L))

Check for
Updates

VeriEQL: Bounded Equivalence Verification for Complex SQL
Queries with Integrity Constraints

YANG HE”, Simon Fraser University, Canada
PINHAN ZHAO", University of Michigan, USA
XINYU WANG, University of Michigan, USA
YUEPENG WANG, Simon Fraser University, Canada

The task of SQL query equivalence checking is important in various real-world applications (including query
rewriting and automated grading) that involve complex queries with integrity constraints; yet, state-of-the-art
techniques are very limited in their capability of reasoning about complex features (e.g., those that involve
sorting, case statement, rich integrity constraints, etc.) in real-life queries. To the best of our knowledge, we
propose the first SMT-based approach and its implementation, VERIEQL, capable of proving and disproving
bounded equivalence of complex SQL queries. VERIEQL is based on a new logical encoding that models query
semantics over symbolic tuples using the theory of integers with uninterpreted functions. It is simple yet highly
practical — our comprehensive evaluation on over 20,000 benchmarks shows that VERIEQL outperforms all
state-of-the-art techniques by more than one order of magnitude in terms of the number of benchmarks that
can be proved or disproved. VERIEQL can also generate counterexamples that facilitate many downstream
tasks (such as finding serious bugs in systems like MySQL and Apache Calcite).

CCS Concepts: « Theory of computation — Program verification; - Software and its engineering —
Software verification; Formal software verification.

Additional Key Words and Phrases: Program Verification, Equivalence Checking, Relational Databases.

ACM Reference Format:

Yang He, Pinhan Zhao, Xinyu Wang, and Yuepeng Wang. 2024. VeriEQL: Bounded Equivalence Verification
for Complex SQL Queries with Integrity Constraints. Proc. ACM Program. Lang. 8, OOPSLA1, Article 132
(April 2024), 29 pages. https://doi.org/10.1145/3649849

1 INTRODUCTION

Equivalence checking of SQL queries is an important problem with various real-world applications,
including validating source-level query rewriting [Chu et al. 2017b; Graefe 1995] and automated
grading of SQL queries [Chandra et al. 2019]. A useful SQL equivalence checker should be able to (i)
provide formal guarantee on query equivalence (either fully or in a bounded manner), (ii) generate
counterexamples to witness query non-equivalence, and (iii) support an expressive query language.
For example, in the context of query rewriting where a slow query Q is rewritten to a faster query
Q; using rewrite rules, one may want to ensure the rewrite is correct by showing Q; and Q; are
semantically equivalent with a certain level of formal guarantee, and in case of non-equivalence,
obtain a counterexample input database to help fix the incorrect rule. Equivalence checking is also

“Both authors contributed equally to the paper.

Authors’ addresses: Yang He, Simon Fraser University, Burnaby, Canada, yha244@sfu.ca; Pinhan Zhao, University of
Michigan, Ann Arbor, USA, pinhan@umich.edu; Xinyu Wang, University of Michigan, Ann Arbor, USA, xwangsd@umich.
edu; Yuepeng Wang, Simon Fraser University, Burnaby, Canada, yuepeng@sfu.ca.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/4-ART132

https://doi.org/10.1145/3649849

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAL1, Article 132. Publication date: April 2024.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0009-0007-7755-3112
HTTPS://ORCID.ORG/0009-0002-1149-0706
HTTPS://ORCID.ORG/0000-0002-1836-0202
HTTPS://ORCID.ORG/0000-0003-3370-2431
https://doi.org/10.1145/3649849
https://orcid.org/0009-0007-7755-3112
https://orcid.org/0009-0002-1149-0706
https://orcid.org/0000-0002-1836-0202
https://orcid.org/0000-0003-3370-2431
https://doi.org/10.1145/3649849
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649849&domain=pdf&date_stamp=2024-04-29

132:2 Yang He, Pinhan Zhao, Xinyu Wang, and Yuepeng Wang

useful for automated query grading. In particular, it can provide feedback to users by checking their
submitted queries against a ground-truth query, where the feedback could be a counterexample (i.e.,
a concrete database) that illustrates why the user query is wrong. Moreover, these counterexamples
can also serve as additional test cases to augment an existing test suite (such as the one maintained
by LeetCode [LeetCode 2023], the world’s most popular online programming platform).

While prior work [Chu et al. 2017a, 2018, 2017b,c; Veanes et al. 2010; Wang et al. 2018a] has made
some advances in both proving and disproving query equivalence, there remain a number of chal-
lenges that significantly limit the practical usage of existing techniques in real-world applications.
The gap, as we will also show in our evaluation section later, is in fact extremely large: for example,
existing work supports less than 2% of the SQL queries from LeetCode. The reasons are threefold.

o First, real-world queries are complex. In addition to the simplest select-project-join queries using
common aggregate functions such as SUM, COUNT, MAX — that existing techniques support fairly
well — queries in the wild frequently use advanced SQL features with much more complex logic
(such as sorting, case statement, common table expressions, IN and NOT IN operators, etc.) which,
to our best knowledge, existing SQL equivalence checkers rarely support. For example, among
more than 20,000 real-life queries we studied, more than 20% of them involve ORDER BY, over 30%
have CASE WHEN, over 15% require IN or NOT IN, and 15% use WITH, among others. This brings up
new challenges in how to precisely model the semantics of these advanced SQL operators.

o Furthermore, the interleaving between these advanced operators and other SQL features (such as
three-valued logic, aggregate functions, grouping, etc.) makes the problem even more challenging.
For example, the three-valued logic uses a special value NULL that many existing techniques (such
as HOTTSQL [Chu et al. 2017c]) do not consider. We must take into account all these additional
SQL features to properly model the semantics of SQL operators in order to fully support complex
real-world queries and reason about query equivalence.

o Finally, most real-world queries involve integrity constraints, but prior work barely supports them.
For instance, over 95% of our benchmarks require integrity constraints, yet all existing techniques
cumulatively support under 2%, to our best knowledge. These constraints are rich: in addition
to the primary key and foreign key constraints that stipulate uniqueness and value references,
there are many others including NOT NULL (used by all queries in our Calcite benchmark suite)
and various constraints that restrict attribute values (>70% across all our benchmarks) such as
requiring an attribute to be only positive integers. This richness poses significant challenges: for
example, to witness the non-equivalence of two queries, a valid counterexample must not only
yield different outputs but also meet the integrity constraints.

In this paper, we propose a simple yet practical approach to SQL query equivalence checking — we
can prove equivalence (in a bounded fashion) and non-equivalence (by generating counterexamples)
for a complex query language with rich integrity constraints. Our key contribution is a new SMT
encoding tailored towards bounded equivalence verification, based on a new semantics formalization
for a practical fragment of SQL (which is significantly larger than those considered in prior work).
First, we formalize our SQL semantics using list and higher-order functions, different from the K-
relations in HOTTSQL [Chu et al. 2017c] or U-semiring in UDP [Chu et al. 2018]. Our formalization
is inspired by MEDIATOR [Wang et al. 2018b]. However, MEDIATOR considers unbounded equivalence
verification for a small set of SQL queries, while our formalization considers a much larger language.
Second, building upon the standard approach of using SMT formulas to relate the program inputs
and outputs, we develop a new SMT encoding, for our formalized query semantics, in the theory of
integers and uninterpreted functions that is based on symbolic tuples. This new SMT encoding
allows us to handle complex SQL features (e.g., ORDER BY, NULL, etc) and rich integrity constraints
without unnecessarily heavy theories such as theory of lists in QEx [Veanes et al. 2010]. It also does

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAL1, Article 132. Publication date: April 2024.

VeriEQL: Bounded Equivalence Verification for Complex SQL Queries with Integrity Constraints 132:3

Q1,Q2 VeriEQL i

SCBZ?JTZ Symbolic DB F Query Rl R, Equality <I>R Constramt Verified
) . Generator Encoder Checker q)C A D@p Solver
Integrity Constramt Counterexample

Fig. 1. Schematic workflow of VERIEQL.

not require an indirect encoding by translating the SQL queries to an intermediate representation
in solver-aided programming language (e.g., ROSETTE [Torlak and Bodik 2014]), unlike the previous
CosEeTTE line of work [Chu et al. 2017a,b; Wang et al. 2018a]. Last but not least, we provide detailed
correctness proofs of our SMT encoding with respect to our formal semantics.

VERIEQL. We have implemented our approach in VERIEQL, which is described schematically in
Figure 1. At a high-level, VERIEQL takes as input a pair of queries (Q;, Q;), the database schema
S and its integrity constraint C, and a bound N defining the input space. It constructs an SMT
formula @ such that: (i) if ® is unsatisfiable, then Q; and Q, are guaranteed to be equivalent for all
database relations with at most N tuples, and (ii) if ® is satisfiable, then Q; and Q, are provably
non-equivalent, and we generate a counterexample (i.e., a database that meets C but leads to
different query outputs) from ®’s satisfying assignments. Internally, (1) VERIEQL first creates a
symbolic representation I' of all input databases with up to N tuples in their relations, and encodes
the integrity constraint C over I' into an SMT formula ®¢. Then, we process both queries and
encode their equivalence into an SMT formula ®g: (2) we traverse Q; in a forward fashion, encode
how each operator in Q; transforms its input to output, obtain the final output R; of Q; for all
input databases under consideration, and (3) generate an SMT formula ®g that asserts R; # R, (we
support bag and list semantics). While this overall approach is standard, our encoding scheme of
each operator’s semantics is new and has some important advantages. First, our encoding is based
on the theory of integers with uninterpreted functions: it is simple yet sufficient to precisely encode
all SQL features in our language (such as complex aggregate functions with grouping and previously
unsupported operators like ORDER BY). Crucially, our approach can support these advanced SQL
features without needing additional axioms, which prior work like QEx would otherwise require.
Second, our encoding follows the three-valued logic and supports NULL for all of our operators,
whereas prior work supports NULL for significantly fewer cases. In the final step (4), we construct
® = &¢ A g and use an off-the-shelf SMT solver to solve ®. Notably, @ takes into account both
query semantics and integrity constraints in a much simpler and more unified manner than some
prior work that has separate schemes to handle queries and integrity constraints. For example,
SPES [Zhou et al. 2022] performs symbolic encoding for queries but uses rewrite rules to deal with
integrity constraints — it is fundamentally hard for such approaches to support complex integrity
constraints such as those that restrict the value range.

We have evaluated VERIEQL on an extremely large number of benchmarks, consisting of 24,455
query pairs collected from three different workloads (including all benchmarks from the literature,
standard benchmarks from Calcite, and over 20,000 new benchmarks from LeetCode). Our evaluation
results show that VERIEQL can prove the bounded equivalence for significantly more benchmarks
than all state-of-the-art techniques, disprove and find counterexamples for two orders of magnitude
more benchmarks, and uncover serious bugs in real-world codebases (including MySQL and Calcite).

Contributions. This paper makes the following contributions.

e We formulate the problem of bounded SQL equivalence verification modulo integrity constraints.
o We formalize the semantics of a practical fragment of SQL queries through list and higher-order
functions. Our SQL fragment is significantly larger than those in prior work.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAL1, Article 132. Publication date: April 2024.

132:4 Yang He, Pinhan Zhao, Xinyu Wang, and Yuepeng Wang

e We propose a novel SMT encoding tailored towards bounded equivalence verification of SQL
queries, including previously unsupported SQL operators (e.g., ORDER BY, CASE WHEN) and rich
integrity constraints. To our best knowledge, this is the first approach that supports complex
SQL queries with rich integrity constraints.

e We prove our SMT encoding of SQL queries is correct with respect to the formal semantics.

e We implement our approach in VERIEQL. Our comprehensive evaluation on a total of 24,455
benchmarks — including a new benchmark suite with over 20,000 real-life queries — shows
that, VERIEQL can solve (i.e., prove or disprove equivalence) 77% of these benchmarks, while
state-of-the-art bounded verifier can solve <2% and testing tools can disprove <1%.

2 OVERVIEW

In this section, we further illustrate VERIEQL’s workflow using a simple example from LeetCode!.
Note that for illustration purposes, we significantly simplify the database schema and queries in
this task, but VERIEQL can handle the original queries® that are much more complex.

Specifically, this task involves a database with two relations, Friendship (or F) and Likes (or
L), where F records users’ friends and L stores users’ preferred pages. The task is to write a query
that, given a user, returns the recommended pages which their friends prefer but are not preferred
by the given user. In what follows, we explain this task in more detail.

Schema and integrity constraint. Figure 2a shows the database schema S with the two relations:
(i) Friendship relation F has two attributes uid and fid, denoting the ID of each user and their
friends, and (ii) Likes relation L with two attributes id and pid which denote the user ID and the
preferred page ID. The integrity constraint C for this task specifies that the pair (uid, fid) is the
primary key of F, and id is the primary key of L.

Queries. Consider the user with id = 1. Figure 2a shows a query Q; that can solve the task for this
given user. In particular, Q; uses an () INNER JOIN to find the given user’s friends, and uses a @
nested query followed by a 3 NOT IN filter to rule out the given user’s preferred pages. Figure 2a
also shows another query Q; which is similar to Q; but uses a G) LEFT JOIN instead. Note that Q,
is not equivalent to Q; — consider the case where the given user does not have any friends (i.e., F
does not have a tuple with uid = 1). In this case, the INNER JOIN in Q; returns an empty result as
the join condition F.uid = 1 never holds, whereas the LEFT JOIN from Q; gives a product tuple ¢’
for each tuple ¢ in L and t’.pid = NULL. The NULL values on pid will eventually be projected out by
Q2, leading to (incorrect) NULL tuples in the result.

In what follows, let us explain how VERIEQL proves the non-equivalence of (Q1, Q,). Specifically,
we will explain the key concepts in Figure 1: (1) what does a symbolic database look like, (2) how
to encode the integrity constraint, (3) how to encode the query semantics, (4) how to check two
queries always produce identical outputs, and (5) how to obtain verification results.

Generating symbolic database. Figure 2b shows the symbolic DB generated by VERIEQL that
has up to 2 rows in each relation (i.e., the input bound is 2). Each row is called a symbolic tuple.
For instance, we denote the tuples in F by t;, t; and denote the attribute values by x; = t;.uid
and x; = t;.fid and etc. Similarly, the tuples in L are t3, t; and the values for id and pid are y;, y;
and ys, y4, respectively. In general, we use an uninterpreted predicate Del over tuples to indicate
whether a tuple is deleted after an operation. Since the value of Del(#;) is unspecified, whether t; is
deleted or not is non-deterministic. Thus, the initial symbolic database encodes all databases where
each relation has at most two tuples.

Thttps://leetcode.com/problems/page-recommendations
The original queries are available in the Appendix of the extended version [He et al. 2024b].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 132. Publication date: April 2024.

VeriEQL: Bounded Equivalence Verification for Complex SQL Queries with Integrity Constraints 132:5
Schema S: Integrity Constraint C:
F: {uid: int, fid: int}, L: {id: int, pid: int} Primary Key (Fuid, Efid); Primary Key (L.id);
0 7
SELECT T2.pid AS pid @ SELECT pid FROM (
FROM F AS T1 JOIN L AS T2 @ SELECT pid
ON T1.fid = T2.id AND T1.uid = 1 FROM F AS T1 LEFT JOIN L AS T2 @
- ON T1.uid = 1 AND T1.fid = T2.id
WHERE T2.pid NOT IN (‘
|SELECT pid FROM L WHERE id = 1 | @ WHERE pid NOT IN (|SELECT pid FROM L WHERE id = 1 |) @
)T @
(a) Schema, integrity constraint, and queries.
uid jid id pid ®e =x; # Null Ax, # Null Axz # Null Axy # Null A
g [X1] X2 L &3 Y1)y (0 = x5 AXy, = X)) A
b2 | X3] X4| by |3 Y4l vy, #NullAy; # Null Ay, # y;

(b) Generating symbolic database.

(c) Encoding integrity constraint.

Ry o @ Rs Pp, =
Ry = Del(ty) A =Del(t3) A (x; = 1Axy; = y1) = T > =Del(tyg) A
& mmm@ Del(t;) A —Del(t3) A (x = y1 Axy = 1) = T > =Del(ts) A tmz“gﬂ Del(f,l) v Del(t3)3/\ (0 L 1Ax, Z:y,)lqt T - Del(tyq) IAS
Del(t,) v Del(t = =1)# T > Del(ts) A ... id = id = id =
to IEEIE el(t,) VDel(ts) A (x, =y, Axy = 1) # el(ts) A t23£‘|£@ [ng{(lzn)/I:l;lell/(\tz%‘ﬁd—‘DeT(utlzlg/; /\A ty3.pid = Null A
[@ Re ®
ty [Yz Pp, = =Del(t) A (v =1) = T > =Del(t) toa V2 D, =—Del(t) A(y; = 1) = T - —Del(tzs)
ADel(t;)V(y; =1) # T = Del(tg) A ...] ADel(t;) V(y; =1) # T = Del(tzq) A ...
10| Va t25Ya
Rs @ Rs @
fu"ﬁ Xz H Y1 H V2| @y, = -Del(ts) A -Del(ty) A fzs‘xl ” X2|Y1|Y2| ®f, = Del(tsg) A =Del(tzq) A
=NullAy, £y, Ay, # —Del(ty;) A ... e ENull Ay, #y, Ay, # —Del(tze) A ...
tlAEZHﬂM (623 Ul Ay, # y; Ay, # y4) > —Del(ty1) tn@ X Nullm o2 ull Ay, # y; Ay, # ¥4) > —Del(tz6)
@
®p, = =Del(ty;) - ~Del(t;s) A tyy.pid = y, Dp, = Del(tz6) > —Del(tsz) A tsy.pid =y,
Del(ty;) = Del(tys) A ... Del(t,) — Del(tzz) A ...
;= Pp APy, ADp, ADp, Dy = Pp A D, ADp, APy,
(d) Encoding query semantics.
Do, = Ziep, I[-Del(t)] = Zyrep, I[-Del ()] A
Acer, (Ze7er,I[-Del(t) A Del(t) At = t'] = Epnep I[-Del(t) A =Del(t") At = t"])
(e) Checking equality.
uid fid id pid y pid
pl
ty |23 t; 2|10 :> Nul
P=PAP AP AP T=) Z3 T=p SAT+|F | 375 L | 3y ot @[] @
counterexample

(f) Constraint solving.

Fig. 2. lllustration of how VERIEQL works on a simple LeetCode task.

Encoding integrity constraint. Figure 2c shows VERIEQL’s SMT encoding ®¢ of the integrity

constraint C. It has two parts. The first part

x1 # Null A xy #Null A x3 # Null A x4 # Null A =(x; = x3 A x3 = x4)

specifies that tuples t;, t, are unique and all attributes are not null, since (uid, fid) is a primary key.

The second part y; # Null Ays # Null Ay; # ys3

encodes that id is a primary key of relation L.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 132. Publication date: April 2024.

132:6 Yang He, Pinhan Zhao, Xinyu Wang, and Yuepeng Wang

Database : RelName — Relation
Schema : RelName — RelSchema Relation :: [Tuple]
RelSchema : [(AttrName, Type)] Tuple :: [(AttrName, Value)]
Type € {Int,Bool} Value € IntUBoolU {Null}
(a) Schema (b) Database

Fig. 3. Relational schema and database.

Encoding query semantics. To encode the semantics of a query, VERIEQL encodes the semantics
of each operator which are then composed to form the encoding of the entire query. For example,
the formula ®; to encode Q; is the conjunction of ®g,, ®g,, Pg, and Pg,. Specifically, to encode the
inner join Ty > T, in (O, VERIEQL considers the Cartesian product of tuples in T; and T3, followed
by a filter to set all resulted tuples that do not satisfy T;.fid = T;.id and T;.id = 1 as deleted. For
the NOT IN in Qy, it analyzes the nested query and generates the formula ®g, (as shown in), and
checks the membership of Ti.pid with the obtained pid, which is encoded as ®g, in ®. Finally,
the pid is projected out by (@), resulting in the output R4 and a formula ®g,. The obtained formula
O = Pp, A P, A Dg, A Dp, precisely encodes the query semantics of Q;. Similarly, Q,’s output is Rg
and the corresponding formula ®, consists of ®g,, Pr,, Pr, and Dg, from G ® @ ®), respectively.
Checking equality. After encoding the semantics of queries Q; and Qz, VERIEQL needs to compare
their outputs Ry and Rg. Although R, and Rg do not have the same number of symbolic tuples, they
can still be equal because some tuples may have been deleted. To check the equality, VERIEQL
generates a formula @, (in Figure 2e) asserting Ry is equal to Rg. VERIEQL supports both list and
bag semantics. In this example, it uses bag semantics because neither of the queries involves sorting
operations. ®, encodes two properties: (1) R4 and Rs have the same number of non-deleted tuples
and (2) for each non-deleted tuple in Ry, its multiplicity in R4 is the same as that in Rg. Since
properties (1) and (2) imply that (3) for each non-deleted tuple in Rg, its multiplicity in Rg is the
same as that in Ry, we do not need to include a formula for property (3) in ®,.

Verification result. Finally, VERIEQL builds a formula ® = &¢ A &; A $; A =D, encoding the
existence of a database D such that (1) D satisfies the integrity constraint C and (2) Q; and Q,
have different outputs on . VERIEQL invokes Z3 and finds ® is satisfiable, so it concludes that Q;
and Q, are not equivalent and generates a counterexample database (shown in Figure 2f) where Q;
and Q, indeed yield different results.

3 PROBLEM FORMULATION

We first describe the preliminaries of relational schema and database, and then present our query
language and integrity constraints, followed by a formal problem statement.

3.1 Relational Schema and Database

Schema. As shown in Figure 3a, a relational database schema is a mapping from relation names
to their relation schemas, where each relation schema is a list of attributes. Each attribute is
represented by a pair of attribute name and type. All attribute names are assumed to be globally
unique, which can be easily enforced by using fully qualified attribute names that include relation
names, e.g., EMP.age. We only consider two primitive types, namely Int and Bool, in this paper.
Other types (e.g., strings and dates) can be treated as Int and functions involving those types can
be treated as uninterpreted functions over Int.

Database. Similarly, as shown in Figure 3b, a relational database is a mapping from relation names
to their corresponding relations, where each relation consists of a list of tuples.® Each tuple contains
a list of values with corresponding attribute names, and a value can be an integer, bool, or NULL.

3 If a relation is created by a non-ORDER BY query, then we interpret this list as a bag.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 132. Publication date: April 2024.

VeriEQL: Bounded Equivalence Verification for Complex SQL Queries with Integrity Constraints 132:7

Query O, == Q| OrderBy(Q, E b)
Subquery Q@ == R|IL(Q) | 04(Q) | pr(Q) | Q ® Q | Distinct(Q) | Q ® Q | GroupBy (Q, EL¢)
| With(Q,R, Q)
AttrList L == id(A) | pa(A) | L, L
Attr A == Cast(¢) |E| G(E) |Ao A
Pred¢ u= b|Nu11|A®A|IsNu11(E)|E€v|E€Q|¢/\¢|¢V¢|—|¢
ExprE = a|v|E<>E|ITE(<]5EE)|Case(¢EE)
JoinOp® = X| pag | >ag | by | >y
CollectionOp@® == U|N|\|W|m]|-
ArithOpo == +| — | x |/|%
LogicOpo == < | <|=]#]|>]2

R € Relation Names a € Attribute Names o € Values b € Bools G € {Count, Min, Max, Sum, Avg}

Fig. 4. Syntax of SQL Queries. Values include integers, bools, and Null. id(A) is a construct denoting attribute
A itself occurs in the attribute list. If the context is clear, we may also omit the id constructor for brevity. The
Cast function takes as input a predicate ¢ and returns Null if ¢ is Null, 1if ¢ is T, and 0 otherwise.

3.2 Syntax of SQL Queries

The syntax of our query language is shown in Figure 4, which covers various practical SQL operators,
including projection II, selection o, renaming p, set union U, intersection N, minus \, bag union W,
intersection M, minus —, Distinct, Cartesian product X, inner join >4, left outer join >4, right outer
join >y, full outer join ><4, GroupBy with Having clauses, With clauses, and OrderBy. In addition,
the query language also supports various attribute expressions such as arithmetic expressions
Ei o Ez, aggregate functions G(E), if-then-else expressions ITE(¢, E, E;), and case expressions
Case(qﬁ EE), as well as predicates such as logical comparison A; ® Ay, null checks IsNull(E), and
membership check Ee Q. Many of these constructs are not supported by prior work, such as
OrderBy, With, Case, and so on. In what follows, we discuss the syntax of aggregate functions,
GroupBy, and OrderBy in more detail.

Aggregate functions and GroupBy. Our language includes five common aggregate functions G,
and as is standard, it does not permit nested aggregate functions such as SUM(SUM(a)). The language
also has a construct GroupBy(Q, EL ¢) for grouping tuples. Intuitively, GroupBy(Q, EL ¢) groups
the tuples of subquery Q based on attribute expressions E and for each group satisfying condition
¢, it computes an aggregate tuple according to the attribute list L.

Example 3.1. The GroupBy operation is closely related to the GROUP BY and HAVING clauses in
standard SQL. For instance, consider a relation EMP(id, gender, age, sal) and a SQL query:
SELECT AVG(age), AVG(sal) FROM EMP WHERE age > 20 GROUP BY gender HAVING AVG(sal) > 30000

It can be represented by the following query in our language
GroupBy (0age>20(EMP), [gender], [Avg(age), Avg(sal)], Avg(sal) > 30000)

It is worthwhile to point out that the grammar in Figure 4 does not precisely capture all syntactic
requirements on valid queries. In particular, a query with certain syntax errors may also be accepted
by the language, because those syntactic requirements are difficult to describe at the grammar level.
We instead perform static analysis to check if a query is well-formed and throw errors if the query
contains invalid expressions. For example, consider the following SQL query

SELECT SUM(sal) FROM EMP GROUP BY age HAVING sal > 10000

where the HAVING clause uses a non-aggregated attribute sal that is not in the GROUP BY list. Such
a query is not permitted in standard SQL, because it may contain ambiguity where a group of
tuples with the same age may have different sal values. Our query language also disallows such

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAL1, Article 132. Publication date: April 2024.

132:8 Yang He, Pinhan Zhao, Xinyu Wang, and Yuepeng Wang

[Q] :: Database D — Relation

[R]p = D[R
ML (Q)]o = ite(hasAgg(L), [[L]p,[0]4 | map([Q] 0. Ax.[L]Dx))
4 (Q)]o = filter([Q]p, Ax.[¢]p,(x) = T)
Pr(Q)]p = map([Q]p, Ax.map(x, A(n,v).(rename(R, 1), v)))
01N Q] = filter([Distinct(Q1)] p, Ax.x € [Q2]p)
Q1UQ:]p = [Distinct(Q1 ¥ Q2)]p
01\ Q2] = filter([Distinct(Q1)]p, Ax.x ¢ [Q2]p)
01 A Q2]p = [01-(Q1-Q)]p
Q19 Q:]p = append([Qi1]p, [Q:]p)
Q1 - Qo = foldl(Axs.Ax.ite(x € xs,xs — x,x5), [Q1] D, [Q2]D)
Distinct(Q)] » = foldr(Ax.Axs.cons(x, filter(xs, Ay.x # y)), [], [Ql»)
Q1 X Q2]lp = foldl(Axs.Ax.append(xs, map([Q2]p, Ay.merge(x, y))), [], [Q1]p)
Q154 Q2]p = [og(Q1xQ2)]p
Q134 Q2]p = foldl(Axs.Ax.append(xs, ite(|o1 (x) | = 0, 02 (x), 01 (x)), [, [Q1]»)
where 01 (x) = [[x] p<g Q2] and v (x) = [merge(x, Tyun) |
[Q17<4 Q2]p = foldl(Axs.Ax.append(xs, ite(|o1 (x) | = 0, 02 (x), v1 (x)), [, [Q2] »)
where v (x) = [Q1 »<¢ [x]]p and vz (x) = [merge(Tyun, x) |
[Q1><4 Q2]p = append([Q1 < Q2] p, map(xs, Ax.merge(Tyui, X)))
_ where xs = filter ([Q2] 0, Ay.|[Q1 ><g [y]]p| =0)
[GroupBy(Q,E,L,¢)]p = map(filter(Gs, Axs.[¢p]Dxs = T), Axs.[L] p xs) where

Gs = map(Dedup(Q,E),)Ly.filter([Q]]D,Az.Eval(E, [z]) =y)),
Dedup(Q, E) = foldr (Ax.Axs.cons(x, filter(xs, Ay.x # y)), [|, map([Q] p, Az.Eval(E, [z]))),
Eval(f, xs) = map(E,Ae.[e]]D,xs)
[Qlo where D’ = D[R; - [Qi]p | Ri € R]
foldl(Axs.A_.(append(xs, [MinTuple(E, b,[Qlo — xs)1)), [1, [Q]p) where
MinTupIe(E, b,xs) = fo[d]()Lx./ly,ite(Cmp(E, b,x,y), y,x), head(xs), xs),
Cmp(E, b, x1,%2) = b # foldr(AE; Ay.ite(o(x1, E;) < 0(xp, E;), T,
ite(o(x1, Ei) > 0(x2, Ei), L, y)). T. E),
o(x, E) = ite([E] p,[x] = Null, =00, [E] p,[x])

[With(Q,R. Q)]»
[OrderBy(Q, E, b)]p

Fig. 5. Formal semantics of SQL queries. ite is the standard if-then-else function. hasAgg(L) checks if the
attribute list L has an attribute computing an aggregation. merge(x, y) merges two tuples x and y into one
tuple. rename(R, n) replaces all occurrences of the original table name R with the new globally unique name
n. Tyul represents a tuple of Null’s, whose length is determined as appropriate by the context for brevity.
Note that xs — x on the right-hand side of [Q1 — Q2] p» denotes deleting one tuple x in xs iff xs € x. Full
formal semantics of all constructs in our query language, including predicates [@] p xs, attribute lists [L] p xs,
and expressions [[e] p xs is available in the Appendix of the extended version [He et al. 2024b] .

GroupBy queries. Although a simple syntactic check can reveal this error, describing the check in
grammar is non-trivial, so we perform static analysis to reject such queries.

Sorting and OrderBy. Our language supports sorting the query result. Specifically, OrderBy (Q, E, b)
can sort the result of subquery Q according to a list of attribute expressions E. The result is in
ascending order if b = T and in descending order otherwise. Note that as shown in Figure 4,
OrderBy is only allowed to be used at the topmost level of a query.

3.3 Semantics of SQL Queries

The denotational semantics of our SQL queries is presented in Figure 5, where [Q] takes as an
input a database O and produces as output a relation.

Bag and list semantics. As is standard in SQL, we conceptually view a relation as a bag (multiset)
of tuples and use the bag semantics for queries. However, our denotational semantics in Figure 5
uses lists to implement bags and define query operators through higher-order combinators such as
map, filter, and foldl. In this way, we can easily define complex query operators and switch to list
semantics when the query needs to sort the result using ORDER BY.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 132. Publication date: April 2024.

VeriEQL: Bounded Equivalence Verification for Complex SQL Queries with Integrity Constraints 132:9

Three-valued semantics. Similar to standard SQL, our semantics also uses three-valued logic.
More specifically, a relation may use NULL values to represent unknown information, and all query
operators should behave correctly with respect to the NULL value. For example, our semantics
considers a predicate can be evaluated to three possible values, namely T (true), L (false), and
Null. A notation like [@] s = T means the predicate ¢ evaluates to true (not false nor Null) given
database D and tuples xs. *

Basics. At a high level, our denotational semantics can be viewed as a function or a functional
program [Q] p that pattern matches different constructors of query Q and evaluates them to
relations given a concrete database D. If the query is a relation name R, then [R] o simply looks up
the name R in D. If the query is a projection, [II;(Q)] p first checks if the attribute list L includes
aggregation functions. If so, it evaluates query Q and invokes [L] p jo], to compute the aggregate
values. Otherwise, it projects each tuple in the result of [Q] » according to L through a standard
map combinator. If the query is renaming, [pr(Q)] p first evaluates [Q] p. Then for each tuple in
the result, it updates the attribute name n to be a new name rename(R, n) that is related to relation
name R. Following similar ideas of functional programming, we can define semantics for filtering
o, set operations N, U, \, bag operations M, ¥, —, and Distinct for removing duplicated tuples.

Cartesian product and joins. Apart from the standard Cartesian product Q; X Q,, there are four
different joins in our language. An inner join Q; >4 Q; can be viewed as a syntactic sugar of
04(Q1 X Q2). A left outer join Q1 ><y Q, is more involved. [Q; > Q;] p iterates tuples in the result
of [Q1] » and for each tuple x, it computes the inner join of [x] and Q, and denotes the result
by v1(x). If v1(x) is not empty, it is appended to the final result of the left outer join. Otherwise,
[Q1 >< Q2] p computes a null extension v;(x) of x by taking the Cartesian product between x and
Tuil (a tuple of Null values) and appends v, (x) to the result. Similarly, a right outer join Q; p<y Q,
can be defined in the same way. For full outer join, [Q; ><4 Q,] p starts with the left outer join
Q1 >4y Q. Then for each tuple y in [Q,] p, if the inner join between Q; and [y] returns empty,
[0y »<4 Q2] p adds a null extension merge(Txul, y) to the result.

Example 3.2. Consider the following two relations EMP and DEPT. What follows illustrates the
difference in the results of various joins and their Cartesian product.

eid | ename | did id | dname eid | ename | did id dname
1 A 11 10 C [eid [ename [did [id [dname] 1 A 11 11 D
2 B 12 11 D 7] A T ua[u[D | 2 B 12 [NULL [NULL
EMP DEPT EMP ><qig=ig DEPT EMP 3<gid=iq DEPT
eid | ename | did id dname
eid ename did id dname 1 A 11 10 C
eid ename did id | dname 1 A 11 11 D 1 A 11 11 D
NULL NULL NULL 10 C 2 B 12 NULL NULL 2 B 12 10 C
1 A 11 11 D NULL NULL NULL 10 C 2 B 12 11 D
EMP b<cgi g=iq DEPT EMP ><gid=id DEPT EMP x DEPT

Fig. 6. An example demonstrating different joins in SQL.

GroupBy. To define the semantics of GroupBy(Q, EL gb) we use several auxiliary functions.
Spemﬁcally, Eval(E, xs) computes the values of expresswns E to be grouped over tuple list xs, and
Dedup(Q, E) invokes Eval to retain only unique values of E. Then GroupBy maps each unique E
value to a group of tuples sharing the same value over E and obtains all groups Gs. It evaluates the
HAVING condition ¢ and only retains those groups satisfying ¢ by the filter combinator. Finally, for
each retained group xs, GroupBy computes an aggregate value [L] p xs and adds it to the result.

4Detailed definition of predicate semantics is available in the Appendix of the extended version [He et al. 2024b].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAL1, Article 132. Publication date: April 2024.

132:10 Yang He, Pinhan Zhao, Xinyu Wang, and Yuepeng Wang

Constraint C PK(R, d) | FK(R, a,R, a) | NotNull(R, a) | Check(R,¢) | Inc(R,a,v) | CAC
Pred ¢ aQulaGalacd|yAy|yVy|-y
LogicOpo == < | < |=|#]|>]|2
R € Relations a € Attributes v € Values

Fig. 7. Syntax of Integrity Constraints.

With clause. To evaluate With(é, 13, Q), our semantics first evaluates all subqueries Q; € é, then
creates a new database 9’ by adding mappings R; — [Q;] p, and finally evaluates Q under D’.
Intuitively, the With clause creates local bindings for subqueries Q; which can be used in query Q.

OrderBy. We define a deterministic semantics for the OrderBy construct in our language, i.e., two
runs of OrderBy with the same arguments always return the same result. Specifically, OrderBy(Q, E,
b) performs a selection sort on the results of [Q] p by expressions E. The sorted results are in
ascending order if b = T and in descending order if b = L. At a high level, OrderBy maintains a list
of sorted tuples in ascending (resp. descending) order and repeatedly selects the minimum (resp.
maximum) tuple from the unsorted tuples using the MinTuple function. In particular, MinTuple
invokes the Cmp function for pair-wise comparison of two tuples x; and x, over expression list E.
Null is viewed as a special value —co that is smaller than any other values, so Null’s can also be
ordered correctly by our semantics.

Our language vs. prior work’s. Our formal semantics is inspired by prior work such as MEDIA-
TOR [Wang et al. 2018b]. While MEDIATOR defines semantics for simple update and query operators,
our semantics defines more complex query operators, including outer joins, GROUP BY, WITH, and
ORDER BY. Furthermore, to our best knowledge, our semantics considers many operators that are
important in practice but not considered in any prior work such as ORDER BY, WITH, IF, INTERSECT,
EXCEPT, etc. In addition, our work supports complex attribute expressions and predicates, such as
Avg(age + 10), whereas prior work has very limited support for such features.

3.4 Integrity Constraints

Integrity constraints are fundamental to data integrity and therefore must be followed by a database.
In this paper, we support the constraints shown in Figure 7. In particular, an integrity constraint
consists of a set of primitive constraints, detailed as follows.

Primary keys. PK(R, d) says that a list of attributes d is the primary key of relation R. In particular,
it requires that all values of any attribute in @ are not NULL. Furthermore, given two different tuples
t1,t; € R, t; and t, must have different values on at least one attribute in 4.

Foreign keys. FK(Ry, a1, Rz, az) means that the attribute a; of relation R; is a foreign key referencing
the attribute ay of relation R,. Specifically, it requires that, for each tuple ; € Ry, there exists a
tuple t, € Ry such that t;.a; = t;.a.

Not-null constraints. NotNull(R, a) imposes a NOT NULL constraint on the attribute a of relation R.
It stipulates that for each tuple ¢ € R, t.a is not NULL.

Check constraints. Check(R, () requires that every tuple t € R must satisfy the predicate i/,
where ¢ can be a boolean combination of atomic predicates. Each atomic predicate can be logical
comparisons between two attributes of R, between an attribute and a constant value. or of the form
a € U meaning the value of attribute q is in a list of provided constants .

Auto increment. Inc(R, a,v) means that the value of attribute a in relation R starts with v and
strictly increases by one for each new tuple added to R. We require the value to strictly increase by

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAL1, Article 132. Publication date: April 2024.

VeriEQL: Bounded Equivalence Verification for Complex SQL Queries with Integrity Constraints 132:11

one to obtain a deterministic semantics of the auto increment constraint. However, this is not a
fundamental limitation. We can easily generalize to the scenarios where values are not continuous.

3.5 Problem Statement

To describe our problem statement, we start with a notion of conformance between a relational
database and its schema. Specifically, an attribute value (a,v) conforms to an attribute schema
(b, 1), denoted (a,v) ::4 (b,7),if a = b and v is of type 7. > A tuple t conforms to a relation schema
RS, denoted t ::1 RS, if (1) they have the same size, i.e. |t| = |RS| and (2) each attribute value (a;, v;)
in T is conforming to the corresponding attribute schema (b;, 7;) in RS.

Definition 3.3 (Conformance between Database and Schema). A database D conforms to a schema
S, denoted D :: S,if (1) D and S have the same domain and (2) for each relation name R € Dom(D),
all tuples in D(R) conform to their corresponding relation schema S(R), i.e.,

D = S X Dom(D) = Dom(S) A (VR € Dom(D).Vt € R. t =7 S(R))

Recall from Figure 3 that we only consider Int and Bool types in this paper. Other types of values
(e.g., strings and dates) can be treated as integers and functions involving those types can be treated
as uninterpreted functions over integers.

Example 3.4. Let schema S = [EMP — [(eid, Int), (cid, Int)],CAR — [(id, Int), (used, Bool)]]
and database
D= EMP [[(eid, 1), (cid, 10)], [(eid,2), (cid,NULL)]],
CAR — [(id, 10), (used, T)]]
Here, D :: S because [(eid, 1), (cid, 10)] =7 [(eid, Int), (cid, Int)] and [(eid, 2), (cid,NULL)] =7
[(eid, Int), (cid, Int)] hold for relation name EMP and [(id, 10), (used, T)] =1 [(id, Int), (used,
Bool)] holds for relation name CAR.

Definition 3.5 (Bounded Equivalence modulo Integrity Constraint). Given two queries (Q1, Q2)
under schema S and a positive integer bound N, Q; and Q; are said to be bounded equivalent
modulo integrity constraint C, denoted by Q; =g ¢ n O, if for any database D that conforms to
schema 8 satisfies C and each relation has at most N tuples, the execution result of Q; is the same
as the execution result of Q; on D, i.e,,

O1>scn Q0 EVD. D= SA(VReD. IR <N)ACD) = [Qi]p = [Q:]0

4 BOUNDED EQUIVALENCE VERIFICATION MODULO INTEGRITY CONSTRAINTS

This section presents our algorithm for bounded equivalence verification of two queries modulo
integrity constraints.

4.1 Algorithm Overview

The top-level algorithm of our verification technique is shown in Algorithm 1. The VERIFY procedure
takes as input two queries Q; and Q; over schema S, an integrity constraint C, and a bound N on
the size of all relations in the database. It returns T indicating Q; and Q, are bounded equivalent
modulo integrity constraint C, i.e., Q1 ~g ¢cn Q2. Otherwise, it returns a counterexample database
satisfying C where Q; and Q, yield different results.

At a high-level, our technique reduces the verification problem into a constraint-solving problem
and generates an SMT formula through the encoding of integrity constraints and SQL operations.
Specifically, we first create a symbolic representation of the database I', where each relation has

SNull is viewed as a polymorphic value of both type Int and Bool.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 132. Publication date: April 2024.

132:12 Yang He, Pinhan Zhao, Xinyu Wang, and Yuepeng Wang

Algorithm 1 Equivalence Verification

1: procedure VERIFY(Q1, 02, S,C, N)

Input: Queries Q1, Q2, schema S, integrity constraint C, and bound size N
Output: T for equivalence, otherwise a counterexample

I' « BuildSymbolicDB(S, N);

@, < ENcopECONSTRAINT(T, C);

®g,, Ry < ENCODEQUERY(S, T, Q1);

®R,, Ry < ENcoDEQUERY(S, T, Q2);

D — Do A CI>R1 A q)Rz A —EQUAL(Ry, Ry);

if UNSAT(®) then return T;

else return BuildExample(S, Model(®));

A AN A T i

at most N tuples (Line 2). Then we encode the integrity constraint C over I' and obtain an SMT
formula ®¢ (Line 3). Next, we analyze queries Q;, Q2 to obtain their outputs Ry, R, given input T’
and two SMT formulas ®p,, Pg, encoding how Ry, R; are computed from I' (Lines 4 - 5). Finally,
we build a formula ® asserting the existence of a database satisfying the integrity constraint C
such that R; is different from R, (Line 6). If no such database exists (i.e., formula ® is unsatisfiable),
then Q; and Q; are bounded equivalent modulo integrity constraint C, i.e., Q1 ~s ¢ n Q2 (Line 7).
Otherwise, if such a database exists, Q; and Q; are not equivalent, so we build a counterexample
database from a model of ® to disprove the equivalence (Line 8).

4.2 Schema and Symbolic Database

Since our verification technique is centered around a symbolic representation of the database, we
first describe how to build the symbolic database.

Symbolic database. Given a schema S and a bound N for the size of relations, we build a symbolic
database containing all relations in Dom(S) and each relation has N symbolic tuples. We denote
the symbolic database by I" where I' : RelName — [SymTuple] maps relation names to their
corresponding lists of symbolic tuples. In general, we introduce an uninterpreted predicate Del(t)
for each tuple ¢ to indicate whether or not t is deleted by subquery. ¢ Since the Del predicates hold
non-deterministic values in the symbolic database, we can use I' to encode all possible databases
where each relation has at most N tuples.

Example 4.1. Consider again the schema S in Example 3.4. Given a bound N = 2, we can build a
symbolic database I' = {EMP +— [#y, t3], CAR +— [13, f4] }, where f1, t3, t3, 14 are symbolic tuples.

Encoding attributes. As is standard, we use uninterpreted functions to encode attributes. Specifi-
cally, for each attribute attr in the database schema, we introduce an uninterpreted function called
attr that takes as input a symbolic tuple and produces as output a symbolic value. For example,
t.name for getting the name attribute of tuple ¢ should be encoded as name(t) where name is an
uninterpreted function.

Encoding NULL. To support NULL and three-valued semantics, we encode each symbolic value as a
pair (b, v) in the SMT formula, where b is a boolean variable indicating whether the value is NULL,
and v is a non-NULL value. In particular, if b is T (i.e., true), then the value (b, v) is NULL. Otherwise,
if bis L (i.e., false), the value is v. For example, constant 1 is represented by (L, 1). In this way,
NULL is not equal to any legitimate non-NULL values. Furthermore, we consider all the null values

% Alternatively, we can introduce a predicate Present(t) to indicate a tuple is indeed present, i.e., Present(t) < —Del(z).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAL1, Article 132. Publication date: April 2024.

VeriEQL: Bounded Equivalence Verification for Complex SQL Queries with Integrity Constraints 132:13

T(Ry) = [t1,.... tn]
T(Ry) = [t,....t5]
(IC-PK) ¢ = /\;l=1 V;-nzl ti.ay; = t}.ag

T(R) = [t1,...,tn] @1 =AL AL, ti.ax # Null
m=|al ®;= /\?:l A?:i+1 ﬂ(/\lelti.ak = tj.ak)

a IC-FK
TFPR(R, @) > &1 A &, Tr KR, Ry ap) w & (CTR
T(R) = [t1,....,tn] ®=AL t;.a# Null T'(R) = [t1,..., ta] @ =AL Y]y
— IC-NN — IC-Check
T F NotNull(R, a) ~> & () T + Check(R, /) ~ ® (IC-Check)
T(R) =[t1,...,tn] Tk Cp @
@1:/\?_1&.!1:1)+i—1 QZZA?_lti.LI#Nuﬂ TrHQCyw Oy
— — IC-I IC-
I'+Inc(R a,0) w @1 A Dy (C-tnc) FFCGAC w1 AD, (Ic-Comp)
Fig. 8. Symbolic encoding of integrity constraints.
[acv]; = ta#NullAtaowo v Aval: = [vale A 2]
[ar€d]e = tazNullAVIEra=o [iviele = [vale v [vele
[a1 ©az]; = t.a; ©t.az where © € {=,#} =¥l = =[¥]:
[a1 ©@az]; = t.a; # NullAtag # Null A t.a; © t.ap where © € {<, <, >, >}

Fig. 9. Symbolic encoding of predicates in integrity constraints.

are equal. Although we allow different representations of null values like (T, 1) and (T, 2), they
are considered equal because both of them are considered to be NULL.

4.3 Encoding Integrity Constraints

Given a symbolic database I' and an integrity constraint C, we follow the semantics of C to encode
C as an SMT formula over I'. The encoding procedure is summarized as inference rules in Figure 8,
where judgments of the form I' - C ~» ® represent that the encoding of integrity constraint C is @
given a symbolic database T'.

In a nutshell, we encode each atomic integrity constraint in C and conjoin the formulas together
according to the IC-Comp rule. Specifically, the IC-PK rule specifies that the encoding of a primary
key constraint PK(R, a) consists of two parts: ®; asserting all attributes in the primary key have
no NULL values, and @, stating for any pair of tuples t; and f, where t; # t,, they do not agree on
all attributes in d. For FK(Ry, ay, Ry, a;) where R;.a; is a foreign key referencing R;.a,, the IC-FK
rule looks up the symbolic database I' and finds the tuples for R; are t4,.. ., t, and the tuples for
Ry are t],...,t,,. The formula asserts that for each tuple t; in Ry, there exists a tuple t;. in R, such
that the value t;.a; is equal to tJ’..az. The IC-NN rule simply encodes that NotNull(R, a) requires
that all tuples in R must have a non-NULL value on attribute a. For the constraint Check(R, ¢) that
specifies ranges of values, the IC-Check rule uses an auxiliary function [/]; (shown in Figure 9) to
compute the formula of predicate i on each tuple ¢; in R and obtain the formula by conjoining the
[¢/]: formulas together. For the auto-increment constraint Inc(R, a,v), the IC-Inc rule also looks up
the symbolic database I" and finds all tuples ty, ..., t;, of R. It then enforces the value of ¢;.a is not
NULL and that t;,a=v+i— 1.

LEMMA 4.2. 7 Given a symbolic database T and an integrity constraint C, consider a formula ®
such thatT' + C ~» ®. If @ is satisfiable, then the model of ® corresponds to a database consistent with
T’ that satisfies C. If @ is unsatisfiable, then no database consistent with I satisfies C.

4.4 Encoding SQL Queries

To encode the semantics of a query, we traverse the query and encode how each operator transforms
its input to output. Since this process requires the attributes and symbolic tuples of each subquery,

"The proof of all lemmas and theorems can be found in the Appendix of the extended version [He et al. 2024b)].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAL1, Article 132. Publication date: April 2024.

132:14 Yang He, Pinhan Zhao, Xinyu Wang, and Yuepeng Wang

SFQO: A SFQ1: A SHQ2: A,
% (A-Rel) Ve € L.Va € Attrs(e).a € A AProi ® € {><,><¢,:><¢,><:¢,M¢} Ao
' S+1L(0) L APro) S e 0y At Ay IO
SFQ: A A’ =[rename(R,a) | a € A] SrQ: A)
- — (A-Filt
ST pR(0) A (A-Rename) Sl—crqs(Q):ﬂ(ilter)
S+rQ: A SrQ: A S+Q: A
— (A-Group) — (A-Order) # (A-Dist)
S + GroupBy(Q,E, L, ¢) : A S + OrderBy(Q, E, b) : A S + Distinct(Q) : A
® e {Un\um-} SrtQi:A; 1<i<n n=|0|=|R|
Sk A SH c A S[R; — Ay, ..., Rp— A, Q - A
Q1 Q2 (A-Coll) (R 1 n + nl+Q (A-With)
SrO10Qy: A S+ With(Q,R, Q') : A’

Fig. 10. Rules for inferring the attributes of a query result. As is standard in SQL, the name of an attribute
expression is assumed to be a function over all attributes involved in the expression. For example, the name of
attribute expression Avg(a) is a string Avg_a.

we first describe how to compute attributes and tuples of arbitrary intermediate subqueries, followed
by the encoding of all query operators.

4.4.1 Attributes of Intermediate Subqueries. While the database schema describes the attributes of
each relation in the initial database, it does not directly give the attributes of those intermediate
query results. To infer the attributes of each intermediate subquery, we develop an algorithm for
all query operations in our SQL language. The algorithm is summarized as a set of inference rules,
shown in Figure 10. Intuitively, our rules for inferring attributes are similar to the traditional typing
rules. The judgments of the form S + Q : A mean the attributes of query Q is A under schema S.

Specifically, the attributes of a relation in the initial database can be obtained by looking up
the schema S directly (A-Rel). To find all attributes of a projection II; (Q), the A-Proj rule first
computes the attribute list A of query Q and then checks if all attributes occurring in the attribute
expression list L belong to A. If so, the attributes of II; (Q) are L with all attribute expressions
converted to the corresponding attribute names, e.g., Avg(a) to Avg_a. Otherwise, there is a type
error in the query. For Cartesian product or any join operator ®, the attributes of Q; ® Q, are
obtained by concatenating the attributes of Q; and those of Q; (A-Join). The renaming operation
pr(Q) first computes the attributes of Q and then renames each of them according to the new
relation name R in the result (A-Rename). Based on the A-Filter, A-Group, A-Order, and A-Dist
rules, the filtering, GroupBy, OrderBy, and Distinct operations do not change the attribute list. The
A-Coll rule specifies that for any collection operator @, the attributes of its two operands Q; and
Q, must be the same, which are also identical to the attributes of Q; ® Q». The inference rule for
a WITH clause With(é, R, Q’) is slightly more involved. Since the query Q’ can use R; to refer to
the results of a subquery Q;, the A-With rule first infers the attributes A; of each subquery Q; and
then augments the schema S to a temporary new schema S’ by adding entries R; — A;. Finally,
the attributes of query Q" (and the whole WITH clause) are inferred based on the schema S’.

4.4.2 Symbolic Tuples of Intermediate Subqueries. Similar to the database schema, a symbolic
database I only describes those tuples in each relation of the initial database, but it does not present
what tuples are in the result of intermediate subqueries. To obtain the tuples in each intermediate
subquery, we develop a set of inference rules as shown in Figure 11, where judgments of the form
I' - Q < 7 mean the result of query Q has a list of symbolic tuples 7~ given the initial database I".

The goal of these rules is to compute the number (at most) of symbolic tuples in the result of each
intermediate subquery and what are their names, so we just need to look up the tuples for relations

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAL1, Article 132. Publication date: April 2024.

VeriEQL: Bounded Equivalence Verification for Complex SQL Queries with Integrity Constraints 132:15

R € dom(T) hasAgg(L) —hasAgg(L) T+Q— T

TrRoT® Y T o em T T S eqrn 0
TrQ— T TrQe— 7T IFOL 7 TrQ T
T-Filter T-R T-Prod
Trop@ = o(7) T Tpr@ = o7 TR T 0 %0, S ol mh Y
FI—Q11><1¢Q2;)7I I‘FQ1><¢Q2<—)7T
Trog(Q1XQ2) =T (T-TJoin) T'rO1—7; THFQ, — 73
-Jjom, T =T ++o(|T2 T =T ++0(|T2
TrQivbag Qo= T 1++0(|72]) (T-Ljoin) 1++0(|72]) (T-Rjoin)
THQi>ap Q= T THQiv<y Oy = T
T'+Qire — 7 TI'r — T TI*r — T3 T+ T
Qg Q2T TP D% TrQDh p Tro- (T-Dist)
TFQi><cy Q2 = T1++0(|T2| +|T3]) T + Distinct(Q) < o(|7])
F'rQ—=7T TFQ—>7T
~ (T-GroupBy) ~ (T-OrderBy)
T + GroupBy(Q,E, L, ¢) — o(|T1]) T + OrderBy(Q,E, b) — o(|T])
®e{nm} Tk — 7 ® e {\, - T+ — 7]
{n.m} Q1 1 (T-ntx) {\ -3} Q1 1 (TEx)
T'rQ018 Q2 = o(|71]) TFO18 Q2 = a(|71])
® € {U v} TvQi—> 7 1<i<n n=|0|=|R|
TrQ1—>T THQO, —> T I[Ri—=T,.... R > Tyl Q' — T
Q1 1 Q2 2 (T-Union) (R n nlFQ (T-With)

I'r 0100 — o(|71] +1720) I+ With(3,R, Q) < 77

Fig. 11. Rules for inferring the tuples of a query. o(n) generates a list of n fresh tuples.

in T (T-Rel) and generate fresh tuples for other queries. Specifically, if a projection II; (Q) has
aggregate functions in the attribute expression list L, there is only one tuple in the result (T-Agg).
But if the projection IT; (Q) does not have aggregate functions, the number of tuples in the result is
the same as that in Q. For filtering o4 (Q), the T-Filter rule generates the same number of tuples as
Q, because the predicate ¢ may not filter out any tuple from Q. The T-Rename rule specifies that
the renaming operation pr(Q) produces the same number of tuples as Q. Given the tuples of Q; are
71 and the tuples of Q, are 7z, the numbers of fresh tuples for the Cartesian product, inner join, left
outer join, right outer join, and full outer join are | 77| - |7z|, |71] - | 72|, |71| - (|7z] + 1), (|71|+ 1) - | T2l,
and |71 - | 72| + |71| + | 72|, respectively. In addition, the numbers of fresh tuples for union, intersect,
and except operations of Q; and Q; are |71| + |72|, |71|, and |77|, respectively. According to the
T-Dist, T-GroupBy, and T-OrderBy rules, the Distinct, GroupBy, and OrderBy operation preserves
the number of tuples in their subqueries. Finally, to infer the tuples for With(é, 13, Q’), we first
need to obtain the tuples 7; for its subquery Q;. Then we create a new symbolic database I'” by
adding mappings from tuples 7; to relation R; to I'. Finally, we infer the tuples 7 for Q’ given the
new symbolic database I'” and get the result of With(é, R Q’) based on the T-With rule.

4.4.3 Symbolic Encoding of Query Operators. Since our query language supports various complex
attribute expressions and predicates, we introduce two auxiliary functions [[e] sr.7 and [¢] sr.7 to
encode attribute expressions and predicates in a query, respectively®. Intuitively, [-] s r s evaluates
an attribute expression or a predicate in a recursive fashion given the schema S, database I', and a
list of tuples 7. For example, suppose a is an attribute of an relation and ¢ is a tuple of that relation,
la+1]sr: = [alsr,e) + [1]sr,¢] = t-a + 1. Furthermore, it is worthwhile to point out that the
tuple list 7~ has more than one tuple in several cases when evaluating GROUP BY and aggregate

8We precisely define these auxiliary functions in the appendix of the extended version [He et al. 2024b].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 132. Publication date: April 2024.

132:16 Yang He, Pinhan Zhao, Xinyu Wang, and Yuepeng Wang

—hasAgg(L) S,T+Q~ d;

R € Dom(T) S+HIL(Q): [a),..., @] TrIL(Q) = [£.....]

(E-Rel) n 7 b , B "
STHR~T @, = Ai:l(Aj:I[[aj]]S,F,[tlf] = [[ajﬂsm,” A Del(¢]) < Del(¢;))

S,T+I0.(Q) ~ & A D, (E-Proj)
THO <= [#,..., th] Trog(Q) = [t,..., t;] STHQO~ &
@ = Ay (D) ATl =) = = 17 D)V [Flsrg #) = D) o

S,T+op(Q) ~ 01 ADy

StQi:[ay,..., ap] THQ1 = [f,..., th] STHQI~ &

SEOuilap Al TR) S0, B ThOiX 0y [y]

@3 = ALy AT (=Del(1i) A =Del(t))) — AL, lardsriey) = laxlsnin A Azzlﬂaﬁcﬂs,r,[t;&] =l dsr A
(Del(t;) VDel(tJ’.)) — Del(tlf:j)

S, THQ; X Qz~ @ ADy A Dy

(E-Prod)

Fig. 12. Sample inference rules for encoding SQL queries. Del(t) indicates that a tuple ¢ is deleted.

queries. For instance, [AVG(EMP.age)] s [#,.1,....t,] i used to compute the average age of EMP
where the EMP table has n symbolic tuples.

Our encoding algorithm for query operators is represented as a set of inference rules. Judgments
are of the form S, T + Q ~» @, meaning the encoding of query Q is formula ¢ given schema S and
database I'. Figure 12 presents a sample set of such inference rules.

Relation. The encoding for a simple relation query is trivially T, because the result can be obtained
from the database I directly, i.e., the output is the same as input.

Filtering. The E-Filter rule specifies how to encode filtering operations. In particular, given a
query o4(Q), we can first determine the input (result of Q) is [¢1, ..., t,] and the output should
be [t],...,t,] based on the rules in Figure 11. Then we can generate a formula ®, to describe the
relationship between [¢],...,t,;] and [ty,..., t,]. Specifically, if a tuple ¢; is not deleted and the
predicate ¢ evaluates to be T on t;, then it is retained in the result, i.e., t; = t;. Otherwise, the
corresponding output tuple ¢/ is deleted. The final formula encoding o (Q) is the conjunction of
@, and the formula ®; that encodes Q.

Projection. According to the E-Proj rule, to encode IT; (Q) where L does not contain aggregate
functions, we can first infer that its input is [#, . . ., t,] with attributes [ay, ..., a,,] and output is
[t],...,t,] with attributes [a], ..., a]] based on the rules in Figure 11 and Figure 10. Then for each
a;., we find its corresponding index c in the attributes of Q and generate a formula @, that asserts
for each tuple and its output (#;,t]), they have the same Del status and they agree on attribute a .
The E-Agg rule for encoding projection with aggregate functions is similar to E-Proj. The main
difference is that it only generates one tuple ¢; in the output and sets the aggregated value based
on all input tuples, i.e., [a}]sr] =[] sr7-

Cartesian product. Based on the E-Prod rule to encode Q1 X Q2, we just need to generate a formula
@3 that encodes an output tuple ’; is obtained by concatenating a tuple #; from Q; and a tuple
t; from Q,. Specifically, @3 describes the attributes of #;’; agree with those of #; and ¢, and #"; is
deleted if either ¢; or t]’. is deleted.

Left outer join. The E-LJoin rule specifies the encoding of a left outer join Q; >4 Q; is based on
the formula ®; of inner join Q; sy Q; (which is a syntactic sugar of 04(Q1 X Q2)). In addition to
&4, the encoding also includes ®,, which describes the output tuples from Q;’s null extension.
Other operations. The rules for encoding other query operations are in similar flavor of the
above rules. Specifically, the high-level idea is to first obtain the schema and tuples for its input
and output based on the rules in Figure 10 and Figure 11. Then we can encode the relationship

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAL1, Article 132. Publication date: April 2024.

VeriEQL: Bounded Equivalence Verification for Complex SQL Queries with Integrity Constraints 132:17

between the input and output tuples and generate a formula that encodes the query semantics.
Due to page limit, the complete set of our inference rules are presented in the Appendix of the
extended version [He et al. 2024b]. These rules closely follow the standard three-valued logic when
evaluating expressions and predicates that involve NULL’s. For example, the predicate NULL = NULL
evaluates to NULL, which is consistent with the three-valued logic.

Definition 4.3 (Interpretation). An interpretation of a formula is a mapping from variables, function
symbols, and predicate symbols in the formula to values, functions, and predicates, respectively.

Definition 4.4 (Interpretation Extension). Interpretation I; is an extension of interpretation 75,
denoted 17 2 1, if (1) Dom(Z;) 2 Dom(J1), (2) Yo € Vars(Z;). I;(v) = I3(v), and (3) for the Del
predicate, Vo € Vars(1;). I;(Del)(v) & I;(Del)(v).

Intuitively, interpretation 7; is an extension of 73 if (1) all variables, functions, and predicates
defined by 7, are also defined by I3, (2) I; preserves the values of variables occurring in 7, while it
assigns values to new variables, and (3) 7; preserves the definition of Del predicate on variables
occurring in Z,.

THEOREM 4.5. Let D be a database over schema S and or be the output relation of running query
Q over D. Consider a symbolic database T over S, a symbolic relation R and a formula ® such that
' Q < Rand S,T + Q ~» . For any interpretation I such that I (T') = D, there exists an
extension I’ of I such that (1) the result of query Q over D is I’ (R), and (2) the database D and I’
jointly satisfy ®, i.e.,’
TrFO—>SRASTFQ~»IAITDM)=D) >
37'37.77(R) =[Q]p A (I, Dlog — I'(R)] E ®)

THEOREM 4.6. Let T be a symbolic database over schema S and Q be a query. Consider a symbolic
relation R and a formula ® such thatT + Q — R and S,T + Q ~» ®. If ® is satisfiable, then for any
satisfying interpretation I of ®, running Q over the concrete database I (T') yields the relation I (R),
ie.,

CFO R ASTFQ~ ®) AL E®) = [0]rr) = I(R)

4.5 Equivalence under Bag and List Semantics

We first discuss how to check the equality of symbolic tuples and then present how to check the
equality of query outputs under both bag and list semantics. We use bag semantics by default, but
for queries that involve sorting, we switch to list semantics to preserve the order of sorted tuples.

Equality of symbolic tuples. Recall from Figure 3b that a tuple is represented by a list of pairs,
where each pair consists of an attribute name and its corresponding value. Two symbolic tuples ¢
and t’ are considered equal iff (1) they have the same number of pairs and (2) their corresponding
symbolic values at the same index are equal. Specifically, suppose t = [(ay,v1), (a2, 02), - . ., (an, 0y)]
and t’ = [(a},0]), (a3, 03),..., (ap,v;,)] where a;, a; are the attribute names and v;,v] are their
corresponding values. We say t = t’ if v; = o] holds for all 1 < i < n. Note that the attribute names
are ignored for equality comparison to support the renaming operations in SQL.

Equivalence under bag semantics. Given two query results with symbolic tuples Ry = [t1,. .., ty]
and R, = [ry,...,rm], we encode the following two properties to ensure R; and R, are equivalent
under bag semantics:

® We slightly abuse the notation 7 (x) over lists to apply to each element in list x. We also abuse the notation 7 (x) over
maps to apply 7 to each value in the range of map x.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 132. Publication date: April 2024.

132:18 Yang He, Pinhan Zhao, Xinyu Wang, and Yuepeng Wang

e R; and R, have the same number of non-deleted tuples.

D I[-Del(t:)] = " 1[-Del(r;)] (1)
i=1 =1

where I[b] is an indicator function that evaluates to 1 when b is true or 0 when b is false.
e For each non-deleted symbolic tuple in Ry, its multiplicity in R; is equal to its multiplicity in R,.

n n m
A\ (D 1=Del() A =Del(ty) Aty = 1] = " 1[=Del(t)) A =Del(ro) Aty =rel) (2)
=1 j=1 k=1
Here, we include the predicates =Del(t;), =Del(t;), and =Del(r¢) to only count those non-deleted
symbolic tuples in R; and R,.

Equivalence under list semantics. Since the equivalence of two queries is only checked when they
involve sorting operations, the corresponding query results Ry = [f1,...,t,] and Ry = [r1,...,"m]
are sorted using the OrderBy operator. Recall from Figure 4 that OrderBy must be the last operation
of a query. Furthermore, our encoding of OrderBy ensures that all deleted tuples are placed at the
end of the list and non-deleted tuples are sorted in ascending or descending order, so we just need
to encode the following two properties to assert R; and R; are equivalent under list semantics.

e Ry and R; have the same number of non-deleted tuples.

n m
D I=Del(t)] = " 1[=Del(r;)] (3)
i=1 j=1
e The tuples with the same index in R; and R, are equal.
min{m,n}
Li=r; (4)

Intuitively, we just need to check the pali_rl—wise equality of tuples until the end of R; or Ry,
because the OrderBy operator has moved the deleted tuples to the end of the list. This OrderBy
encoding greatly simplifies the equality check. Alternatively, one can encode the check without the
assumption of OrderBy moving deleted tuples to the end. The key idea is to maintain two pointers,
one on each list, moving from the beginning to the end of the lists. Every time a pointer moves
to a new location, it checks whether or not the corresponding tuple is deleted. If the tuple is not
deleted, then it checks if the tuple is equal to the tuple pointed by the other pointer. Otherwise, if
the tuple is deleted, it moves to the next location.

LEMMA 4.7. Given two relations Ry = [t1,...,t,] and Ry = [r1,...,rm], if the formula (1) A (2) is
valid, then Ry is equal to R, under bag semantics. If the formula (3) A (4) is valid, then Ry is equal to
Ry under list semantics.

THEOREM 4.8. Given two queries Q1, Q under schema S, an integrity constraint C, a bound N, if
VERIFY(Q1, Q2, S, C, N) returns T, then Q; ~s c N Q2. Otherwise, if VERIFY(Q1, Q2, S, C, N) returns
a database D, then D == S and [O1]p # [Qz] »-

5 IMPLEMENTATION

Based on the techniques in Section 4, we have implemented a tool called VERIEQL for verifying
the bounded equivalence of SQL queries modulo integrity constraints. VERIEQL uses the Z3 SMT
solver [de Moura and Bjerner 2008] for constraint solving and model generation. In this section,
we discuss several details that are important to the implementation of VERIEQL.

Attribute renaming. We pre-process the queries to resolve attribute renaming issues before
starting the verification. Specifically, we design a unique identifier generator and a name cache

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAL1, Article 132. Publication date: April 2024.

VeriEQL: Bounded Equivalence Verification for Complex SQL Queries with Integrity Constraints 132:19

for pre-processing. The unique identifier generator allows VERIEQL to efficiently track attributes
while the name cache pool stores temporary aliases of an attribute under different scopes and
automatically updates them for scope change.

Sorting symbolic tuples. To sort symbolic tuples based on an ORDER BY operation, we implement
an encoding for the standard bubble sort algorithm. More specifically, we first move those deleted
tuples to the end of the list, and then sort non-deleted tuples based on the sorting criteria specified
by ORDER BY. As part of the bubble sort algorithm, two adjacent tuples ¢y, t; in the list are swapped
under two conditions: (1) t; # Null whereas t, = Null, or (2) t;, ¢, are not Null but #; < t, for
ascending order (¢; > t; for descending order).

6 EVALUATION

This section presents a series of experiments that are designed to answer the following questions.

e RQ1: How does VERIEQL compare with state-of-the-art SQL equivalence checking techniques
in terms of coverage? That is, does VERIEQL support more complex queries? (Section 6.2)

e RQ2: How effective is VERIEQL at disproving query equivalence? Does VERIEQL generate useful
counterexamples to facilitate downstream tasks? (Section 6.3)

e RQ3: How large input bounds can VERIEQL reach during verification? (Section 6.4)

6.1 Experimental Setup

Benchmarks. We collected benchmarks — each of which is a pair of queries — from three different
workloads. To the best of our knowledge, we have incorporated all benchmarks publicly available
from recent work on query equivalence checking [Chu et al. 2017a, 2018, 2017b,c; Wang et al. 2018a;
Zhou et al. 2019, 2022]. Additionally, we also curated a very large collection of new queries that, to
the best of our knowledge, has not been used in any prior work.

o LeetCode. This is a new dataset curated by us containing a total of 23,994 query pairs (Q;, Qz). To
curate this dataset, we first crawled all publicly available queries accepted by LeetCode [LeetCode
2023] that are syntactically distinct. Then, we grouped them based on the LeetCode problem —
queries in the same group are written and submitted by actual users that solve the same problem.
For each problem, we have also manually written a “ground-truth” query that is guaranteed to
be correct. Finally, each user query Q is paired with its corresponding ground-truth query Q,
yielding a total of 23,994 query pairs. In each pair, Q; is supposed to be equivalent to Q,, which,
however, is not always the case due to missing test cases on LeetCode. Indeed, as we will see
shortly, VERIEQL has identified many wrong queries confirmed by LeetCode. As a final note:
queries in our dataset naturally exhibit diverse patterns since they were written by different
people with diverse backgrounds around the world, which makes this particular dataset especially
valuable for evaluating query equivalence checkers. We also manually formalize the schema and
integrity constraint for each LeetCode problem.

e Calcite. Our second benchmark set is constructed from the Calcite’s optimization rules test
suite [Calcite 2023]. This is a standard workload used extensively in prior work [Chu et al. 2017a,
2018, 2017b,c; Wang et al. 2018a; Zhou et al. 2019, 2022]. In particular, each Calcite test case has a
pair of queries (Q1, Q2), where Q; can be rewritten to Q, using the optimization rule under test.
In other words, Q; and Q, should be equivalent to each other, since all optimization rules are
supposed to preserve the semantics. We included query pairs from all test cases and ended up
with a total of 397 query pairs. This number is noticeably higher than 232 pairs reported in prior
work [Zhou et al. 2022], because the Calcite project is under active development and prior work

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAL1, Article 132. Publication date: April 2024.

132:20 Yang He, Pinhan Zhao, Xinyu Wang, and Yuepeng Wang

used test cases from the version in year 2018. The Calcite project also includes necessary schema
and integrity constraints, which were all incorporated into our benchmark suite.

e Literature. Finally, we used all other benchmarks from recent work that are publicly available.
In particular, the CoseTTE series [Chu et al. 2017a, 2018, 2017b,c; Cosette 2018] of work has 38
benchmarks — all of them are included in our suite (8 involve integrity constraints). We also used
all 26 benchmarks from [Wang et al. 2018a]. In total, our Literature dataset has 64 benchmarks.

Across all our workloads, the average query size is 84.54 (measured by the number of AST nodes),
where the max, min, and median are 679, 5, and 73, respectively. In addition to the large query size,
our benchmarks are complex in terms of query nesting. In particular, 57.7% have sub-queries (e.g.,
SELECT x FROM T1 WHERE T1.1id IN (SELECT uid FROMT2)), and a number of them have four levels
of query-nesting. In addition, 95.7% of the queries involve joining multiple tables, and 33.2% use the
outer-join operation, which is generally quite challenging to verify. Finally, our queries also use
other SQL features, such as group-by (58.7%), aggregate functions (65.3%), and order-by (21.6%).

Baselines. We compare VERIEQL against all state-of-the-art bounded equivalence checking tech-
niques that have corresponding tools publicly available. These tools all accept a smaller subset of
SQL than VERIEQL.

e An extended version of CoseTTE [Chu et al. 2017a,b] which uses the provenance-base pruning
technique from [Wang et al. 2018a] to speed up the original CoseTTE technique. This baseline
represents the state-of-the-art along the CoseTTE line of work. It does not support any integrity
constraints.'? For brevity, we call this baseline COSETTE.

e An extension of QEx [Veanes et al. 2010] that incorporates the provenance-base pruning technique
from [Wang et al. 2018a] and significantly outperforms the original Qex. For brevity, we call this
baseline QEx. This baseline does not consider integrity constraints.

In addition, we compare VERIEQL against two SQL testing tools that cannot verify equiva-
lence of two queries (neither in a bounded nor unbounded way) but can potentially generate
counterexamples to disprove their equivalence.

o DATAFILLER [Coelho 2013; Guagliardo and Libkin 2017] is a random database generator that
produces databases based on the schema and integrity constraints. We use DATAFILLER to generate
random databases and run two queries over the databases to check if the outputs are different.

o XDAtA [Chandra et al. 2015] is a constraint-based mutation testing tool that can generate
databases to disprove equivalence of two queries.

While not apples-to-apples, we also compare VERIEQL with state-of-the-art full (i.e., unbounded)
verification techniques that can prove query equivalence. None of these tools are able to generate
counterexamples and all of them support a smaller subset of SQL than VERIEQL.

e SPES [Zhou et al. 2022] is a state-of-the-art verifier from the databases community. It does not
support query operations beyond select-project-join (e.g., ORDER BY and set operations such as
INTERSECT), and has very limited support for integrity constraints!?.

e HOoTTSQL [Chu et al. 2017c] and UDP [Chu et al. 2018] use a proof assistant (in particular, Coq and
Lean respectively) to prove query equivalence. They are quite different from the aforementioned
techniques that utilize an automated theorem prover (e.g., Z3) and require more manual effort.

10CoseTTE assumes all columns are NOT NULL — which can be viewed as a “built-in integrity constraint” — even if a
column can in fact be NULL. In other words, COSETTE may not consider all valid inputs and, therefore, may be incomplete.
While the SPES paper claims to accept simple primary key constraints, the artifact (https://github.com/georgia-tech-
db/spes) is not parameterized with any constraints. Instead, it is specialized to Calcite’s tables, schema, and integrity
constraints.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAL1, Article 132. Publication date: April 2024.

VeriEQL: Bounded Equivalence Verification for Complex SQL Queries with Integrity Constraints 132:21

Since UDP does not have a publicly available artifact that is usable, we include HOTTSQL as a
baseline to facilitate a complete and thorough evaluation.

6.2 RQ1: Coverage and Comparison against State-of-the-Art Techniques

In this section, we report the number of (1) query pairs whose bounded equivalence (against a space
of bounded-size inputs) can be successfully verified by VERIEQL and (2) those that can be proved
non-equivalent (i.e., counterexamples are generated). We also compare VERIEQL with baselines.

Setup. Given a benchmark consisting of queries (Q1, Q2) with their schema and integrity constraint,
we run VERIEQL using a 10-minute timeout. There are three possible outcomes for each benchmark:
(1) unsupported, (2) checked, or (3) refuted. “unsupported” means VERIEQL is not applicable to the
benchmark (e.g., due to unsupported integrity constraints or SQL features). Otherwise, VERIEQL
would report either “checked” (meaning bounded equivalence) or “refuted” (with a counterexample
witnessing the non-equivalence of Q; and Q). The bound is incrementally increased from 1 until
the timeout is reached or a counterexample is identified. If no counterexample is found before
timeout and the bounded equivalence is verified for at least bound 1, we report “checked”.

The same setup is used for bounded verification baselines, namely CoseTTE and QEX. For testing
baselines (i.e., DATAFILLER and XDATA), there are three possible outcomes: (1) unsupported, (2)
not-refuted, and (3) refuted. Since DATAFILLER is a random database generator, we use it to generate
1,000 random databases where each relation has 100 tuples for each supported benchmark. If any
of these databases leads to different execution results on the two queries, we report it as “refuted”;
otherwise, we report “not-refuted”. By contrast, XDATA performs mutation testing, so we only run
the tool once on each supported benchmark. We report “refuted” if it finds a counterexample of
equivalence and report “not-refuted” otherwise. For unbounded verification baselines (i.e., SPES
and HoTTSQL), there are three possible outcomes: (1) unsupported, (2) verified, and (3) not-verified.
“Verified” means the full equivalence of two queries is verified, and “not-verified” means the result
is unknown (as none of them can generate counterexamples). This leads to an apples-to-oranges
comparison; nevertheless, we include the results as well for a complete evaluation. All baseline
tools use a 10-minute timeout, which is the same as VERIEQL.

RQ1 take-away: VERIEQL supports over 75% of the benchmarks, which is more than all baselines.
VERIEQL also significantly outperforms all baselines across all workloads in terms of both
disproving equivalence and proving (bounded) equivalence of query pairs.

Results. Our main result for each workload is shown in Figures 13a, 13b, and 13c. For the LeetCode
dataset, VERIEQL supports 77.1% of benchmarks, which is higher than all baselines. This very
large gap is due to baselines’ poor support for integrity constraints and complex SQL features such
as ORDER BY. Furthermore, VERIEQL is able to disprove equivalence for 14.9% of the LeetCode
benchmarks, whereas none of the bounded verification baselines can disprove any. Unbounded
verification tools cannot disprove equivalence by nature, and only the testing tool DATAFILLER
can disprove 0.5%. For Calcite (see Figure 13b), the result is similar. The only difference is that
DATAFILLER can support all benchmarks, but it can only refute 0.8% of benchmarks, smaller than the
1.0% of VERIEQL. For Literature (see Figure 13c), VERIEQL supports 98.4% of benchmarks, which
outperforms most of baselines other than DATAFILLER. It is comparable with bounded verification
baselines, hypothetically because baselines were better-engineered for Literature queries, but it
still outperforms testing baseline on disproving equivalence.

Qualitative Analysis on Failure to Disprove Equivalence. To understand whether two queries
are indeed equivalent if VERIEQL reports “checked”, we perform manual inspections during the
evaluation. Given that we have over 24, 000 benchmarks in total and exhaustive inspection is not

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAL1, Article 132. Publication date: April 2024.

132:22 Yang He, Pinhan Zhao, Xinyu Wang, and Yuepeng Wang

772 unsupported 1 checked I refuted 777 unsupported 1 not-refuted Il refuted 723 unsupported 1 verified Bl not-verified

100 100.0 1000 100 100

80 80 80
62.1
60 60 22 60
40 40 40
229
20 149 20 20
00 00 00 00 0 05
VeriEQL Cosette Qex DataFiller XData

(a) LeetCode.

unsupported T checked I refuted unsupported 1 not-refuted NI refuted unsupported 1 verified I not-verified
100 1000 1000 100 992 100
80 65.7 80 80
60 60 60
40 { 332 40 40
20 20 20
0 10 00 00 00 00 0 Lo 08 0)
VeriEQL Cosette Qex DataFiller XData SPES HoTTSQL
(b) Calcite.
unsupported 1 checked Il refuted unsupported 1 not-refuted M refuted unsupported 1 verified Il not-verified
100 100 100
80 80 672 80 672
578
60 531 53 516 53 s 60 s 60 1 516
40 359 40 328 40 359 328
20 125 125 20 20 125
0 =18 o Lo 16 o 00
VeriEQL Cosette Qex DataFiller XData SPES HoTTSQL

(c) Literature.

Fig. 13. RQ1: Each workload has a sub-figure that shows, for each tool, the percentage of benchmarks (i.e.,
query pairs) in each category: unsupported/checked/refuted for bounded verification, unsupported/not-
refuted/refuted for testing, unsupported/verified/not-verified for unbounded verification.

practically feasible, we perform a non-exhaustive manual inspection. Specifically, we sampled 50
benchmarks from LeetCode where VERIEQL reported “checked” and confirmed all of them are
indeed equivalent. In addition, for the benchmarks that can be proved equivalent by other tools (i.e.,
SPES), VERIEQL also agrees on the result. This serves as some evidence on which we believe the
equivalences checked by VERIEQL are valid. For Calcite dataset, we found that one benchmark
where VERIEQL reported “checked” but one baseline tool (namely CoSeTTE) reported “refuted”.
After further inspection, we believe this benchmark should be equivalent but COSETTE gave a
spurious counterexample input on which both queries produce the same output table. We suspect
CosETTE may have an implementation bug that led to spurious counterexamples. For Literature
dataset, we manually inspected all of the 34 “checked” benchmarks and found that 27 are indeed
equivalent but 7 are not equivalent. Among these 7 non-equivalent benchmarks, baselines generate
spurious counterexamples for 5 of them; in other words, baselines also cannot disprove these
5. The remaining two non-equivalent benchmarks need large input databases (e.g., with >1000
tuples) in order to be differentiated; within our 10-minute timeout, VERIEQL cannot disprove them
but CoseTTE can. The reason is that COSETTE has some internal heuristics that consider specific
inputs with more tuples before exhausting the space of smaller inputs, whereas VERIEQL simply
increments the size of the input database from one.'?

Small-Scope Hypothesis. Our evaluation echos the small-scope hypothesis discussed in prior
work [Miao et al. 2019]: “mistakes in most of the queries may be explained by only a small number
of tuples” There are only a small number of sources in SQL queries that could potentially break the

12Eyen with this simple size-increasing strategy, VERIEQL can disprove 5 Literature benchmarks for which CoseTTE
reports “checked”

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 132. Publication date: April 2024.

VeriEQL: Bounded Equivalence Verification for Complex SQL Queries with Integrity Constraints 132:23

small scope hypothesis, such as LIMIT clause '* or aggregation function COUNT with a large constant.
Empirically, we observe that the small scope hypothesis holds for most of all our benchmarks. We
only find two benchmarks that require an input relation with more than 1000 tuples to disprove
equivalence; both of them have a clause like COUNT(a) > 1000.

Limitations of Bounded Equivalence Verification. While in principle the bounded equivalence
verification approach taken by VERIEQL can disprove or prove equivalence of two SQL queries for all
input relations up to a finite size, it may not be able to disprove equivalence within a practical amount
of time if the counterexample can only be large input relations. For example, during our evaluation,
VERIEQL failed to disprove equivalence for the following two queries from the Literature dataset:
SELECT C.name FROM Carriers AS C JOIN Flights AS F ON C.cid = F.carrier_id
GROUP BY C.name, F.year, Fmonth_id, F.day_of month HAVING COUNT (F.fid) > 1000
SELECT C.name FROM Carriers AS C JOIN Flights AS F ON C.cid = F.carrier_id
GROUP BY C.name, F.day_of_month HAVING COUNT (F.fid) > 1000

In fact, a counterexample refuting their equivalence has more than 1000 tuples, which VERIEQL

cannot find within the 10-minute time limit.

Discussion. Interested readers might wonder why baselines perform poorly on Calcite given it
was used extensively as a benchmark suite in prior work [Chu et al. 2017b; Wang et al. 2018a]. The
reason is that COsETTE, QEX, and HOTTSQL do not support the NOTNULL constraint (among others)
required in all Calcite benchmarks. As a result, we directly report “unsupported” in RQ1 setup.
Results reported in prior work were obtained by running the tools without considering constraints
(like NOT NULL). One may also wonder why VERIEQL has 1% (i.e., 4 benchmarks) “not checked” for
Calcite, where all Calcite’s query pairs are supposed to be equivalent. We manually inspected
these benchmarks and believe some of Calcite’s rewrite rules are not equivalence preserving (i.e.,
wrong), leading to non-equivalent query pairs — we will expand on this in RQ2.

6.3 RAQ2: Effectiveness at Generating Counterexamples to Facilitate Downstream Tasks

So far, we have seen the overall result of VERIEQL and how that compares against baselines. In
RQ2, we will concentrate on those “refuted” benchmarks and evaluate VERIEQL’s capability at
generating counterexamples. Notably, VERIEQL'’s counterexamples revealed serious bugs in MySQL
and Calcite, and suggested new test inputs to augment LeetCode’s existing test suite.

Setup. Since the unbounded verifiers do not generate counterexamples, let us answer the following
question: given each workload, for each bounded verification and testing approach (including
VERIEQL and baselines), how many benchmarks did the tool identify a counterexample for? How
many of these counterexamples are genuine (i.e., not spurious)? Here, a counterexample is genuine
if (i) it meets the integrity constraint associated with the benchmark and (ii) the two queries yield
different outputs. To study the impact of integrity constraints, we run two versions of each tool: (1)
the original version as in RQ1, and (2) a version denoted by a suffix “-noIC” that drops all integrity
constraints when running the tool (but we still consider integrity constraints when checking if the
counterexample is genuine).

RQ2 take-away: VERIEQL can disprove equivalence for significantly more benchmarks than
all bounded baselines across all workloads. VERIEQL can also generate counterexamples to help
identify bugs in real-world systems and augment existing test suites.

Results. Our main results are presented in Figure 14. In a nutshell, VERIEQL can prove much more
non-equivalent benchmarks than all baselines across all workloads. For example, VERIEQL found
counterexamples for 3,586 LeetCode benchmarks; 3,584 of them are confirmed to be genuine. The

3Recall from Figure 4 that we do not support LIMIT clauses.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 132. Publication date: April 2024.

132:24 Yang He, Pinhan Zhao, Xinyu Wang, and Yuepeng Wang

of benchmarks # of benchmarks

50

of benchmarks
w0

[all EEEE genuine [all EEEE genuine [all EEEE genuine

(a) LeetCode. (b) Calcite. (c) Literature.

Fig. 14. RQ2: We have a sub-figure for each workload that shows (1) the number of all benchmarks for which
a tool generates a counterexample and (2) the number of benchmarks where the counterexamples are genuine.

counterexample inputs for the remaining two benchmarks conform to the integrity constraints but
they produce the same output when executed on the input using MySQL. It turns out these two
seemingly “spurious” counterexamples are due to a previously unknown bug in MySQL — they
should produce different outputs. When dropping integrity constraints, VERIEQL-noIC found 11,390
counterexamples — but only 2,754 are genuine, which is even lower than VERIEQL’s. This suggests
that the false alarm rate will be significantly higher without considering integrity constraints. For
the other two workloads, we observe a very similar trend.

Finding bugs in MySQL. As mentioned earlier, for two LeetCode benchmarks, VERIEQL generates
“spurious” counterexamples — that are actually genuine — due to a bug in MySQL’s latest release
version 8.0.32. The MySQL verification team had confirmed and classified this bug with serious
severity. Details of the bug are provided in Appendix D under supplementary materials.

Detecting missing test cases for LeetCode. Recall that some of the user-submitted queries from
our LeetCode workload may be wrong (i.e., not equivalent to the ground-truth queries), which
suggests that new test cases are needed. In particular, as of the submission date (October 20, 2023),
we have manually inspected 17 LeetCode problems for which VERIEQL reported non-equivalent
benchmarks, and filed issues to the LeetCode team. Notably, our issue reports also have meaningful
counterexamples generated by VERIEQL. To date, 13 of them have been confirmed and fixed, while
the remaining ones have all been acknowledged. A common pattern is that existing tests miss the
NULL case — this again highlights the importance of modeling the three-valued logic in SQL.

Identifying buggy Calcite rewrite rules. VERIEQL found 4 “not checked” (i.e., non-equivalent)
Calcite benchmarks with valid counterexamples. The Calcite team has confirmed that two of them
are due to bugs in two rewrite rules: one is a duplicate of an existing bug report, while the other is
a new bug. In particular, for the new bug, the rule would rewrite a query Q; to a non-equivalent
Q2 when Q; has SUM applied to an empty table. The third is due to a bug in an internal translation
step in Calcite, which has also been confirmed by the Calcite team. The fourth one is still being
worked on by the team currently. This result again demonstrates that VERIEQL is able to uncover
very tricky bugs from well-maintained open-source projects.

6.4 RQ3: Distribution of Bounds on Checked Benchmarks

As an indicator of VERIEQL'’s scalability, we study how large input bounds VERIEQL can reach
within the 10-minute time limit when it reports a benchmark is checked.

Setup.We collected all 14,905 (62.1% of 23,994) LeetCode benchmarks that VERIEQL reports checked
in RQ1. Similarly, we also collected all 261 (65.7% of 397) checked benchmarks from Calcite and
all 34 (53.1% of 64) checked benchmarks from Literature. For each benchmark, we run VERIEQL
by gradually increasing the bound from 1 until it gets timeout and keep records of the bound.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAL1, Article 132. Publication date: April 2024.

VeriEQL: Bounded Equivalence Verification for Complex SQL Queries with Integrity Constraints 132:25

of benchmarks

of benchmarks # of benchmarks
0 5k 10k 15k
Bound . . X 0 50 100 150 200 250 0 10 20 30 40 50
) 1405 Bound Bound : : * * '
1 261
2 14894 > 261
3 14618 3 261
4 4 242
5 5
6 6
7 7
8 8
9 9
10 10
11-15 11-15
16-20 16-20
21-30 21-30
31-40 31-40
41-50 41-50
51-60 51-60
61-70 61-70
71-80 71-80
81-90 81-90
91-100 91-100
>100 >100

(a) LeetCode (b) Calcite (c) Literature
Fig. 15. RQ3: distribution of bounds on checked benchmarks.

RQ3 take-away: VERIEQL can verify over 70% of the checked benchmarks within 10 minutes
given an input bound 5. For 3% of the checked benchmarks, VERIEQL can verify the query
equivalence for an input bound >100.

Results. The evaluation results are presented in Figure 15, where the bar shows the number of
benchmarks VERIEQL can verify for a given input bound. For example, as shown in Figure 15a,
VERIEQL can verify equivalence for bound 1 on all 14,905 LeetCode benchmarks. Among them,
it can verify equivalence for bound 2 on 14,894 benchmarks. In a nutshell, on 71% of checked
LeetCode benchmarks, VERIEQL can reach bound 5, 28% for bound 10, 8% for bound 50, and 3% for
bound 100. It shows similar patterns on Calcite. For Literature, VERIEQL only reaches bound
20 within the time limit, hypothetically because many benchmarks combine several complex SQL
operators (e.g., Distinct and GroupBy) that are challenging for symbolic reasoning.

7 RELATED WORK

Equivalence checking for SQL queries. SQL equivalence checking is an important problem in
both programming languages and database communities. There is a line of work on automated
verification of query equivalence, including full verification [Aho et al. 1979; Chandra and Merlin
1977; Chu et al. 2018, 2017c; Green 2011; Zhou et al. 2019, 2022] and bounded verification [Chu
et al. 2017a,b; Veanes et al. 2010; Wang et al. 2018a]. For example, SPES [Zhou et al. 2022] takes a
symbolic approach for proving the existence of a bijective identity map between tuples returned
by two queries. HOTTSQL [Chu et al. 2017¢] and UDP [Chu et al. 2018] encode SQL queries in an
algebraic structure to syntactically canonicalize two queries and then verify the equivalence of
corresponding algebraic expressions using interactive theorem provers. Unlike prior work that aims
for full equivalence verification, VERIEQL targets to solve the bounded equivalence verification
problem modulo integrity constraints and can generate counterexamples for disproving equivalence.
Compared to prior work for bounded verification such as Cosette [Chu et al. 2017b; Wang et al.
2018a], VERIEQL supports a larger fragment of SQL queries and a richer set of integrity constraints
and significantly outperforms all baselines as demonstrated by our comprehensive evaluation. One
limitation of VERIEQL is that it does not support correlated subqueries in its current status, which
can be overcome by incorporating unnesting techniques proposed by Seshadri et al. [1996].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAL1, Article 132. Publication date: April 2024.

132:26 Yang He, Pinhan Zhao, Xinyu Wang, and Yuepeng Wang

Testing SQL queries. Another line of related work is about testing the correctness of SQL queries.
For instance, XDATA [Chandra et al. 2015] uses mutation-based testing to detect common mistake
patterns in SQL queries. Shah et al. [2011] also uses mutation testing with hard-coded rules
to kill as many query mutants as possible. In addition, EvoSQL [Castelein et al. 2018] uses an
evolutionary search algorithm to generate test data in an offline manner, guided by predicate
coverage Tuya et al. [2010]. RATest [Miao et al. 2019] uses a provenance-based algorithm to find a
minimal counterexample database that can explain incorrect queries. DATAFILLER [Coelho 2013;
Guagliardo and Libkin 2017] uses random database generation to produce test databases based on
the schema and integrity constraints. Different from these testing approaches, VERIEQL provides
formal guarantees on query equivalence (in a bounded fashion).

Formal methods for databases. Formal methods have been used to facilitate the development and
maintenance of database systems and applications, such as optimizing database applications [Che-
ung et al. 2013; Delaware et al. 2015] and data storage [Feser et al. 2020], model checking database
applications [Deutsch et al. 2005, 2007; Gligoric and Majumdar 2013], providing foundations to
queries [Cheney and Ricciotti 2021; Ricciotti and Cheney 2019, 2022], verifying correctness of
schema refactoring [Wang et al. 2018b], and synthesizing programs for schema evolution [Wang
etal. 2019, 2020]. Among various work, Mediator [Wang et al. 2018b] is the most related to our work.
However, Mediator studies the full equivalence verification problem of two database applications
over different schemas, whereas VERIEQL performs bounded equivalence verification of two SQL
queries under the same schema, but it generates counterexamples for disproving query equivalence.

Semantics of SQL queries. Different formal semantics of SQL queries have been proposed in the
literature, such as set semantics, bag semantics, list semantics, and their combinations [Benzaken
and Contejean 2019; Chu et al. 2018, 2017c; Negri et al. 1991; Ricciotti and Cheney 2019; Wang et al.
2018b]. We base the SQL semantics of VERIEQL on list operations and quotient by bag equivalence
at the end mainly because lists, by their ordered nature, facilitate the definition of ORDER BY in the
semantics. We have not explored the formal difference between our semantics and state-of-the-
art semantics proposals. In fact, we believe that proving the equivalence between our semantics
and existing semantics or characterizing the differences between semantics with demonstrating
examples is an interesting direction for future work.

Bounded verification. Bounded verification has been used to find various kinds of bugs in software
systems while providing formal guarantees on the result. Prior work such as CBMC [Clarke et al.
2004], JBMC [Cordeiro et al. 2018], and Corral [Lal et al. 2012] has been quite successful to this end
for imperative languages like C, C++, or Java. However, VERIEQL performs bounded verification
to check equivalence of declarative SQL queries. Unlike prior work that unrolls loops, VERIEQL
bounds the size of relations in the database and can guarantee the equivalence of two queries for
all databases where relations are up to a given finite size.

Equivalence verification. Equivalence verification has been studied extensively in the literature.
Researchers have developed many approaches for checking equivalence of various applications,
such as translation validation for compilers [Necula 2000; Pnueli et al. 1998; Stepp et al. 2011],
product program [Barthe et al. 2011; Zaks and Pnueli 2008], relational Hoare logic [Benton 2004],
Cartesian Hoare Logic [Sousa and Dillig 2016], and so on. VERIEQL is along the line of equivalence
verification, but it is tailored towards a different application, SQL queries, and presents an SMT-based
approach for verifying bounded equivalence of queries modulo integrity constraints.

8 CONCLUSION

In this paper, we presented VERIEQL, a simple yet highly practical approach that can both prove and
disprove the bounded equivalence of complex SQL queries with integrity constraints. For a total of

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAL1, Article 132. Publication date: April 2024.

VeriEQL: Bounded Equivalence Verification for Complex SQL Queries with Integrity Constraints 132:27

24,455 benchmarks, VERIEQL can prove and disprove over 70% of them, significantly outperforming
all state-of-the-art SQL equivalence checking techniques.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers of OOPSLA for their detailed and helpful
comments on an earlier version of this paper. This research is supported by the Natural Sciences
and Engineering Research Council of Canada (NSERC) Discovery Grant and the National Science
Foundation (NSF) Grant No. CCF-2210832.

DATA-AVAILABILITY STATEMENT

The software that implements the techniques described in Section 4 and supports the evaluation
results reported in Section 6 is available on Zenodo [He et al. 2024a].

REFERENCES

Alfred V. Aho, Yehoshua Sagiv, and Jeffrey D. Ullman. 1979. Equivalences among Relational Expressions. SIAM J. Comput. 8,
2(1979), 218-246. https://doi.org/10.1137/0208017

Gilles Barthe, Juan Manuel Crespo, and César Kunz. 2011. Relational Verification Using Product Programs. In Proceedings
of the International Symposium on Formal Methods (FM) (Lecture Notes in Computer Science, Vol. 6664). 200-214. https:
//doi.org/10.1007/978-3-642-21437-0_17

Nick Benton. 2004. Simple relational correctness proofs for static analyses and program transformations. In Proceedings of
the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). ACM, 14-25. https://doi.org/10.
1145/964001.964003

Véronique Benzaken and Evelyne Contejean. 2019. A Coq mechanised formal semantics for realistic SQL queries: formally
reconciling SQL and bag relational algebra. In Proceedings of the 8th ACM SIGPLAN International Conference on Certified
Programs and Proofs. 249-261. https://doi.org/10.1145/3293880.3294107

Calcite. 2023. Calcite Optimization Rules Test Suite. https://github.com/apache/calcite/blob/main/core/src/test/java/org/
apache/calcite/test/RelOptRulesTest java.

Jeroen Castelein, Mauricio Aniche, Mozhan Soltani, Annibale Panichella, and Arie van Deursen. 2018. Search-based test
data generation for SQL queries. In Proceedings of the 40th international conference on software engineering. 1220-1230.
https://doi.org/10.1145/3180155.3180202

Ashok K. Chandra and Philip M. Merlin. 1977. Optimal Implementation of Conjunctive Queries in Relational Data Bases. In
Proceedings of the ACM Symposium on Theory of Computing (STOC). ACM, 77-90. https://doi.org/10.1145/800105.803397

Bikash Chandra, Ananyo Banerjee, Udbhas Hazra, Mathew Joseph, and S Sudarshan. 2019. Automated grading of sql queries.
In 2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 1630-1633. https://doi.org/10.1109/ICDE.
2019.00159

Bikash Chandra, Bhupesh Chawda, Biplab Kar, KV Maheshwara Reddy, Shetal Shah, and S Sudarshan. 2015. Data generation
for testing and grading SQL queries. The VLDB Journal 24, 6 (2015), 731-755. https://doi.org/10.1007/s00778-015-0395-0

James Cheney and Wilmer Ricciotti. 2021. Comprehending nulls. In Proceedings of the International Symposium on Database
Programming Languages (DBPL). ACM, 3-6. https://doi.org/10.1145/3475726.3475730

Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. 2013. Optimizing database-backed applications with query
synthesis. In ACM SIGPLAN Conference on Programming Language Design and Implementation, (PLDI). ACM, 3-14.
https://doi.org/10.1145/2491956.2462180

Shumo Chu, Daniel Li, Chenglong Wang, Alvin Cheung, and Dan Suciu. 2017a. Demonstration of the cosette automated sql
prover. In Proceedings of the 2017 ACM International Conference on Management of Data. 1591-1594. https://doi.org/10.
1145/3035918.3058728

Shumo Chu, Brendan Murphy, Jared Roesch, Alvin Cheung, and Dan Suciu. 2018. Axiomatic Foundations and Algorithms
for Deciding Semantic Equivalences of SQL Queries. Proc. VLDB Endow. 11, 11 (2018), 1482-1495. https://doi.org/10.
14778/3236187.3236200

Shumo Chu, Chenglong Wang, Konstantin Weitz, and Alvin Cheung. 2017b. Cosette: An Automated Prover for SQL.. In
CIDR.

Shumo Chu, Konstantin Weitz, Alvin Cheung, and Dan Suciu. 2017c. HoTTSQL: Proving query rewrites with univalent SQL
semantics. ACM SIGPLAN Notices 52, 6 (2017), 510-524. https://doi.org/10.1145/3062341.3062348

Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A tool for checking ANSI-C programs. In Tools and Algorithms for
the Construction and Analysis of Systems: 10th International Conference, TACAS 2004, Held as Part of the Joint European

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAL1, Article 132. Publication date: April 2024.

https://doi.org/10.1137/0208017
https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1145/964001.964003
https://doi.org/10.1145/964001.964003
https://doi.org/10.1145/3293880.3294107
https://github.com/apache/calcite/blob/main/core/src/test/java/org/apache/calcite/test/RelOptRulesTest.java
https://github.com/apache/calcite/blob/main/core/src/test/java/org/apache/calcite/test/RelOptRulesTest.java
https://doi.org/10.1145/3180155.3180202
https://doi.org/10.1145/800105.803397
https://doi.org/10.1109/ICDE.2019.00159
https://doi.org/10.1109/ICDE.2019.00159
https://doi.org/10.1007/s00778-015-0395-0
https://doi.org/10.1145/3475726.3475730
https://doi.org/10.1145/2491956.2462180
https://doi.org/10.1145/3035918.3058728
https://doi.org/10.1145/3035918.3058728
https://doi.org/10.14778/3236187.3236200
https://doi.org/10.14778/3236187.3236200
https://doi.org/10.1145/3062341.3062348

132:28 Yang He, Pinhan Zhao, Xinyu Wang, and Yuepeng Wang

Conferences on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March 29-April 2, 2004. Proceedings 10.
Springer, 168-176. https://doi.org/10.1007/978-3-540-24730-2_15

Fabien Coelho. 2013. DataFiller — generate random data from database schema. https://www.cri.ensmp.fr/people/coelho/
datafiller.html.

Lucas Cordeiro, Pascal Kesseli, Daniel Kroening, Peter Schrammel, and Marek Trtik. 2018. JBMC: A bounded model
checking tool for verifying Java bytecode. In Computer Aided Verification: 30th International Conference, CAV 2018, Held
as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part L. Springer, 183-190.
https://doi.org/10.1007/978-3-319-96145-3_10

Cosette. 2018. Cosette website. https://cosette.cs.washington.edu/.

Leonardo Mendonca de Moura and Nikolaj S. Bjerner. 2008. Z3: An Efficient SMT Solver. In Proceedings of the International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS) (Lecture Notes in Computer
Science, Vol. 4963). 337-340. https://doi.org/10.1007/978-3-540-78800-3_24

Benjamin Delaware, Clément Pit-Claudel, Jason Gross, and Adam Chlipala. 2015. Fiat: Deductive Synthesis of Abstract
Data Types in a Proof Assistant. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL). ACM, 689-700. https://doi.org/10.1145/2676726.2677006

Alin Deutsch, Monica Marcus, Liying Sui, Victor Vianu, and Dayou Zhou. 2005. A Verifier for Interactive, Data-Driven
Web Applications. In Proceedings of the ACM SIGMOD International Conference on Management of Data. 539-550.
https://doi.org/10.1145/1066157.1066219

Alin Deutsch, Liying Sui, and Victor Vianu. 2007. Specification and verification of data-driven Web applications. J. Comput.
Syst. Sci. 73, 3 (2007), 442-474. https://doi.org/10.1016/j.jcss.2006.10.006

John K. Feser, Sam Madden, Nan Tang, and Armando Solar-Lezama. 2020. Deductive optimization of relational data storage.
Proc. ACM Program. Lang. 4, OOPSLA (2020), 170:1-170:30. https://doi.org/10.1145/3428238

Milos Gligoric and Rupak Majumdar. 2013. Model checking database applications. In Tools and Algorithms for the Construction
and Analysis of Systems: 19th International Conference, TACAS 2013, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings 19. Springer, 549-564.
https://doi.org/10.1007/978-3-642-36742-7_40

Goetz Graefe. 1995. The cascades framework for query optimization. IEEE Data Eng. Bull. 18, 3 (1995), 19-29.

Todd J. Green. 2011. Containment of Conjunctive Queries on Annotated Relations. Theory Comput. Syst. 49, 2 (2011),
429-459. https://doi.org/10.1007/s00224-011-9327-6

Paolo Guagliardo and Leonid Libkin. 2017. A Formal Semantics of SQL Queries, Its Validation, and Applications. Proc. VLDB
Endow. 11, 1 (sep 2017), 27-39. https://doi.org/10.14778/3151113.3151116

Yang He, Pinhan Zhao, Xinyu Wang, and Yuepeng Wang. 2024a. Artifact Evaluation VeriEQL: Bounded Equivalence
Verification for Complex SQL Queries with Integrity Constraints. https://doi.org/10.5281/zenodo.10795614

Yang He, Pinhan Zhao, Xinyu Wang, and Yuepeng Wang. 2024b. VeriEQL: Bounded Equivalence Verification for Complex
SQL Queries with Integrity Constraints. arXiv:2403.03193

Akash Lal, Shaz Qadeer, and Shuvendu K Lahiri. 2012. A solver for reachability modulo theories. In Computer Aided
Verification: 24th International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings 24. Springer, 427-443.
https://doi.org/10.1007/978-3-642-31424-7_32

LeetCode. 2023. LeetCode website. https://leetcode.com/.

Zhengjie Miao, Sudeepa Roy, and Jun Yang. 2019. Explaining wrong queries using small examples. In Proceedings of the 2019
International Conference on Management of Data (SIGMOD). 503-520. https://doi.org/10.1145/3299869.3319866

George C. Necula. 2000. Translation validation for an optimizing compiler. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI). ACM, 83-94. https://doi.org/10.1145/349299.349314

Mauro Negri, Giuseppe Pelagatti, and Licia Sbattella. 1991. Formal semantics of SQL queries. ACM Transactions on Database
Systems (TODS) 16, 3 (1991), 513-534. https://doi.org/10.1145/111197.111212

Amir Pnueli, Michael Siegel, and Eli Singerman. 1998. Translation Validation. In Proceedings of International Conference on
Tools and Algorithms for Construction and Analysis of Systems (TACAS) (Lecture Notes in Computer Science, Vol. 1384).
151-166. https://doi.org/10.1007/BFb0054170

Wilmer Ricciotti and James Cheney. 2019. Mixing set and bag semantics. In Proceedings of the ACM SIGPLAN International
Symposium on Database Programming Languages (DBPL). ACM, 70-73. https://doi.org/10.1145/3315507.3330202

Wilmer Ricciotti and James Cheney. 2022. A Formalization of SQL with Nulls. 7 Autom. Reason. 66, 4 (2022), 989-1030.
https://doi.org/10.1007/s10817-022-09632-4

Praveen Seshadri, Hamid Pirahesh, and TY Cliff Leung. 1996. Complex query decorrelation. In Proceedings of the Twelfth
International Conference on Data Engineering. IEEE, 450-458. https://doi.org/10.1109/ICDE.1996.492194

Shetal Shah, S Sudarshan, Suhas Kajbaje, Sandeep Patidar, Bhanu Pratap Gupta, and Devang Vira. 2011. Generating test data
for killing SQL mutants: A constraint-based approach. In 2011 IEEE 27th International Conference on Data Engineering.
IEEE, 1175-1186. https://doi.org/10.1109/ICDE.2011.5767876

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAL1, Article 132. Publication date: April 2024.

https://doi.org/10.1007/978-3-540-24730-2_15
https://www.cri.ensmp.fr/people/coelho/datafiller.html
https://www.cri.ensmp.fr/people/coelho/datafiller.html
https://doi.org/10.1007/978-3-319-96145-3_10
https://cosette.cs.washington.edu/
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2676726.2677006
https://doi.org/10.1145/1066157.1066219
https://doi.org/10.1016/j.jcss.2006.10.006
https://doi.org/10.1145/3428238
https://doi.org/10.1007/978-3-642-36742-7_40
https://doi.org/10.1007/s00224-011-9327-6
https://doi.org/10.14778/3151113.3151116
https://doi.org/10.5281/zenodo.10795614
https://arxiv.org/abs/2403.03193
https://doi.org/10.1007/978-3-642-31424-7_32
https://leetcode.com/
https://doi.org/10.1145/3299869.3319866
https://doi.org/10.1145/349299.349314
https://doi.org/10.1145/111197.111212
https://doi.org/10.1007/BFb0054170
https://doi.org/10.1145/3315507.3330202
https://doi.org/10.1007/s10817-022-09632-4
https://doi.org/10.1109/ICDE.1996.492194
https://doi.org/10.1109/ICDE.2011.5767876

VeriEQL: Bounded Equivalence Verification for Complex SQL Queries with Integrity Constraints 132:29

Marcelo Sousa and Isil Dillig. 2016. Cartesian hoare logic for verifying k-safety properties. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI). ACM, 57-69. https://doi.org/10.1145/
2908080.2908092

Michael Stepp, Ross Tate, and Sorin Lerner. 2011. Equality-Based Translation Validator for LLVM. In Proceedings of the
International Conference on Computer Aided Verification (CAV) (Lecture Notes in Computer Science, Vol. 6806). 737-742.
https://doi.org/10.1007/978-3-642-22110-1_59

Emina Torlak and Rastislav Bodik. 2014. A lightweight symbolic virtual machine for solver-aided host languages. In ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI). 530-541. https://doi.org/10.1145/
2594291.2594340

Javier Tuya, Maria José Suarez-Cabal, and Claudio De La Riva. 2010. Full predicate coverage for testing SQL database queries.
Software Testing, Verification and Reliability 20, 3 (2010), 237-288. https://doi.org/10.1002/stvr.424

Margus Veanes, Nikolai Tillmann, and Jonathan de Halleux. 2010. Qex: Symbolic SQL query explorer. In International
Conference on Logic for Programming Artificial Intelligence and Reasoning. Springer, 425-446. https://doi.org/10.1007/978-
3-642-17511-4_24

Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2018a. Speeding up symbolic reasoning for relational queries.
Proceedings of the ACM on Programming Languages 2, OOPSLA (2018), 1-25. https://doi.org/10.1145/3276527

Yuepeng Wang, Isil Dillig, Shuvendu K. Lahiri, and William R. Cook. 2018b. Verifying Equivalence of Database-Driven
Applications. Proc. ACM Program. Lang. 2, POPL, Article 56 (2018), 29 pages. https://doi.org/10.1145/3158144

Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig. 2019. Synthesizing database programs for schema refactoring.
In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation. 286—-300.
https://doi.org/10.1145/3314221.3314588

Yuepeng Wang, Rushi Shah, Abby Criswell, Rong Pan, and Isil Dillig. 2020. Data Migration using Datalog Program Synthesis.
Proc. VLDB Endow. 13, 7 (2020), 1006—-1019. https://doi.org/10.14778/3384345.3384350

Anna Zaks and Amir Pnueli. 2008. CoVaC: Compiler Validation by Program Analysis of the Cross-Product. In Proceedings
of the International Symposium on Formal Methods (FM) (Lecture Notes in Computer Science, Vol. 5014). 35-51. https:
//doi.org/10.1007/978-3-540-68237-0_5

Qi Zhou, Joy Arulraj, Shamkant Navathe, William Harris, and Dong Xu. 2019. Automated verification of query equivalence
using satisfiability modulo theories. Proceedings of the VLDB Endowment 12, 11 (2019), 1276-1288. https://doi.org/10.
14778/3342263.3342267

Qi Zhou, Joy Arulraj, Shamkant B Navathe, William Harris, and Jinpeng Wu. 2022. SPES: A Symbolic Approach to Proving
Query Equivalence Under Bag Semantics. In 2022 IEEE 38th International Conference on Data Engineering (ICDE). IEEE,
2735-2748. https://doi.org/10.1109/ICDE53745.2022.00250

Received 2023-10-21; accepted 2024-02-24

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAL1, Article 132. Publication date: April 2024.

https://doi.org/10.1145/2908080.2908092
https://doi.org/10.1145/2908080.2908092
https://doi.org/10.1007/978-3-642-22110-1_59
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1002/stvr.424
https://doi.org/10.1007/978-3-642-17511-4_24
https://doi.org/10.1007/978-3-642-17511-4_24
https://doi.org/10.1145/3276527
https://doi.org/10.1145/3158144
https://doi.org/10.1145/3314221.3314588
https://doi.org/10.14778/3384345.3384350
https://doi.org/10.1007/978-3-540-68237-0_5
https://doi.org/10.1007/978-3-540-68237-0_5
https://doi.org/10.14778/3342263.3342267
https://doi.org/10.14778/3342263.3342267
https://doi.org/10.1109/ICDE53745.2022.00250

	Abstract
	1 Introduction
	2 Overview
	3 Problem Formulation
	3.1 Relational Schema and Database
	3.2 Syntax of SQL Queries
	3.3 Semantics of SQL Queries
	3.4 Integrity Constraints
	3.5 Problem Statement

	4 Bounded Equivalence Verification Modulo Integrity Constraints
	4.1 Algorithm Overview
	4.2 Schema and Symbolic Database
	4.3 Encoding Integrity Constraints
	4.4 Encoding SQL Queries
	4.5 Equivalence under Bag and List Semantics

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 RQ1: Coverage and Comparison against State-of-the-Art Techniques
	6.3 RQ2: Effectiveness at Generating Counterexamples to Facilitate Downstream Tasks
	6.4 RQ3: Distribution of Bounds on Checked Benchmarks

	7 Related Work
	8 Conclusion
	References

