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ABSTRACT

The treatment of convection remains a major weakness in the modelling of stellar evolution with one-dimensional (1D) codes.
The ever-increasing computing power makes now possible to simulate in three-dimensional (3D) part of a star for a fraction of its
life, allowing us to study the full complexity of convective zones with hydrodynamics codes. Here, we performed state-of-the-art
hydrodynamics simulations of turbulence in a neon-burning convective zone, during the late stage of the life of a massive star.
We produced a set of simulations varying the resolution of the computing domain (from 128% to 10243 cells) and the efficiency
of the nuclear reactions (by boosting the energy generation rate from nominal to a factor of 1000). We analysed our results by the
mean of Fourier transform of the velocity field, and mean-field decomposition of the various transport equations. Our results are
in line with previous studies, showing that the behaviour of the bulk of the convective zone is already well captured at a relatively
low resolution (256°), while the details of the convective boundaries require higher resolutions. The different boosting factors
used show how various quantities (velocity, buoyancy, abundances, and abundance variances) depend on the energy generation
rate. We found that for low boosting factors, convective zones are well mixed, validating the approach usually used in 1D stellar
evolution codes. However, when nuclear burning and turbulent transport occur on the same time-scale, a more sophisticated
treatment would be needed. This is typically the case when shell mergers occur.

Key words: convection—hydrodynamics —nuclear reactions, nucleosynthesis, abundances—turbulence —stars: evolution—
stars: interiors.

occur in stars, often included only through simplified prescriptions.

1 INTRODUCTION . R .
Among the most concerning uncertainties in stellar modelling are

To study the physics and evolution of stars, the most efficient
and complete software tools available are one-dimensional (1D)
stellar evolution models (Heger, Langer & Woosley 2000; Paxton
et al. 2011; Ekstrom et al. 2012). Not only can these models be
employed to study the physics of stars, but they also represent a key
aspect for interpreting stellar observations. Without an up-to-date
and reliable grid of 1D stellar models, it would not be possible to
obtain important information e.g. from asteroseismic measurements
(e.g. Aerts et al. 2003), or for isochrone fitting and age determination
(e.g. Jgrgensen & Lindegren 2005; Bossini et al. 2019). Despite the
great progress made in recent years to improve stellar evolutionary
models, several uncertainties still affect the outcome of the models,
undermining the accuracy of the predictions. These uncertainties
arise from the multiphysical and multidimensional processes that
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determining the extent of convective regions and the mixing that
occurs near the boundaries (convective boundary mixing, CBM).
For decades, 1D models have implemented the so-called mixing
length theory (MLT; Bohm-Vitense 1958), a purely one-dimensional
and local treatment of convection that, while simple and easy
to implement, fails to appreciate the multidimensionality of the
problem. This reflects in the well-known problem of having to add
ad hoc mixing beyond the convective boundary, often referred to as
‘overshoot’. Over the years, many prescriptions have been suggested
and improved to account for an extension of the convective region
(e.g. Canuto & Mazzitelli 1991; Zahn 1991; Freytag, Ludwig &
Steffen 1996; Herwig 2000; Gabriel et al. 2014), but their validation
and calibration has been difficult due to the impossibility of directly
measuring the size of convective regions in observed stars. Indirect
information can be deduced from asteroseismology (Pedersen et al.
2021), the Hertzsprung—Russell diagram (Castro et al. 2014), and
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eclipsing binaries (Claret & Torres 2016), but these methods are still
heavily based on 1D models for interpreting the observations.

In the last two decades, multidimensional hydrodynamic simula-
tions of stellar interiors have been used to constrain and parametrize
CBM (e.g. Freytag etal. 1996; Meakin & Arnett 2007). This approach
is sometimes called ‘321D-guided’, referring to the fact that 1D
models are improved with the results obtained from multidimen-
sional models. In fact, multidimensional simulations are started from
initial conditions assumed from the 1D models they are trying to
validate, therefore they are subjected to the uncertainties of the 1D
models. In addition, three-dimensional (3D) models are not able to
reproduce the long time-scales typical of the stellar evolution, due to
the excessive computing resources required, therefore their results
need to be generalized into more extensive prescriptions.

Running multidimensional hydrodynamic simulations of stars is
very challenging due to the great amount of computing resources
required. Consequently, an important limiting factor in the simula-
tions is the Mach number or the convective velocity of the fluid.
The late burning phases of massive stars are normally characterized
by large convective velocities, which make it easier and cheaper
to perform hydrodynamic simulations of these environments using
time explicit methods. They normally include oxygen- and silicon-
burning phases (Meakin & Arnett 2007; Arnett, Meakin & Young
2009; Viallet et al. 2013; Couch et al. 2015; Miiller et al. 2016; Jones
et al. 2017; Yoshida et al. 2019), and occasionally also neon burning
(Rizzuti et al. 2022, 2023). Recently, these convective phases have
also been explored with rotation (Yoshida et al. 2021; Fields 2022;
McNeill & Miiller 2022), magnetic fields (Varma & Miiller 2021;
Leidi et al. 2023), and both rotation and magnetic fields (Varma &
Miiller 2023). Earlier phases, such as the main-sequence burning,
helium- and carbon-burning, are characterized by slow convective
velocities, which require large boosting in luminosity to make the
hydrodynamic computation affordable (Gilet et al. 2013; Woodward,
Herwig & Lin 2015; Cristini et al. 2017; Horst et al. 2021; Herwig
et al. 2023; Andrassy et al. 2024) or in two dimensions (Baraffe
et al. 2023). However, it is still not clear whether such boosting also
introduces additional effects on the physics of the star.

In this work, we present a large grid of hydrodynamic simulations
reproducing a neon-burning shell in a 15 M, star; this grid explores
a wide range of resolution and luminosity. Some of these simulations
have been used in Rizzuti et al. (2022) to study entrainment. Here, we
perform a detailed analysis of the dynamics and nucleosynthesis and
their interplay. The presence of a nominal-luminosity run allows
us to validate the results normally obtained through luminosity
extrapolation; having simulations with different boosting factors
allows us to study how different quantities scale with the luminosity.
We also perform a detailed mean-field decomposition of some key
equations, to study the statistical properties of the fluid. Finally,
an explicit network of isotopes has been included for realistically
reproducing nuclear burning, allowing us to study the evolution of the
abundances and their variance. The results we present here contribute
to the general understanding of stellar evolution through our detailed
analysis and critical comparison to the initial conditions.

We organize the paper as follows: In Section 2, we present the
initial conditions and a general overview of the hydrodynamic
simulations. In Section 3, we present the results concerning the
dynamics and nucleosynthesis of the convective flow and we present
the detailed mean-field analysis performed with the Reynolds-
averaging framework. In Section 4, we analyse the time evolution
and transport of the chemical composition. Finally, we discuss our
results and draw conclusions in Section 5.
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2 INITIAL CONDITIONS AND OVERVIEW OF
3D HYDRODYNAMIC SIMULATIONS

In this paper, we simulate a neon-burning shell of a 15 Mg star.
The initial conditions for our 3D models are mapped from a 1D
GENEC stellar evolution model run at solar metallicity (Z = 0.014)
and with the physical ingredients described in Ekstrom et al. (2012).
The Schwarzschild criterion is used, and penetrative overshoot is
included for core hydrogen and core helium-burning phases only,
with an overshooting distance £oy; = 0.1 Hp. From carbon-burning
onward, an «-chain network is used (see Hirschi, Meynet & Maeder
2004, for details). This input stellar model has been described in more
detail in Rizzuti et al. (2022). The evolution of the structure of the
model is presented in Fig. 1 (left) with a close-up of the neon-burning
shell used as initial conditions for the 3D simulations presented in
Fig. 1 (right). Compared to other convective episodes, neon-burning
convective zones are relatively small and short-lived with typical
spatial extents of the order of 10%-° cm and temporal extents of weeks
to months. These time-scales are still too computationally expensive
to be simulated completely in 3D (though see Rizzuti et al. 2023),
so in this study we opt instead to simulate a statistically significant
number of convective turnovers.

Using the initial conditions described above, we produced a series
of 3D hydrodynamic simulations using the PROMPI code (Meakin &
Arnett 2007; Cristini et al. 2017). We used a plane-parallel geometry
and our computing domain is a cube of side equal to 0.65 x 108 cm
encompassing the convective shell, which occupies half of the
domain, as well as stable (radiative) layers both below and above (see
e.g. Fig. 2). The gravity is fixed according to the initial stellar model,
and nuclear burning is followed with a minimal nuclear network of
four species (°0, 2°Ne, 2*Mg, and 28 Si), a-particles being considered
to be at equilibrium (Arnett 1974). As already done in our previous
works (Cristini et al. 2017; Rizzuti et al. 2022, 2023), for a subset
of our simulations, we multiplied the reaction rates and the neutrino
generation rate by a so-called ‘boosting’ factor taking the following
values: 1 (nominal case), 10, 100, and 1000. This energy generation
boosting provides two main advantages. First, the increased energy
generation speeds up the nuclear burning and convection (convective
velocities scale with the cubic root of the energy generation rate, see
below). Higher convective velocities mean that sufficient statistics
(i.e. a reasonable number of convective turnovers) can be obtained
with a smaller computing budget, as time-steps are limited by the
sound speed in PROMPI (time explicit integration). Second, and
most important, having several simulations with different energy
generation rates enable us to study the dependence of the results on
the strength of turbulence. It is worth noting that this study includes
a nominal case, i.e. exactly the same nuclear energy generation and
neutrino losses as in the 1D input model. This enables a direct
comparison to the 1D input model without the need for extrapolation.

We summarize the models presented in this study and their most
important properties in Table 1. One can estimate an effective
Reynolds number for our simulations as Re ~(n/2)*?3, where n is
the resolution, considering that the radial extent of the convective
zone is half of the domain and thus covers n/2 cells (see Arnett et al.
2019). This is a reasonable assumption, which is confirmed by the
cross-sections of Figs 2 and 6 during the quasi-steady state. In this
way, we obtain effective Reynolds numbers of 256, 645, 1625, and
4096 for the resolutions n = 128, 256, 512, and 1024, respectively.
For large Reynolds numbers, we can assume the regime of turbulent
cascade (Biermann 1932; Kolmogorov 1941), where kinetic energy
cascade is driven from the large scales. If we use Re > 1000 as the
condition for the turbulent regime, we see that the highest resolutions
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Figure 1. Left: Structure evolution (also known as Kippenhahn) diagram of the 1D GENEC 15 Mg, stellar model used as input for this study. The top solid black
line shows the time evolution of the total mass. The other solid black lines are radial contours (values of logjo(r) in cm are indicated on the curves). The Mach
number of the flow inside convective zones (shaded areas) is colour coded. The extent of the computational domain covered by the 3D simulations corresponds
to the red vertical bar (indicated by the red arrow). Right: Zoom-in on the neon shell convective region simulated in this study. The agestart-hydro corresponds to
the time at which the 3D simulations start. Black solid lines are isomass contours (M; = 0.9, 1.0, 1.1, 1.2Mg). These isomass contours show that the shell
studied does not undergo any significant contraction or expansion during the Ne-burning phase. The 3D simulations presented in this paper cover a physical
time of an hour or less, thus not even covering the width of the red vertical line in this figure. These diagrams are taken from Rizzuti et al. (2022).
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Figure 2. Vertical cross-sections of the velocity magnitude (values in colour scale) for the Ex1 model, taken at 1000, 1700, 2400, and 3001 s (last time-step)
through the simulation. The progression shows an increase in the velocity magnitude of fluid elements. It is possible to see in the upper panels the formation of
the convective cell, and in the lower ones its growth into the upper stable region as expected from turbulent entrainment. Gravity waves are also visible in the

stable region.

5123 (and 10243) reach the numerically turbulent regime. We thus
focus our analysis on simulations at the 512* resolution throughout
the paper and shorten their code name to include only their boosting
factor for convenience (Ex1, Ex10, Ex100, and Ex1000). This
being said, we analyse simulations with different resolutions to test
the dependence of the results on the grid size in Section 3. Finally,
we confirm from Table 1 that increasing the boosting factor by a
factor of 10 increases the convective velocity roughly by a factor
of 103 ~ 2.15 (v ~ €3, where € is the energy generation

rate; Arnett et al. 2018). This in turn decreases the turnover, 7.,
as expected. The general thermodynamic properties of the simulated
region of the star remain mostly unchanged by changing the boosting
factor, thus the sound speed also remains the same. The Mach
number scales therefore with vy, and is small in any case: about
2 x 1072 for the Ex1 case to about 20 x 1073 for the Ex1000
case. We also confirm that simulations at different resolutions with
the same boosting factor have approximately the same vy, Te,
and Ma.

MNRAS 531, 4293-4310 (2024)
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Table 1. Summary of the models presented in this study, listed under names indicating their boosting factor and resolution. The properties are: resolution Nyy;,
boosting factor of the nuclear energy generation rate €, physical time simulated 7, (s), global rms convective velocity vy (cm s~1), convective turnover time
¢ (s), time spent in quasi-steady state T4 (s), number of convective turnovers simulated in quasi-steady state phase n¢, and computational cost in CPU core

hours.

Nxyz € Tsim Vrms Ma T Tq ne Cost

®) (10%cms™) (107%) ) () (10%h)

Ex10.128 1283 10 1500 1.58 453 45 1250 27 0.04
Ex10.256 2563 10 1832 1.70 4.44 44 1600 36 0.36
Ex1¢ 5123 1 3037 0.70 1.93 100 700 7 11.4
Ex10 5123 10 1004 1.49 3.96 46 700 15 4.66
Ex100 5123 100 291 372 9.95 23 150 6 1.15
Ex1000 5123 1000 73b 8.00 23.2 13 10 1 0.28
Ex10.1024 10243 10 310¢ 1.49 3.94 47 310 6 482

Notes. “Models with resolution 5123 are indicated by their boosting factor only, since they are the most studied in this work.
bTime of the entire simulation, although the upper domain is reached at about 30 s, as it can be seen in Fig. 3.

“Model Ex10-1024 was restarted from the Ex10 simulation at 500 s.

3 GENERAL PROPERTIES OF THE
CONVECTIVE FLOW

In this section, we present our analysis of the convective flow with
a particular emphasis on the velocity field and the turbulent kinetic
energy (TKE).

3.1 Flow velocity and specific kinetic energy

Fig. 2 shows vertical cross-sections of model Ex1 taken at key phases
of the simulation, with the velocity magnitude represented in colour
scale. These cross-sections allow us to see the time evolution of the
velocity field in this simulation, which is representative of all our
models. At the beginning of the simulation ( = 1000 and 1700 s),
the nuclear burning at the bottom of the neon shell drives turbulent
motions (initially plumes and later on eddies), which gradually fill
the region that was convective in the 1D input stellar model. After
an initial transient (the duration of which strongly depends on the
boosting factor), convection is fully developed and the simulation
enters a quasi-steady state (at around 2400 s for the Ex1 model). As
time proceeds, the convective region grows and entrains material
from the stable regions, as can be seen at the top boundary by
comparing the cross-sections at ¢ = 2400 and 3001 s.

Another way to follow the time evolution of the velocity in our
simulations is via the specific total kinetic energy (v} + v} + v2)/2
(see Fig. 3). The initial and sudden rise in kinetic energy characterizes
the initial transient. Its length depends on the boosting factor,
being considerably longer for the non-boosted model (Ex1). After
the transient, the simulations enter a quasi-steady state, where the
average kinetic energy remains constant or slowly increases. This
phase is also characterized by periodic pulses in kinetic energy of
approximately the same time-scale as the convective turnover time.
These pulses are related to the time delay between the formation and
rise of large-scale eddies in the convective zone and their dissipation
(Meakin & Arnett 2007; Arnett & Meakin 2011; Viallet et al. 2013;
Arnett et al. 2015).

The roughly constant or slow rise of convective velocities is
confirmed by comparing the radial profiles of the root-mean-square
velocity between the start (red solid line in Fig. 4 for Ex1 model)
and the end of the quasi-steady state phase (blue solid line). In
addition to a mild increase in magnitude, the outward shifting of the
upper boundary of the convective zone expected from entrainment
is visible. This figure also confirms findings from previous 3D
simulations (see e.g. Cristini et al. 2017; Jones et al. 2017; Mocak

MNRAS 531, 4293-4310 (2024)
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Figure 3. Time evolution of the specific kinetic energy integrated over
the computational domain, for the four models Ex1, Ex10, Ex100, and
Ex1000. The trends cover the entire simulated time range. After an initial
transient, whose duration depends on the boosting, the simulations enter
a quasi-steady state (starting time indicated by the vertical dashed lines),
which lasts until the upper boundary of the domain is reached (Ex100 and
Ex1000) or the simulation is otherwise terminated (Ex1 and Ex10). As
expected, models with larger boosting factors reach higher kinetic energies.

et al. 2018). The radial velocity component (dotted line) peaks in
the centre of the convective zone, while the horizontal component
peaks at the boundaries. This reflects the convective motions and the
U-turning of fluid elements at the boundaries. The non-negligible
velocities outside the convective zone are produced by gravity waves.
Furthermore, using our nominal case simulation (Ex1), we can
compare convective velocities directly between 3D and 1D models.
We see that convective velocities in our 3D simulations are about
twice as large as the velocity predicted by MLT in the 1D GENEC
model (around 3.6 x 10° cm s~!, black solid line) consistent with
the results of Jones et al. (2017).

The boosting of the nuclear energy generation rate has a strong
impact on the evolution of our simulations. This is clearly visible
in Fig. 5, where we compare the velocity fields between our four
5123 simulations with different boosting factors (see Table 1). Since
the time-scale of the evolution of the models is affected by the
boosting, as can be seen in Fig. 3, we choose here to compare
the different simulations when their upper convective boundary has
reached a radial location of approximately 3.89 x 108 cm, which is
the maximum extension of the convective zone in the non-boosted
model. This corresponds to a time of 3001, 400, 60, and 16 s for the
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Figure4. Radial profiles of different velocity components. In black, the MLT
velocity vmpr of the 1D stellar model was used as initial conditions for all
simulations. In red, the root-mean-square velocity vy at the beginning of the
quasi-steady state in Ex1 simulation, averaged over one convective turnover.
In blue, different components of the convective velocity at the end of Ex1
simulation, averaged over one convective turnover: root-mean-square Vepd
(solid), radial v, (dotted), and horizontal vy, (dashed) velocity components.

Ex1, Ex10, Ex100, and Ex1000 models, respectively (during the
quasi-steady state phase of these simulations). Looking at the highest
velocity in the snapshot shown in Fig. 5 (coloured in red), we can
see that larger boosting factors produced a higher kinetic energy of
the fluid, which is confirmed in Fig. 3.

In order to test whether there is a dependence of the flow velocity
on resolution, we present in Fig. 6 the velocity fields of four
simulations with the same boosting factor and initial conditions,
but different resolutions. It is clear from the figure that the small-
scale features of convection depend on the mesh size we choose for
our simulations. In particular, according to the Implicit Large Eddy

Ex1 time = 3001 s

Ex100, time = 60 s

00 0.2 04 0.6
Y (10% cm)

0.0

4297
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Figure 6. Same as Fig. 2, but for the four different resolutions 1283, 256,
5123, and 10243 with boosting factor 10 (see Table 1), taken at 800 s from
the beginning of each simulation. Since a higher resolution is linked to a
smaller dissipation range, it is expected that the simulations predict eddies on
a smaller scale when the resolution is increased.

Simulation (ILES) paradigm, the grid scale sets the limits for the
numerical dissipation of kinetic energy, which mimics the effects of
viscosity. For this reason, if we increase the resolution of our models,
the dissipation scale decreases, allowing the simulations to produce
eddies on a smaller scale, which are closer to the real case scenario,
as visible in Fig. 6 and discussed further in Section 3.2.

At large scale, however, the structures look similar at different
resolutions so we do not expect the bulk properties of the convective
region to depend on resolution. This is confirmed in Fig. 7 showing
the time evolution of the specific total kinetic energy for the four

Ex10, time = 400 s

f=]
D
(;_s wo 1) opnjruSew AopA

0.0

0.2 0.4 0.6
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Figure 5. Same as Fig. 2, but for the four models Ex1, Ex10, Ex100, and Ex1000 taken at 3001, 400, 60, and 16 s, respectively. Time-steps were chosen so
that the upper convective boundary is located at 3.89 x 108 cm in all simulations, for comparison. It is clear that one major effect of boosting the nuclear energy
generation rate is an increase in the velocity magnitude of fluid elements, therefore in kinetic energy, as confirmed by Fig. 3.
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Figure 7. Same as Fig. 3, but for the four models with different resolutions
1283,256%,5123, and 10243 with the same boosting factor 10. The simulations
share a very similar evolution. The vertical dashed line is the beginning of
the quasi-steady state.

simulations with different resolution and the same boosting factor
(Ex10.128,Ex10.256,Ex10,and Ex10.1024, see Table 1). As
expected, the simulations have a very similar evolution, in agreement
with the fact that global properties (like v,y and 7. estimated in
Table 1) are comparable for all simulations with the same boosting
factor and thus do not depend on the resolution.

High resolution is nevertheless needed to better resolve convective
boundaries as discussed in Section 3.3.

3.2 Turbulent kinetic energy spectra

A different approach to study the kinetic energy of the simulations
is to compute the turbulent kinetic energy (TKE) spectra. In order
to do so, we performed 2D fast Fourier transforms of different
velocity components on horizontal planes at constant height, within
the convective zone. We also normalized the spectra by dividing
them by k=33, which is the power-law scaling for the inertial range
(Kolmogorov 1941). In this way, the regions where the spectra have
a horizontal slope correspond to the inertial range (see e.g. Cristini
et al. 2017, and references therein).

We show in Fig. 8 a comparison between the spectra of the radial
velocity squared, for different resolutions (left panel) and different
boosting factors (right panel). The spectra are averaged through the
entire quasi-steady state phase of each simulation (see Fig. 3). As
expected, increasing the resolution has the effect of extending the
inertial range plateau toward higher k, because dissipation occurs at
smaller scales r in ILES. The vertical dashed lines indicate the grid
size for each resolution. We can see that the dissipation range is 5—
10 times larger than the grid size. On the other hand, if we increase
the boosting factor while keeping the resolution fixed, we witness a
rise in the velocity magnitude without changes in the length of the
plateau, as visible in the right panel of Fig. 8.

The spectra presented in Fig. 8 are taken in the bulk of the
convective region and during the quasi-steady-state phase. It is
interesting to find out if the spectra vary with location and time.
In Fig. 9, we study the time evolution of the velocity spectra for the
Ex10 model from the beginning of the simulation to the quasi-steady
state, with time-averaging windows of 50 s, which is approximately
the convective turnover time for this model (see Table 1). The spectra
are taken near the bottom of the convective zone (at a radius of
3.58 x 10% cm), and we present results for the radial velocity (left
panel), the horizontal velocity (central panel), and the total root-
mean-square velocity (right panel). As can be seen from the plots,

MNRAS 531, 4293-4310 (2024)

at the beginning of the simulation (during the initial transient), the
spectra have a peak at high k, i.e. at small scales. This happens
because convection is at a very early stage, and eddies on the smallest
scales are dominant. As time passes, the velocity magnitude increases
and the peaks are shifted toward smaller k as the turbulent flow fills
the entire region that was convective in the 1D input stellar model.
After the initial transient (lasting about 300 s), the spectra do not
vary significantly and they assume the more familiar shape of Fig. 8,
which is characteristic of homogeneous and isotropic turbulence.

In a similar way, we compare in Fig. 10 the spectra of the velocity
and its components at different radial locations inside the convective
zone, from 3.58 to 3.88 x 10% cm, during the quasi-steady state
phase (500-550 s, Ex10). The spectra at different heights are very
similar, which means that convection remains turbulent and generally
isotropic throughout the convective zone. The main exception is the
radial velocity at the lowest k values (largest scales) near convective
boundaries. Indeed, both the uppermost and lowermost spectra have
a lower radial velocity magnitude around k¥ = 10 compared to
the bulk of the convective region. This is easily explained if we
consider that the convective boundaries are limiting the velocity in
the radial direction, while the horizontal components of velocity are
not affected by this restriction. Instead, they are stronger near the
convective boundaries and present a peak around k = 11, which is
less important for central regions.

3.3 Mean-field (RA-ILES) analysis of the turbulent kinetic
energy

In order to gain a better understanding of the key processes taking
place in our simulations, we performed a mean-field analysis, called
Reynolds-Averaged analysis of Implicit Large Eddy Simulations
(RA-ILES; see Meakin & Arnett 2007; Viallet et al. 2013; Cristini
et al. 2017; Arnett et al. 2018). This allows us to disentangle the
contributions and interplay between nuclear reactions and turbulence
and to determine the dominant processes at play. It also provides
insightful quantitative information. The basics of this analysis rely on
a time- and space averaging of all the quantities. The time averaging
is done on a time window T, which is long enough to be statistically
meaningful, but short enough so that the main properties of the
fluid do not change significantly. Usually, we perform this averaging
over a time corresponding to two convective turnover time-scales.
The spatial averaging is performed over a given volume V (in our
simulation, it is usually the ‘volume’, or rather surface of a horizontal
slice of cells). One can therefore define the ‘Reynolds average’ of a
quantity g as

) 1 +5 ) )
glx,t) = TAS )y /Asq(t,x,y,z)det, (1)

dS being an infinitesimal surface centred on the point (x, y, z). The
quantity ¢ can then be decomposed as

g=4+4". ®)

Another useful type of averaging is a density-weighted average, also
called ‘Favre average’,

~_ Pq

i="=2 3)
D

Again, we can decompose any quantity g as

9=q+4q" 4

Note that most of the time, ¢’ # ¢”.
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Figure 8. Two-dimensional Fourier transforms of the radial velocity multiplied by k'3, for the four different resolutions 1283, 256, 5123, and 10243 with a
boosting factor 10 (left panel), and for the four different boosting factors of the 5123 resolution models (right panel), taken during the quasi-steady state phase,

at the centre of the convective zone. The horizontal axes show both the Fourier space k =
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dashed lines show in the left plot the grid size for each resolution, and in the right plot they show 32, 16, and 8 times the grid size for the 5123 models.
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Figure 9. Same as Fig. 8, but for the Fourier transforms of the radial velocity (left panel), horizontal velocity (central panel), and total root-mean-square (rms)
velocity (right panel), taken at different times through the Ex10 simulation, with an averaging window of 50 s. It can be clearly seen the progression toward the

quasi-steady state.

With these notations, we can perform averages of the Euler
equations governing the fluid we are simulating. Without providing
details (which can be found in! Viallet et al. 2013; Mocdk et al. 2014,
2018; Arnett et al. 2015), this leads to the following results for the
kinetic energy equation:

P Diéx = =V pulex — V. fo + Wp + Wg. )

ﬁl~), is an operator similar to the Lagrangian derivative in the
RA-ILES framework: pD,q = 3, (pq) + V. (pti.q), with V, the x

IFor a general introduction to the RA-ILES method, see Chassaing et al.
(2002).

component of the divergence operator,? and fp = P’u/. is the acoustic
flux (i.e. the flux of pressure variations). Wp = P’0,u/, represents
the turbulent pressure dilatation, and Wy = —pu”g is the buoyancy
work.

In this section, we go into the details of the RA-ILES decomposi-
tion of the TKE by discussing the importance and behaviour of each
term in equation (5) for different resolutions (128° to 1024° for the
Ex10 boosting factor, see Fig. 11) and boosting factors (nominal
luminosity to 10* times nominal luminosity at a resolution of 512,
see Fig. 12).

2In this work, y and z are both horizontal directions, while x is directed
outwards (opposite to the gravity field).
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Figure 10. Same as Fig. 9, but for the Fourier transforms taken during the quasi-steady-state phase (500 s, Ex10) at different radial locations inside the

convective zone.

3.3.1 Time evolution

ﬁ/D\;éi represents the Lagrangian time derivatives of the kinetic
energy. A negligible time derivative within the chosen time average
implies that the convection is in a statistically steady state. This
can seen to be true in all resolutions (Fig. 11) and most boosting
factors. The only exception is the Ex1000 model shown in Fig. 12.
In this case, the high boosting factor leads to rapid growth of the
convective region, causing it to interact with the domain boundary
before a steady state can be achieved. As such, we will not analyse
the Reynolds-averaged quantities of this model further.

3.3.2 Transport terms

The transport of kinetic energy throughout the convective region is
defined by the TKE flux, Vx(ﬁm, and the acoustic flux, V,fp,
where fp = P’u’.. We see that the acoustic flux often opposes the
TKE flux within the convection zone, except at the convective
boundaries, where the acoustic flux spikes where it launches gravity
waves. The general behaviour observed in the Ex10 case in Fig. 11
can also be seen when the boosting factor varies (Fig. 12). The general
pattern is preserved, but its amplitude is increased for increasing
boosting factors, since the higher velocity of the fluid makes the
transport more efficient (note the change in the scale on the y-axis
by a factor of 1000 from the top to the bottom panel).

3.3.3 Source terms

Turbulence in the convective region is driven by the work due to
turbulent pressure fluctuations, Wp, and the buoyancy work due
to density fluctuations, Wg. As in previous work by Viallet et al.
(2013) and Ceristini et al. (2017), Wp appears to be negligible in
shell convection in deep interiors. Wy > 0 is generally seen in the
convective zone as expected, since itis the main driving term. Regions
near the convective boundary have Wy < 0, meaning that the flow
decelerates in these regions. These regions are usually referred to
as ‘overshooting’ regions in 1D stellar modelling but we prefer the
more general term of CBM regions. We notice a minor systematic
decrease in the integrated buoyancy work as resolution is increased.
We suspect this effect is caused by the lower resolution models having
alarger CBM extent. This leads to a higher rate of entrainment of new
material to burn into the convective Ne shell, which in turn, slightly

MNRAS 531, 4293-4310 (2024)

increases the rate of energy generation and hence the buoyancy work
done. The difference, however, is quite minor even over the relatively
long time-scales that we simulate. Looking at the different boosting
factors (Fig. 12), we see that Wy scales linearly with them: the work
done by buoyancy force is about 1000 times higher in the Ex1000
simulation compared to the nominal case Ex1. This is due to the fact
that nuclear processes drive convection by heating up the plasma at
the bottom of the shell.

3.3.4 Dissipation

Due to the finite size of our grid, our code is not able to perfectly
reproduce the behaviour of the fluid at spatial sizes that are smaller
than the grid size and our simulations do not include explicit viscosity
(ILES). The numerical dissipation (taking place at the grid scale)
is nevertheless tracked by the ./\fEk term, which is the difference
between the left-hand side and right-hand side terms of equation (5).
Similar to the results found in Cristini et al. (2017) for a convective
carbon-burning shell, we find that the work due to buoyancy, Wg,
is closely balanced by numerical dissipation A, as expected from
Kolmogorov’s turbulence theory as numerical dissipation in ILES
replaces the dissipation due to physical viscosity. One key feature
that depends on resolution is the numerical dissipation peak at the
lower boundary. This confirms that high resolution is needed to fully
resolve the lower boundary of convective region. Another feature
that affects low-resolution simulation is the leap-frog instability that
creates zigzags in the Wy and thus also the N, profiles. This analysis
shows that a resolution of 256 or higher is best to resolve the key
processes taking place in the bulk of convective regions and not too
steep boundaries like the top boundaries in this study. A resolution of
1024 or higher is needed to perfectly resolve sharp boundaries like
the lower ones but measurements of entrainment do not necessarily
require the lower boundary to be perfectly resolved (Rizzuti et al.
2022, 2023).

4 INTERPLAY BETWEEN TURBULENCE AND
NUCLEAR PROCESSES

Our simulations follow explicitly the evolution of the four key
nuclides for neon burning: 160, 20Ne, 24Mg, and 28Si, which enables
us to study the interplay between turbulence and nuclear processes
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Figure 11. Left column: Mean kinetic energy equation terms as a function of radius for various resolutions. From top to bottom: 1283, 256%, 5123, and 10243,
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in great details. These nuclides are linked by a small tailored nuclear
reaction network including the following reactions: °Ne(y, «)'°0,
190(at, ¥)*Ne, ®Ne(a, y)**Mg, and *Mg(a, ¥)**Si (a particles
are considered to be at nuclear equilibrium, which is a reasonable
assumption for the neon shell studied here).

We can see the effects of the above-mentioned neon-burning
reactions in the vertical cross-section snapshots presented in Fig. 13,
where we show in colour scale the mass fraction of these four
species after 1500 s from the start of the Ex1 model (note that the
simulation has not reached the quasi-steady state by that time and
that the turbulent region has not reached the upper boundary from the
initial 1D model). In particular, the reference colour (white) indicates
the average mass fraction inside the neon shell at the beginning of
the simulation. The colour represents the same range of deviations
from the initial composition in the convective region in all panels.
The results fully reflect what is expected for neon burning: neon is
consumed inside the convective region, while oxygen, magnesium,
and silicon are produced via the reactions listed above. These
abundance plots also show that the species are not always completely
homogeneously mixed and that they can be used as tracers of the
turbulent motion of the fluid. Particularly interesting is the °Ne case:
the bottom part of the convective region shows an underabundance
with respect to the initial one. This is a sign of the nuclear burning
taking place at the bottom boundary. On the contrary, the top part
of the convective region shows an overabundance of neon. This is
due to entrainment, which brings neon from the stable region above
the convective zone (where abundance is higher) into the convective
zone, where it is slowly mixed. Note that the strong overabundance in
Ne between 3.5 and 3.6 x 10% cm comes from the initial 1D structure
(see Fig. 14, dashed line), which has not been erased by turbulent
mixing at the time when the snapshot is taken here, but it is erased
soon afterward.

4.1 Evolution of the chemical composition

An overview of the time evolution of the chemical composition in our
simulations is presented in Fig. 14, which shows the radial profiles
of the four chemical elements followed in our simulations (i.e. the
horizontal average of the abundance) at the start of the simulation
(dashed lines, the same in each case), and at the end (solid lines), for
the four boosting factors. The convective region corresponds to the
plateaus in the middle of the computational domain. A few general
observations can already be made from this figure. The effects of
entrainment are clearly visible, particularly at the top boundary: the
boundary of the convective zone has moved outwards, and the steep
initial profiles have been smoothed by CBM. Interestingly, in the
current set of simulations, entrainment is more efficient at bringing
20Ne inside the convective zone than nuclear burning at destroying
it, leading to a slight increase in ’Ne abundance (except for the
Ex1000 case). Qualitatively, the Ex1 and Ex10 cases are very
similar, except that, as expected, entrainment is more efficient with
the higher boosting factor. This is exacerbated for the Ex100 and
Ex1000 cases where the convective boundary has moved up to the
top of the computing domain over the course of the simulation.

4.2 RA-ILES analysis of the composition transport equation

As was done for the TKE in the previous section, our RA-ILES
can also be applied to the chemical composition transport equation,
resulting in the following equation:

~ nuc

PDX; ==V, fi +pX; . (6)
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X; is the mass fraction of the chemical element i, f; = pX/u!
is the turbulent flux of the element i, and X; is the rate of cre-
ation/annihilation of the element i due to nuclear reactions. The right-
hand side of this equation includes the two sources of the modification
of the mass fraction at a given location inside the computing domain:
turbulent motion transport and nuclear processes.

Before discussing the composition transport equation, it is useful
to understand the turbulent composition flux, f;, plotted in Fig. 15, for
160, 20Ne, 24Mg, and 28Si. These fluxes represent the rate at which
each species is transported. Negative values indicate that the fluxes
are oriented inward. We see that large quantities of neon are being
entrained from the upper boundary, and transported towards the inner
parts of the convective burning zone, where the neon is burnt. The
other species, on the other hand, are being transported outward (to the
right of the convective zone). The behaviour at the inner boundary is
more complex, due to the interplay between entrainment through the
boundary, and the burning occurring slightly above. !0 and **Mg are
more abundant inside the convective zone than outside (see Fig. 14).
There is thus a slightly negative flux near the bottom boundary for
these elements, showing that they are partly transported outside the
convective region. On the other hand, both elements are produced
through the burning of 2’Ne. Convective motions transport the freshly
produced elements through the convective zone, as indicated by the
positive flux inside the bulk of the convective region. The case of
28Si is different still: there is more of it below the convective zone
than inside. It is thus transported through the bottom boundary by
entrainment into the convective region, hence the positive flux at
the boundary. Furthermore, this element is also synthesized by neon
burning (by a double «-capture), and redistributed inside the whole
convective region from bottom to top, hence the positive flux for 2Si
everywhere.

The RA-ILES composition transport equation profiles for neon are
shown in Fig. 16. Each term of equation (6) is shown by a different
curve in the plot and is described below.

4.2.1 Time evolution

,55)?,- and 6,(,6)?,-) represent the Lagrangian and Eulerian time
derivatives of the composition. While the convective region is in
a steady state, we see that significant mixing occurs at the convective
boundaries, particularly at the upper boundary, which changes the
size of the convection zone over time.

4.2.2 Transport terms

The mean composition flux term is given by V. (5, X i), which we
see is non-negligible at the upper convective boundary, implying that
there is a change in the composition profile due to the overall growth
of the convective zone. This is due to a mean flux of Ne into the
convective zone from the upper boundary, as seen in Fig. 15. The

divergence of the turbulent flux, V,.(pX/u’), shows how material
mixed into the convective zone is transported by turbulent velocity
variations. This term is positive where the abundance is decreased
by the element flux, and negative where there is an accumulation
of a chemical element due to transport. We see in Fig. 16 that
the turbulent fluxes accumulate the neon abundance near the top
boundary. The time rate of change of neon balances this term. At the
bottom boundary, the destruction of neon by the nuclear burning is
compensated by neon being transported here.
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Figure 13. Vertical cross-sections of the mass fraction (values in colour scale) of the different isotopic nuclei 160, 20N, 24Mg, and 28Si, taken at 1500 s in the
Ex1 model. The reference value of the colour bars (white) is the average mass fraction of each nuclide in the convective zone at the beginning of the simulation.
For this reason, the overabundance of 1°0, 24Mg, and 28Si (towards the red) and the underabundance of 2°Ne (towards the blue) inside the convective zone
reflect the nuclear reactions that are burning neon to produce oxygen and magnesium, and burning magnesium to produce silicon.
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Figure 15. Turbulent composition fluxes for the nuclides explicitly followed
in our work. These fluxes are taken from the 5123 resolution simulation with
a boosting factor of 10. The time averaging is done as in Fig. 11, and the
coloured areas have the same meaning. The flux for each element is defined

as f; = pX/u!! (cf. Mocik et al. 2018).

4.2.3 Nuclear burning

The rate at which compositions change due to nuclear burning, 5 X;,
shows how the rate of neon burning increases with depth, and hence
density and temperature. As it also depends on the abundance of the
fuel, this term peaks at the bottom of the convective zone.

4.2.4 Numerical residual

Ny, term highlights the loss of information of our code at the grid
level. It is small throughout most of our simulated domain, but
we see that it is important near the edge of the convective zone,
where strong turbulence develops. Increasing the resolution of the
simulation makes this term smaller (Arnett et al. 2018, and Fig. 11).

Integrated over the whole computational domain (right panel), we
see that the global change of the 2°Ne abundance is, as expected,
mostly due to the nuclear reactions, which are responsible for the
decrease in the abundance of this chemical element.

4.3 RA-ILES analysis of the composition variance

The variance, o, of the composition traces the variation of the
abundance of an element with respect to its average value at a
given radius inside the computational domain. In our RA-ILES

framework, it is defined as oy = )/(7)_(7 In Fig. 17, we show the
relative standard deviation of the composition, i.e. \/ox /X. In the
bulk of the convective region, the deviation remains small (around
1 per cent), justifying the general 1D modelling approach used in
stellar evolution. We note two locations however where this deviation
becomes larger for all the chemical elements: both boundaries of the
convective zone. The convective boundaries are not flat or regular,
but distorted and turbulent, making important variations with respect
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to the average of the abundance of a given element. This behaviour
is much more important at the top boundary, where the relative
deviation can reach about 30 per cent for silicon.

We can investigate the origins of the variance using the RA-ILES
chemical variance equation:

PD0; = =V, f7 —2£i0.X; +2X/ pX™e. @)

0, = X/X/ is the composition variance of the element i, f7 =
o X/ X!u' is the turbulent flux of the composition variance, 2 f; 0, X;
is a source term linked to the flux of the chemical element i, and
2X/ pX™e is a source term linked to nuclear reactions.

We discuss below the terms of equation (7), which are presented

in Fig. 18.

4.3.1 Time evolution

,53,(7,- (solid black line) and 0,(p0o;) (dashed black line) represent
the Lagrangian and Eulerian time derivatives of the composition
variance. The two curves are almost identical throughout the domain,
and are close to 0 everywhere, except near the top convective
boundary. At this location, entrainment of °Ne inside the convective
region is a source of composition variance.

4.3.2 Transport terms

V.(f;?) is the turbulent composition variance flux, and is responsible
for the redistribution of the composition variance inside the domain.
As shown in Fig. 18 (see the blue curve), the variance produced
near the top convective boundary is transported in both directions,
outwards inside the stable radiative layer and inside the convective
region. It progressively builds the variance peak visible in Fig. 17.

4.3.3 Turbulent production

2f; ax(Y,-) term is shown in magenta in Fig. 18, and is the dominant
term affecting the creation of composition variance. As this term
is effective only in regions where a composition gradient and a
turbulent composition flux exist at the same time, it is mostly present
near the top convective boundary (and to a much smaller extent
near the bottom one). Looking at the integrated values (right panel),
one clearly sees that composition variance inside the domain is
mostly built by this interaction between the composition flux and
the composition gradient.

4.3.4 Nuclear burning

The rate at which composition variance changes due to nuclear

burning is traced by 2X/pX;. In our case, it only occurs at a quite
low level near the bottom boundary of the convective zone (see the
green curve in the zoom-in on this region), where nuclear burning
takes place. This term is negative, indicating that nuclear burning
decreases the composition variance.

4.3.5 Numerical residual

N, represents the residual in our simulation, i.e. the sum of all the
other terms (with the same sign as shown in the legend of Fig. 18).
As the resolution of our simulation is finite and is therefore limited
in spatial resolution, it does not reproduce the exact behaviour of the
flow at very small scales, where turbulence is dissipated. The residual
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Figure 16. Left panel: RA-ILES decomposition of the mean 2°Ne abundance equation. The meaning of each curve is specified in the legend. The coloured
regions have the same meaning as in Fig. 11, and the time average is performed over the same time window. The results come from the 5123 resolution
simulation, with a boosting factor of 10. Right panel: Radial integration of each term shown on the left-hand side of the figure.
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Figure 17. Standard deviation of a chemical element abundance, normalized
by its abundance. The coloured regions have the same meaning as in Fig. 11,
and the time average is performed over the same time window. The results
come from the 5123 resolution simulation, with a boosting factor of 10.

thus represents the dissipation at the grid level in our simulations.
Despite its numerical origin, the behaviour of this dissipation term
is appropriate: we added on the left panel of Fig. 18 a theoretical
modelling of this dissipation (thin solid red line), which fits well the

MNRAS 531, 4293-4310 (2024)

residual obtained in our simulations. We adopted the same model as
in Mociék et al. (2018), which assumes that the dissipation time-scale
is the same as the Kolmogorov damping time-scale.

Here also, the radial integration over the whole domain of the
previous terms provides insight into the main mechanisms leading
to the change of the variance (here the 2°Ne one). We see that
the turbulent transport is building the chemical variance inside the
domain, while the dissipation at the grid level compensates for this
net production.

4.4 Characteristic time-scales

Another way to study the interplay and relative importance of
turbulence and nuclear processes is by using characteristic time-
scales. The following characteristic time-scales are relevant in this
context.

(i) The convective turnover time-scale T oy, Which is defined
as the typical time needed for a fluid element to cross twice the
convective zone (a ‘convective loop’). We thus have

2d.,
Teony = ﬂs (8)
vrms
where d.o,y 18 the radial extend of the convective zone and v,y is the
average root-mean-square velocity inside the convective zone.

(i1) The local nuclear-burning time-scale ., which is the typical
time-scale for nuclear burning to take place at a given location inside
the star:

Xi
Thue,i = ? s (9)

i
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Figure 18. Left panel: RA-ILES decomposition of the mean 2°Ne abundance variance equation. The meaning of each curve is specified in the legend. The
coloured regions have the same meaning as in Fig. 11, and the time average is performed over the same time window. The results come from the 5123 resolution
simulation, with a boosting factor of 10. The thin red line shows a modelling of the residuals, done as in Mocdk et al. (2018). Right panel: Radial integration of

each term shown on the left-hand side of the figure.

whereas above X; is the mass fraction of a given chemical element
and X; is the rate of creation/annihilation of the element i due to
nuclear reactions.

(iii) The local transport time-scale 7 ,,s, Which is the characteristic
time for transport to remove/bring a chemical element at a given
place:

pX;:
. f’

where f; is the flux of the chemical species.

10)

Tirans,i —

Based on these characteristic time-scales, one can define the
so-called Damkohler (Da) number as the ratio between turbulent
transport and nuclear time-scales for a given chemical element:

T
Dai _ trans, i i (1 1)

Thucl,i

with the time-scales defined above. The Da number discriminates
between two different regimes inside the convective zone: when
Da is smaller than 1, the transport time-scale is smaller than the
nuclear-burning time-scale. Chemical species are thus well mixed
inside the convective region and inhomogeneities (illustrated by the
variance) remain small inside the convective zone (except near the
boundaries, as explained above). This is how the convective zones
look like in 1D stellar evolution. However, it is possible in some
cases that the Da number becomes close or even larger than 1. In this
case, nuclear burning is faster than transport, and the mixing inside
the convective zone is less efficient. This is the ‘convective—reactive
regime’ discussed in Herwig et al. (2011) (see also Mocdk et al.
2018).

The characteristic time-scales and the Da number are shown in
Fig. 19 for 2°Ne for our Ex10 simulation. The fastest of the time-
scales is the convective time-scale (solid black line), which is slightly
less than 100 s. The transport time-scale (magenta dot—dashed line)

is roughly constant over a significant fraction of the convective zone
(about 10*s), with a peak at the location where the gradient of flux
vanishes (see Fig. 15), and has a smaller value near the top boundary
(less than 103 s). Finally, the nuclear-burning time-scale (blue dashed
line) is shortest where nuclear burning is strongest, at the bottom of
the convective zone (about 10*s, and increases outwards, to reach
10°s near the top boundary). The Da number (green dotted line,
scale on the right) is thus significantly smaller than 1 everywhere
inside the convective region. This means that the mixing of 2°Ne is
faster than nuclear burning, and that the chemical composition of the
convective region (at least concerning *°Ne, but it is true also for the
other chemical species followed in this work) is well homogenized.
The same is true for the nominal luminosity case, which means that
1D stellar models are sufficient to reproduce standard neon burning
(the same is true for the Ex10 and Ex100).

The Ex1000 simulation, on the other hand, behaves very differ-
ently. This extreme case is illustrated in Fig. 20 for 2Ne (right panel).
Variances (left panel) are about 10 times larger than in the Ex10 case
shown in Fig. 17 in the whole convective region. In the inner part of
the convective zone, nuclear and transport time-scales are about the
same, with Da number equal or larger than 1. Looking at Fig. 14,
we see that the composition profiles at the end of the simulation
(solid lines) for the Ex1000 case are not perfectly flat, but show a
gradient in the inner part of the convective zone, as expected from
the high Da number. In such cases, nuclear burning and convective
mixing can still be treated correctly in 1D models if, for example,
these two processes are solved in a coupled manner as done e. g.
in the MESA code (Paxton et al. 2011). Non-negligible variances,
however, cannot be reproduced in 1D models and such cases need 3D
simulations to simulate all the details. While the Ex1000 simulation
is not representative of neon burning inside massive stars, there are
several cases where we expect Da ~ 1. In addition to the two cases
mentioned above (Herwig et al. 2011; Mocdk et al. 2018), other
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Figure 19. Characteristic times for the 2°Ne. The convective turnover time-
scale is shown by the solid black line. The nuclear time-scale is shown in
dashed blue. The transport time-scale is shown by the dot—dashed purple line.
The Damkhdler number is shown by the dotted green line (value to be read
on the right axis). The coloured regions have the same meaning as in Fig. 11,
and the time average is performed over the same time window. The results
come from the 5123 resolution simulation, with a boosting factor of 10.

‘convective—reactive’ environments are expected in various H-He
shell interaction events (Hirschi 2007; Clarkson & Herwig 2021)
and shell merger situations already found in 1D models (Rauscher
et al. 2002; Tur, Heger & Austin 2007; Ritter et al. 2018; Coté
et al. 2020), and in the 3D pre-supernova simulation of Yadav et al.
(2020).
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5 DISCUSSION AND CONCLUSIONS

This paper focuses on the 3D hydrodynamics study of a neon-
burning shell during the advanced stages of the life of a massive
star. We performed a large set of simulations with the PROMPI code
at different resolutions (from 1283 to 10243 cells), and with different
boosting factors for the nuclear energy generation rate (from nominal
to 1000 times boosted energy generation rate). The simulations were
followed for a long enough time to ensure the flow has significant
statistical properties (generally more than five turnover time-scales).

Our simulation at a nominal luminosity allows us to draw conclu-
sions about the flow without any extrapolations. In the initial phases,
we find that the convective velocities found in 3D are ~2 times larger
than those expected from MLT approximations. Due to CBM at the
convective boundaries, over the course of the simulation (about seven
convective turnovers), the convective shell grows noticeably, and the
extra fuel entrained leads to an increase in the convective velocity.

A comparison of different resolutions shows that even at the lowest
resolution (128%), the large-scale convective flows are reasonably
resolved. They attain comparable values of kinetic energy and
similar turbulent cascade in the velocity spectra at large wavelengths
to their high-resolution counterparts. Using our RA-ILES analysis
framework, we also performed a thorough comparison of the mean-
field equations at the different available resolutions. As expected
from previous works (Viallet et al. 2013; Cristini et al. 2017), an
analysis of the mean TKE equation confirms that the statistical
properties of the flow are already well captured by the simulation at a
relatively low resolution. Higher resolutions, however, are necessary
to resolve the convective boundaries and the corresponding mixing
across them.

We analyse the mean field composition variance equation, which
allows us to determine the degree of deviation of the 3D simulations
from 1D averages. We find that the deviation is small (around
1 per cent) in most of the convection zone. At the convective
boundary, matter is entrained from the stable region inside the
convective region. The boundaries are less homogeneous than the
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Figure 20. Left panel: Relative variance for the four elements followed in this study, in the case of the Ex1000 simulation. Right panel: Characteristic
time-scales and Da number for the 2°Ne, in the case of the Ex1000 simulation. For both panels, the quantities are averaged between 4 and 29s.
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rest of the convective zone, and the variance (in terms of mass
fraction) can become as high as about 30 per cent (for silicon). Our
mean-field analyses clearly show a net production of variance near
the boundaries. This result justifies the general 1D stellar modelling
approach for convection but reiterates the need for stellar modellers
to use a CBM prescription at convective boundaries.

The various boosting factors we used allowed us to determine
how different quantities (flow velocity, buoyancy, and abundance
variance) scale with the luminosity of the model. This is similar to
the work done by Cristini et al. (2019) and Rizzuti et al. (2022,
2023) for carbon- and neon-burning shells, respectively, however,
for the first time, we span a large range of boosting comparing
the nominal luminosity runs to those boosted by 1000. As it is not
computationally feasible to run very low Mach number flows without
boosting the luminosity (e.g. Cristini et al. 2017; Horst et al. 2021),
this comparison is important as a first step to determine the feasibility
and correctness of very high boosting.

In general, increasing the boosting gave results that are in line
with our previous findings (Cristini et al. 2019; Rizzuti et al. 2022,
2023). In particular, the convective velocities, rate of CBM, and
the corresponding growth of the convective shell all scale with the
boosting applied. The present results [as well as those published
in Rizzuti et al. (2022) using the same simulations as the ones
presented in this paper] show that these quantities for the non-boosted
(nominal luminosity) case can be extrapolated from simulations with
a higher boosting factor (typically 10x or 100x ), which are cheaper
to perform in terms of computing resources. The turbulent spectra
in each case all show similar shapes, but with different energies, as
expected. Inside the convective zone, we find a very efficient mixing,
making the chemical composition in the bulk of the convective region
extremely homogeneous for reasonable boosting factors.

For the highest boosting factor we used (Ex1000 simulation),
the nuclear burning becomes comparable to the transport time-scale
(Da & 1) in a significant fraction of the convection zone. This
is qualitatively different from all previous boosting cases, where
nuclear burning is only faster than the transport time-scale in a very
thin region at the base of the convective shell. In the Ex1000 case,
the mixing is not efficient enough to homogenize the convective
zone, and a chemical gradient becomes visible in the simulations.
This leads to the composition variance showing significant deviations
(>10 per cent) throughout the convection zone, breaking down the
approximations that are normally used for 1D stellar evolution
calculations. While in our study, this Da ~ 1 event occurs due to
artificial luminosity boosting, they are expected to occur naturally in
dynamical processes in stars, such as ingestion events (Herwig et al.
2011; Mocak et al. 2018), and possibly during shell mergers.

Our results show that a correct treatment of convection in 1D
stellar evolution codes is required to accurately follow the CBM
and reproduce the behaviour appearing in our 3D simulations. The
assumption that the mixing is very efficient and almost instantaneous
in convective regions appears to be valid, except in cases where the
nuclear burning is very fast (Da ~ 1). Finally, we want to stress
that the results presented here are valid for deep convection during
advanced stages of stellar evolution, and we need to remain cautious
when using them in other phases of the evolution, particularly for
convection during the early stage (main sequence), or in stellar
envelopes, where radiative effects play a key role.
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