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Abstract

Emerging machine-learned models have enabled efficient and accurate prediction of compound for-
mation energy, with the most prevalent models relying on graph structures for representing crys-
talline materials. Here, we introduce an alternative approach based on sparse voxel images of
crystals. By developing a sophisticated network architecture, we showcase the ability to learn the
underlying features of structural and chemical arrangements in inorganic compounds from visual im-
age representations, subsequently correlating these features with the compounds’ formation energy.
Our model achieves accurate formation energy prediction by utilizing skip connections in a deep
convolutional network and incorporating augmentation of rotated crystal samples during training,
performing on par with state-of-the-art methods. By adopting visual images as an alternative repre-
sentation for crystal compounds and harnessing the capabilities of deep convolutional networks, this
study extends the frontier of machine learning for accelerated materials discovery and optimization.
In a comprehensive evaluation, we analyse the predicted convex hulls for 3,115 binary systems and
introduce error metrics beyond formation energy error. This evaluation offers valuable insights into

the impact of formation energy error on the performance of the predicted convex hulls.

I. INTRODUCTION

Machine learning has emerged as an effective approach
for developing predictive models for high-throughput
screening of materials [1-8]. For example, machine-
learned models for formation energy prediction can con-
struct a convex hull for a rapid assessment of the ther-
modynamic stability of compounds at a fraction of the
computation cost and time needed for density functional
theory (DFT)-calculated convex hulls with reasonable ac-
curacy [9]. In materials research, a machine learning
model can be characterized by two aspects; the represen-
tation of the material as a readable entity (or input) to
the learning algorithm and the learning algorithm itself.
Several machine learning approaches have investigated a
variety of representations as simple as a pool of physic-
ochemical attributes (e.g., atomic number, cohesive en-
ergy, band gap, and heat of melting), and composition
vectors [10-17] up to more advanced graph representa-
tions of composition and structure of crystal compounds
[18-25]. The use of image representations for machine
learning, however, has been less explored in the materials
research community. Image representation can be espe-
cially useful because of the significant advancements that
have been made in pattern recognition (or representation
learning) of visual images in the field of computer vision
(a field of computer science that deals with processing
and understanding visual data like images or videos).
These advancements are largely because of the evolu-
tion towards more sophisticated architectures of convo-
lutional neural networks (e.g., Residual Neural Network
(ResNet)[26], EfficientNet[27], U-Net [28]) which has en-
abled adopting increasingly deeper networks. Inspired
by this untapped opportunity for materials representa-

tion learning, we develop a sparse voxel image represen-
tation of crystalline materials that is input into a very
deep convolutional neural network (CNN) with a sophis-
ticated architecture inspired by ResNet.

We use the formation energy prediction of crystalline
compounds as a platform for demonstrating the perfor-
mance of our deep-learning model on voxel images of
crystals. Formation energy is an ideal platform because
large databases of DFT-calculated formation energies are
available (e.g., Materials Project [29] and AFLOW (Au-
tomatic Flow)[30]), which provide the large amount of
data needed for training our deep CNN. Additionally,
there are several available machine learning approaches
for formation energy prediction with which we compare
the performance of our model. We show that our model’s
formation energy predictive performance is comparable
to the state-of-the-art machine learning models’ predic-
tion. We present a thorough comparison of 3,115 binary
convex hulls constructed from our model’s formation en-
ergy against DFT-calculated binary convex hulls in the
Materials Project database. By introducing multiple er-
ror metrics for assessing binary convex hulls, we showcase
how the error in the formation energy prediction is pro-
jected into the performance of a predicted convex hull.

Among machine learning methods for formation en-
ergy prediction of crystal compounds, graph neural net-
works have shown promising performance because the
graph data structure can efficiently capture the physi-
cal, compositional, and structural information of crys-
tal compounds [18-25]. In their pioneering work, Xie
and Grossman developed the crystal graph convolutional
neural network (CGCNN) for an accurate, efficient for-
mation energy prediction [18]. CGCNN uses a graph rep-
resentation of crystal structures combined with physical



attributes of chemical species, where atoms in the pe-
riodic crystal structure constitute the nodes (with each
node containing the physical attributes of the atom as
a vector) and connections between atoms constitute the
edges of the graph. In a more advanced representation,
the Atomistic Line Graph Neural Network (ALIGNN)
[23] captures the bond angular information of crystal
compounds by utilizing the concept of line graphs [31].
ALIGNN creates a graph on top of a regular atomistic
bond graph by considering bonds as nodes and bond
pairs with a shared atom as edges. It has been shown
that ALIGNN outperforms other machine learning ap-
proaches on several benchmark datasets for predicting
material properties [32].

While some studies have explored image-inspired rep-
resentations of crystalline materials [33-38], they have
not fully harnessed sophisticated components, such as
skip connections, in the architecture of the convolutional
network. Skip connections have been shown as necessary
components for making convolutional networks deeper
(with many convolutional layers), with deep CNNs be-
ing particularly adept at learning features from image
representations. As a result, these studies generally un-
derperform compared to graph-based machine learning
approaches. For instance, Kaundinya et al. [35] fo-
cusing exclusively on cubic structures, employ a trans-
formed variant of an image-like representation, inputted
to a Gaussian process regression and a neural network,
achieving mean absolute errors (MAEs) of 0.329 eV per
atom and 0.350 eV per atom, respectively (over ten
times higher than ALIGNN’s MAE). Moreover, the im-
age representations employed in these studies are not di-
rectly input to the machine learning model; they undergo
transformation into alternative domains before being fed
into the learning algorithms. For example, Ref. [35]
utilizes a 2-point spatial correlation function of ioniza-
tion energy, Pauling electronegativity, and heat of fusion
over a voxelized domain of the crystal structure. These
spatial correlations are subsequently transformed into
low-dimensional representations of the material’s inter-
nal structure using principal component analysis (PCA)
to serve as the input to the learning algorithm. Ref. [33]
also transforms image representation of crystals. This
study exclusively focuses on the Bi-Se system and uses
an autoencoder to transform separate voxel images of
the lattice vectors and basis points into 2-dimensional
(2D) crystal graphs in the latent space. These graphs
serve as descriptors for the formation energy predictive
model. An earlier study by Noh et al [38] also used a
3-dimensional (3D) grid-based image representation of
vanadium oxide crystal structures as input to an autoen-
coder, where its latent space forms a vector which serves
as the input to a second-step variational autoencoder.
Like Ref. [33], the crystal representation in Ref. [3§]
is decomposed into a unit cell image (length of the cell
edges and angles between them) and basis image (atomic
positions within a unit cell).

Previous studies that have used image-like represen-

tations of materials as direct input for learning models
have typically relied on continuous density representa-
tions rather than the sparse images used in this study.
For instance, Hoffman et al. [34] employ density repre-
sentations of atomic positions as 3D pixel images, necessi-
tating the utilization of a U-net [28], an advanced autoen-
coder, for the segmentation of density fields into atoms.
In another study [37], Kajita et al introduced a generic
3D voxel descriptor that compacts any field quantities,
including the electron density field. They examined a
model that input the 3D voxel descriptor into a CNN
to predict the Hartree energy and exchange-correlation
energy functionals in 680 oxides.

Our study stands apart from previous work by utilizing
a sparse voxel image representation of crystals that is di-
rectly fed into a sophisticated deep convolutional neural
network with skip connections for feature (or repersen-
tation) learning. Unlike earlier studies, our voxel image
representation solely focuses on the visual depiction of
the crystal structure itself, devoid of any physicochemi-
cal attributes. Within a voxelized domain of the crystal
structure, we utilize normalized atomic number, periodic
group, and row numbers to color the voxels occupied by
atoms, representing them as channels in an RGB (red,
green and blue) voxel image. This straightforward color-
coding scheme enables us to differentiate between differ-
ent chemical compositions of the same crystal structure
without incorporating additional attributes, resulting in
a direct visualization of the crystal compound. We di-
rectly input these sparse voxel images into a deep CNN.
Utilizing skip connections allows us to design a deep
15-layer network that fully harness the power of convo-
lutional layers to autonomously uncover the underlying
physical, chemical, and structural features that connect
the crystal structure and chemistry of the material to
its formation energy. Apart from harnessing the full po-
tential of convolutional layers, the use of an unprocessed
image representation for materials holds significant tech-
nical importance, particularly because its ease of invert-
ibility makes it a suitable representation for generative
machine learning models. The materials research com-
munity is experiencing a paradigm shift from predictive
models for high-throughput screening to generative mod-
els for discovery [33, 39, 40]. Given this emerging shift,
the image representation employed in this study can po-
tentially offer distinct advantages for generative models.
The sparse voxel image representation introduced here
for predictive modeling, if generated via a generative ma-
chine learning model, directly corresponds to a crystal
structure, thereby eliminating the need for any transfor-
mation, interpretation, or intervention.

In this study, we present new advancements in image-
based machine learning models for material property pre-
diction. The introduced model is not restricted to any
specific type of crystal structure or chemical space, mak-
ing it generally applicable to any crystal structure or
chemical composition. By utilizing a deep convolutional
neural network enabled by skip connections, the model



achieves a significant improvement in formation energy
prediction. Additionally, the model’s consistency and
rotational invariance are improved through the employ-
ment of rotational sampling on crystal structure data. It
is worth noting that there is ample room for enhancing
the predictive performance of deep CNN models on voxel
crystal images through the design of more advanced and
efficient architectures, as this area has received compar-
atively less investigation. This study lays the foundation
for exploring a new domain of learning methods for ma-
terials prediction and discovery.

II. RESULTS
A. Machine Learning Approach

Material Representation. To generate sparse voxel im-
ages of crystals, we employ a series of steps. Initially, we
construct a cubic box with a fixed side length of 17 A
and position the crystal unit cell at its center. By apply-
ing 3D rigid-body rotation to the unit cell and replicat-
ing it throughout the box, a point cloud representation is
formed. This point cloud, representing the atoms, is then
represented as a sparse voxel image using a regular voxel
grid. The voxel images adopt a color-coding scheme akin
to an RGB image, with the three channels representing
the normalized values of the atomic number, group, and
period for voxels containing atoms. Voxels that are unoc-
cupied by atoms are assigned zero values. To rotate each
crystal unit cell efficiently, we have developed a compu-
tational algorithm, the details of which can be found in
Section IV and Supplementary Figure S1.

Our voxel crystal representation differs from the image
representations used in references [33, 34] as it adopts a
sparse approach. These references employ a 3D density
field representation around the atomic positions. For in-
stance, in Ref. [34], a Gaussian density field centered at
the atomic coordinates is defined to determine the voxel
values. In the density field approach, voxels neighboring
the atomic coordinates contain density field values that
reflect the atom sizes, while we do not assign any values
to neighboring voxels. From a technical standpoint, the
sparse voxel image provides a discrete input to the con-
volutional layer, whereas the density field image offers a
continuous input. As depicted in Figure 1, our CNN ar-
chitecture, by applying multiple convolutions in the early
layers without pooling (which we call the delayed pooling
approach), automatically forms a field around the atomic
coordinates. This means that our model’s architecture
discovers the volumetric density fields without relying on
predefined functions such as the Guassian function. We
postpone the pooling operation until after the 5th con-
volutional layer to ensure that the density fields around
input voxels are sufficiently large for meaningful interac-
tions to occur.

Convolutional Neural Network Design. Advanced deep
CNN architectures, developed in the field of computer

vision, incorporate skip connections to enhance model
performance and enable the construction of substantially
deeper networks by mitigating optimization challenges
associated with increased network depth. One notable
example is ResNet [26], which utilizes residual blocks
comprising convolution layers and activation functions
like traditional CNNs, but with the addition of short-
cut highways that connect the beginning and end of each
block (referred to as identity mapping skip connections).
These skip connections enable the transfer of lower-level
information from earlier layers to deeper layers, provid-
ing better conditioning for the optimization problem and
facilitating easier learning [26].

In our approach, we adopt the architecture of residual
blocks to construct a 15-layer CNN with 7 skip connec-
tions. The overall architecture, as depicted in Figure 1,
consists of a deep CNN followed by a fully connected neu-
ral network for the prediction of formation energy using
sparse voxel images of crystals. The deep CNN part of
the architecture is employed for feature learning of voxel
crystal images. These learned features are then flattened
and passed as input to the fully connected neural net-
work, which performs the final prediction of the forma-
tion energy. In our network design, we deliberately delay
the introduction of pooling layers in our CNN. The first
pooling layer is introduced only after the fifth convolu-
tional kernel, with subsequent pooling layers added after
the eleventh and fifteenth kernels, respectively. A de-
tailed description of our CNN architecture can be found
in section IV. In the context of materials representa-
tion learning, the use of skip connections in our CNN
allows for the bypassing of local atomic features discov-
ered in the shallower layers, while progressively learning
more global features of crystal compounds across the lay-
ers of the deep network. This hierarchical learning ap-
proach facilitates the extraction of relevant abstractions,
enabling the model to capture both local and global fea-
tures within the crystal structures.

Our CNN, inspired by the ResNet architecture de-
scribed in Ref. [26], incorporates slight modifications to
better suit our specific task. In contrast to the origi-
nal design, we choose not to adopt the batch normaliza-
tion technique in our residual blocks. This decision is
based on the observation that batch normalization ham-
pers the training of our CNN, likely due to the intrinsic
differences between sparse crystal images and natural im-
ages (such as those in ImageNet [41]). Consequently, the
batch normalization process may not yield the intended
benefits for our crystal image representation. Further-
more, we adjust the way in which we handle the number
of channels within our network. Instead of doubling the
number of channels after each convolution layer, as out-
lined in the original ResNet design, we increase the num-
ber of channels, after each pooling, by concatenating the
side skip connections with the output of the convolution
layer. This alternative approach allows for a more effec-
tive utilization of information from both the skip con-
nections and the convolutional layers, promoting better



feature representation within our network. By tailoring
the ResNet-inspired architecture to the characteristics of
our crystal images, we optimize the training process and
enhance the performance of our CNN for the specific task
of crystal compound formation energy prediction.

Data sets. We obtained a data set of 139,367 crys-
tal structures along with their corresponding DFT-
calculated formation energies (the target variables) from
Materials Project (v2021.05.13) [29]. From this, 15,354
structures are excluded because they either require a high
resolution or a large image (more details in section IV).
To train our model, we split the data into train (60%),
validation (20%), and test (20%) sets. During the data
pre-processing stage, we removed 9,175 crystal structures
from the train set that either contain two atoms occupy-
ing the same voxel or have a unit cell that does not fit
in the 17- A cubic box, as described in detail in section
IV. During training, we employ data augmentation by
randomly rotating each crystal image before feeding it
into the model at each epoch (see Supplementary Fig-
ure S1). This technique helps alleviate overfitting (see
Supplementary Figure S4) and enhances the predictive
performance of our model. Data augmentation is partic-
ularly beneficial as it effectively increases the size of the
train data and implicitly enforces the rotation-invariance
of crystal compounds with respect to their formation en-
ergy, as explained further in this section. To monitor the
training process and prevent overfitting, we use predic-
tions on the validation data. Once the model is trained,
we evaluate its overall performance using the test data,
as outlined below. In section III, we delve into the signif-
icance of data augmentation and skip connections in our
CNN architecture, highlighting their role in improving
the model’s performance.

B. Formation Energy Prediction Assessment

In this section, we examine the performance of our
model’s prediction. As detailed in section IV, we em-
ploy an ensemble averaging technique for predicting the
formation energy. Figure 2 (a) shows the parity plot
of the formation energy prediction of our model against
the DFT-calculated formation energies on both the train
and test sets. The results indicate an MAE of 0.042
eV per atom and 0.046 eV per atom on the train and
test sets, respectively. Over 89% of the samples in the
test set exhibit absolute errors below 0.1 eV per atom,
and only about 2% of the samples have absolute errors
exceeding 0.2 eV per atom (see Supplementary Figure
S2(b)). The formation energy prediction error (i.e., pre-
dicted formation energy - DFT formation energy) shows a
slightly positive skew normal distribution with a median
and mean value of 0.003 eV per atom and -0.003 eV per
atom on the test set (see Supplementary Figure S2(b)).
As shown in Figure 2(b) and (c), our model tends to ex-
hibit higher errors for crystal compounds with more pos-
itive and larger formation energies. This trend has also
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been observed in other studies [16, 42]. To exemplify this
trend, we analyze four equally populated subsets of our
test set sorted by the formation energy with respective
formation energy ranges of [-4.47,-2.39), [-2.39,-1.47), [-
1.47,-0.46), and [-0.46,5.33) eV per atom with calculated
MAE:s of 0.037, 0.039, 0.046, and 0.064 eV per atom, re-
spectively. The relatively diminished prediction perfor-
mance observed for larger, positive-value ranges of for-
mation energy can be attributed to an inherent bias in
the existing dataset. The data available in the Mate-
rials Project predominantly comprises chemically stable
structures characterized by negative formation energies.
In contrast, the occurrence of chemically unstable crys-
tal structures with positive formation energies remains a
minority within this dataset. Notably, less than 10% of
all samples possess positive formation energy (see Sup-
plementary Figure S2(a)). Pandey et al. [43] have eluci-
dated how this disparity in data distribution impacts the
model’s predictive capabilities.

We conducted a comparative analysis of our model’s
predictive performance with state-of-the-art machine
learning models, including ElemNet [16] and Roost (Rep-
resentation Learning from Stoichiometry) [17] as the best
models based on compositional features, and ALIGNN
[23] and CGCNN [18] as the top-performing graph-based
models. Table I presents a comparison of the formation
energy MAEs between different models, including two ar-
chitectures of our CNN: a 3-layer CNN without skip con-
nections (shallow CNN), which was utilized in our previ-
ous work for predicting the synthesizability of crystalline
compounds [36], and the 15-layer CNN with skip connec-
tions (deep CNN). The deep CNN model in this study
outperforms Roost and ElemNet, and performs on par
with CGCNN, albeit slightly underperforms ALIGNN. It
is worth mentioning that optimizing the architecture of a
CNN is an empirical process, and as there are limited re-
gression studies using deep CNNs on visual images, there
is potential for improvement by modifying the CNN de-
sign. The significant improvement of the deep CNN com-
pared to the shallow CNN in this study (MAE of 0.046 eV
per atom versus 0.337 eV per atom on the test set) high-
lights the importance of network depth and skip connec-
tions in enhancing the predictive performance. As shown
in Supplementary Figure S3, we compare the learning
curves of our model and CGCNN with respect to the size
of the training dataset. Notably, our image-based model
demands a larger training dataset to attain an equivalent
level of accuracy compared to CGCNN. This difference is
expected considering the substantial depth of our CNN
architecture, comprising a significant number of trainable
parameters (2,678,641 parameters), thereby necessitating
large volume of training data for effective learning. It is
important to note that ALIGNN and CGCNN incorpo-
rate physical attributes such as electronegativity, group
number, covalent radius, valence electrons, first ioniza-
tion energy, electron affinity, and atomic volume as node
features in their graph representation, thereby incorpo-
rating additional information that is more challenging to



capture from the visual image representation employed
in our work.

C. Approximate Rotational Invariance

We mitigate overfitting in our deep learning model
by applying augmentation to the training data through
random rigid-body rotations. As shown in Supplemen-
tary Figure S4, this simple technique effectively addresses
overfitting. This data augmentation method, when com-
bined with an ensemble averaging approach, also confers
approximate rotation invariance to the formation energy
prediction. In our ensemble averaging method, the for-
mation energy is predicted by averaging the results of 50
randomly rotated instances of the given crystal structure
(see section TV for more details). To assess the degree of
rotation invariance in our predictive model, we randomly
select 20 crystal samples from the test set and subject
each sample to 500 random rotations. Figure 3 illustrates
the range of predicted formation energies for each crys-
tal sample across different rotations. The interquartile
range (IQR) for these 20 crystal structures exhibits an
average and maximum values of 0.009 and 0.018 eV per
atom, respectively. Among the distributions of predicted
formation energies for these 20 samples, the average and
maximum standard deviations are 0.007 and 0.013 eV
per atom, respectively. Notably, these values are nearly
an order of magnitude smaller than the MAE of the test
set (0.046 eV per atom as shown in Figure 2(a)). Since
the test set MAE measures the precision of our model
relative to DFT, the approximately tenfold reduction in
prediction span for rotated samples indicates the approx-
imate rotation invariance of the formation energy.

To demonstrate the impact of ensemble averaging on
improving the performance and robustness of our model,
we compare the achieved approximate rotation invariance
between ensemble-averaged predictions (ensemble size of
50) and predictions without ensemble averaging. Supple-
mentary Figure S6 showcases the range of formation en-
ergy predictions for the same crystal structures as shown
in Figure 3, but without employing ensemble averaging.
By comparing Supplementary Figure S6 and Figure 3,
we observe that the variation in formation energy predic-
tions for different rotations increases approximately 6 to
7 times when ensemble averaging is not employed. Apart
from the approximate rotation invariance, the ensemble
averaging approach also provides a valuable metric - vari-
ance of the predictions - that can be used to assess the
predictive uncertainty of our model, enabling us to eval-
uate the reliability of our model effectively.

To gain further insights into the overall effect of en-
semble averaging on the model’s performance, Supple-
mentary Figure S7 displays the range of formation en-
ergy MAE (prediction error relative to DFT-calculated
formation energy) for different rotated instances of the
test data. In the case without ensemble averaging, the
MAE calculated over 400 instances of the test data ex-

hibits an IQR value of 3.1e-04 eV per atom and a me-
dian of 0.05949 eV per atom. In contrast, for the en-
semble averaging case with 50 instances of the test set,
the IQR and median values are 5.8e-05 eV per atom and
0.04649 eV per atom, respectively. The comparison be-
tween the two scenarios, as depicted in Supplementary
Figures S6 and S7, demonstrates that ensemble averag-
ing significantly reduces the variation in formation energy
predictions for different rotations and leads to a lower
MAE overall. These results highlight the effectiveness
of ensemble averaging in enhancing the performance and
robustness of our model.

Ensemble averaging enhances the reliability of predic-
tions and diminishes the MAE. However, it concurrently
amplifies the computational expenses involved in the pre-
diction process, potentially rendering it impractical for
exhaustive explorations of extensive chemical spaces or
integration into generative models. The ensemble size
for averaging serves as an adjustable parameter in our
model, enabling users to strike a balance between com-
putational efficiency and predictive reliability. In the
context of broader investigations, a multi-tiered screen-
ing approach can be employed: a preliminary, low-level
exploration utilizing a reduced ensemble size for high-
throughput screening, followed by a comprehensive, high-
level investigation involving a larger ensemble size to en-
sure precise predictions within a limited chemical space.

D. Binary Convex Hull Prediction Assessment

Formation energy convex hulls are commonly used for
rapid stability assessment of chemical compounds based
on the energy above the hull [9]. A convex hull rep-
resents compounds with the lowest formation energy at
any composition within a given chemical space, with ref-
erence to the pure end members. Figure 4 illustrates
a comparison between the predicted convex hulls gen-
erated by the deep CNN model in this study and the
convex hulls constructed from DFT-calculated formation
energies for selected binary systems (chosen from a set of
3,115 predicted binary convex hulls). In this section, it
is important to mention that the predicted convex hulls
have been constructed solely on the basis of crystal struc-
tures for which DFT formation energies are available.
This means that no new crystal structures for any bi-
nary chemical space outside of the Materials Project have
been taken into consideration. As depicted in Figure 4,
the formation energy MAE exhibits significant variation
among different systems. For instance, the MAE for Tm-
Pt is 0.042 eV per atom, while for Th-N it is 0.115 eV per
atom. However, relying solely on the MAE as a measure
is insufficient to assess the deviation of the predicted con-
vex hull from the DFT (or true) convex hull. Notably, the
predicted convex hull for Tm-Pt and Th-N demonstrates
good agreement with the DFT, despite their consider-
ably different MAEs. Tm-Pt exhibits one of the lowest
MAEs, while Th-N has one of the largest MAEs among



the 3,115 predicted binary convex hulls. To gain a more
comprehensive understanding of how errors in formation
energy impact convex hull predictions, we introduce ad-
ditional metrics such as depth error and hull accuracy, in
addition to the formation energy MAE (for more details,
refer to section IV).

The depth error is an evaluation metric that quanti-
fies the deviation in the depth of the predicted convex
hull compared to the true convex hull. It is computed as
the difference between the confined areas of the predicted
and true convex hulls, normalized by the true area (refer
to the definition in section IV). The confined area is de-
fined by the zero formation energy line, which connects
the pure end members of the binary system. The depth
error takes values ranging from -1 to large positive values,
where the extremes indicate an extremely shallower (or
flat line) or deeper convex hull prediction, respectively,
compared to the DFT convex hull. In addition to the
depth error, the hull accuracy metric measures the num-
ber of correct predictions of crystal samples that form the
convex hull. As explained in more detail below, metrics
like the depth error are crucial for assessing the accu-
racy of stability assessment based on the energy above
the hull.

In Figure 4, we present several examples of binary
convex hulls, illustrating different combinations of MAE,
depth error, and hull accuracy. These examples serve to
emphasize the importance of considering these metrics
together for a comprehensive evaluation of the predicted
convex hull. As an extreme case, consider the Nd-Y bi-
nary system, which exhibits an MAE of 0.027 eV per
atom (among the lowest values in the set of 3,115 convex
hull MAEs). However, despite the low MAE, the pre-
dicted convex hull deviates significantly from the DFT
convex hull, with an depth error of almost 7,000 percent
and a hull accuracy of only 33 percent. This discrep-
ancy arises from the extremely shallow DFT convex hull,
where even small errors in the formation energy can lead
to substantial deviations in the predicted convex hull. In
contrast, the Th-N binary system displays a large MAE
of 0.115 eV per atom, but the corresponding depth er-
ror is only -0.04 (or -4 percent). This discrepancy is
attributed to the N-rich samples, as evident in Figure
4(c) and Supplementary Table S5, where our formation
energy model exhibits poor performance (for details on
other binary systems, please refer to Supplementary Ta-
bles S3-S8). However, due to the convex hull comprising
only three samples and having a relatively deep structure
(i.e., a large range of formation energy), the large MAE
does not result in a significant change in the depth of
the convex hull. Similarly, Figures 4(d) and (f) depict a
similar scenario for the Mo-Se and V-Se systems, where
despite large MAEs for the Se-rich samples, the depth
error remains relatively low. The Tm-Pt binary system
represents a combination of low MAE, low depth error,
and high hull accuracy. The Na-Cl system demonstrates
moderate values for MAE, depth error, and hull accu-
racy. Notably, the Tm-Pt and V-Se systems achieve the

highest hull prediction accuracy (refer to Figures 4(a)
and (d)), despite having different ranges of formation
energy MAEs. This observation can be attributed to
the larger number of compounds forming the DFT hull,
which leads to higher accuracy values even if a few sam-
ples are misplaced on the hull in the prediction. These
examples highlight that a high MAFE in predicting for-
mation energy does not necessarily result in poor convex
hull prediction, and conversely, a low MAE in predicting
formation energy does not guarantee a good agreement
between the predicted and true convex hulls. It is crucial
to consider all these metrics together to obtain a compre-
hensive assessment of the predictive performance of the
convex hulls.

To conduct a comprehensive evaluation of binary con-
vex hull prediction, we calculate the MAE and depth er-
ror for all 3,115 binary systems across the entire dataset
(train, validation, and test). Figure 5 (a) illustrates the
relationship between the MAE and depth error of these
binary convex hulls. Interestingly, the majority of convex
hulls exhibit low depth errors regardless of their MAE,
encompassing both low and high MAE ranges. There
is no clear correlation observed between the MAE and
depth error. Notably, the largest depth errors tend to
occur in the lower ranges of MAE, aligning with our ob-
servation in the Nd-Y example presented in Figure 4(e).
This observation leads us to conclude that factors such as
the range of formation energy (or the depth of the convex
hull) play a more crucial role in determining the depth
error than the MAE alone. Hence, in Figure 5 (b), we
depict the relationship between the depth error and the
formation energy range, represented by AE (i.e., AE =
max(DFT Ef) - min(DFT Ef)) across all binary systems.
This plot illustrates that a majority of poor predictions
of binary convex hull depths (large positive errors or close
to -1) appear at low ranges of AE.

To gain further insights into the binary convex hull pre-
dictions made by our model, we group the 3,115 binary
systems into five material classes: ceramics (combina-
tions of a non-metal and a metal), semiconductors (com-
binations of two metalloids), metals (combinations of two
metals), semimetals (combinations of a metalloid and a
metal), and nonmetals (combinations of two non-metal
elements). Figure 6 (a) displays the density distribution
of the formation energy MAE for each class of binary con-
vex hulls. Interestingly, the MAE distribution exhibits a
distinct shift in its peak across different material classes.
Metallic convex hulls demonstrate the lowest MAE, while
nonmetallic convex hulls exhibit the highest. The MAE
progressively increases as we transition from metallic to
ionic materials, with semimetallics, semiconductors, and
ceramics falling between the lowest and highest MAE val-
ues, respectively. This analysis of convex hull MAE for
different material classes sheds light on the limitations
of our predictive model. The reason for the difference
in MAE between metallic and nonmetallic compounds
can be attributed to the fact that there is a wider range
of formation energies for nonmetallic compounds and a



significantly lower number of non-metallic compounds in
the data set (see Supplementary Figure S8 for more de-
tails). Due to these factors, the performance of our model
is comparatively lower for non-metallic compounds. In
Figure 6 (b), we observe that unlike the MAE, the depth
error distribution for binary convex hulls does not show
a clear distinction among different material classes. The
depth error range depicted in Figure 6 (b) is limited to
-1 to 1. Semi-metallic and ceramic materials exhibit the
best performance, with their distributions peaking close
to zero. Metallic and semiconductor materials show al-
most uniform distributions without a clear peak. Non-
metallic materials display a significantly negative skew-
ness in the depth error distribution, indicating that the
predicted convex hulls are shallower than the true convex
hulls (i.e., underprediction of the convex hull). Semicon-
ductors also exhibit positive skewness, albeit to a lesser
extent. Supplementary Table S1 provides further statis-
tics on binary convex hull predictions for different mate-
rial classes.

To gain further insights into the binary convex hull
predictions, we provide Supplementary Figure S9, which
showcases the formation energy MAE for different pairs
of elements in our binary systems. It is evident that cer-
tain elements, such as C and F, consistently exhibit high
MAE:s for the predicted convex hull, regardless of the sec-
ond element they are paired with. For instance, the for-
mation energy MAEs of carbides, nitrides, and fluorides
in our study are relatively large, with respective values
of 0.101, 0.096, and 0.073 eV per atom (see Supplemen-
tary Table S2). The average MAEs over distinct binary
systems containing C, N, and F are amongst the highest,
with respective values of 0.178, 0.118, and 0.178 eV per
atom (see Supplementary Table S2 for details). To en-
sure that any observed bias in our model is not due to an
uneven distribution of chemical elements in our training
data, we analyze the frequency of chemical elements in
our training data, as depicted in Supplementary Figure
S10 over the periodic table. Notably, elements such as
C, N, and F are among the more frequent ones. Oxygen,
which is the most common element in our train data set,
ranks among the top 20 in terms of binary convex hull
prediction MAEs for systems involving oxygen (see Sup-
plementary Table S2). Supplementary Table S2 provides
a comprehensive list of MAEs, average MAEs, and me-
dian depth errors for pairs of elements grouped by their
positions in the periodic table. Additionally, Figure 7
displays the MAEs and depth errors for different pairs
of elements, specifically selected based on their frequent
appearance in the binary systems that formed the most
convex hulls within the analyzed binary dataset. The
heatmaps presented in Supplementary Figures S9 and 7
reveal that nonmetals and halogens, including C, F, H, S,
N, and Cl, exhibit elevated average MAEs. The depth er-
ror heatmap in Figure 7 further demonstrates that there
is no one-to-one correspondence between the MAE and
depth error.

Aside from depth error and hull accuracy, we define two

other error metrics; the positional distance and the adja-
cency distance. These metrics enable us to evaluate the
performance of our model in predicting the order of struc-
tures at a given composition. Given two permutations
(i.e., predicted and DFT) of the list of crystal samples
at a fixed composition, the positional distance measures
the number of elements needed to be swapped to turn
one list to the other and the adjacency distance measures
the minimum number of adjacent transpositions needed
to transform one permutation into another. For exam-
ple, for two permutations P1=[1, 2, 3] and P2=[2, 1,
3], the positional and adjacency distances are 2 and 1,
respectively. Supplementary Tables S3-S8 report the po-
sitional and adjacency distances, the MAE, and the hull
match (whether the predicted crystal structure on the
hull matches DFT) at different compositions of the ex-
ample binary systems of Figure 4. For example, as shown
in Supplementary Table S5, on the Ny end-member of N-
Tb, the predicted sample on the hull disagrees with the
DFT-calculated sample. The predicted list of 14 crystal
samples has a positional and adjacency distance of 8 and
10. As shown in Supplementary Table S8, the Mo-side
of Mo-Se shows a positional and adjacency distance of 8
and 4 for a list of 7 crystal samples with the predicted
sample on the hull matching the DFT-calculated sample.

III. DISCUSSION

This work introduces the utilization of a sparse voxel
image representation of crystal compounds in combi-
nation with a deep 15-layer CNN as a learning algo-
rithm for material property regression. It provides valu-
able insights into the optimal design of deep CNNs as
predictive models for material properties. While deep
CNNs involve intricate architectures with numerous (hy-
per)parameters, we focus on two crucial design aspects
that have significantly improved the predictive perfor-
mance of our model: data augmentation and skip con-
nections. We discuss each aspect briefly below.

Data augmentation plays a pivotal role in our training
process, where we employ the augmentation of rotated
crystal images in our train set. This technique effec-
tively reduces overfitting, as demonstrated by the nar-
rowing gap between the validation and training errors in
Supplementary Figure S4. In the absence of data aug-
mentation, the validation error plateaus at a fraction of
the total epochs while the training error continues to de-
crease, indicating overfitting (as shown in Supplementary
Figure S4). By implementing data augmentation, the
training and validation errors converge, indicating a more
balanced model performance. Additionally, data aug-
mentation enables the deep CNN to identify general un-
derlying features by implicitly enforcing rotation invari-
ance in crystals’ formation energy. Rather than “mem-
orizing” patterns from arbitrarily oriented crystal struc-
tures, the network “learns” general features from mul-
tiple randomly rotated orientations of the same crystal



structure (as many rotations as the number of epochs).
This approach mitigates overfitting to specific crystal ori-
entations and facilitates the identification of rotation-
invariant features embedded in crystal images.

Instead of relying on augmentation of rotated samples
in the training data, an alternative approach is to employ
neural networks that explicitly enforce rotation equiv-
ariance. Euclidean neural networks (e.g., E(3) equivari-
ant neural networks or E(3)NN)[44-47] are an example
of such networks that utilize sophisticated filters, such
as radial functions and spherical harmonics, to achieve
equivariance to 3D Euclidean transformations, including
rotation. While E(3)NN networks offer an explicit so-
lution for rotation equivariance, in our experience, we
have found the data augmentation approach to be more
feasible due to the relative ease of optimization of conven-
tional CNNs compared to equivariant CNNs. Nonethe-
less, the application of E(3)NN networks with graph rep-
resentations has shown promise in previous studies. For
example, successful utilization of E(3)NN networks with
graph representation of crystalline materials has been re-
ported in the literature[48-51]. Although data augmen-
tation and E(3)NN differ in their technical approaches,
they both serve as regularization methods to achieve ro-
tation equivariance and alleviate overfitting in the net-
work. E(3)NN achieves this through the implementation
of sophisticated filters that effectively reduce the number
of parameters in the network, leading to a more compact
and regularized model. On the other hand, data augmen-
tation addresses overfitting by expanding the training
data size, compensating for the large number of trainable
parameters in the network. While E(3)NN focuses on
parameter reduction to enforce regularization, data aug-
mentation increases the diversity and variability of the
training data. Both techniques contribute to enhancing
the network’s generalization capabilities and improving
its performance on unseen data.

The incorporation of skip connections into the 15-
layer deep convolutional network leads to a significant
improvement in the prediction of formation energy, as
demonstrated in Supplementary Figure S5. This en-
hancement can be attributed to the ability of skip con-
nections to bypass local atomic features discovered in the
shallower layers of the network. Simultaneously, the deep
architecture of the network facilitates the exploration
and discovery of more global features inherent in crys-
talline materials. Deep neural networks often suffer from
the degradation problem, where the performance deteri-
orates as the network becomes deeper. This occurs be-
cause randomly initialized weights tend to approach zero
as the number of layers increases, causing the optimizer
to behave chaotically [52]. To address this issue, archi-
tectures like ResNets [53, 54] employ skip connections.
Traditionally, skip connections are recognized for their
role in alleviating optimization challenges by producing
smoother loss functions, facilitating easier training [52].
However, our work sheds light on an additional aspect of
skip connections beyond their optimization benefits. We

demonstrate that skip connections serve as a mechanism
to capture the essential physicochemical information at
different levels. By allowing the outputs of different lay-
ers (both shallow and deep) to bypass through identity
mapping, skip connections enable the network to leverage
local atomic fingerprints from shallower layers while si-
multaneously learning abstract, generalized features from
deeper layers. In this way, skip connections facilitate the
integration of both local and global information, leading
to improved performance in formation energy prediction.

IV. METHODS

Data Collection and Vozel Image Preparation. We
gather crystal structure information in CIF format and
the corresponding DFT-calculated formation energies
from the Materials Project database (v2021.05.13)[29].
To extract the structural information, we utilize the
Atomic Simulation Environment (ASE) package [55].
Our in-house Python code is then employed to generate
sparse voxel images of the crystals. In the voxelization
process, we repeat the crystal unit cell (cubic or non-
cubic) in space to fill a cubic box with an edge size of 17
A. We eliminate a crystal structure if its unit cell does
not fit in the cubic box. The box is then voxelized using
a 32 x 32 x 32 grid, resulting in images with dimensions of
32 x 32 x 32 voxels. To ensure that each voxel contains at
most one atom, we set the minimum interatomic distance
to be greater than the diagonal of a voxel, d,,, calculated
as d, = (17/32) x /3 = 0.92 A. Consequently, crys-
tal structures with minimum interatomic distances larger
than 0.92 A are filtered out. The 3D sparse voxel images
of crystals are color-coded using three channels, similar
to an RGB image. These channels represent the normal-
ized atomic number, group number, and period number.
For lanthanides and actinides, we assign a group num-
ber of 3.5. During training, to introduce variability and
enhance generalization, we apply a random rotation to
each crystal image at each epoch. Rather than applying
a direct rotation to the unit cell and subsequently exe-
cuting the computationally intensive task of filling the 17
A box - a method which becomes intractably repetitive -
we initially construct a larger ‘encompassing’ box with an
edge equal to the diagonal of the 17- A cubic box. Dur-
ing the data pre-processing stage, we fill the larger box
by replicating the crystal unit cell in all directions only
once. Consequently, whenever an instance of an crystal
structure input is requested, either for training or pre-
diction, we perform a random rigid-body rotation to the
larger box, while the 17- A box remains unchanged and
consistently populated after each rotation. Thereafter,
we perform the voxelization of the 17- A box to generate
the final sparse voxel images. Supplementary Figure S1
visually details the rotation methodology.

Convolutional Neural Network. We develop a 15-
convolutional-layer network consisting of 7 residual
blocks and 3 average pooling layers, followed by a fully



connected neural network (see Supplementary Figure
S11). Each residual block consists of two convolutional
layers, each followed by a rectified linear unit (ReLU)
activation layer and a skip connection that connects the
beginning of the block to its end. In each convolutional
layer, we use a kernel of size 3 and padding of type SAME
with stride 1 to ensure that the filter is applied to all the
voxels of the input. To merge a skip connection (i.e., side
stream) with the mainstream coming from the convolu-
tional layer, we either use addition or concatenation. We
use the concatenation of outputs only before a pooling
layer in order to double the number of channels while
reducing the image size during pooling. The addition of
outputs is used elsewhere as the method of merging in
the residual blocks.

The deep convolutional network consists of three dis-
tinct segments, each containing a different image size and
ending with a pooling layer. The first segment consists
of a single convolutional layer, followed by an activation
layer. In this layer, we increase the number of channels
from 3 to 32. This single layer is followed by two residual
blocks, each consisting of two convolutional and activa-
tion layers, outputting 32 channels. We utilize concate-
nation to combine the outputs of the mainstream and
skip connection, rendering the number of channels of the
output of this segment equal to 64. This segment ends
with an average pooling layer, reducing the image size by
half (16 x 16 x 16). The second segment consists of three
residual blocks, followed by an average pooling. The im-
ages passing through this segment have 64 channels, and
at the end of the segment, their size is reduced by half
(8 x 8 x 8) and their channels are doubled (128). The last
segment consists of two residual blocks and an average
pooling layer, but in this case, the last block uses addi-
tion instead of concatenation, keeping the channels as 128
and reducing the size to 4 x 4 x 4. A detailed schematic
of the network is shown in Supplementary Figure S11.

The last pooling layer is flattened to a vector of size
(4 x 4 x4 x 128 = 8192) and is connected to a fully
connected network with a node architecture of 16-16-1
with linear activation functions. The Keras package [56]
is used to build and train this network. The 3D images of
the train set are randomly rotated in 3D space and input
to the network for 500 epochs in batches of size 32. The
mean squared error (MSE) is used as the loss function.
To train the network, we use the Adam optimizer with
a learning rate of 0.001, the exponential decay rates of
0.9 and 0.999 for the first and second moment estimates,
respectively, and a machine precision threshold (or €) of
1le-07.

Rotational Ensemble Averaging Once the model is
trained, we employ an ensemble averaging method for
predictiong the formation energy. Once a crystal sample
is input into the trained model, a ensemble of 50 ran-
domly rotated instances of the sample is generated and
the formation energy prediction is averaged over the en-
semble. The ensemble averaging methods improves the
prediction accuracy and robustness of our model, as de-

tailed in section II, Figure 3, and Supplementary Figures
S6 and S7.

Error Metrics. The evaluation of the formation energy
prediction and the constructed convex hull is performed
using the following error metrics:

Formation Energy Mean Absolute Error (MAE): The
MAE is calculated using the formula:

n

1
MAE = — ;= i 1
=Sl - (1)

i=1

where y; represents the true formation energy of sam-
ple i (DFT-calculated formation energy obtained from
the Materials Project database), ¢; corresponds to the
model’s prediction of the formation energy for sample 1,
and the sum runs over total of n samples. When com-
puting the MAE for a binary convex hull prediction, only
crystal compounds (or samples) from that specific binary
system are included.

Depth error for Convex Hull: The depth error for the
convex hull measures the difference in the confined area
between the predicted and true convex hulls, and is de-
fined as:

Apredicted - Atrue (2)

Depth error =
Atrue

where Apredicted and Atrye Tepresent the areas enclosed
by the predicted and true (or DFT-calculated) convex
hulls, respectively.

Accuracy of Convex Hull Prediction: The accuracy of
the convex hull prediction is calculated as the percentage
of correctly predicted crystal samples on the hull with
respect to the crystal samples on the DFT-calculated
hull. In other words, the hull accuracy measures the
percentage of predictions on the hull that matches the
DFT-calculated samples on the hull. Accordingly, if our
model mistakenly predicts a crytal sample to be on the
hull while the DFT-calculated sample is above the hull,
the hull accuracy measure will not be affected (e.g., see
Figure 4(a)).
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Shallow CNN Deep CNN )
(this work) (this work) ALIGNN CGCNN ElemNet Roost
0.337 0.046 0.022 0.039 0.1 0.06

MAE (eV per atom)

TABLE I. Benchmarking model performance against
existing models. Comparison of the formation energy MAE
of different models (ElemNet [16], Roost [17], ALIGNN [23],

and CGCNN [18] and this work.
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FIG. 1. The overall design of the deep convolutional neural network and the fully connected neural network of
this study. The crystal structures are digitized into 3D colored sparse voxel images which are input to a deep convolutional
neural network. The network consists of 7 residual blocks arranged in sequence in combination with merging and pooling layers.
The architecture of each residual block is shown in the inset, which consists of a skip connection used to bypass the output of
the previous block to the next. The latent features learned by the convolutional neural network are flattened and input into a
fully connected neural network which performs the final prediction of the formation energy.
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FIG. 2. Formation energy prediction evaluation. a) The parity plot for samples in the train and test sets. The MAE of
formation energy prediction for the test and train data is reported in the legend. b,c) Distribution of the prediction error of
test data over different ranges of formation energy. b) Box and whisker representation of prediction error (i.e., predicted E¢ -
DFT Eg) for different intervals of DFT formation energy. The left side, middle line, and right side of each box show respectively
the first quartile, median, and third quartile of the error. The whisker line shows the minimum and maximum of the error. c)
The scatter plot of samples in the test set showing the DFT formation energy versus prediction error.
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lustrating the formation energy MAE and convex hull depth
error for the most frequent elements in the analyzed binary

systems.
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