢). Indeed,
the total number of pseudo-monomials in Fa[xy,...,z,] of degree at most d is equal to
2¢(N) 42471 (,)") + - +2d 4+ 1 = O(n?), and so we could simply evaluate each of these
pseudo-monomials on all codewords to determine which ones lie in J¢, and the compare them
pairwise to find the minimal ones, which will comprise CF(J¢). Hence if this conjecture
is true, then our results imply that there is a polynomial-time algorithm for determining
whether or not a code is inductively pierced, even if we are not initially given CF(.J¢).
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Concluding Remarks. Our work proves that inductively pierced codes must be realizable
using open balls (and thus are convex), but there are codes that are not inductively pierced
but nevertheless admit a realization by open balls. Indeed, there are such codes that are not
degree two, and there are also such codes that are degree two but have G(C) non-chordal.
The code C = {12,13,23,1,2,3,0} is a simple example of the first case, as its canonical form
is {z122x3}, but it can be realized in two dimensions using open balls, as in Figure 5. For
an example of the second case, consider D = {12, 14,23,34,1,2,3,4,0}, which has canonical
form {x1x3, zox4} and hence its associated graph is a 4-cycle, which is not chordal. However,
D has a realization by open balls in R? as shown in Figure 5.

Figure 5: Two codes that are not inductively pierced, but can be realized with well-formed
collections of open balls in the plane. (Left) The code C is not degree two. (Right) The
graph G(D) is not chordal.

It seems plausible to seek larger classes of codes that admit realizations that are
constructed iteratively from open balls. However, codes such as D above, whose realizations
cover non-contractible subsets of R%, will pose a challenge to such an approach. Had we
arranged Uy, Us, and Us in a vertical line, then there would have been no way to add an
appropriate open ball (or any convex set) Uy at the final step. This highlights the special
structure of inductively pierced codes, whose realizations do not create loops or other topo-
logically interesting features.

Figure 6: An inductively pierced code realized by ellipsoidal regions in the plane. This code
cannot be realized by open balls in the plane.
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Finally, note that when realizations are not restricted to open balls, our characteri-
zation of realization dimension does not apply, even when a code is inductively pierced. For
example, consider the complete code on four neurons, ¢ = 24 This code is inductively
pierced—its canonical form is empty and thus trivially meets the degree two condition, and
its graph G(C) is the complete graph K4 and thus is chordal. Theorem 13 implies that C
is not realizable in R? using open balls, but it does have realization in R? using ellipsoidal
regions, as shown in Figure 6. The principal difference between this realization and any
realization using open balls is that the intersection of two ellipses need not be a lower-
dimensional ellipse. In the figure, the sets Uz and Us “pass through" one another, and their
boundaries share four common points. Accounting for such possibilities renders it more
difficult to formulate simple inductive constructions for realizations by ellipses. A charac-
terization of minimal dimension for realizations of inductively pierced codes using ellipses
(or other types of convex regions) remains an open question.
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