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M Check for updates

To design effective vaccine policies, policymakers need detailed data about
who has been vaccinated, who is holding out, and why. However, existing data
in the US are insufficient: reported vaccination rates are often delayed or not
granular enough, and surveys of vaccine hesitancy are limited by high-level
questions and self-report biases. Here we show how search engine logs and
machine learning can help to fill these gaps, using anonymized Bing data from
February to August 2021. First, we develop a vaccine intent classifier that
accurately detects when a user is seeking the COVID-19 vaccine on Bing. Our
classifier demonstrates strong agreement with CDC vaccination rates, while
preceding CDC reporting by 1-2 weeks, and estimates more granular ZIP-level
rates, revealing local heterogeneity in vaccine seeking. To study vaccine hes-
itancy, we use our classifier to identify two groups, vaccine early adopters and
vaccine holdouts. We find that holdouts, compared to early adopters matched
on covariates, are 67% likelier to click on untrusted news sites, and are much

more concerned about vaccine requirements, development, and vaccine
myths. Even within holdouts, clusters emerge with different concerns and
openness to the vaccine. Finally, we explore the temporal dynamics of vaccine
concerns and vaccine seeking, and find that key indicators predict when
individuals convert from holding out to seeking the vaccine.

COVID-19 vaccines provide significant protection against severe cases
of SARS-CoV-2'?, yet a large portion of the United States remains
unvaccinated. Effective vaccine policies—for example, where to place
vaccine sites**, how to communicate about the vaccine>®, and how to
design campaigns to reach unvaccinated populations’°—rely on
detailed data about who is seeking vaccination, who is holding out, and
why. However, existing data are insufficient'. Reported vaccination
rates are frequently delayed", missing at the county-level and below',
and missing essential demographic data". Surveys provide a starting
point for understanding vaccine hesitancy but are often limited by
high-level questions®, small or biased samples'®”, and self-reporting
biases (e.g., recall or social desirability bias)'**®, especially in sensitive

contexts such as vaccination?.

Here we show how large-scale search engine logs and machine
learning can be leveraged to fill these gaps, enabling fine-grained
estimation of vaccine rates and discovering the concerns of vaccine
holdouts from their search interests. We use billions of anonymized
search logs from Bing and introduce two computational resources to
extract meaning from unlabeled queries and clicks. First, we develop a
vaccine intent classifier to detect when a user is seeking the COVID-19
vaccine on search. Our classifier achieves areas under the receiver
operating characteristic curve (AUCs) above 0.90 in all 50 states, and
demonstrates strong agreement with CDC vaccination rates across
states (r=0.86) and over time (r=0.89). Using our classifier, we can
estimate vaccine intent rates to the level of ZIP code tabulation areas
(ZCTAs), producing the most comprehensive dataset to-date of ZIP-
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level estimates of COVID-19 vaccination or vaccine intent. Our search
signals precede CDC reporting by 1-2 weeks and provide more gran-
ular information, as ZCTAs are 10x the granularity of the CDC’s county-
level data. Our second resource is a novel taxonomy of COVID-19 vac-
cine concerns on search. Our taxonomy consists of 25,000 vaccine-
related URLs, clicked on by Bing users, that we organized into a hier-
archy of vaccine concerns from eight top categories to 36 sub-
categories to 156 low-level topics. Unlike surveys, our taxonomy
discovers these concerns directly from users’ expressed interests and
explores them at multiple scales. Furthermore, by measuring indivi-
duals’ interest in each concern from their clicks, we capture revealed
preferences, side-stepping potential biases in self-reporting'?. We
have publicly released our vaccine intent estimates, from ZCTA to
state-level, and taxonomy of vaccine concerns, along with our code.

Combining our taxonomy with the vaccine intent classifier allows
us to conduct a thorough analysis of how individuals’ vaccine concerns
relate to whether they decide to seek the vaccine. We use our classifier
to identify two groups of users—vaccine early adopters and vaccine
holdouts—and compare their search behaviors. We find that vaccine
holdouts, compared to early adopters matched on covariates, are 67%
(95% Cl, 66%-68%) more likely to click on untrusted news sites, and are
far more concerned with vaccine requirements, vaccine development
and approval, and vaccine myths. We also find that vaccine concerns
differ significantly within holdouts, across demographic groups and
through clustering of individual concerns, where we discover four
distinct holdout profiles who differ in their key concerns and openness
to the COVID-19 vaccine. Finally, we analyze the temporal dynamics of
vaccine concerns and vaccine seeking, and find that individuals exhibit
telltale shifts in their vaccine concerns when they eventually convert
from holding out to seeking the vaccine. Our findings demonstrate the
need for policymakers to go beyond one-size-fits-all solutions, so that
messaging is tailored to each individual’s unique vaccine concerns and
how close they are to seeking the vaccine.

We use Bing search logs, which have been used to study other
health issues such as shifts in needs and disparities in information
access during the pandemic*?, health information needs in devel-
oping nations®, experiences around cancer diagnoses®*, concerns
during pregnancy”, nutritional patterns across the world®, and med-
ical anxieties associated with online search®. Our efforts build on prior
work that extracts insights about the COVID-19 vaccine from digital
traces, such as social media®*~? and aggregated search trends*, and
other efforts to detect health conditions online, such as depression*
or flu”. Our work seeks to address the challenges of working with
digital traces”® and limitations of prior work®*’ by developing rig-
orous, human-in-the-loop methods to precisely detect user intents and
search interests (“Vaccine intent classifier” and “Taxonomy of vaccine
concerns on search”), correct for bias from non-uniform Bing coverage
(“Coverage-corrected vaccine intent rates”), and validate our results
against external data (“Comparison to reported vaccination rates”). By
leveraging search logs and machine learning, our approach provides
real-time, fine-grained signals about vaccine seeking and holding out,
and nuanced understandings of vaccine concerns, helping to guide
more timely and effective vaccine policies.

Methods overview: vaccine intent classifier

We develop a machine learning classifier to detect when users are
expressing vaccine intent, i.e., seeking the COVID-19 vaccine on search.
Vaccine intent can be expressed through unambiguous queries, such
as [covid vaccine near me], which we detect using regular expressions
that specify patterns to match in text. However, vaccine intent can also
be clarified through clicks on search results*’: for example, a user may
issue an ambiguous query, such as [covid vaccine], then clarify their
intent by clicking on the URL for the CVS COVID-19 vaccine registration
page. The challenge with URLs is that they are less formulaic than
queries, so we cannot easily define regular expressions to identify

URLs expressing vaccine intent. Instead, we employ a series of graph-
based machine learning techniques, combined with manual annota-
tion, to identify URLs.

Our key insight is that, while we cannot use regular expressions to
identify URLs, we can use them to identify vaccine intent queries and
then use those queries to identify URLs, based on common query-click
patterns. For example, vaccine intent queries such as [cvs covid vaccine]
or [covid vaccine near me] may result in clicks on the CVS COVID-19
vaccine registration page. To capture these patterns, we construct
large-scale query-click graphs™**, which are bipartite networks between
queries and URLs where an edge from a query to a URL indicates how
often this query is followed by a click on this URL (Fig. 1a). We use
regular expressions to identify vaccine intent queries in the graph, and
then propagate labels from these queries to URLs via Personalized
PageRank (Fig. 1b, left)****. This process enables us to identify URL
candidates that likely express vaccine intent, without any URL labels.

We then present the URL candidates to annotators on Amazon
Mechanical Turk and ask them to label whether these URLs indicate
vaccine intent (Fig. 1b, middle). We observe strong performance from
our PageRank-based approach: even if positive labels require agree-
ment from 3 annotators (out of 3-4), we find that 86% of the URL
candidates are labeled positive for vaccine intent (Fig. S2). However,
since manual annotation is expensive, we are only able to label around
2000 URLs through this method. To expand this set, we use these
labels to train graph neural networks* (GNNs) to predict vaccine
intent, so that we can use GNNs to predict labels for the remaining
URLs (Fig. 1b, right). Our GNNs demonstrate strong performance in all
50 states, with AUCs over 0.90 on held-out URLs labeled for vaccine
intent (Fig. S4). Using our GNNs, we discover 11,400 more URLs that
are highly indicative of vaccine intent.

Correcting for bias in vaccine intent estimates

We apply our classifier to Bing search logs from Feburary 1 to August
31, 2021 (“Datasets”) and identify 7.45 million active Bing users who
have expressed vaccine intent through their queries or clicks. How-
ever, before we can use the classifier to estimate regional rates of
vaccine intent, we need to correct for potential sources of bias in our
approach. We decompose potential bias into two key sources
(“Decomposition of bias”): first, bias from non-uniform Bing coverage,
and second, bias from non-uniform true and false positive rates of our
classifier. By correcting for non-uniform Bing coverage (“Coverage-
corrected vaccine intent rates”) and demonstrating that our classifier’s
true and false positive rates do not significantly differ across regions
(“Bias in vaccine intent classifier”), our vaccine intent estimates should,
theoretically, form unbiased estimates of true vaccination rates. Sup-
porting this claim are our empirical results showing that our vaccine
intent estimates agree strongly with CDC vaccination rates. Further-
more, to evaluate the representativeness of Bing data, we compare
search trends for vaccine intent queries between Google and Bing and
find that, even before applying corrections to Bing data, the trends are
highly correlated (Figs. S9-5S10).

Results

Our vaccine intent estimates are highly correlated with

CDC data

When we compare our vaccine intent estimates to state-level vacci-
nation rates from the CDC, we observe strong correlation (r=0.86) on
cumulative rates at the end of August 2021 (Fig. 1c). Notably, we find
that the correlation drops to r=0.79 if we do not correct for Bing
coverage in our estimates. If we only use queries to detect vaccine
intent, the correlation drops to r= 0.62 and we lose 57% of the users we
identified with our full classifier, demonstrating the value of including
URLs (Table 1). Additionally, we compare our vaccine intent estimates
to the CDC'’s vaccination rates over time. We observe strong correla-
tions here as well, especially if we allow the CDC time series to lag
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Fig. 1| Vaccine intent classifier. a Our computational approach centers on query-
click graphs constructed from billions of Bing search logs. b Using these graphs, we
introduce a three-step pipeline to identify vaccine intent URLs: generate URL
candidates via Personalized PageRank; present URL candidates to annotators; and
expand the final set of URLs with graph neural networks. Each step improves our
coverage of users and correlation with CDC vaccination rates (Table 1). ¢ Our
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vaccine intent estimates are highly correlated with state vaccination rates from the
CDC. Here, we compare cumulative rates up to August 31, 2021 (r=0.86). d Our
estimates are also highly correlated with CDC rates over time (r = 0.89, median over
states), with the CDC time series lagging by 7 and 15 days (IQR). Here, we visualize
time series for the 4 largest states in the US, with extended results in “Comparison
to reported vaccination rates”.

behind the vaccine intent time series. With lags of 7-15 days (IQR), the
median correlation over states reaches r=0.89; without a lag, the
median correlation drops to r=0.78. The CDC'’s lag demonstrates an
advantage of the classifier, as it can detect vaccine seeking in real time
without delays from reporting. Furthermore, our vaccine intent rates
help to forecast daily vaccinations, significantly improving predictive
performance over only using past values of daily vaccinations (i.e., with
a Granger-causal interpretation) in the majority of US states (Table S4).
Thus, our vaccine intent rates both precede and predict vaccinations,
showing promise as a signal that could help policymakers better pre-
empt vaccine demand and meet population needs.

Granular trends in vaccine seeking

Our vaccine intent classifier allows us to pinpoint who was seeking the
COVID-19 vaccine, where, and when. We estimate cumulative vaccine
intent rates up to the end of August 2021 at the level of ZCTAs (Fig. 2a),

Table 1| Each step of our classification pipeline (“Vaccine
intent classifier”) improves both our correlation with CDC
state vaccination rates and our coverage of vaccine
intent users

Pipeline step Correlation with CDC  Num vaccine intent users
Only queries 0.62 3.18M
+manual URLs 0.80 4.95M
+manual and GNN URLs  0.86 7.45M

approximately 10x the granularity of counties, which is the finest-
grained vaccination data the CDC provides and, still, with many
counties missing or having incomplete data'>. We observe substantial
heterogeneity in vaccine intent at the ZCTA-level, even within the same
states and counties. For example, when we focus on New York City, we
see that Manhattan and Queens have higher vaccine intent rates, and
within Queens, ZCTAs in the northern half have higher rates (Fig. 2b),
aligning with reported local vaccination rates in New York City*. In
fact, we show that variation in vaccine intent rates within counties
often exceeds variation between counties (Fig. S11), motivating the
need for finer-grained estimates of vaccine rates. We can also use our
estimates to characterize demographic trends in vaccination. When we
measure correlations between ZCTA vaccine intent rate and different
demographic variables, we find that overall demographic trends from
our estimates align closely with prior literature’®**°. For example, we
observe strong positive correlations with education, income, and
population density, and a strong negative correlation with percent
Republican (Fig. 2c). However, we discover more nuanced trends when
we look closer: demographic trends vary significantly across states
(Fig. S12), especially for race and ethnicity, and trends change over
time (Fig. S18). Thus, our classifier both confirms existing findings and
enables new analyses with finer granularity across regions, demo-
graphics, and time.

Taxonomy of vaccine concerns on search
To characterize vaccine-related search interests, we construct a hier-
archical taxonomy of vaccine concerns, defined in terms of 25,000
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Fig. 2 | Granular trends in vaccine seeking. a Using our classifier, we can estimate
vaccine intent rates per ZIP code tabulation area (ZCTA), approximately 10x the
granularity of counties. b Zooming in on New York City shows that estimated
vaccine intent rates vary substantially across ZCTAs, even within the same city or

(b) Estimated vaccine intent rate per ZCTA

New York City (c) US correlation between ZCTA vaccine intent

and demographic

IIIII
Hm

Bronx

Manhattan
-

Brooklyn ‘%

.

county. ¢ To characterize demographic trends in vaccination, we measure Pearson
correlations between ZCTA vaccine intent rates and demographic variables, over
N=20,899 ZCTAs. Error bars indicate 95% Cls.

vaccine-related URLs (i.e., containing “vaccin” or “vax”). First, using the
Louvain algorithm for community detection on graphs®’, we auto-
matically partition the URLs into 156 clusters, each containing around
100-500 URLs. Based on these clusters, which are remarkably coher-
ent (Table S5), we design a comprehensive set of subcategories and
top categories, and assign the clusters accordingly. For example, we
identify one cluster of news stories announcing vaccine passport
requirements in cities such as New York City and Los Angeles™*?, which
we assign to the proof of vaccination subcategory and Vaccine
Requirements top category. This bottom-up approach allows us to
discover and measure vaccine concerns directly from users’ search
interests and analyze them at multiple scales, providing com-
plementary insights to more traditional surveys. In Fig. 3, we sum-
marize our resulting taxonomy, which consists of 8 top categories and
36 subcategories. Some top categories encompass a number of dis-
tinct subcategories: for example, under Vaccine Safety, we include
normal side effects, severe side effects, concerns about reproductive
health, vaccine history and development, FDA approval, fear of
vaccine-caused deaths, and eerie fears (e.g., myths about vaccine
shedding or becoming magnetic®).

Vaccine holdouts and early adopters

We use our vaccine intent classifier to identify two groups: vaccine
early adopters, who expressed their first vaccine intent before May
2021, and vaccine holdouts, who waited until July 2021 to show their
first vaccine intent, despite becoming eligible by April**. Comparing
the search behavior of these two groups allows us to discover rela-
tionships between vaccine seeking, vaccine concerns, and news con-
sumption. To reduce potential confounding, we match each holdout
with a unique early adopter from the same county and with a similar
average query count, since we know that the populations seeking
vaccination changed over time and we do not want our comparisons to
be overpowered by regional or demographic differences. In our fol-
lowing analyses, we compare the search interests of the matched sets,
with over 200,000 users in each set.

First, we analyze the trustworthiness of news sites clicked on by
vaccine holdouts versus early adopters. We use ratings from News-
guard, which assigns trust scores to news sites based on criteria such as
how often the site publishes false content and how it handles the
difference between news and opinion®. We find that, in the period
while vaccine holdouts were eligible but still holding out (April to June
2021), holdouts were 67% (95% Cl, 66%-68%) likelier than their mat-
ched early adopters to click on untrusted news, defined by Newsguard
as domains with trust scores below 60. Furthermore, we see that as the
trust score from Newsguard degrades, the likelier it was that holdouts
clicked on the site, relative to early adopters (Fig. 4a), with a negative
correlation of r=-0.41. For example, sites that are known for

spreading COVID-19 misinformation, such as infowars.com’®,
RT.com”, and mercola.com®®, were much likelier to be clicked on by
holdouts. On the other hand, the negative relationship between trust
score and relative likelihood of holdouts clicking only becomes
stronger for mainstream news (r=- 0.56), showing that this relation-
ship is not driven by fringe, outlier news domains. These results extend
prior work linking vaccine hesitancy and misinformation®>**’ by
measuring news consumption more directly (through search clicks
instead of posts on social media) and showing that holdouts are still
consuming vastly different news from early adopters, even after con-
trolling for regional politics (by matching on county).

Distinctive vaccine concerns of holdouts

Using our taxonomy of vaccine concerns, we find that at the top
category-level, vaccine holdouts are the most concerned about Vac-
cine Safety, which accounts for 23% of their vaccine-related clicks,
followed by Vaccine Information (10%) and Vaccine Requirements
(9%). We also observe changes in interests over time (Fig. 4b): for
example, interest in Vaccine Incentives increased in May 2021, when
incentives were introduced®®, and interest in Vaccine Effectiveness
grew in June, following the spread of the Delta variant.

We also compare the vaccine concerns of holdouts and their
matched early adopters. From April to June 2021, we find that holdouts
were 48% less likely than early adopters to click on any vaccine-related
URL. Furthermore, their distribution of concerns within their vaccine-
related clicks differed significantly (Fig. 4c, Table S6). Using the sub-
categories from the taxonomy, we find that holdouts were far more
interested in religious concerns about the vaccine; anti-vaccine mes-
sages from experts and high-profile figures; avoiding vaccine
requirements by seeking exemptions, banning mandates, or obtaining
fake proof of vaccination; eerie fears and vaccine-caused deaths; and
FDA approval and vaccine development. In comparison, early adopters
were much more concerned about normal side effects, vaccine effi-
cacy, comparing different types of vaccines, and information about
each vaccine (Moderna, Pfizer, and Johnson & Johnson). These differ-
ences reveal the importance of a fine-grained taxonomy; for example,
at the top category level, we would see that both groups were inter-
ested in Vaccine Safety but miss that early adopters were more con-
cerned about normal and severe side effects, while holdouts were
more concerned about eerie fears and vaccine-caused deaths.

Our taxonomy also reveals significant variability in vaccine con-
cerns within holdouts. We observe significant differences across
demographic groups; for example, holdouts from more Democrat-
leaning ZCTAs were particularly concerned about FDA approval and
vaccine requirements, while holdouts from more Republican-leaning
ZCTAs were more concerned about eerie fears and vaccine incentives
(Fig. S13). Using clustering methods, we also discover holdout profiles
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Fig. 3 | Taxonomy of vaccine concerns. Our taxonomy consists of 8 top categories and 36 subcategories.

directly from their expressed vaccine concerns. Four distinct profiles
emerge (Fig. S16): one represents the stereotypical holdout (interested
in vaccine misinformation and anti-vaccine messages), one focused on
government policies (vaccine requirements and incentives), one
engaging with decision-making (analyzing pros and cons of receiving a
COVID-19 vaccine), and one seeking information about specific vaccine
brands and side effects. These profiles illustrate different types of
holdouts, who vary in their openness to the vaccine and their key

concerns, which implies that policymakers need to go beyond one-
size-fits-all solutions to address vaccine hesitancy.

Holdouts appear like early adopters when seeking the vaccine

In our final analysis, we exploit the fact that all of our vaccine holdouts
eventually expressed vaccine intent to explore how vaccine concerns
change as an individual converts from holdout to adopter. From July to
August 2021, we analyze how holdouts’ vaccine concerns change in the
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vs. early adopters' relative probabilities of clicking on each subcategory (from April
to June 2021) reveals each group’s distinctive concerns. Exact values are reported in
Table S6. d Near when holdouts express vaccine intent ( + 3 days) in July and August
2021, their concerns become much more like the concerns of early adopters, with a
few important differences. Exact values are reported in Table S7. In (c-d) error bars
indicate 95% Cls computed over 1000 bootstrapped samples (“Analyses of news
consumption and vaccine concerns”).

small window (+3 days) surrounding their expressed vaccine intent,
compared to their typical concerns outside of that window. We find
that in those windows, holdouts’ vaccine concerns nearly reverse, such
that they look much more like early adopters than their typical selves
(Fig. 4d nearly reverses 4c). During this time, holdouts become far
more interested in the Johnson & Johnson vaccine, comparing differ-
ent vaccines, and vaccine incentives, and less interested in anti-vaccine
messages and vaccine fears (Table S7). Notably, not all early adopter-
leaning concerns reverse as dramatically; for example, even while
expressing vaccine intent, holdouts remain less interested in the Pfizer
and Moderna vaccines, which may reflect how vaccine hesitant indi-
viduals were quicker to accept the one-shot Johnson & Johnson vac-
cine, instead of the two-shot mRNA vaccines®®’, Furthermore, there
are some early adopter-leaning concerns that holdouts do not pick up
on during this time, such as interest in regional vaccine rates. We
hypothesize that these concerns are more reflective of an early
adopter personality rather than of concerns that become immediately
relevant when seeking the vaccine, such as comparing different vac-
cines. Finally, we study the problem of trying to predict when a holdout
will show vaccine intent, and we show that vaccine concerns and news
consumption from the past week both significantly improve predictive
performance. Thus, search logs reveal which holdouts are closer to
conversion, which—if deployed with proper privacy protections—can
help to guide budgeted interventions from policymakers.

Discussion

We have demonstrated how large-scale search logs and machine
learning can be leveraged for fine-grained, real-time monitoring of
vaccine seeking and vaccine concerns. Still, there are limitations to our
approach: for example, while we can achieve finer granularity than
existing data, we still miss within-ZCTA heterogeneity in vaccine intent.
Furthermore, our efforts to minimize bias in the estimated vaccine

intent rates are substantial but imperfect (e.g., we can only approx-
imate the true and false positive rates of our classifier). We also assume
in this work that vaccine intent can be detected through single queries
or clicks, but more sophisticated models could incorporate entire
search sessions or browsing data beyond search. However, in favor of
simplicity and considerations of privacy, we label vaccine intent at the
query and click-level. We are mindful throughout this work of the need
to balance privacy and social benefits when using potentially sensitive
user data. For this reason, we only link as much as we need at the
individual-level (e.g., without demographic attributes or browsing
data) and only report aggregated results.

Despite these limitations, our resources demonstrate strong
agreement with existing data and enable analyses that have not
been available before. Our vaccine intent classifier achieves high
correlations with vaccination rates reported by the CDC, but it also
allows us to estimate vaccine rates down to the ZCTA-level. This
spatial granularity supports more precise analyses and interven-
tions; for example, the finer-grained estimates can help public
health officials to identify under-vaccinated communities, inform-
ing where to place vaccine sites or whom to prioritize in online or
real-world outreach programs. Our vaccine intent signals also pre-
cede and improve prediction of daily vaccinations, showing pro-
mise as information that policymakers could use to preempt
vaccine demand. Finally, the real-time nature of search signals
opens up opportunities to assess the effects of interventions, such
as determining if a new public service announcement is responsible
for a proximal rise in vaccine interest, or understanding how people
learned about a new vaccination location through search.

While our vaccine intent classifier can be harnessed to provide
insights about where to intervene and for whom, our taxonomy and
analyses of vaccine concerns inform how to intervene. Search logs
offer a glimpse into individuals’ genuine interests and exposure to
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content, without depending on self-reported survey data or user-
generated content on social media. By examining holdouts’ online
news consumption and specific vaccine concerns, our findings could
help shape messaging strategies in vaccination campaigns. For exam-
ple, we show that even within holdouts, their key vaccine concerns
vary significantly across demographics and profiles, requiring tailored
messages to address vaccine hesitancy. Furthermore, we provide novel
insights about the temporal dynamics of vaccine concerns and vaccine
seeking. Our observation that holdouts resemble early adopters when
they eventually seek vaccination indicates that individuals might fol-
low similar paths towards vaccine acceptance. Future work could try to
model these trajectories, such as identifying key influences (e.g., vac-
cine mandates) that move individuals along the path toward accep-
tance. Finally, our finding that recent vaccine concerns and news
consumption predict the timing of vaccine intent suggests that search
logs can help to allocate limited resources for interventions (e.g.,
online advertising campaigns), by identifying individuals who are clo-
ser to conversion.

Our methods demonstrate the potential of large-scale computing
platforms, utilized by millions nationwide, to offer valuable anon-
ymized public health signals that might be otherwise challenging to
acquire. Particularly given the decentralized nature of the US public
health system, depending on a patchwork of state and county public
health agencies, insights based on data drawn from nationwide com-
puting platforms can play a valuable integrative role. While we focus in
this work on the COVID-19 vaccine in the US, our approach is not
specific to this vaccine or location, and we hope that future work can
extend our methods to study vaccination behaviors in other countries
and languages, as well as examining the deployment and adoption of
other vaccines.

To facilitate policy impact and future research, we have released
our vaccine intent estimates and our taxonomy of vaccine concerns.
We hope that these resources will be useful to policymakers and
researchers so that they can conduct detailed analyses of COVID-19
vaccine rates, such as evaluating the efficacy of vaccine distribution
plans and studying disparities in vaccination rates. The taxonomy can
also be employed widely in web and social media research, since it
includes tens of thousands of URLs and their categorization. For
example, it can be used to study how certain classes of URLs (e.g., eerie
fears) are disseminated on social media or surfaced by search engines.
Finally, we note that our graph-based machine learning techniques for
intent detection on search are applicable beyond vaccines, and could
be applied to precisely detect other intents of interest, such as regis-
tering to vote or filing for stimulus checks. More broadly, we hope that
our work can serve as a roadmap for researchers of how to derive
rigorous behavioral and health insights from search logs, including
how to precisely detect user intents and interests, evaluate and correct
for bias in estimates, validate predictions against external data, and
release resources to promote reproducibility, transparency, and
future work.

Methods

The Methods section is structured as follows: In “Datasets”, we discuss
the datasets we use, including Bing search logs, CDC vaccination rates,
and data from the US Census. In “Vaccine intent classifier”, we describe
our methods to develop a vaccine intent classifier. In “Estimating
vaccine intent rates and correcting for bias”, we discuss how we apply
our classifier to estimate regional vaccine intent rates, correct for and
evaluate bias in our estimates, and compare to external data from the
CDC and Google. In “Taxonomy of vaccine concerns on search”, we
describe our methods to construct our taxonomy of vaccine concerns.
Finally, in “Main analyses”, we provide methodological details about
our main analyses. Supplementary analyses, figures, and tables are
provided in the Supplementary Information (SI).

Datasets

Bing search logs. Our work leverages billions of anonymized search
logs from Bing. Bing is the second largest search engine worldwide and
in the US, with a US market share of around 6% on all platforms and
around 11% on desktop®. Despite having non-uniform coverage across
the US, Bing has enough penetration across the country that we can
estimate representative samples after applying inverse proportional
weighting (“Coverage-corrected vaccine intent rates”). The Bing data
we use consist of individual queries made by users, where for each
query, we have information including the text of the query, an anon-
ymized ID of the user, the timestamp, the estimated geolocation (ZIP
code, county, and state), and the set of URLs clicked on, if any. Since
our work is motivated by insufficient vaccine data and vaccine con-
cerns in the US, we limit our study to search logs in the US market.
However, the methods we introduce could be extended to study vac-
cination rates and vaccine concerns in other languages and countries.
We apply our vaccine intent classifier (“Vaccine intent classifier”) to
Bing search logs from February 1 - August 31, 2021. February 2021 was
the earliest that we could study following data protection guidelines,
which allow us to store and analyze search logs up to 18 months in the
past. We end in August 2021, since the FDA approved booster shots in
September and our method is not designed to disambiguate between
vaccine seeking for the primary series versus boosters. Our work was
approved by the Bing product team, in addition to other privacy offi-
cers at Microsoft (see Data ethics below).

US Census. We estimate vaccine intent rates at the level of ZIP code
tabulation areas (ZCTAs)®, since they are the smallest Census-tracked
unit to which we can reliably map Bing queries and users (“Coverage-
corrected vaccine intent rates”). To characterize demographic trends
in vaccine intent, we use ZCTA data from the US Census’ 2020 5 year
American Community Survey®. The demographic variables we use are
total population size, percent female, percent of different age groups
(e.g., under 18, over 65), percent of different races/ethnicities (White,
Black, Asian, Hispanic), percent with Bachelor's degree or higher, and
population per square meter (in log scale), which divides the popula-
tion size by the ZCTA'’s land area®. To create map visualizations (e.g.,
Fig. 2a), we also use the 2020 ZCTA, county, and state shapefiles
provided by the US Census®’.

Reported vaccination rates. To evaluate our vaccine intent classifier,
we compare it to reported vaccination rates in the US (“Comparison to
reported vaccination rates”). First, we use data from the Centers for
Disease Control and Prevention (CDC), who provide daily cumulative
vaccination rates at the levels of states®® and counties®. They provide
different measures, including the total number and percentage of
population who have received at least one dose, completed a primary
series, received a booster shot, received a second booster shot, and so
on. The CDC does not provide ZCTA-level vaccination rates, but they
are provided by some states, such as New York and California. We use
two ZCTA-level datasets, one from the California Department of Public
Health’® and one from 16 large US cities, which were compiled by the
Big Cities Health Coalition’s COVID-19 Health Inequities in Cities
Dashboard” and made available by Bilal et al.”>.

Elections data. To capture political lean per region, we use county-
level data from the 2020 US presidential election, which we purchased
online”. In our analyses, we use “percent Republican” as a variable, i.e.,
the percentage of overall votes cast in the county that went to the
Republican nominee Donald Trump.

Newsguard data. We use data from Newsguard to label the trust-
worthiness of different news sites. Newsguard assigns numerical trust
scores to news sites based on nine journalistic criteria, such as how
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often the site publishes false content, how responsibly it collects and
presents information, how it handles the difference between news and
opinion, and how transparent it is about its funding®. News sites with
scores above 60 are considered Trusted and below 60 are considered
Untrusted. They also categorize other sites as Satire or Platform, but
these sites are not given numerical scores since the criteria are not as
relevant. In our analysis, we focus on the Trusted and Untrusted sites
with numerical scores (“Analyses of news consumption and vaccine
concerns”).

Google search trends. To evaluate the representativeness of Bing
search trends, we compare them to Google search trends (“Compar-
ison to Google search trends”). Google allows individuals to view
aggregated, normalized search trends for any query with enough
users’™. The trends for that query over time and across subregions
(e.g., US states) are then available for download.

Data ethics. Our work was approved by both the Microsoft IRB office,
and by an internal privacy review process which included privacy
officers from both Microsoft Research and the Bing product team.
Together, we worked to ensure that our use of Bing search logs was
consistent with Bing’s privacy policy (which explicitly lists research as a
possible use of search data), and with relevant company best-practices.
When we use search logs, we are mindful of the need to balance privacy
and social benefits when using potentially sensitive user data. While we
study individual search logs, since we need to be able to link individual
vaccine intent to search interests, those sessions are assembled using
only anonymous user identifiers, which are disassociated from any
specific user accounts or user profiles, and cannot be linked to any
other Microsoft products. Likewise, in this anonymous view of the
logs, location and demographic data were limited to ZIP code-level
accuracy. Finally, we are careful to only report results aggregated over
thousands of individuals. Aside from Bing search logs, all of the data
sources we use here are publicly available and aggregated over many
individuals.

Vaccine intent classifier

We develop a vaccine intent classifier to detect users who are
expressing vaccine intent, i.e., seeking the COVID-19 vaccine with web
search. As we discuss in the main text, we can use regular expressions
to identify queries expressing vaccine intent, such as [where can i get a
covid vaccine]. However, intent can also be clarified through clicks on
search results*®, such as clicking on the CVS registration page for the
COVID-19 vaccine. The challenge with URLs is that we cannot easily
define regular expressions to identify the ones expressing vaccine
intent. Instead, our approach is to construct query-click graphs, then
to use a combination of graph-based machine learning techniques and
manual annotation to identify a large set of vaccine intent URLs. Our
method consists of three steps: use personalized PageRank to propa-
gate labels from queries to URLs, so that we can generate a set of URL
candidates for manual annotation (“Personalized PageRank for URL
candidates”); present the URL candidates to external annotators on
Amazon Mechanical Turk to label as vaccine intent or not (“Annotation
on Amazon Mechanical Turk”); use the labels from the previous step to
train graph neural networks so that we can further expand our set of
vaccine intent URLs (“Graph neural networks for URL expansion”).

Personalized PageRank for URL candidates

Constructing query-click graphs. Our first goal is to construct query-
click graphs that broadly cover searches related to COVID-19 and the
vaccine. First, we collect all queries that contain any word from the

following list of keywords: {“covid”, “corona”, “pandemic”, “covl9”,
“virus”, “variant”, “vaccin”, “vacin”, “vax”, “dose”, “shot”, “booster”,
“rollout”, “roll out”, “fda”, “cdc”, “johnson”, “jj”’, “janssen”, “pfizer”,
“phizer”, “biontech”, “moderna”, “astrazeneca”, “mrna’}. We

constructed this list by starting with a smaller core set, {“covid”,
“vaccine”, “vaccin”, “booster”}, collected queries that included any of
those words, and looked through the top 1000 words that appeared in
those queries. Then, we also collect all queries and clicks that co-
occurred in a search session with any of these queries. Using co-
occurrence allows us to capture vaccine-related queries and URLs that
do not include the keywords, such as California’s vaccine scheduling
page, myturn.ca.gov. We construct a query-click graph from all of
these queries and clicks, with queries and URLs as nodes. Our graph
consists of two types of edges: first, an edge from query A to query B
represents that A preceded B in a search session; second, an edge from
a query to a URL represents that searching that query led to a click on
that URL. In both cases, the edge weight indicates the number of times
this relationship appears in our data.

Since URLs may appear or disappear over time, we collect queries
and clicks from two spread-out months in our study period, April 1-30,
2021 and August 1-31, 2021. We construct query-click graphs separately
for every US state, since we find that the classifier performs better
across states when we build different graphs and models per state
(“Bias in vaccine intent classifier”). We also perform minor pre-
processing at this step: we lower-case queries, drop queries that are
implausibly long (over 100 characters), and drop clicks that are not on
URLs (e.g., “javascript:void”).

Personalized PageRank from query seed set (S-PPR). We define
vaccine intent queries as those that are unambiguously seeking the
COVID-19 vaccine with web search. To be included, the query must
include both a COVID-19 term (“covid” or “coronavirus”) and a vaccine
term (“vaccin”, “vacin”, “vax”, “dose”, “shot”, “booster”, “johnson”,
“pfizer”, or “moderna”). In addition, the query must satisfy at least one
of the following criteria: (1) matching some variant of “find me a
COVID-19 vaccine”, (2) containing appointment-related words (e.g.,
“appointment”, “sign up”) or location-seeking words (e.g., “near me”,
“where can i get”), (3) containing a pharmacy name. We try to capture a
representative list of pharmacy names by including almost all phar-
macies that provided the COVID-19 vaccine through the Federal Retail
Pharmacy Program for COVID-19 Vaccination, which includes 21
pharmacy partners and their many subsidiaries”. Based on an
inspection of the queries containing each pharmacy name, we drop a
few names that are ambiguous (e.g., United is a pharmacy, but “united”
can be confused with United States or United Airlines).

To identify URL candidates for vaccine intent, we use persona-
lized PageRank. Personalized PageRank*® is a common technique for
seed expansion, where a set of seed nodes in a graph are identified as
members of a community, and one wishes to expand from that set to
identify more community members*. In our case, the vaccine intent
queries act as our seed set, and our goal is to spread the influence from
the seed set over the rest of the query-click graph. For a given seed set
S, personalized PageRank derives a score for each node in the graph
that represents the probability of landing on that node when running
random walks from S. The hyperparameter a controls the lengths of
the random walks by defining the probability of continuing the ran-
dom walk versus teleporting back to the seed set. In our work, we use
the default a=0.85. Personalized PageRank naturally trades off
between favoring nodes that are closer to the seed set (if random walks
are shorter) and nodes that are central in the network (if random walks
are longer). These are also the two desiderata of the URL candidates we
hope to find: they should be close to the vaccine intent queries in the
graph and, to achieve high utility from labeling, they should be central
and high-degree (i.e., we would not want to “spend” a label on a URL
that is rarely clicked on).

Thus, we run personalized PageRank from the seed set of vaccine
intent queries (S-PPR) to derive scores for all URLs in each query-click
graph. S-PPR also provided scores for all queries in the graph, but we
found that our seed set was quite comprehensive in identifying
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unambiguous queries. The top-ranked queries that were not in the
seed set tended to be location-specific, such as [covid vaccine new
york], which were suggestive of vaccine intent, but we decided were
not unambiguous enough (e.g., they could be seeking vaccine loca-
tions in New York, but could also be seeking information about vaccine
eligibility or requirements in New York).

Selecting URL candidates. In this step, we select the URL candidates
that external annotators will manually label for vaccine intent. First, we
filter out URLs that do not begin with “http”, which leaves out URLs
that are ads, internal links to other Microsoft verticals (e.g., News,
Videos), and telephone numbers. Then, we order the remaining URLs
in each state according to their S-PPR scores, from highest to lowest.
We keep the union over states of their top 100 URLs as our set of URL
candidates, resulting in 2483 candidates. The number of URLs we have
from taking the union over states is much lower than the number of
states multiplied by 100, since there is overlap between states. For
example, the COVID-19 vaccine page for Walgreens is one of the most
common URLs, appearing in the top 100 for all 50 states with an
average ranking of 5.46 (where O indicates top-ranked). However,
there is also substantial heterogeneity in top URLs across states,
reflecting state-specific vaccine programs and policies (Table S1). By
constructing separate graphs and running S-PPR per state, our
approach is uniquely able to capture this state-specific heterogeneity.
In “Bias in vaccine intent classifier”, we show how alternative approa-
ches that use a combined graph for multiple states severely hurt per-
formance for small states.

Before presenting our URL candidates to annotators, we perform
additional post-processing on the candidates in the union set. First, we
identify highly similar URL patterns that appear (such as the CVS store
locator for the COVID-19 vaccine, which always begins with www.cvs.
com/store-locator/cvs-pharmacy-locations/covid-vaccine/), and only
keep up to 5 URLs per pattern, so that our annotations are not overly
repetitive. This process reduces our set to 2222 URLs. Second, a lim-
itation of our annotations is that we collected these annotations
approximately a year after the end of our study period (August 2021).
From our search data, we know the original URL that they clicked on,
but we do not have the original contents of the page. To identify URLs
that redirect to different pages now, for each URL candidate, we
compute the normalized edit distance between the requested URL and
the URL it redirects to by taking the Levenshtein distance divided by
the length of the requested URL. We keep URLs with a normalized edit
distance less than or equal to 0.2, which keeps around 80% of URLs. In
other cases, the contents of the page may have changed while the URL
remained the same. However, we/the annotators are able to see the
original URL that was clicked on, and URLSs are often informative, since
they are often a hyphenated version of the page title or closely related
to it. Furthermore, many of the URLs labeled were news articles, which
do not tend to change over time. Finally, our classifier also relies
heavily on queries, and we can see the original query. So, content shift
on the page is a limitation, but this concern is mitigated by redirected
URLs being removed, the original URL being available, limited time
between the study period and annotation period, news articles rarely
changing over time, and the classifier also relying on queries.

Annotation on Amazon Mechanical Turk

Gathering annotations. In this step, we present our URL candidates to
annotators on Amazon Mechanical Turk (AMT). Our task instructs
them to click on the presented URL and to answer based on what they
see. The first question we ask is, “Given that a person clicked on this
page during a search session, how sure are you that this person is
seeking to get the COVID-19 vaccine (any dose or booster)?” (Fig. Sla).
We provide options from Highly Likely to Unlikely, as well as Missing
Page. If the annotator selected Likely, Ambiguous, or Unlikely, we ask
them to indicate what other intention(s) the person might have, such

as seeking information about vaccine safety or COVID-19 testing
(Fig. S1b). While we use the answers to the first question to construct
our vaccine intent labels, we include the second question to encourage
annotators to think broadly about vaccine-related searches, so that
they would only label positively for vaccine intent if the URL seemed
unambiguous. To validate our vaccine intent queries, we also present a
sample of queries to annotators. To capture a diverse sample, we use
the union over the top 5 and bottom 5 vaccine intent queries per state,
after filtering out queries that were issued by fewer than 50 users (for
privacy reasons) and sorting the remaining ones by their S-PPR scores.
This results in 227 vaccine intent queries to label. In the query version
of our task, we ask very similar questions to those shown in Fig. S1 but
replace language about clicking on the URL with issuing the query.

To make sure our questions were clear, we conducted two internal
user studies, first with the authors doing a small pilot run, then with
recruited colleagues at Microsoft doing a larger pilot run. Our pilot
studies allowed us to test the design of the questions, but our final
vaccine intent labels were entirely based on the AMT labels that we
received. Our pilots also allowed us to estimate that each task (labeling
a single URL or query) would take around 30 seconds. We set the
compensation on AMT to $0.15 per task, which corresponds to an
hourly rate of around $18. Our AMT task was also approved by the
Microsoft IRB Office, in a separate application from our approved
analysis of Bing search logs, and we included a consent form in our
instructions that annotators were required to read and sign before
starting the task.

Annotation results. For each URL, we first present it to three anno-
tators. If all three give it a positive label (i.e., Highly Likely or Likely),
then we label this URL as vaccine intent. If two give it a positive label
and one does not, we consider this a “non-consensus” URL, and we
assign it to one more annotator. If that annotator gives it a positive
label, then we also label this URL as vaccine intent. In other words, we
require vaccine intent URLSs to receive three positive annotations. With
this relatively strict bar, we still find that a large majority (86%) of our
URL candidates are labeled as vaccine intent. We also find a very high
positive rate among the vaccine intent queries that we tested. Using
the same annotation process and requirement of three positive labels,
we find that 96% of the vaccine intent queries we test are labeled as
true vaccine intent. The ones that are not seem to be mislabeled due to
noise and our high bar for inclusion, since on inspection, they do seem
to unambiguously communicate vaccine intent (e.g., [covid vaccines
walgreens]).

Furthermore, we observe a clear relationship between S-PPR rank
and the percentage labeled as vaccine intent: for example, around 90%
of URLs from ranks O to 20, around 81% of URLs from ranks 40-60, and
around 71% of URLs from ranks 80 to 100 (Fig. S2). The agreement
between S-PPR rank and our acquired annotations both support the
ability of S-PPR to predict vaccine intent remarkably well and provides
evidence that the annotations are meaningful. We also calculate
interannotator agreement on this task. As before, we bucket the
annotations into positive (Highly Likely or Likely) and negative
(Ambiguous or Unlikely) labels. Then, we compute the observed
agreement Py between annotators over all URLs and pairs of annota-
tors. Let pos(i) and neg(i) represent the number of positive and nega-
tive labels received for URL i, respectively; note that pos(i) + neg(i) < 4,
since we have at most four annotators per URL.

p . - Lpos) - (pos) —1)+neg(i) - (neg(i) —1)
0" " S (pos(i) + neg(i))(pos(i) + neg(i) — 1).

@

We find Py =73%, which is substantially higher than what we would
expect to see by chance (50%), which results in a Randolph’s k¢ of 0.46.
We use Randolph’s x, which is appropriate for our setting since it
allows for multiple, flexible number of raters per data point, while
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Fleiss’ k assumes fixed marginals (i.e., equal number of raters). Finally,
for additional quality control, we review the URLs labeled as vaccine
intent and find that the majority of them seem correct. We remove a
small number of URLs that still seem slightly ambiguous, e.g., the
COVID-19 page for a jurisdiction that may not be vaccine-specific. In
our review, we also find common URL patterns, such as COVID-19
vaccine store locators for CVS or Walmart. We define regular
expressions matching these patterns so that we can detect these types
of URLs too, even if they are not in our predefined vaccine intent set.

Graph neural networks for URL expansion. Since manual annotation
is expensive, we wish to augment our manual efforts by training
machine learning models on the AMT labels, then use the models to
expand our set of vaccine intent URLs. We formulate this problem as
semi-supervised node classification on a graph, since the URLs are
nodes in the query-click graph and we are trying to predict whether a
URL indicates vaccine intent or not, given labels for a subset of URLs.
To solve this problem, we use graph neural networks® (GNNs), which
are a powerful class of machine learning models for graph-structured
data that naturally incorporate graph structure and node features into
prediction.

Training GNNs to predict vaccine intent. Our model consists of two
character-level convolutions (CNN), followed by three graph con-
volutions (GCN), followed by a final linear layer and sigmoid activation
that produces the model prediction as a probability between 0 and 1.
We use the character-level CNN to capture textual information in the
queries and URLs, since text can be informative for this problem (e.g.,
the appearance of “vaccine” or “vax”). Character-level representations
are more natural for URLs, which often join words through hyphens or
concatenation, or use abbreviations or truncated words. Character-
level representations also allow us to account for typos in queries. The
graph convolutions then allow us to learn representations of URLs that
draw from the representations of their neighboring queries, which
draw from the representations of their neighboring URLs, and so on. In
this way, we can capture “similar” URLs in embedding space (similar in
terms of both text and graph structure), which allows us to learn
embeddings that are predictive of vaccine intent.

Given the query-click graph for a state, we label a URL node as 1 if
the URL was labeled as vaccine intent from AMT (following the inclu-
sion criteria described in the previous section) or if it matches one of
the regular expressions we identified for vaccine intent URLs. We label
it as O if at least two AMT annotators gave the URL negative labels
(Ambiguous or Unlikely) or if it matches a regular expression we
identified as not vaccine intent, such as general store locators for
pharmacies. To train and test our model, we randomly split the URL
labels into a train set (60%), validation set (15%), and test set (25%). We
train the model on the train set, iteratively updating model parameters
with gradient descent on the train loss (cross-entropy loss) and eval-
uating its loss on the validation set. We continue training until the
model’s validation loss is no longer improving. Finally, we evaluate the
model’s performance on the held-out test set using area under the
receiver operating characteristic curve (AUC), a standard metric in
machine learning. In “Bias in vaccine intent classifier”, we additionally
evaluate the model’s true and false positive rates, which are central to
evaluating the model’s bias (“Decomposition of bias”).

However, some states have much smaller graphs, and therefore,
fewer positive and negative labels. For example, for the state of
Wyoming, we only have 245 positive and 276 negative URLs. We find
that with such few labels, the model cannot adequately learn how to
predict vaccine intent, with AUCs far below those of large states
(Table S2). Additionally, as we show below, we find that joining state
graphs into one combined graphs also results in worse performance
for smaller states, since larger states’ labels and query-click patterns
dominate. Instead, our key insight is that we can retain state-level

graphs and models, but we pre-train the model for smaller states on
S-PPR rankings (“Personalized PageRank for URL candidates”), which
we have for many more URLs than we have labels for. Our intuition is
that S-PPR already performed remarkably well at predicting vaccine
intent, as we showed in our annotation results (“Annotation on Ama-
zon Mechanical Turk”). Furthermore, S-PPR rankings do not require
any additional manual labels; we derive them entirely from our initial
vaccine intent queries, which were automatically labeled using regular
expressions. In practice, before training the model on the URL labels
from AMT and regular expressions, we train the model to predict the
URLs’ S-PPR rankings that we derived in Step 1. Since S-PPR rankings
become less meaningful in the long tail of URLs, we focus on the top
K = max(1000,g,,x) S-PPR rankings, where g, is the maximum rank
(where lower rank corresponds to higher S-PPR score) of the last seed
set query. This pre-training encourages the model to learn URL
representations that are predictive of S-PPR rankings, which we find
help substantially with the ultimate task of predicting vaccine intent.

Evaluating GNN performance. We evaluate model performance on
the held-out test set by computing its AUC, which captures how well
the model trades off between its true positive rate and false positive
rate. Furthermore, to account for randomness from model training
and data splitting, we run 10 random trials for every model/state,
where in each trial, we re-split the URL labels into train, validation, and
test sets, retrain the model on the train set (stopping based on the
validation loss), and re-evaluate the model’s final performance on the
test set.

First, we select six representative states, chosen to vary in graph
size and US region, to test the effect of pre-training on S-PPR rankings.
We find that pre-training significantly improves performance for the
smaller states; for example, the mean AUC for Wyoming increases
from 0.74 - 0.95 (Table S2, Fig. S3). Specifically, due to the low number
of URL labels for smaller states, we observe great variance in the
model’s performance if we do not pre-train the model, leading to some
trials that perform well and some that perform poorly. Performance
becomes far more stable for smaller states after we incorporate the
pre-training objective. We find that pre-training seems unnecessary for
the larger states, such as Connecticut and Tennesssee, where we are
already achieving high AUCs above 0.98. So, we set a generous cutoff
of 5,000,000 nodes (still larger than the graph size for Connecticut)
and we pre-train all states with fewer than 5,000,000 nodes in our
data, of which there are 26. After incorporating pre-training for these
smaller states, we are able to achieve AUCs above 0.90 for all 50 states
and above 0.95 for 45 states (Fig. S4). These results demonstrate that
our GNNs are able to accurately predict vaccine intent labels in all
50 states, which is essential as we use our GNNs to discover new vac-
cine intent URLs.

In the SI, we conduct a supplemental analysis showing that, before
providing the GNN with any URL labels, the GNN pre-trained on S-PPR
rankings already outperforms S-PPR at predicting URL labels (Fig. S17),
by 10-15 points in AUC. These results show that, due to the expressive
power of the GNN (with character-level CNN) and the predictive power
of S-PPR from a well-designed seed set, we can achieve decent per-
formance without any labels at all. These methods, which could be
explored more deeply in future work, may be useful in a zero-shot
context, allowing lightweight, effective prediction before acquiring
any labels.

Discovering new vaccine intent URLs. Finally, we use our trained
GNNs to identify new vaccine intent URLs. We apply our GNNs to
predict scores for all unlabeled URLs within the top K URLs according
to S-PPR ranking (again, with K = max(1000,q,,,,))- However, in order
to decide which new URLs to include as vaccine intent, we need to
determine a score threshold. Our goal is to set the threshold such that
any URL that scores above it is very likely to truly be vaccine intent (i.e.,
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we want to have high precision). Borrowing the idea of “spies” from
positive-unlabeled learning”’, our idea is to use the held-out positive
URLs in the test set to determine where to set the threshold. We
consider two thresholds: (1) tneq, the median score of the held-out
positive URLs, and (2) fprec, the minimum threshold required to
achieve precision of at least 0.9 on the held-out test set. Then, we only
include URLs that pass both thresholds in at least 6 out of the 10
random trials (where, as described before, we reshuffle the data and
retrain the model per trial).

Our method is similar to common “big data” approaches that, due
to the scale of unlabeled data, seek to manually annotate a subset of
data, train machine learning models to accurately predict those labels,
then use those models to label the rest of the data’®®. We extend this
approach with special attention to the classification threshold, setting
it high so that we can ensure high precision among the new URLs that
we discover. Even with this high threshold, we discover around 11,400
new URLs, increasing our number of vaccine intent URLs by 10 x. In
Table S3, we provide a uniform random sample of the URLs that our
GNNs discovered. The majority of them seem to express vaccine
intent, with several news stories about new vaccine clinics and infor-
mation about vaccine appointments. In the following section, we also
evaluate the impact of adding these URLs discovered by GNNs on our
ability to estimate regional vaccine intent rates. We find that the new
URLs not only increase our coverage of vaccine intent users by 1.5 x but
also further improve our agreement with reported vaccination rates
from the CDC (Table 1).

Estimating vaccine intent rates and correcting for bias

In this section, we discuss how we use our classifier to estimate
regional rates of vaccine intent and how we correct for and evaluate
sources of bias in our estimates.

Decomposition of bias. For a given individual, let v € {0, 1} indicate
whether they actually had vaccine intent (up to a certain time) and
U € {0,1} indicate whether our classifier labels them as having vaccine
intent. Furthermore, let r represent the individual’'s home region, such
as their state or county. We would like to estimate the regional vaccine
intent rate, Pr(v|r), but we do not have access to v, only to 0. To
understand how simply using 0 in place of v may bias our estimates, let
us relate Pr(0|r) to Pr(v|r). First, we introduce another variable b, which
represents whether the individual is a Bing user. Note that =1 implies
that b=1, since our classifier can only identify vaccine intent from
users who appear in Bing search logs. With these variables, we have

Pr(0=1r)= Pr(b=1|r)

Bing coverage of r

Prv=1r)Pr(v=1b=1,v=1,r)+ Prv=0|r)Pr(0=11b=1,v=0,r)|,
S—— —

Classifier TPR for r Classifier FPR for r

()]

where TPR and FPR are the true and false positive rates, respectively.
Pr(b =1|r) represents the probability that an individual from region r is
a Bing user, i.e., the Bing coverage of r. Incorporating b, v, and r into
Pr(0|b, v, r) reflects all of the factors that affect whether the classifier
predicts vaccine intent. As discussed, if the user is not a Bing user
(b=0), then the probability is 0, so we only consider the b =1 case. If
v=1, predicting & =1would be a true positive; if v = 0, it would be a false
positive. Conditioning  on region r reflects the possibility that indi-
viduals from different regions may express vaccine intent differently
and the classifier may be more prone to true or false positives for
different regions. Finally, we make the assumption here that b_1v|r; that
is, conditioned on the individual's region, being a Bing user and having
vaccine intent are independent. This misses potential within-region

heterogeneity, but to mitigate this in practice, we focus on fine-grained
regions (ZIP code tabulation areas, “Coverage-corrected vaccine
intent rates”).

Based on this decomposition, we can see that if Bing coverage,
TPR, and FPR are uniform across regions, then Pr(0|r) will simply be a
linear function of Pr(v|r). Unfortunately, we know that Bing coverage is
not uniform. However, we observe b=1 and can assign users to
regions, so we can estimate Bing coverage per region and correct by
inverse coverage. Thus, our estimate corresponds to a coverage-
corrected predicted vaccine intent rate, p(v, r) = g:(‘l’;j’;; If we refer to
the true vaccine intent rate as p(v, r), then we can see that p(v, r) is a
linear function of p(v, r) when TPR and FPR are uniform:

el = Prw=1jr)TPR+(1 - Prw=1|r))FPR 3
pw,r) = FPR +(TPR — FPR)p(v, ).

Furthermore, if FPR is low, then p(v, r) is approximately proportional
to p(v,r). Thus, our first two strategies for addressing bias in our
estimates are:
1. Estimate Bing coverage per region and weight by inverse coverage
(“Coverage-corrected vaccine intent rates”),
2. Evaluate whether we observe similar TPRs and FPRs across
regions and whether FPRs are close to 0 (“Bias in vaccine intent
classifier”).

These efforts are our first two lines of defense against bias. After
this, we can furthermore compare our final vaccine intent estimates to
established data sources, such as the CDC’s reported vaccination rates
(“Comparison to reported vaccination rates”) and Google search
trends (“Comparison to Google search trends”).

Coverage-corrected vaccine intent rates
Estimating Bing coverage. Our goal here is to estimate Pr(b=1|r), the
probability that an individual from region r is a Bing user. We focus on
ZIP Code Tabulation Areas (ZCTAs) as our fine-grained notion of
regions; for example, there are ~-10x more ZCTAs in the US than
counties. ZIP codes are the most granular geographic area that we can
assign Bing users to, since we have, for most Bing queries, a record of
which ZIP code the query came from. We focus on ZCTAs, which are
“generalized areal representations” of ZIP codes, since they are a unit
that the Census tracks and provides demographic information about®*.
We consider a Bing user “active” in a given month if they issue at
least 30 queries in that month. For most (over 90%) of queries, Bing
estimates the ZIP code, county, and state from which the query ori-
ginates. Based on an active user’s query-level ZIP codes from the
month, we assign the user to their mode ZIP code if the mode accounts
for at least 10 and at least 25% of these queries (with the same rules for
assigning county and state). We assume the mode is the user’s likeliest
home location from this month and include these additional require-
ments to avoid assigning users to locations that they just happened to
visit and query from, but do not live in. Focusing on active users with a
larger number of queries also improves our ability to reliably assign a
user to a location. We estimate N(b, z), the number of active Bing users
from ZCTA z, as the average number of active users assigned to z over
the months in our study period (February to August 2021). In most
instances, there is a one-to-one mapping from ZCTA to ZIP code, but
for the ZCTAs that contain multiple ZIP codes, we set N(b, z) to the sum
of average user counts over those ZIP codes. We also acquire N(z), the
population size of z, from the 2020 5year American Community

Survey®, Finally, we estimate the ZCTA’s coverage Pr(b=1|2) as N,\‘,f’z'?.

Computing vaccine intent rates with inverse coverage. Recall that
our goal i.s to festimate ﬁ(l_), 2)= ;’;gg;ﬂ;; TQ estimate l?r(ﬁ =1}2), we ap_ply
our vaccine intent classifier to all queries and clicks of active Bing

users. This produces N(?, z), the number of active Bing users from z for
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whom we detect vaccine intent. Then,

N@©,2)

_Pro=12) Nz _N®©,2)

“)

This is an intuitive result: our estimate for the vaccine intent rate in z is
the number of active Bing users with predicted vaccine intent divided
by the total number of active Bing users. We can use these ZCTA-level
rates to characterize demographic trends, such as by computing
correlations between p(v, z) and some demographic of z, such as its
percentage aged 65 and over. It is also often useful to aggregate p(v, z)
over sets of ZCTAs, e.g., to the state or county-level. To compute the
vaccine intent rate for a set Z of ZCTAs, we simply take the population-
weighted average:

ZZEZ N(Z) * ﬁ(ur Z)

50, 7)=
p(.2) ., NG

&)

For example, we use estimated state and county vaccine intent rates to
compare against reported vaccination rates from the CDC (“Compar-
ison to reported vaccination rates”). This population-weighted average
is equivalent to post-stratification®’, a common technique for adjusting
non-representative survey responses to match known population
totals, where we treat each ZCTA as a post-stratum.

Bias in vaccine intent classifier. Our primary source of bias is uneven
Bing coverage, which we found can vary by >2x across ZCTAs. How-
ever, after correcting for Bing coverage, we also want to know that our
classifier does not significantly contribute to additional bias. To do
this, we must establish that our classifier’s true and false positive rates
do not vary significantly or systematically across regions. The chal-
lenge is that we cannot perfectly evaluate our classifier’s true or false
positive rates, because we do not know all true positives or true
negatives. However, we can approximate these metrics based on the
labeled URLs that we do have and furthermore make methodological
decisions that encourage similar performance across groups.

Step 1: Personalized PageRank for URL candidates. Recall that in the
first step of our pipeline, we generate URL candidates for annotation
by propagating labels from vaccine intent queries to unlabeled URLs in
query-click graphs (“Personalized PageRank for URL candidates”).
Since all URL candidates then go through manual inspection in Step 2,
we do not have to worry about the false positive rate at this stage.
However, we do need to worry about the true positive rate (i.e., recall).
For example, if we only kept COVID-19 vaccine registration pages for
pharmacies that are predominantly in certain regions, then we could
be significantly likelier to detect true vaccine intent for certain states
over others. So, through the design and evaluation of our label pro-
pagation techniques, we aim to ensure representativeness in vaccine
intent across the US.

The most important design decision is that we construct query-
click graphs per state, then we run S-PPR per graph and take the union
over states of top URLs as our set of URL candidates. Running this
process separately for each state allows us to capture how vaccine
intent varies regionally, with state-specific programs and websites for
scheduling the vaccine (Table S1). To demonstrate the risks of not
using a state-specific approach, we try an alternative approach where
we construct a joint graph that combines the queries and clicks for
6 states, chosen to vary in graph size and US region (the same 6 states
as those used in the pre-training experiments of Table S2). To repre-
sent our union approach, we take the union over these 6 states of the
top 200 URLs per state, which results in 935 URLs. We compare this to
a joint approach, where we take the top 935 URLs from running S-PPR
on the joint graph. To evaluate each approach, we compute the

proportion of each state’s top N URLs that are kept across different
values of N. While we cannot be sure that every URL in the state’s top N
is truly vaccine intent, from our annotation results, we saw high posi-
tive rates for top-ranking URLs (Fig. S2), so we would like to see similar
recall at these ranks.

By design, our union-over-states approach ensures equivalent,
100% recall up to N =200 for all states (Fig. S5, left). In comparison, we
find that the joint approach yields different recalls as early as N=30,
with much higher recall for large states than small states (Fig. S5, right).
For example, it keeps <80% of Wyoming’s URLs around rank 50 and
<60% around rank 100, while keeping 100% of Tennessee’s through-
out. Furthermore, even past N=200, where our union-over-states
approach no longer has guarantees, we find that it still achieves far
more similar recalls between states than the joint approach. Thus, our
design decisions enable similar recalls between states, which helps to
reduce downstream model bias. We also cast a wide net when con-
structing query-click graphs (taking all queries and clicks that co-occur
in a session with any query that includes a COVID-19 or vaccine-related
word), which may also improve recall and reduce bias, in case our
choice of initial keywords was not representative of all vaccine intent
searches across the US.

Step 3: expanding vaccine intent URLs with GNNs. In the third step
of our pipeline, we use GNNs to expand our set of vaccine intent URLs
beyond the manually labeled ones. We would like to see that the per-
formance of GNNs is strong across states, to ensure that the GNN is not
creating additional bias when expanding the URL set. We showed in
“Graph neural networks for URL expansion” that, after incorporating
pre-training on S-PPR rankings for smaller states, GNNs could achieve
AUCs above 0.90 for all 50 states (Fig. S4, left). The main metrics of
interest when considering bias, however, are the true and false positive
rates (TPRs and FPRs). Unlike AUC, which is evaluated across decision
thresholds, TPR and FPR depend on the chosen threshold ¢ above
which data points are predicted to be positive. In our setting, we set
t= Max(¢medEprec), Since we required new vaccine intent URLs to score
above these two thresholds (in at least 6 out of 10 trials): (1) tyeq, the
median score of positive URLs in the test set and (2) £,rec, the minimum
threshold required to achieve precision of at least 0.9 on the test set.
Then, we estimate TPR as the proportion of positive URLs in the test
set that score above ¢ and FPR as the proportion of negative URLs in
the test set that score above t.

We find that TPR is highly similar across states and hovers around
0.5 for all states (Fig. S4, middle). This is because in almost all cases,
tmed is the higher of the two thresholds and thus the value of ¢, so the
true positive rate lands around 0.5 since ¢;,,eq is the median score of the
true positives. FPR is also highly similar across states and very low
(around 0.01; Fig. S4, right), which suggests that the quantity we
estimate, p(v, r), is not only a linear function of the true vaccine intent
rate, p(v, r), but also approximately proportional to it (Eq. (3)). The low
FPR is encouraged but not guaranteed by our second threshold, tprec.
This threshold ensures that precision is over 0.9, which is equivalent to
the false positive rate among the predicted positives being below 0.1,
which typically corresponds to low false positive rates over all true
negatives (which is what FPR measures). The GNN'’s similar AUCs, TPRs,
and FPRs across states, as well as the equivalent recalls in our label
propagation stage, increase confidence that our classifier is not adding
significant bias to our estimates. In this section, we focused on states,
since it was natural to evaluate performance per state due to the state-
specific query-click graphs and models, and since we expect the
expression of vaccine intent to vary most systematically per state due
to state-specific vaccine programs and policies. In the following sec-
tion, we continue this analysis by comparing our final p(v, r) estimates
per state to CDC vaccination rates, but we also test out finer-grained
evaluations, including vaccination rates over time and rates at the
county-level.
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Comparison to reported vaccination rates

Vaccination rates across states. The CDC releases vaccination rates
at the state and county levels. First, we compare against cumulative
state-level vaccination rates. As our measure, we have p(v, s) per state s,
the cumulative vaccine intent rate in the state up to August 31, 2021,
computed as described in Eq. (5). On the CDC side, we use the
cumulative proportion of population fully vaccinated by August 31,
2021. We use percent fully vaccinated, which means completing the
second dose of a 2-dose series or completing the first dose of a single-
dose series, instead of percent with at least one dose, since the CDC
reported the latter can be overestimated®. We find a strong Pearson
correlation between these cumulative rates, with r=0.86 (Fig. 1c).
Notably, we find that the correlation drops to r=0.79 if we do not
correct for Bing coverage in our estimates and use a naive estimate
instead that divides the total number of active users with vaccine
intent by the total population size of the state (both summed over

ZCTAs in the state), 2N . We also find that each step of our classi-

> N@)
fication pipeline improves the correlation with CDC (Table 1): if we only
use the seed set queries identified by our regex, r=0.62; if we use the
queries plus the URLs identified from manual annotation, r=0.80.
Furthermore, each step of our pipeline substantially increases the
number of vaccine intent users we detect, which provides additional
power for our downstream analyses.

Vaccination rates over time. We also compare against vaccination
rates over time. For a given state s and day ¢, we can compute
p(v, s, t), the vaccine intent rate on day ¢; this is equivalent to Eq. (5),
except we only count users who showed their first vaccine intent on
day ¢ instead of the cumulative count of users who have shown
vaccine intent up to day t. We compare our metric to the daily
proportion of individuals getting their first dose, since we expect the
timing of the first vaccine intent to align more with the first dose
than other doses, with a possible lag time. We can calculate the daily
proportion for first dose from the cumulative at-least-one-dose time
series provided by the CDC (by subtracting the cumulative count for
day ¢ from day ¢-1). Furthermore, we apply 1week smoothing to
both daily time series (taking the average from day ¢ - 6 to ¢, inclu-
sive), to smooth out daily effects such as potential underreporting
on the weekends. For this analysis, we compare time series from
April 1 to August 31, 2021, leaving out the months of February and
March since we expect that vaccine intent was less correlated with
actual vaccination rates early in the vaccine roll-out, since indivi-
duals would seek the vaccine but not be able to receive it yet (e.g.,
because they were not eligible or because there was not enough
supply). Then, we compute the Pearson correlation between the
smoothed daily time series, allowing the CDC time series to lag
behind the vaccine intent time series by [={0, 1, --- , 21} days.

For each state, we compute the maximum correlation possible
using the optimal lag. We observe strong temporal correlations, with
correlations above 0.7 for 48 states and a median correlation of
r=0.89. We also observe a substantial lag between the vaccine intent
and CDC time series, with a median optimal lag of 10 days (50% ClI, 7.5-
14.5); without any lag, the median correlation drops to r=0.78. In
Fig. S6, we visualize the vaccine intent and CDC vaccination time series
for the 15 largest states in the US. Almost all of the correlations are
strong except for North Carolina, where the CDC time series shows an
anomalous peak at the beginning of July 2021. This peak seems to be an
artifact of the CDC data, since it is so much larger and sharper than any
other peak we see and cannot be easily explained by concurrent news
or events. These anomalies further motivate the need for com-
plementary data sources, such as our classifier, that can also track
vaccine seeking over time. We also see from this figure that the optimal
lag varies across these states, but the CDC time series is always at least
1week behind vaccine intent.

We also test whether daily vaccine intent Granger-causes daily
CDC vaccinations. Granger causality tests whether using past values of
vaccine intent and past values of CDC vaccinations to predict current
CDC vaccinations significantly outperforms only using past values of
CDC vaccinations. Using a lag of 1week, we find that vaccine intent
does Granger-cause CDC vaccinations in the majority of states
(p < 0.05), using three different statistical tests (Table S4). Results are
similar for lags of 2, 3, and 4 weeks. These results demonstrate the
predictive utility of our vaccine intent signals, beyond correlations,
which can help policymakers preempt vaccinations and meet popu-
lation needs more efficiently. In the SI, we discuss how agreement
between search signals and real-world trends can change over time, as
they did for Google Flu Trends”, and how we mitigate such
temporal drift.

Vaccination rates across counties. We also compare to CDC county-
level vaccination rates. CDC county-level data are imperfect: for
example, we find that there are 53 counties with no data and 276
counties reporting <1% of the population fully vaccinated, which is
unrealistic given that over 60% of the US population was vaccinated by
this time. We also find 628 counties where the “completeness percent”,
i.e., the percent of vaccination records that include county of resi-
dence, is < 80%. Following prior work using these data'’, we exclude
these incomplete counties from our analysis. In total, out of 676
counties with missing or unreliable CDC data, we are able to provide
vaccine intent estimates for 590 of them, demonstrating our classifier’s
ability to fill in gaps in CDC reporting. On the remaining counties, we
compare our estimated vaccine rates p(v, ¢) per county c to the CDC’s
fully vaccinated rates, cumulative up to August 31, 2021.

The Pearson correlation, weighted by square root of county
population, is r=0.68 (Fig. S7), which is lower than the state-level
correlation but still largely in agreement. Notably, we achieve higher
correlations on counties where we expect higher-quality CDC report-
ing, which are counties with higher completeness percentages and
larger populations, where reported proportions are less noisy. If we
remove the constraint on completeness percent, our correlation drops
to r=0.54. If we keep the completeness constraint at 80% but remove
weighting by population size, our correlation drops to r=0.58. These
observations suggest that discrepancies between our estimates and
CDC data are at least in part driven by issues in CDC reporting, since
our agreement improves on counties with higher-quality reporting.

Vaccination rates across ZIP codes. The CDC does not report ZIP-
level vaccination rates, which is one motivation for developing our
vaccine classifier, since it can estimate finer-grained rates of vaccine
intent from search logs. To evaluate our classifier at finer granularities,
we need to rely on local reporting of ZIP-level vaccination rates, which
only occurred in a handful of US states and cities. We compare to two
sources of ZIP-level vaccination rates. First, we acquire historical ZCTA-
level vaccination rates in California, reported by the California
Department of Public Health’™®. We compare our estimated vaccine
rates p(v,z) per ZCTA z to California’s reported rates of percent fully
vaccinated, cumulative through August 31, 2021. The California data
reports 1,764 ZCTAs, although 162 are missing values for percent fully
vaccinated, 2 are unrealistically low (<1%), and 15 are unrealistically
high (=100%). Of the remaining ZCTAs, we have vaccine intent esti-
mates for 1308 of them: over these ZCTAs, the Pearson correlation,
weighted by square root of ZCTA population, is r=0.55 (Fig. S8a). We
also compare to ZCTA-level vaccination rates from 16 large US cities,
cumulative through September 2021, which were compiled by the Big
Cities Health Coalition’s COVID-19 Health Inequities in Cities
Dashboard” and made available by Bilal et al.”%. As stated in Bilal et al.”?,
they “calculated the proportion of fully vaccinated adults in 866 zip
code tabulation areas (ZCTAs) of 16 large US cities: Long Beach, Los
Angeles, Oakland, San Diego, San Francisco, and San Jose, all in
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California; Chicago, lllinois; Indianapolis, Indiana; Minneapolis, Min-
nesota; New York, New York; Philadelphia, Pennsylvania; and Austin,
Dallas, Fort Worth, Houston, and San Antonio, all in Texas.” Among
these ZCTAs, 25 have unrealistically high rates (>100%). Of the
remaining ZCTAs, we have vaccine intent estimates for 837 of them:
over these ZCTAs, the Pearson correlation, weighted by square root of
ZCTA population, is r=0.47 (Fig. S8b).

While these ZCTA-level correlations are not as high as the state or
county-level correlations, they are still substantial, and similar in
magnitude to prior work that presented search data as a measurement
or forecasting tool. For example, Chancellor and Counts® use search
data to measure employment demand and show a correlation of
r=0.47 between job searches and county-level employment rates, and
Lin et al.* use search data to forecast US domestic migration, and
report correlations of r= 0.72, 0.44, and 0.39 between migration intent
and state-level inflow, outflow, and net migration respectively. Fur-
thermore, the lower correlations observed at the ZCTA-level are due to
increased noise in not only our vaccine intent estimates, but also in
vaccine reporting. Part of the noise is due to trying to estimate pro-
portions from smaller population sizes, since ZCTAs are around
10 x smaller than counties. As in our county-level analysis, we find that
if we do not weight by population size, the correlations drop by 3-4
points for both datasets, which supports the theory that our correla-
tions may be lower due to noise in smaller population sizes. There are
also other sources of noise and bias that are unique to the ZCTA-level
reported vaccination rates. For example, the unrealistically low and
high rates that appeared in both ZCTA-level datasets do not appear in
state-level or county-level rates (with completeness above 80%). Bilal
et al. also note that “the data for Philadelphia, Chicago, and New York
City do not, to our knowledge, include residents who were vaccinated
outside of their respective cities”, which results in not only under-
estimating rates of vaccination in those cities but also biased report-
ing, due to certain populations (e.g., higher income) being likelier to be
vaccinated outside of their cities’”. The California Department of
Public Health also notes limitations in their data: for example, reported
vaccination coverage may exceed 100% for some ZCTAs, which “may
be a result of many people from outside the county coming to that
ZCTA to get their vaccine and providers reporting the county of
administration as the county of residence, and/or the DOF estimates of
the population in that ZCTA are too low.” In contrast, our vaccine
intent estimates are not affected by whether an individual travels
outside of their home ZCTA to receive their vaccine, since we assign
home ZCTA based on the user’s mode ZIP code from over 30+ queries
in that month. Furthermore, our estimates do not show the same
unrealistic values: without any smoothing or clipping, none of our
estimated rates are below 1% or above 100% for the ZCTAs in either
dataset, due to our careful inclusion criteria for active Bing users and
vaccine intent.

In summary, our ZCTA-level vaccine rates offer several advantages
over traditional data sources. First, we provide a unified framework for
estimating ZCTA-level rates, over all US states, instead of relying on a
patchwork of ZCTA-level rates from some states and cities, each with
their own reporting systems and biases. Second, since only a handful of
states and cities currently report rates, our data provides, to the best of
our knowledge, the largest ZCTA/ZIP-level dataset of COVID-19 vaccine
intent or vaccination rates in the US. Currently, nationwide vaccination
rates are only available at the county-level, which are insufficient for
capturing substantial heterogeneity within counties (Fig. 2b, Fig. S11).
Third, we provide time-varying vaccine rate estimates, while Bilal et al.
note that some cities do not provide longitudinal ZCTA-level vacci-
nation rates’?, which misses important changes over time in vaccina-
tion rates, as eligibility and policies (e.g., vaccine mandates) evolved.
Thus, while our finer-grained estimates are by no means perfect, they
provide many benefits that make them a useful, complementary data
source to traditional reporting from the CDC or local public health

departments, which is slower, coarser-grained, and has limitations of
its own.

Comparison to Google search trends
Search trends over time. Following prior work using Bing data”, we
compare Bing and Google queries to evaluate the representativeness
of Bing search data. First, we compare daily search interest in the US
over our studied time period from February 1-August 31, 2021. Google
Trends provides normalized search interest over time on Google, such
that 100 represents the peak popularity for that time period, 50 means
the term is half as popular, and O means “there was not enough data for
this term.” To match this, for a given query, we compute the total
number of times it was searched on Bing in the US per day, then we
divide by the maximum number and multiply by 100. Again, we apply
1week smoothing to both the Bing and Google time series. We do not
correct the Bing time series with Bing coverage here, since we cannot
correct the Google time series with Google coverage, and we want the
time series to be constructed as similarly as possible.

We choose 30 representative vaccine intent queries from the top
100 vaccine intent queries, where we choose one standard query for
each pharmacy that appears (e.g., [cvs covid vaccine]) and one for each
location-seeking query (e.g., [covid vaccine near me]), and drop var-
iants such as [cvs covid vaccines] and [covid 19 vaccine near me]. Over
these queries, we observe strong Pearson correlations, with a median
correlation of r=0.95 (90% ClI, 0.88-0.99) (Fig. S9). These correlations
are similar to those reported by Suh et al.”?, who conduct an analogous
longitudinal analysis comparing Bing and Google search trends on
COVID-related queries and report correlations from r=0.86 to 0.98.
Remaining discrepancies between Bing and Google are likely due to
differences in the populations using these search engines, as well as
potential unreported details on how Google normalizes their search
interest trends (e.g., Google may be normalizing differently for [covid
vaccine near me], which shows unusual peaks in Google trends and is
the the only query for which we do not observe a strong correlation).

Search trends across states. Google also provides normalized search
interest across US states, where search interest is defined as the frac-
tion of searches from that state that match the query and search
interest is normalized across regions such that 100 represents max-
imum popularity. To imitate this process, we first assign each vaccine
intent query to a state based on where the query originated. Then, we
approximate the total number of queries (all queries, not just vaccine
intent) from each state by summing over the query counts of the active
users assigned to each state. We compute the fraction of queries from
each state that match the query, then we divide by the maximum
fraction and multiply by 100 to normalize across states.

We observe strong Pearson correlations in this analysis too, with a
median correlation of r=0.95 (90% CI, 0.57-0.99) across the same 30
vaccine intent queries (Fig. S10). The correlations tend to be stronger
on the pharmacy-specific queries, where certain regions dominate,
compared to general location-seeking queries such as [covid vaccine
near me], which are trickier since they follow less obvious geographical
patterns. For the pharmacy-specific queries, we also observe sub-
stantial heterogeneity in terms of which region dominates. For exam-
ple, [publix covid vaccine] is more popular in southern states, with
Florida exhibiting the maximum normalized search interest on Google
(100), followed by Georgia (26) and South Carolina (20). Meanwhile,
[cvs covid vaccine] is more popular in the Northeast, with the top
states being Massachusetts (100), New Jersey (96), Rhode Island (90),
and Connecticut (65). These differences, reflected in the Bing search
trends too, once again highlight the need for regional awareness and
representativeness when developing our vaccine intent classifier.

The strong correlation between Bing queries and Google queries
is reassuring, demonstrating that trends on Bing are not abnormal
compared to Google, which is the more popular search engine.
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However, note that it would not be possible to simply use Google
Trends to recreate our vaccine intent classifier. First, our classifier uses
queries and clicks and finds that adding clicks substantially improves
the classifier’s performance (Table 1), while Google Trends only pro-
vides query information. Furthermore, it would be hard to estimate the
proportion of the region’s population showing vaccine intent from
Google Trends, since they provide normalized query interest as a
fraction of all queries searched, as opposed to our much more exact
measurement of what proportion of active Bing users have shown
vaccine intent. Finally, Google Trends do not provide county- or ZIP-
level data, and one of our classifier’s key strengths is its ability to make
finer-grained estimates, compared to CDC reporting. So, it would not
be possible to use Google Trends to recreate our vaccine intent clas-
sifier, but the correlation between Bing and Google is reassuring.

Taxonomy of vaccine concerns on search

In this section, we describe how we match vaccine holdouts and vac-
cine early adopters (“Identifying matched holdouts and early adop-
ters”), then how we construct a hierarchical taxonomy of vaccine
concerns, based on the their clicks from April to August 2021 (“Con-
structing a taxonomy of search concerns”).

Identifying matched holdouts and early adopters. Our study period
covers search logs from February 1-August 31, 2021. First, we apply our
vaccine intent classifier to the entire study period and identify 7.45M
users who have expressed vaccine intent through queries and/or
clicks. Among those users, we define early adopters as those who
showed their first vaccine intent before May (i.e., between February 1
and April 30, 2021) and vaccine holdouts as those who waited until July
to show their first vaccine intent (i.e., between July 1 and August 31,
2021). We did not consider as holdouts those who never showed vac-
cine intent during our study period, since those users may have gotten
their vaccine in ways that are not visible via search data, e.g., a walk-in
appointment. In comparison, individuals who did not show their first
vaccine intent until July 2021 likely did not receive the vaccine before.
We choose July as a cutoff since all US residents aged 16 and older were
eligible for the vaccine by April 19°*, so those who waited until July to
seek the vaccine were holding out. Furthermore, to improve our ability
to detect true holdouts, we require holdouts and early adopters to be
active (i.e., issued at least 30 queries) in every month during the study
period, since if users were not active on Bing before July or August,
their apparent lack of vaccine intent could be explained simply by low
Bing usage during the earlier months.

To reduce potential confounding, we match each vaccine
holdout to a unique vaccine early adopter from the same county,
since we know that the populations seeking vaccination changed
over time (Figs. 1d and S18) and we do not want our comparisons to
be overpowered by regional or demographic differences. We also
match on Bing usage, by requiring that the holdout’s and early
adopter’s average monthly query counts during the study period do
not differ by >10 queries. We match on query count since our esti-
mated time of first vaccine intent may be more delayed for indivi-
duals with less frequent Bing usage, so being labeled a holdout may
be correlated with using Bing less frequently, which may reflect
latent variables that also affect individuals’ search behaviors. To
implement matching, we construct a bipartite graph between
holdouts and early adopters, where an edge between a holdout and
early adopter exists if that early adopter is a valid match for the
holdout (they are from the same county and their average query
counts are within 10 of each other). Then, we run the Hopcroft-Karp
algorithm on this graph, which finds the maximum matching, i.e.,
the largest set of edges where no two edges share an endpoint®.
Since the number of early adopters greatly outnumbers the number
of holdouts, we are able to match 98% of our holdouts using this
approach, resulting in 212,283 matched pairs.

Constructing a taxonomy of search concerns. To analyze the vaccine
concerns of holdouts and early adopters, our goal is to organize the
vaccine-related URLs that they click on into a rich taxonomy. We focus
on their clicks from April to August 2021, since from April to June we
can compare their vaccine concerns during the period while holdouts
were eligible for the vaccine but still holding out, and from July to
August, we can study how holdouts’ concerns change as they finally
express vaccine intent for the first time. To construct our taxonomy,
we combine computational and manual approaches: first, we use
machine learning techniques to partition the URLs into clusters, and
then we manually label each cluster and develop our three-tiered
taxonomy of categories, subcategories, and URL clusters.

Automatically partitioning URLs into clusters. We begin by gathering
all vaccine-related URLs (i.e., containing “vaccin” or “vax”) that were
clicked on by holdouts or early adopters from April to August 2021. We
drop all of the vaccine intent URLs, including the manual ones labeled
by AMT or by regular expressions (“Annotation on Amazon Mechanical
Turk”) and the ones discovered by GNNs (“Graph neural networks for
URL expansion”). We also drop internal Microsoft links (e.g., ads) and
URLs that were clicked on by <5 users (summed over holdouts and
early adopters). After filtering, we are left with 32,811 vaccine-related
URLs. We construct the query-click graph for these URLs, based on the
queries and clicks of holdouts and early adopters from April to August
2021. Since we only want to partition URLs, we then collapse the query-
click graph to construct the URL co-click graph, where a weighted edge
between two URLs indicates how connected these two URLs are by
common queries. Then, we partition the URLs into clusters by running
the Louvain community detection algorithm®® on the co-click graph.
Empirically, we find that clusters of 100-500 URLs are the most useful:
they are large enough to represent substantial topics (as opposed to,
for example, individual news stories), but not so large that their focus
is unclear. We tune the Louvain resolution parameter y, which controls
how much the algorithm favors larger as opposed to smaller com-
munities, to maximize the number of clusters within this range. We
find that y =17 allows us to achieve the largest number of clusters of
size 100-500.

Manually constructing our taxonomy. We begin by labeling the
clusters with at least 100 URLs, of which there are 79 when y =17. Each
author labels the clusters independently, viewing a uniform random
sample of 30 URLs from each cluster. To aid our labeling process, we
also view the 10 most frequent queries for each cluster, which we
obtain by summing over all queries that led to clicks on URLs in the
cluster. When labeling, each author writes a free-text description of
each cluster and marks whether it is clear. We find that our automatic
approach produces remarkably coherent topics and that the majority
of clusters are clear. In Table S5, we provide a sample of clusters. From
the top query and most frequently clicked URLs, we observe distinct
topics covered in each cluster: one on CDC masking guidelines after
vaccination, one on the Vaccine Adverse Event Reporting System
(VAERS)¥, one about religious exemptions for COVID-19 vaccine
requirements, and one about side effects of the Johnson & Johnson
vaccine.

Based on our descriptions of the clusters, we identify 8 top cate-
gories and 36 subcategories of vaccine concerns (Fig. 3). For example,
under Vaccine Safety, we include the subcategories of normal side
effects (e.g., sore arms), severe side effects (e.g., blood clots), concerns
about reproductive health, fear of vaccine-caused deaths, “eerie” fears
(e.g., myths about vaccine shedding or becoming magnetic>®), vaccine
development (e.g., pace of development, ingredients in the vaccine),
and FDA approval. As we show in the following section, these fine-
grained subcategories allow us to study nuances in vaccine concerns;
for example, holdouts and early adopters are both concerned about
vaccine safety, but focus on different aspects of it. Finally, we take a
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second pass through the URL clusters to sort them into subcategories,
allowing each cluster to belong to at most 2 subcategories. For
example, for the cluster about religious exemptions (Table S5), we sort
it into both the religious concerns and exemptions subcategories.
During this second pass, we label all clusters with at least 30 URLs. For
the clusters that are unclear, we rerun Louvain community detection
on the cluster (with the default y =1, since the number of URLs being
partitioned is much smaller) to try to identify smaller groups of URLs
that we can assign to subcategories. We are able to assign most clusters
to subcategories, but there are some that we leave out, since they
cover miscellaneous topics such as one-off news stories or specific
interests (e.g., how to store vaccines) that do not clearly belong to any
of our subcategories. At the end of our process, our constructed tax-
onomy consists of 24,726 URLs (75% of all 32,811 vaccine-related URLs).

Main analyses

Granular trends in vaccine seeking. In Fig. 2, we visualize our esti-
mates of ZCTA vaccine intent rates. For privacy reasons, we focus our
analyses on ZCTAs where the number of active Bing users N(b, z) =50
and the Census population size N(z) > 50, keeping 20,899 ZCTAs and
covering 97% of the US population. We estimate coverage-corrected
vaccine intent rates p(v, z) per ZCTA z following Eq. (4).

Maps and within-county heterogeneity. For our map visualizations,
we use ZCTA, county, and state shapefiles from the 2020 US Census®’.
In Fig. 2a, we visualize vaccine intent rates for the entire US. Since we
cannot estimate vaccine intent rates for all ZCTAs, first we visualize
vaccine intent rates per county (following Eq. (5)), then we overlay
ZCTA vaccine intent rates. Additionally, we overlay the boundaries of
the states in white, to emphasize state-level trends as well as reveal
substantial heterogeneity in vaccine intent rates within the same state.
To explore this heterogeneity in greater detail, in Fig. 2b, we zoom in
on the five counties in New York City, corresponding to the five bor-
oughs: Manhattan (New York County), Queens (Queens County),
Brooklyn (Kings County), Bronx (Bronx County), and Staten Island
(Richmond County). ZCTAs are well-represented here, given the
population of the city, so we only visualize ZCTA vaccine intent rates
without county-level rates. Also, instead of drawing state boundaries in
white, we draw county boundaries in white, to emphasize trends per
county and heterogeneity within each county. For example, we see
that Manhattan and Queens have higher estimated rates of vaccine
intent, and within Queens, ZCTAs in the northern half have higher
rates, aligning with reported local vaccination rates in New York City
earlier in the pandemic*®.

In fact, over all ZCTAs and counties, we find large heterogeneity
within counties that often exceeds heterogeneity between counties.
Across counties, the standard deviation in vaccine intent rates is 0.067
and the coefficient of variation is 0.285. In Fig. S11, we visualize the
standard deviations and coefficients of variation within counties (over
ZCTAs), for all counties where we have estimated vaccine rates for at
least 5 ZCTAs, and we see that for many of these counties, their within-
county variation exceeds the between-county variation. These levels of
variation within counties are supported by the real-world ZCTA-level
datasets that we have; for example, in the California Department of
Public Health dataset’® of ZCTA-level vaccination rates (cumulative up
to August 31, 2021), the coefficients of variation within counties ranges
from 0.095 to 0.647, similar to the range that we find in our estimated
vaccine intent rates (Fig. S11, right).

Measuring demographic trends. To characterize this heterogeneity,
we compare ZCTA vaccine intent rates to demographic variables. First,
we measure the Pearson correlation between vaccine intent rate and
each demographic variable, with correlation weighted by the square
root of the ZCTA population. In Fig. 2c, we plot the results, ordered by
strongest positive to strongest negative correlation, with 95%

confidence intervals®®. Our results agree with prior literature, finding
positive correlations with percent with Bachelor degree, median
income, population per square meter, percent 65 and over, percent
Asian, percent White, and percent female, and negative correlations
with percent Republican, percent under 18, percent Black, and percent
Hispanic'®*’"*°, In the SI, we also conduct supplementary analyses of
demographic trends, by separating ZCTAs into their bottom and top
quartile by demographic variable (e.g., median income). Then, we can
compare the average vaccine intent of ZCTAs in the bottom versus top
quartile, cumulatively (which yields similar results to correlations) and
over time.

To investigate geographic differences in demographic trends, we
also measure correlations per state (only including the ZCTAs in the
state) for the 10 largest states in the US. For this finer-grained analysis,
we drop percent Republican, since we only have vote share at the
county-level, but we keep all other demographic variables, which we
have per ZCTA. We find that correlations are mostly consistent in sign
across states, but the magnitude differs significantly (Fig. S12). For
example, the positive correlation with percent 65 and over is around 2x
as high in Florida as it is in the second highest states, reflecting the
large senior population in Florida and the push for seniors to get
vaccinated. In most states, we also see positive correlations for percent
Asian and percent White, and negative correlations for percent Black
and percent Hispanic, aligning with prior research on racial and ethnic
disparities in COVID-19 vaccination rates®°. Positive and negative
correlations for race are particularly strong in certain states, including
New York and Florida for percent White/Black, and California and New
York for percent Hispanic.

Analyses of news consumption and vaccine concerns. In this sec-
tion, we compare the news consumption and vaccine concerns of
holdouts and their matched early adopters from April to June 2021. We
focus on this time period since we want to compare search behavior
from when holdouts were eligible for the vaccine but still had not
shown vaccine intent (which they showed in July and August 2021). In
this section, we describe the following studies: (1) comparing the news
consumption of holdouts versus matched early adopters, using labels
of news trustworthiness from Newsguard, (2) comparing the vaccine
concerns of holdouts versus matched early adopters, using our new
taxonomy of vaccine concerns (“Taxonomy of vaccine concerns on
search”), (3) analyzing variation in vaccine concerns among holdouts,
when grouped by demographics, (4) discovering different holdout
“profiles”, or clusters, from their individual vaccine concerns.

Click ratios comparing two groups. In several analyses, we compare
click probabilities for two groups, such as the probability that a
holdout versus an early adopter clicks on untrusted news. For each
group g, such as holdouts, first we gather all their relevant clicks Ry
(e.g., news-related, vaccine-related) from the time period of the ana-
lysis. Then, we identify the “positive” subset of clicks Sg S R, such as
clicks on untrusted news or a specific vaccine subcategory. Then, we
compute p,, the weighted average probability over clicks that the click
is in the positive set, weighted by the user’s ZCTA’s inverse Bing cov-
erage (“Coverage-corrected vaccine intent rates”):

_ Cer, 1 € Sel iy
Pg= > Nz ’ (6)
Xj€Rg N(b,z))
where z; represents the ZCTA of click x/s user. To compare two groups,
such as holdouts and early adopters, we take the ratios of their click
probabilities. We compute bootstrapped Cls for these ratios by
repeatedly resampling the clicks in each group (with replacement),
recomputing the group averages, and recomputing the ratio between
group averages. Then, from the resulting distribution of ratios,
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computed over 1000 bootstrapped samples, we report the 2.5th and
97.5th percentiles as the 95% CI.

We compare to an alternative measure that computes the fraction
of clicks in the positive set per user, then computes the weighted
average over users, weighting again by their ZCTA’s inverse Bing
coverage. We find in practice that the measures result in very similar
trends (r> 0.95), which is expected, since we have over 200,000 users
per group and most users have clicks (since we only keep users who are
active in every month during our study period), so our measure is not
dominated by a few users’ clicks even if we do not compute user-
specific fractions first. So, we use our measure p, for simplicity, which
is more straightforward to compute and bootstrap.

News consumption of holdouts versus early adopters. In this ana-
lysis, we compare the news consumption of holdouts versus matched
early adopters from April to June 2021. We use labels from Newsguard,
which assigns numerical trust scores to news domains indicating their
trustworthiness, along with categorical rankings, where domains with
scores above 60 are considered trusted and below 60 are considered
untrusted (“Datasets”). We have Newsguard labels for 7226 news
domains, out of which 2744 are labeled as untrusted. For each group g,
the relevant set of clicks R, includes all clicks on news domains from
April 1 to June 30, 2021. To prevent leakage, we remove the clicks on
vaccine intent URLS; this is so that we do not end up predicting greater
rates of trusted news for early adopters simply because, by construc-
tion, they were clicking on vaccine intent URLs (which tend to be
trusted, if they are news domains) during that time period while
holdouts were not.

First, we compare the probabilities of clicking on untrusted news,
so we set positive clicks S, to clicks on untrusted news domains, and
compute average probabilities for holdouts and early adopters
according to Eq. (6). We find that holdouts are 66.6% (95% Cl, 65.6%
-67.6%) likelier to click on untrusted news, compared to their matched
early adopters. To compute click ratios for a specific news domain, we
set S, to clicks on that domain, and compute weighted probabilities
and ratios accordingly. We compute and visualize ratios for domains
that receive at least 0.0001% of news clicks for both holdouts and
matched early adopters, which leaves 3285 domains in Fig. 4a. We find
that, over these 3285 domains, there is a substantial negative correla-
tion between the domain’s trust score from Newsguard and holdout
ratio. The Pearson correlation, weighted by average proportion of
clicks, is r=-0.411, meaning that as the trust score from Newsguard
degrades, the likelier it was that holdouts clicked on the site, relative to
matched early adopters. Furthermore, this effect becomes stronger
among mainstream news: if we only include the top 100 news domains
that received the largest average proportions of news clicks in our
data, the correlation becomes r=-0.565. We describe supplemental
analyses in the SI, including ratios for the most-visited news sites in the
US (Table S8) and analyses that show that the overall trends are not
only driven by a few outlier holdouts.

Vaccine concerns of holdouts versus early adopters. In this analysis,
we compare the vaccine concerns of holdouts versus matched early
adopters from April to June 2021. Our relevant set of clicks R; now
includes each group’s vaccine-related clicks (i.e., containing “vaccin” or
“vax”) during this time period. As in our news consumption analyses,
we remove the clicks on vaccine intent URLSs, since we used those URLs
to label users as holdouts and early adopters, so we do not want to use
the same URLs to characterize and compare their interests. To analyze
click patterns for a given category of concerns (or subcategory), we set
positive clicks Sg to clicks on URLs belonging to that category,
according to our taxonomy, and compute probabilities and ratios
accordingly (Eq. (6)). In Fig. 4b, we visualize holdouts’ click propor-
tions over time for the 6 main categories: Vaccine Requirements,
Community, Effectiveness, Safety, Incentives, and Information. We

report click ratios and 95% Cls for all categories and subcategories in
Table S6, and visualize subcategory click ratios in Fig. 4c. In both
Fig. 4b and c, categories/subcategories are ordered top to bottom and
colored from yellow to dark purple in terms of most holdout-leaning to
most early adopter-leaning.

Variation in vaccine concerns among holdouts, by demographic.
Since we have individual clicks from holdouts, we can not only com-
pare vaccine concerns across holdouts and early adopters, but also
investigate variability in concerns among holdouts. First, we compare
holdout concerns across demographic groups. For a given demo-
graphic variable, such as median income, we compute its median value
across all ZCTAs in the US, split holdouts into those from ZCTAs above
the median versus those from ZCTAs below the median, then compare
the vaccine concerns of those two groups of holdouts (by measuring
their click ratios, following Eq. (6)). We explore three key variables—
proportion white, median income, and proportion Republican (based
on the 2020 presidential election)—and we find significant variability
across all three demographics.

When we split holdouts by proportion Republican (Fig. S13), we
find that holdouts from more Democrat-leaning ZCTAs were far more
interested in requirements around employee mandates and vaccine
proof, which may be because jurisdictions run by Democrats were
likelier to have vaccine requirements’, while several Republican
governors in fact banned such requirements. Meanwhile, holdouts
from more Republican-leaning ZCTAs were more interested in eerie
vaccine fears, vaccine-caused deaths, and vaccine incentives. When we
split holdouts by median income (Fig. S14), we find that holdouts from
higher-income ZCTAs were significantly more interested in vaccine
requirements, vaccine rates, and anti-vaccine messages from experts
and high-profile figures, while holdouts from lower-income ZCTAs
were more interested in vaccine incentives and religious concerns
about the vaccine. Finally, when we split holdouts by proportion white
(Fig. S15), we find that holdouts from more white ZCTAs showed
greater interest in vaccine incentives, vaccine-caused deaths, and
comparing vaccines to natural immunity, while holdouts from less
white ZCTAs were more interested in vaccine rates, proof of vaccine,
and FDA approval. These significant differences reveal that vaccine
concerns are not uniform across holdouts and vaccine hesitancy likely
cannot be addressed through one-size-fits-all solutions.

Discovering holdout “profiles” from individual vaccine concerns. In
addition to grouping holdouts by their ZCTA demographics, we can
also directly analyze the individual concerns of vaccine holdouts. Here,
we seek to understand, which types of concerns tend to co-occur for
the same person, and can we discover different “profiles” by clustering
holdouts based on their concerns? To do this, first we construct a
matrix of holdout users by subcategories, where we record the number
of clicks that the user made per subcategory from April to June 2021.
For this analysis, we drop subcategories in the Availability category,
which consists of seeking vaccine boosters, vaccines for children, and
vaccine locations, since we want to focus on individuals making deci-
sions about whether to receive the primary series COVID-19 vaccine for
themselves. We keep all holdouts with atleast 10 clicks in total on these
subcategories, resulting in 546 holdouts, and normalize each row in
our matrix to sum to 1. Thus, each holdout user u is represented by a
vector v, = {T,;, T, -+, s}, Where T, represents the user’s relative
likelihood of clicking on subcategory s and } (T, =1. Normalizing the
rows enables us to compare holdouts based on their proportions of
clicks, instead of overall number of clicks, but it transforms our data
into compositional data, which introduces additional steps before
clustering. Following standard practice for clustering compositional
data”, we apply an isometric ratio transform (ilr), since in its original
compositional form, Euclidean distance (which is assumed by many
clustering techniques, like k-means) is not an appropriate measure of
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distance; then, we apply k-means clustering to the ilr coordinates. We
test k=2 to k=20 and, using the heuristic “elbow method”, choose
k=4 as a reasonable number of clusters. Then, for each of the four
clusters, we compute the mean proportions over subcategories of the
users in the cluster, divided by the mean proportions of users not in the
cluster, and report those ratios to characterize what is unique in each
cluster.

We find that four clear profiles arise (Fig. S16). In Cluster 1, with
149 users, we see increased interest in eerie fears (e.g., that microchips
are inserted into the vaccine), anti-vaccine messages from scientific
“experts”, and skepticism about vaccine development and ingredients.
All of these subcategories involve known misinformation and they
represent what one might expect a stereotypical holdout to be con-
cerned with. However, there are three more clusters of holdouts. In
Cluster 2, with 115 users, we find increased interest in government
policies around vaccines: vaccine incentives and vaccine requirements
(travel restrictions, proof of vaccine, and employee mandates), along
with seeking exemptions for these requirements. In Cluster 3, with 144
users, we see a much higher rate of interest in decision-making (e.g.,
articles reflecting the pros and cons of receiving the COVID-19 vaccine)
and reading news about vaccine hesitancy; these holdouts appear to
be grappling with the decision of whether to receive the vaccine or not.
In Cluster 4, with 138 users, we see increased interest in side effects
(normal and severe) and seeking information about the different vac-
cines (Moderna, Pfizer, and Johnson & Johnson). These users appear to
be the closest to vaccine intent, since they are seeking information
about specific vaccine brands and realistic side effects that occur after
receiving the vaccine. These profiles illustrate four very different types
of holdouts, who vary in their openness to the vaccine (e.g., Cluster
4 seems the most open) and their key concerns, which implies that
policymakers need to go beyond one-size-fits-all solutions to address
vaccine hesitancy. Instead, persuading different individuals will
require different interventions: for example, discussing the vaccine’s
safety may help to address Cluster 1's concerns while Cluster 2 may be
more convinced by vaccine requirements or incentives.

Changes in vaccine concerns as holdouts approach vaccine intent.
Since we defined holdouts as those who waited several months to show
vaccine intent but eventually did (inJuly and August 2021), we have the
opportunity to study how holdouts’ vaccine concerns changed leading
up to their eventual vaccine intent. First, we analyze how holdouts’
vaccine concerns change in the small window leading up to and fol-
lowing their expressed vaccine intent. We split holdouts’ vaccine-
related clicks from July to August 2021 into two groups: clicks when the
holdout is within 3 days (either before or after) of expressing vaccine
intent and clicks outside of that range. Since precision of vaccine intent
timing is particularly important for this analysis, we focus on vaccine
intent expressed either through a vaccine intent query or a manually
labeled vaccine intent URL (either from AMT or regular expression).
Then, as before, we compute ratios per subcategory, where the set of
positive clicks S, are those that match the subcategory and we com-
pute probabilities per group according to Eq. (6). We report click ratios
and 95% Cls for all categories and subcategories in Table S7, and
visualize subcategory click ratios in Fig. 4d. To facilitate comparison
between Fig. 4c and d, we keep the ordering of subcategories the same.
This design choice highlights how Fig. 4d nearly reverses Fig. 4c,
meaning that near when holdouts express vaccine intent, their con-
cerns become much more like the concerns of early adopters, with a
few important differences (e.g., greater relative interest in Johnson &
Johnson, less interest in vaccine rates).

We also conduct two supplementary analyses, which we describe
in the SI: (1) a more detailed version of the first analysis, with ratios for
each day relative to vaccine intent from -14 - +7 days; (2) a predictive
study that tests whether changes in vaccine concerns and news con-
sumption Granger-cause the timing of vaccine intent, i.e., provide

predictive power beyond using past values of vaccine intent. We find
that changes in vaccine concerns and increase in trusted news con-
sumption both Granger-cause the timing of vaccine intent. These
findings may help to guide budgeted interventions from policymakers,
as well as begin to explain why holdouts changed their minds, which
may be studied in depth in the future with true causal analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Our vaccine intent estimates and taxonomy of vaccine concerns are
publicly available at https:/github.com/microsoft/vaccine_search_
study. Aside from Bing search logs, all of the data sources that we
use are publicly available for download or purchase. Data from the US
Census American Community Survey (https://www.census.gov/
programs-surveys/acs/data.html), Census shapefiles for map visuali-
zations  (https://www.census.gov/cgi-bin/geo/shapefiles/index.php),
state-level CDC vaccination rates (https://data.cdc.gov/Vaccinations/
COVID-19-Vaccinations-in-the-United-States-Jurisdi/unsk-b7fc),
county-level CDC vaccination rates (https://data.cdc.gov/
Vaccinations/COVID-19-Vaccinations-in-the-United-States-County/
8xkx-amqh), California ZCTA-level vaccination rates (https://data.
chhs.ca.gov/dataset/covid-19-vaccine-progress-dashboard-data-by-
zip-code), ZCTA-level vaccination rates from the Big Cities Health
Coalition (https://github.com/usamabilal/COVID_Vaccines_Disparities/
tree/main), and Google search trends (https://trends.google.com/
trends/?geo=US) can be downloaded without cost. Data on US elec-
tions  (https://uselectionatlas.org/BOTTOM/store_data.php)  and
Newsguard data (https://www.newsguardtech.com/solutions/
newsguard/) can be purchased. The Bing search logs are not publicly
available, for privacy and legal reasons. Subject to data protection
guidelines, we plan to retain aggregated versions of the data (e.g.,
clicks on different vaccine concerns, aggregated over 200,000+
holdouts) indefinitely for scientific and academic purposes. To request
access to the aggregated data, please contact the corresponding
author, Dr. Eric Horvitz, who can be reached at horvitz@micro-
soft.com, with a clear description of how the data will be used and the
purpose of the proposed study. The request will be reviewed and
approved on a case-by-case basis by the Microsoft Research Release
and Compliance team, at which point a license agreement will be
drafted and shared.

Code availability
Our code for running experiments and generating figures is publicly
available at https://github.com/microsoft/vaccine_search_study.
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