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Abstract—Spiking neural networks (SNNs) have received in-
creasing attention due to their high biological plausibility and en-
ergy efficiency. The binary spike-based information propagation
enables efficient sparse computation for event-based computer
vision applications. However, most prior works use the heuristi-
cally selected fixed threshold for spiking neurons, which limits the
dynamics of SNNs toward further optimizing the performance.
In the meantime, the optimization space of the existing trainable
spike neurons is often limited by various constraints. Motivated
by this, this paper investigates the plausibility of freely optimizing
the threshold during direct SNN training. Specifically, we propose
LT-SNN, a novel SNN training algorithm with a self-adaptive
learnable potential threshold to improve SNN performance.
LT-SNN optimizes the layer-wise firing threshold throughout
SNN training without any high-precision spike representation or
learning constraints. Extensive experiments are performed across
event-based and static computer vision datasets, including both
image classification and object detection tasks. Equipped with
high adaptiveness that fully captures the dynamics of SNNs, LT-
SNN outperforms the recent state-of-the-art works. Furthermore,
LT-SNN is compatible with SNN models based on both convo-
lutional neural networks (CNN) and vision transformers (ViT).

Index Terms—Spiking Neural Networks, Energy-efficient neu-
ral networks, Neuromorphic computing, Learnable threshold.

I. INTRODUCTION

In the biological nervous system, cortical neurons process
information by encoding spatial-temporal inputs into action
potentials for spike generation. Inspired by that, spiking neural
networks (SNNs) extract information from the spatial-temporal
input, accumulate the membrane potential, and the resultant bi-
nary spikes (0 and 1) provide a sparse and succinct information
representation. Such information propagation and computation
procedure promotes SNN as an attractive Al solution with both
biological plausibility and energy efficiency in comparison
to the conventional artificial neural networks (ANNSs) [1].
Furthermore, layer-wise processing with binary spikes elevates
the computation efficiency, which benefits energy-constrained
applications such as edge computing.

On the other hand, event-based camera or dynamic vision
sensors (DVS) [2] have emerged as an attractive and feasible
solution for computer vision applications. Compared to the
conventional frame-based cameras, event cameras indepen-
dently capture the absolute illumination changes of pixels,
resulting in the asynchronous binary stream of events [3]. The
captured event is characterized by binary pixels and temporal
resolutions, leading to highly sparse and energy-efficient visual
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Fig. 1: DVS-CIFARI1O0 classification accuracy of different SNN
training methods. The proposed LT-SNN training algorithm
achieves SoTA accuracy with compact model.

representations. Such binarized spatial-temporal information
naturally fits the computation mechanism of SNNs, bridging
the gap between the efficient computer vision and neuromor-
phic computing.

To obtain SNN models, early research works relied on
the ANN-to-SNN conversion [4], [5]. However, this approach
requires additional training without achieving sufficiently high
accuracy. To that end, direct training methods have been
proposed to obtain an SNN model with one-time training. One
of the major bottlenecks of direct SNN training is the non-
differentiability of the spike generation. The infinite gradient
of the spike function impedes the gradient propagation during
the backward pass in training. Empowered by various surro-
gate gradient (SG) functions [6]-[8], the inaccessible gradient
of the spike function is approximated and propagated during
learning. However, the inaccurate approximation and heuristic
SG selection hurt the training stability with deep models (e.g.,
ResNet [1]), which further motivated the temporal normaliza-
tion method [9] and output regularization techniques [6], [10]
to smooth the loss.

a) Adaptive threshold in biological neurons: As the
major inspiration of deep learning, the intricate nervous system
achieves remarkable performance with a high degree of dy-
namics. Recent works observed the location-dependent poten-
tial threshold [11] in nervous systems, implying the adaptive
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Fig. 2: Overview of the proposed LT-SNN algorithm.

firing procedure within the mechanism of spike generation.
Further, intrinsic excitability at neuron level aligns with the
dynamic spectrum of synaptic inputs they receive during the
learning process, known as neuronal intrinsic plasticity [12],
[13]. This significantly impact the biophysical characteristics
of neurons at a cellular level, leading to a more nuanced un-
derstanding of neural functionality and learning mechanisms.
These insights potentially link the dynamic spike threshold and
the intrinsic excitability of neurons, implying that the spike
thresholds could be considered a learnable parameter [14],
[15].

b) Recent learnable dynamics in SNNs: Inspired by this,
some recent works on SNN training introduced the learning
dynamics into the spiking process, albeit to a limited de-
gree. ParamLIF [16] optimized the membrane time constant
throughout training, with the requirements of large-sized mod-
els. [17] presented the adaptability of the spike threshold in
neurons as hyperparameter tuning. These hyperparameters are
considered uniform across all neurons and are kept constant
throughout the training process, without undergoing any adap-
tation. DSR [18] proposed threshold-associated spikes with
a learnable potential threshold. However, the heuristic and
deterministic high-precision ratio between the firing range and
the potential threshold of DSR limits the adaptiveness of SNN.
[19] implemented weight-threshold balancing to improve the
SNN adaptability to the input data for enhanced firing rate in
deep SNNs. However, considering the weights and potential
threshold same landscape makes the learning sub-optimal.

Given the fact that the current SoTA performance [6] is
mainly achieved with fixed potential threshold, the under-
explored adaptiveness of the membrane potential threshold
limits the learnability of the current generation SNN. The
limitations of all prior works motivate us to investigate the
question: How can we optimize the potential threshold during
SNN training with maximum adaptability, high stability and
superior accuracy?

To answer this question, we propose LT-SNN, a novel self-
adaptive SNN training algorithm with Learnable Threshold.
Starting the training from scratch, LT-SNN fully optimizes

the potential threshold without introducing additional high-
precision spikes or firing constraints. We consider the weights
and membrane threshold learning as two separate landscapes
and optimize them individually in the backward propagation.
To achieve highly stable training, we propose a simple-yet-
effective technique, called Separate Gradient Path (SGP) for
membrane potential optimization.

The main contribution and highlights of proposed LT-SNNs
are summarized below:

« This paper proposes the layer-wise learnable threshold for
spike operation to implement the biological level adapt-
ability in SNNs without introducing extra computations.

e Compared to prior works, the proposed LT-SNN algo-
rithm fully unleashes the advantage of unconstrained
layer-wise adaptive potential threshold leaning, leading
to superior performance without extra computations.

o The proposed LT-SNN eliminates the gradient mismatch
problem by introducing SGP for neuron threshold learn-
ing, separating it from conventional weights learning in
directly trained SNNs.

o We validate LT-SNN on multiple event-based and static
image-based computer vision datasets with various SNN
architectures including those based on CNNs and ViTs.
LT-SNN achieves the new SoTA performance with
lightweight and quantized models, as shown in Figure 1.

II. RELATED WORKS

a) ANN-SNN conversion: Due to the non-differentiability
of the spike function, early research works converted high-
performance non-spiking ANN model into a spiking ver-
sion [4], [20]. The major drawbacks of the conversion-based
method are high computation latency (high number of time
steps) and the additional efforts for the overall training. Several
methods have been proposed to improve the latency of the
converted model [5], but still did not reach the high accuracy
of direct SNN training methods.

b) Direct SNN training: The expensive training effort
and high latency of the conversion-based schemes promote
direct SNN training to be an attractive solution. BNTT [21]
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Fig. 3: Stable training process of the proposed LT-SNN al-
gorithm with the extended training effort on DVS-CIFARI10
dataset.

treats the spatial-temporal computation of SNN as a special
version of a recurrent neural network (RNN). The gradient of
the spike function is approximated by surrogate gradient (SG)
functions in backpropagation. Driven by accuracy and dif-
ferent model architectures, various SG functions have been
proposed, including but not limited to rectangle function [8],
arctangent [16], [22], and triangle functions [6]. However, the
difference between the approximated gradient and the exact
gradient largely limits the training stability of SNN, especially
for large-sized models. Motivated by that, tdBN [9] introduces
batch-temporal normalization for deep SNN training, and
SEW-ResNet [22] directly passes the gradient via the designed
residual architecture. In addition to the architecture design,
various regularization techniques were presented to stabilize
SNN training by rectification of the membrane potential
distribution [10] and backpropagation with spatio-temporal
adjustment [23].

c¢) SNN with Adaptive Neurons: Unlike the conventional
ANN with simple activation functions (Sigmoid, ReL.U), SNN
training involves the parametrized neurons (e.g., LIF neurons)
with spike functions. To avoid the heuristic parameter selec-
tion, prior works optimized the parameters of spike neurons via
training. [16] introduces the learnable time constant for direct
SNN training, but the employed large-sized SNN model and
extensive training efforts (up to 1,024 epochs) are computa-
tionally expensive. Recently proposed DSR [18] optimizes the
potential threshold during training by multiplying the binary
output spike with the threshold value, where the relationship
between the firing range and the threshold value is constrained
by a deterministic ratio. However, optimizing the potential
threshold value with such additional constraints limits the
learnability of the SNN model. Furthermore, the threshold-
dependent spikes introduce high-precision data into the sub-
sequent layers, which deteriorates the hardware compatibility
with expansive high-precision multiplication, since spikes are
not binary anymore.

III. BACKGROUND ON SPIKING NEURAL NETWORKS

Inspired by the biological nervous system, spiking neural
networks propagate the spatial-temporal information through

TABLE I: Model architectures for LT-SNN training. “C3”,
“DW”, “MP2” , “AP2” and “FC” represent 3x3 convolution
layer, depth-wise separable block [24], 2x2 max-pooling, 2x?2
average-pooling, and fully connected layer, respectively.

Model Architecture

32C3-64DW-64DW-AP2-128DW-
128DW-AP2-256DW-AP2-FC256-FC10
32C3-32C3-AP2-64C3-64C3-AP2-
128C3-128C3-AP2-256C3-256C3-AP2-FC10

64C3-128C3-AP2-256C3-256C3-AP2-
512C3-512C3-512C3-512C3-AP2-1024C3-AP2-FC10

32C3-MP2-64C3-MP2-128C3-64C1-128C3-MP2-
256C3-128C1-256C3-MP2-512C3-256C1-512C3-
256C1-MP2-1024C3-512C1-1024C3-AP2-FC512-FC576

64C3-128C3-128C3-128C3-128C3-128C3-128C3-

MobileNet-Light

VGG-7

VGG-9

Custom-Yolo-V2

ResNet-19 256C3-256C3-256C3-256C3-256C3-256C3-256C3-
256C3-512C3-512C3-512C3-512C3-AP2-FC256-FC10

64C3-128C3-128C3-128C3-128C3-128C3-128C3-

ResNet-26 256C3-256C3-256C3-256C3-256C3-256C3-256C3-

256C3-512C3-512C3-512C3-512C3-512C3-512C3-
512C3-512C3-512C3-512C3-512C3-512C3-AP2-FC256-FC10

the “integrate-and-fire” procedure.

d
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where u(t), Upreset, I(t), and 7 represent the membrane
potential, reset potential, the synapse current, and the time
constant respectively. Given the iteratively accumulated mem-
brane potential, the binary spikes are generated by the step
function:

Si = (s — Vi) = {1 s i)

0 otherwise

Where 6 represents the Heaviside step function, and Vi
represents the membrane potential threshold for spiking neu-
rons. In the forward pass of SNN, the binary post-synaptic
spikes are generated when the membrane potential exceeds the
potential threshold V;;,. With the spatial-temporal backpropa-
gation (STBP) [8], the backward pass of SNN is characterized
. OL L 0S, duy Ol )
Due to the non-differentiable spike function 6, the directly-
trained SNN incorporates the surrogate gradient function to
approximate the intangible Dirac function. In this work, we
choose the triangle function for gradient approximation:

05,
6ut

IV. TOWARDS OPTIMIZING POTENTIAL THRESHOLD

=0"(us — Vi) = max(0,1 — |uz — Vipl) ®)

As described in Eq. (5), the non-differentiability between the
output spike S and the membrane potential v can be alleviated
by the surrogate gradient approximation [7]. With the same
type of surrogation, the gradient of the potential threshold
Vin can be naively approximated in a straight-through manner
using vanilla surrogate gradient (SG):

oL dL 8S, oL,
a%h - aSt a‘/%h - 8St0 (Ut ‘/;h) (6)
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TABLE II: The performance of DSR [18] is largely impacted
by the value of a. The proposed LT-SNN outperforms DSR
with 2.24% higher accuracy on the DVS-CIFARI10 dataset.

Method Model Accuracy (%) a True Binary Spike
DSR [18] VGG-11 77.27 0.3 X

DSR [18]  VGG-11 75.29 1.0 X
This work  VGG-11 79.51 - v

The straight-through approximation in Eq. (6) is based on an
assumption that the surrogate gradient of g—i: and 68\/% are
transferable. However, such transferability remains unjustified,
and the optimality of SG remains uninvestigated.

Different from the vanilla SG approach, the recent DSR
scheme [18] computes the gradient of the potential threshold
with the following threshold-based firing procedure:

Sy = Vi X O(Ut - Olvth) @)

Where the fixed parameter o € [0, 1] controls the threshold
with respect to the firing range [0,V}]. In other words,
regardless of the threshold value, the membrane potential has
to be a deterministic portion of the total firing range [0, V;3].
However, such constraints in the training process largely
limit the learnability of SNN. Based on the open-sourced
implementation of DSR [18], we unleash the optimization
constraints of the potential threshold by setting o = 1.0. Please
note that, keeping the threshold and spike as identical values
is commonly adopted in prior works [6]. As shown in Table II,
the freely-learned potential threshold (o« = 1.0) exhibits large
accuracy degradation for the DVS-CIFAR10 dataset compared
to the constrained learning (o = 0.3), which implies the sub-
optimal performance with constrained threshold optimization.

In the context of hardware computation, layer-wise varied
spikes of DSR [18] require the high-precision data represen-
tation of the output activation. Storing and processing high-
precision data magnifies the memory consumption for sub-
sequent computations. Furthermore, unlike the conventional
ANN with a one-time computation (e.g., convolution) in each
layer, the high precision scaling of DSR lead to high precision
computation at every single time step, which could lead to
increased energy and hardware resource consumption. These
inefficiencies raise the following question:

Question 1: How fo improve the performance of SNN with
the freely-optimized potential threshold, without losing the
hardware compatibility?

TABLE III: Performance comparison on DVS-CIFARI10
dataset with different learning rates and initial threshold.

Architecture  Ir-W  Ir-V;, Initial V;;, SGP  Top-1 Accuracy (%)
VGG-9 0.1 0.001 1.0 X 20.40
VGG-9 0.001  0.0001 1.0 X 78.35
VGG-9 0.001  0.0005 1.0 X 78.60
VGG-9 0.001  0.0005 4.0 X 77.40
VGG-9 0.001  0.001 1.0 v 80.07+0.12

V. PROPOSED METHOD

To answer the above question, we propose LT-SNN, a
novel SNN training algorithm that collectively achieves the
potential threshold optimization, training stability, and hard-
ware compatibility. LT-SNN optimizes the layer-wise potential
threshold during direct SNN training, maximizing the training
performance of SNNs without introducing any learning con-
straints. In the meantime, LT-SNN embraces the advantages
of the adaptive potential threshold while maintaining the true
binary spikes, bridging the gap between biological dynamics
and practical Al applications. The forward pass of LT-SNN
computes the membrane potential and generates spikes with
LIF neurons, while the potential threshold learnability is added
during the backward pass. A separate gradient path computes
the gradient value to tune the layer-wise potential threshold.
The complete flow of the proposed LT-SNN is illustrated in
Figure 2.

A. Non-transferrability of vanilla SG

In vanilla SG approximation, a unified surrogate gradient
function is used (for both weights and threshold). It provides
training simplicity by introducing a naturally fitting learning
mechanism in SNNs. However, we applied vanilla SG under
different learning rate schemes using DVS-CIFAR10 and
observed that the simplicity of training does not guarantee
the optimality of learning. We infer from Table IV results that
naively sharing the surrogate gradient function failed to outper-
form the fixed potential threshold counterpart, regardless of the
learning rate schemes. The suboptimal performance of vanilla
SG with different learning rates and initial threshold values
presented in Table III implies the necessity of a dedicated
optimization method designed for potential threshold.

TABLE IV: Training SNN with SG on DVS-CIAR10 dataset
and VGG-9 architecture.

Method Threshold Ir of weight Ir of V;;,  Accuracy (%)

TET [6] Fixed 0.001 71733
Vanilla-SG-TET ~ Learnable 0.001 0.00025 76.50
Vanilla-SG-TET ~ Learnable 0.001 0.00001 77.20

B. Separate Gradient Path

The suboptimal performance of vanilla SG implies the
incompatibility of using the unified gradient surrogation when
we perform SNN training with the trainable threshold. Moti-
vated by that, we separate the gradient computation of V;; and
u; by proposing a Separate Gradient Path (SGP). Specifically,
we develop SGP using a Gradient Penalty Window (GPW), a
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TABLE V: Comparison of different surrogate functions’ per-
formance as SGP for DVS-CIFAR10 dataset.

Model Epochs SGP Converged Accuracy (%)
VGG-9 200 ArcTan v 77.81
VGG-9 200 Triangle v 70.83
VGG-9 200 Piece-wise v 78.81
VGG-9 200 Sigmoid v 80.20

simple-yet-effective method that is dedicated to the gradient
computation of the potential threshold. On top of the gradient
approximation in Eq. (5), GPW is characterized as a non-linear
function o(-), which reshapes the surrogate gradient of the
layer-wise potential threshold V;;,. Mathematically, the GPW-
aided separate gradient path is characterized as:

oS
ait = 0'(uy — Vin) = max(0,1 — |us — Vinl) ~ (8)
Ut
oS
mi:—wm—wwd%—ww ©)
0S;
EYA max (0,1 — |us — Vin|)o(us — Vin) (10)
th

In this work, we choose the Sigmoid function as the gradient
penalty window for the potential threshold:

1

o(uy — Vi) = m

(1)
The choice of Sigmoid function is empirical as it pro-
duces the best results among different surrogate functions that
we have experimented. Performance comparison of different
surrogate functions with LT-SNN is shown in Table V. For
gradient computation of V;j, we accumulate the gradient
computed in Eq. (9) to avoid the dimensionality mismatch:

0L _ 0L 05, _ oL

V' 08, 0V,  0S, wN.ETW)

(H{ws > Vin} x 0 (up — Vin)o(uy — Vin))

12)

Since the unfired neurons have no contribution to the final
loss, the indicator function 1{u; > V;5,} filters the gradient
with respect to the active neurons in the forward pass.

Additionally, LT-SNN achieves >78% validation accuracy
within 50 training epochs, as depicted in Figure 3. Compared
to the SoTA SNN training with fixed threshold [6], SGP
embraces the advantage of the adaptive potential threshold
learning and achieves superior accuracy. Furthermore, SGP
preserves the true binary spikes (0 and 1) in the resultant
model, maximizing the hardware compatibility without intro-
ducing any high-precision scaling for spike generation [18].

a) Rationality of SGP and GPW: As shown in Eq (9)-
(10), the impact of the Sigmoid-based gradient penalty win-
dow (GPW) is two-fold: 1) The peak gradient value has
been reduced by 0.5x after applying the GPW. 2) With the
same input u;, the magnitude of 6?‘22 weighted higher when
uy — Vi, > 0. Figure 4 shows the comparison between the
gradient surrogation of V;;, with and without GPW.

However, the experiment in Table IV implies the fact that
the slowly-trained Vj;, cannot guarantee the optimality of
learning. Reducing the magnitude of the gradient has limited
improvement in threshold learning. On the other hand, training
the threshold by highlighting the gradient w.r.t the fired neu-
rons penalizes the distortion of the unfired pixels. Therefore,
the essence of the proposed SGP+GPW is equivalent to the
separate regularization between the fired and unfired neurons
of SNN. Our experiments in Table IV and Table V prove
the benefits of learning the V;; with active neurons. Our
experimental results in the next section validate our findings
with both CNN and vision transformers (ViT).
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VI. EXPERIMENTAL RESULTS

We validate the proposed LT-SNN algorithm with a wide
range of event-based computer vision datasets, including DVS-
CIFARI10 [29], N-Cars [30], N-Caltech101 [31] and Prophesee
Automotive Genl [32]. Unlike prior works that only employ
large-sized CNN models (e.g., VGG or ResNet models),
the proposed algorithm is also validated on compact VGG
models (2.4-7.1M parameters), light-weight MobileNet-V1
model (1.5M parameters) [24], as well as spike-based trans-
formers [27]. In addition to the event-based computer vision
datasets, we also validate the proposed LT-SNN algorithm with
the conventional static image datasets, including CIFAR-10,
CIFAR-100 ImageNet-100 and ImageNet-1k datasets. Table I
summarizes the performance comparison of different models
and datasets.

a) Training Setup: We train our proposed LT-SNN-based
classification and object detection architectures using Py-
Torch [33] version 1.9.0 with CUDA version 11.1. Regarding
hyperparameter selection, we use the Adam optimizer where
the learning rate is set to 0.001. We computed TET [6] loss
between the logits and the target labels. The regularization
level S is set to 0.45 and 0.90 for both the full-precision
and low-precision training of VGG and ResNet architectures,
respectively.

b) SNN Training for Full-/Low-Precision Inference: We
perform LT-SNN training to execute inference with both full-
precision (32-bit floating-point) and low-precision (4-bit fixed-
point) weights. To train SNNs for low-precision inference,
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TABLE VI: Experimental results of the proposed LT-SNN on DVS-CIFAR10, CIFAR-100, and ImageNet-100 datasets. Except
“VGG-9 (4-bit)”, 32-bit weight precision is used for all results of prior works and this work.

Dataset Method SNN Architecture # of Parameters = Weight Precision  Simulation Length  Top-1 Accuracy
ASF-BP [25] VGG-Like 15.2M 32-bit 50 62.50%
tdBN [9] ResNet-19 12.31M 32-bit 10 67.80%
ParamLIF [16] VGG-Like 17.4M 32-bit 20 74.80%
RecDis [10] ResNet-19 12.31M 32-bit 10 72.42%
TET [6] VGG-Like 9.27M 32-bit 10 77.33%
DSR [18] VGG-11 9.34M 32-bit 30 75.70%
Dspike [26] ResNet-18 11.18M 32-bit 10 75.45%
DVS-CIFAR-10  Spikeformer (2712 Spikformer-16-256 4.15M 32-bit 10 78.90%
This work VGG-11 9.34M 32-bit 30 79.51%
This work MobileNet-V1 (light) 1.28M 32-bit 30 75.70%
This work VGG-7 1.91M 32-bit 30 80.20%
This work VGG-9 7.07TM 4-bit 30 80.07 %
This work VGG-9 7.07TM 32-bit 10 79.10 %
This work VGG-9 7.07M 32-bit 8 78.30%
This work Spikformer-16-256 4.15M 32-bit 10 79.00%
Hybrid [28] ResNet-20 12.3M 32-bit 10 92.54%
tdBN [9] ResNet-19 12.31M 32-bit 6 94.16%
DSR [18]1 ResNet-18 11.18M 32-bit 6 91.89%
PSP [19] VGG-19 12.20M 32-bit 400 93.97%
CIFAR-10 Dspike [26] ResNet-18 11.18M 32-bit 6 94.25%
Spikeformer [271? Spikformer-4-256 4.15M 32-bit 4 93.94%
This work ResNet-19 12.31M 32-bit 2 94.19 %
This work ResNet-19 12.31M 32-bit 6 94.56 %
This work Spikformer-4-256 4.15M 32-bit 4 95.19%
Hybrid [28] VGG-16 11.11M 32-bit 5 69.67%
DSR [18]! ResNet-18 11.18M 32-bit 6 68.33%
PSP [19] VGG-19 12.20M 32-bit 1100 73.58%
CIFAR-100 Dspike [26] ResNet-18 11.18M 32-bit 6 74.24%
This work ResNet-19 12.31M 32-bit 6 74.82%
This work ResNet-19 12.31M 32-bit 2 72.78%
TmageNet-100 TET [6]3 ResNet-26 32.36M 32-bit 2 74.76%
This work ResNet-26 32.36M 32-bit 2 75.58%
tdBN [9] ResNet-34 32.36M 32-bit 6 63.72%
TET [6]3 ResNet-34 32.36M 32-bit 4 68.00%
ImageNet-1K Dspike [26] ResNet-34 32.36M 32-bit 6 68.19%
This work ResNet-34 32.36M 32-bit 4 68.46 %

"' The experiment is rigorously performed based on the open-sourced DSR [18] implementation with 6 time steps.
% The experiment is performed based on the open-sourced Spikeformer [27] implementation.
3 The experiment is performed based on the open-sourced implementation of [6] with 100 epochs training and SGD optimizer.

TABLE VII: Experimental results of the proposed LT-SNN on
N-Caltech101 and N-Cars datasets.

Dataset Method Representation  Accuracy  Pretrain
YOLE [34] Histogram 70.02% False
EST [35] Histogram 81.70% True
N-Caltech101 AsyNet [36] Histogram 76.10% False
AEGNN [37] Graph 66.80% False
This work Events 81.98% False
NDA [38] Events 91.90% False
AsyNet [36] Histogram 94.40% False
N-Cars YOLE [34] Histogram 92.70% False
AEGNN [37] Graph 94.50% False
Object [39] Binary Spikes 92.40% False
This work Events 95.02% False

we adopt the Statistics-Aware Weight Binning (SAWB) quan-
tizer [40] to compress the layer-wise weights of the LT-SNN-
VGG-9 network down to 4-bit precision.

c) Classification: We validate the proposed LT-SNN al-
gorithm on both event-based classification datasets and con-
ventional static datasets with RGB images. The LT-SNN-
based ResNet-19 and spikeformer models are trained from
scratch on CIFAR-10 and CIFAR-100 datasets. Extended

from the ResNet-19 model, we apply the proposed LT-SNN
algorithm to ResNet-26 and ResNet-34 and train these models
on ImageNet-100 and ImageNet-1K. The proposed method
is trained using PyTorch on four GPUs with distributed data
parallelism. Regarding the event-based classification tasks, we
apply the LT-SNN to both VGG-based and MobileNet-based
encoders. The detailed model architectures are summarized in
Table I. For both static and event-based datasets, we use the
Adam optimizer with an initial learning rate of 0.001 reduced
with cosine decay. We use a batch size of 128 for static datasets
and 32 for event-based datasets. Table VI summarizes the
performance of LT-SNN across all the mainstream benchmark
datasets.

For the DVS-CIFAR10 dataset, compared to the current
SoTA method [6], the 4-bit VGG-9 model trained by the
proposed LT-SNN algorithm achieves 2.71% accuracy im-
provement with 1.31x fewer parameters and 10.48x model
size reduction (MB). Furthermore, the proposed LT-SNN
demonstrates consistently superior performance with different
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TABLE VIII: Experimental results of the proposed LT-SNN
on Prophesee Automotive Genl dataset.

Method Model Architecture SNN  Threshold mAP
Asynet [36] FB-Sparse No - 0.145
MatrixLSTM [41] ResNet-19 No - 0.3
RED [42] RetinaNet No - 0.41
VGG-11+SSD [39] VGG+SSD-SNN Yes Fixed 0.187
This work Custom-YoloV2-SNN Yes Fixed 0.122
This work Custom-YoloV2-SNN Yes Learnable  0.298

simulation lengths (from 8 time steps to 30 time steps).

For the CIFAR-10 dataset, LT-SNN also achieves new SoTA
performance with ResNet-19. Similarly, for CIFAR-100, LT-
SNN surpasses the existing SOTA accuracy using the identical
training setup. With the ResNet-26 and ResNet-34 models,
we also evaluate the performance of LT-SNN with the larger-
scale ImageNet-100 and ImageNet-1k datasets. As shown
in Table VI, LT-SNN outperforms the SoTA TET [6] and
Dspike [26] by 0.82% and 0.27% respectively.

In addition to the CNN-based encoders, we also validate the
LT-SNN algorithm with SpikeFormers [27] on DVS-CIFAR10
and CIFAR-10 datasets. Unlike how [27] applied augmenta-
tions to the DVS-CIFAR10 data, our work validates the perfor-
mance of Spikeformer-based LT-SNN using the original input
events without any augmentation. On top of the official code
of Spikeformer, we train the same transformer architecture
with LT-SNN and outperform spikeformer [27] by 0.10% and
1.25% from the reproduced baseline for DVS-CIFAR10 and
CIFAR-10 datasets, respectively. Furthermore, we evaluate the
proposed LT-SNN algorithm on N-CalTech101 [31] and N-
Cars [30] datasets. As shown in Table VII, the proposed LT-
SNN achieves new SoTA performance on both datasets with
5.88% (N-Caltech101, without pre-training) and 0.52% (N-
Cars) accuracy improvements. Compared to the conventional
histogram-based computation [34], [36] that use non-binary
activations, LT-SNN enables end-to-end spike-based learning
with superior performance and high hardware compatibility.

d) Impact of the Event Time Steps: SNNs require itera-
tive computation and membrane potential accumulation, which
motivated prior works to exploit the computation reduction
with less number of time steps to represent the incoming event.
We also validated LT-SNN with different simulated time steps
on the DVS-CIFAR10 dataset. As shown in Table VI, the pro-
posed LT-SNN achieves SoTA performance with reduced time
steps and compact models, compared to the prior works. With
the same 10 time steps as TET [6], LT-SNN achieves 1.77%
accuracy improvement, without using any data augmentation.
With the extended 30 time steps, LT-SNN achieves 80.20%
SoTA accuracy on the DVS-CIFARI10 dataset.

e) Object Detection Task: In addition to image classifi-
cation, we validate the proposed LT-SNN for object detection
on a large-sized Prophesee Automotive Genl dataset [32].
With 228,123 bounding boxes for cars and 27,658 boxes for
pedestrians, the Genl dataset [32] is considered as the most
complex event-based computer vision task. Unlike prior works
that used accumulated histogram [36], [39], [41] or graph-
based input representation [37], we translate DVS events to

0 50 100 150 200 250 300 350 400

Fig. 6: Inference results of LT-SNN on Prophesee Automotive
Genl dataset.

pure binary frames and synchronize them with artificial actual
ground truths from [42] for SNN training. The binary input
events and intermediate spikes enable end-to-end binarized
computing for LT-SNN, elevating the computation efficiency
with a simplified data format. We use the custom LT-SNN-
YoloV2 encoder (Table I) followed by Yolo loss to train the
customized model. To avoid the gradient vanishing in deep
SNN, we develop a shallow YoloV2 model by skipping one
convolution block from the original architecture. In addition,
we use stride 2 instead of 7 in the max-pooling layers to keep
the salient features with the size of 223 x287.

An example object detection result is illustrated in Figure 6,
and Table VIII compares the LT-SNN based object detection
results to the current SNN-based SoTA with a fixed potential
threshold. Our custom LT-SNN-Yolov2 records SOTA mAP of
0.298 on the Prophesee Automotive Genl dataset.

VII. CONCLUSION

In this work, we present a novel SNN training algorithm
with learnable threshold (LT-SNN), which optimizes the layer-
wise threshold with direct SNN training. As one of the first
studies on this topic, the proposed LT-SNN unleashes the
firing constraints that were imposed in prior works. LT-SNN
optimizes the performance of SNN without introducing any
high-precision spike representations or learning constraints.
The proposed method has been verified on a wide range of
datasets, including both event-based and static image datasets
for classification and object detection tasks. LT-SNN improves
the state-of-the-art accuracy for DVS-CIFAR10 and N-Caltech
dataset by 2.8% and 5.88% respectively together with 10.48x
smaller model size. For object detection on the Prophesee
Automotive Genl dataset, the LT-SNN outperforms SNN-
based SOTA mAP by 0.11. Furthermore, the proposed method
achieves the new SoTA results on CIFAR-10, CIFAR-100,
ImageNet-100, and ImageNet-1k datasets, with both CNN-
based encoder and spike-based vision transformer models.
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