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SpQuant-SNN: ultra-low
precision membrane potential
with sparse activations unlock
the potential of on-device spiking
neural networks applications

Ahmed Hasssan, Jian Meng, Anupreetham Anupreetham and
Jae-sun Seo*

School of Electrical and Computer Engineering, Cornell Tech, New York, NY, United States

Spiking neural networks (SNNs) have received increasing attention due to
their high biological plausibility and energy efficiency. The binary spike-based
information propagation enables efficient sparse computation in event-based
and static computer vision applications. However, the weight precision and
especially the membrane potential precision remain as high-precision values
(e.g., 32 bits) in state-of-the-art SNN algorithms. Each neuron in an SNN stores
the membrane potential over time and typically updates its value in every
time step. Such frequent read/write operations of high-precision membrane
potentialincur storage and memory access overhead in SNNs, which undermines
the SNNs' compatibility with resource-constrained hardware. To resolve this
inefficiency, prior works have explored the time step reduction and low-precision
representation of membrane potential at a limited scale and reported significant
accuracy drops. Furthermore, while recent advances in on-device Al present
pruning and quantization optimization with different architectures and datasets,
simultaneous pruning with quantization is highly under-explored in SNNs. In
this work, we present SpQuant-SNN, a fully-quantized spiking neural network
with ultra-low precision weights, membrane potential, and high spatial-channel
sparsity, enabling the end-to-end low precision with significantly reduced
operations on SNN. First, we propose an integer-only quantization scheme for
the membrane potential with a stacked surrogate gradient function, a simple-
yet-effective method that enables the smooth learning process of quantized
SNN training. Second, we implement spatial-channel pruning with membrane
potential prior, toward reducing the layer-wise computational complexity, and
floating-point operations (FLOPs) in SNNs. Finally, to further improve the
accuracy of low-precision and sparse SNN, we propose a self-adaptive learnable
potential threshold for SNN training. Equipped with high biological adaptiveness,
minimal computations, and memory utilization, SpQuant-SNN achieves state-
of-the-art performance across multiple SNN models for both event-based and
static image datasets, including both image classification and object detection
tasks. The proposed SpQuant-SNN achieved up to 13x memory reduction and
>4.7x FLOPs reduction with <1.8% accuracy degradation for both classification
and object detection tasks, compared to the SOTA baseline.
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spiking neural networks, quantization, pruning, event data, static images, low-precision,
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1 Introduction

In the biological nervous system, cortex neurons convert varied
inputs into electrical signals or spikes. Spiking Neural Networks
(SNNs) mimic this by processing the inputs over time, with
gradual increments in their internal energy. Neuronal behavior of
leaky integration and fire (LIF) in SNNs accumulates membrane
potential over time and produces spikes for the membrane values
exceeding the potential threshold. This leads to an efficient
information encoding method with binary spikes (0 or 1). Such
spatial-temporal computation promotes SNN as an attractive Al
solution with both biological plausibility and energy efficiency
in comparison to the conventional artificial neural networks
(ANNs) (He et al, 2016). Moreover, layer-by-layer information
processing using binary spikes benefits cognitive processing on
edge devices, where stringent power and area requirements are
posed. Furthermore, latency-sensitive computer vision tasks such
as efficient detection and tracking of fast-moving objects require
end-to-end sparse and energy-efficient computational flow. Event-
based cameras or Dynamic Vision Sensors (DVS) (Gallego et al.,
2020) provide a binary input stream that directly connects with
SNNs to serve rapid object tracing. Binarized spatial-temporal data
alignment with Spiking Neural Networks (SNNs), shrinks the gap
between computer vision and neuromorphic computing.

Despite such benefits, the direct training process of SNN is
challenging due to the non-differentiability of the spike function.
Early researchers relied on the ANN-to-SNN conversion (Dichl
et al., 2015; Han et al., 2020) to train SNN models with additional
training iterations. These approaches fail to achieve sufficiently
high accuracy with extra computations. Subsequently, various
direct training methods have been proposed to improve the
accuracy of SNNs using surrogate gradient (SG) functions (Lee
et al, 2016; Wu et al, 2019; Deng et al, 2021), which
approximate and propagate the gradient during learning. However,
the inaccurate approximation and heuristic SG selection hurt the
training stability of deep SNN models, which further motivated the
temporal normalization method (Zheng et al., 2021) and output
regularization techniques (Deng et al., 2021; Guo et al., 2022) to
smooth the loss.

Most of these SNN algorithms have focused on achieving
high accuracy while employing full precision (FP32) weights and
membrane potential (Deng et al., 2021; Li et al., 2021b; Meng
et al,, 2022). Despite the binary information propagation in event-
based SNNs, membrane potential accumulation and weight updates
employ high-precision computation. The membrane potential
values for every neuron must be stored and updated in the local
memory for consecutive time steps. This leads to cyclic memory
access during the read-modify-write process of membrane potential
over multiple time steps. Since the average firing rate in SNNs
stays low, the post-spike membrane potential saving for high-
resolution images requires significantly high memory with extra
redundant computations. Additionally, membrane potential shows
long tails of neurons that are less likely to fire for limited time steps.
These inactive neurons utilize excessive local memory and dynamic
energy that hurts the hardware-level computational efficiency in
deep SNNs. In Figure 1, we profile the weight and membrane
potential memory along with convolution and membrane potential
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FLOPs of SNN-Yolov2 architecture on the Prophesee Gen1 dataset.
In comparison to full-precision SNN-Yolov2 baseline (FP), 4-
bit weight quantization only (LP-W) reduces the weight memory
but the full-precision membrane potential memory dominates in
this situation. However, quantizing both weights and membrane
potential in SNN-Yolov2 (Qnt) reduces the overall memory by
> 7x. Similarly, exploring the pruning opportunities in quantized-
SNN-Yolov2 (SpQuant-SNN) can help reduce the FLOPs by >
4.7x.

To address these memory computation issues, some recent
works investigate the low-precision representation and pruning in
SNNs at a limited scale. Chowdhury et al. (2021) and Schaefer
et al. (2023) have used 2-bit precision and 5-bit precision of
weights to reduce the weight memory footprint, but these works
use FP32 precision for the membrane potential. In addition,
Chowdhury et al. (2021) used time step-based pruning to reduce
the temporal computations at the cost of lower inference accuracy.
Loihi (Davies et al., 2018) have used 12-bit and 24-bit fixed-point
membrane potential representation with low-precision weights to
optimize the SNN hardware resources. However, to support such
high precision (12-bit and 24-bit) of membrane potential with
high-resolution input data is challenging on edge devices due to
extra memory requirements. A dense feature map in the shape of
membrane potential doubles the computation cost by demanding
high energy during accumulate and fire operations. Furthermore,
Loihi (Davies et al., 2018) does not report the memory vs accuracy
and energy vs. accuracy trade-off against high-resolution datasets,
i. e. ImageNet-100 and ImageNet-1k. Q-SpiSNN (Putra et al,
2021) implemented low-precision membrane potential and weight
to showcase its performance using the relatively simpler MNIST
and DVS-CIFARI10 datasets. Apart from quantization, some prior
works (Perez-Nieves and Goodman, 2021; Lien and Chang, 2022)
explored pruning opportunities in SNNs to skip the computation
by masking out the negative membrane potential. Kim et al. (2022)
proposes a lottery ticket hypothesis to reduce the time steps and
active weights by applying a pruned weight mask in SNN. Although
these works achieve high feature-level compression, the memory
consumption due to the full precision of membrane potential is
significantly prominent. Disjoint quantization and pruning in prior
SNN works fail to achieve minimum memory consumption and
number of operations with high accuracy.

To bridge these research gaps, we propose SpQuant-SNN, a
fully-quantized spiking neural network with ultra-low precision
weights, membrane potential, and high spatial-channel sparsity,
enabling the end-to-end low precision with significantly reduced
operations on SNN. SpQuant-SNN achieves outstanding memory,
and energy efficiency with negligible accuracy degradation
compared to the SOTA SNN baseline. To further improve
the performance, we incorporate a novel self-adaptive SNN
training algorithm with the learnable threshold to improve the
adaptability of SpQuant-SNN. The proposed SpQuant-SNN makes
the following key contributions to advance SNN performance for
software hardware co-design.

e We propose a novel quantization-aware training algorithm

designed for integer-only SNN. In particular, we propose
Stacked Gradient Surrogation (SGS), a novel SNN training
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FIGURE 1

Memory cost and FLOPs reduction of proposed SpQuant-SNN with YOLO-V2 on Prophesse Gen 1.
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scheme designed for low-precision membrane potential
training. As a result, SpQuant-SNN achieves up to 7.01x
and 13 x total inference memory reduction on complex static
image and event datasets with deep SNN architectures.

e We present a novel membrane potential aware spatial-channel
dynamic pruning method to reduce the FLOPs without losing
high performance. SpQuant-SNN achieves > 4.7x FLOPs
reduction from the baseline with 80% sparsity on complex
static image and event datasets with deep SNN architectures.

e We propose a layer-wise learnable threshold scheme with
threshold optimization method to improve the training
stability and enhance the adaptability of SNNs. With the
learnable threshold, SpQuant-SNN performance is improved
by > 1.58% and 0.07 in terms of inference accuracy and mAP
value respectively.

2 Related work
2.1 ANN to SNN conversion

Early research works (Dichl et al, 2015; Rueckauer et al,
2016) converted a high-performance non-spiking ANN model
into a spiking version to resolve the non-differentiability issues.
fact that the
SNN firing rate can be estimated by ANN activation for

This conversion-based method relies on the

a corresponding architecture. ANN-to-SNN conversion helps
determine SNN parameters directly from an ANN model without
losing significant performance (Meng et al, 2022). Some of
the prior works incorporate further optimizations including
weight normalization (Sengupta et al, 2019), temporal switch
encoding (Han and Roy, 2020), rate norm layer (Ding et al,
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2021), and bias shift (Deng and Gu, 2021) to match the converted
SNN and ANN performance. However, these approaches require
more training time, high computation overhead, and additional
efforts for the overall training. Several methods have been
proposed to improve the latency of the converted model by
tuning different parameters (Han et al, 2020) and quantizing
the model weights (Li et al., 2022) to compensate for the over-
training cost but these approaches fail to match the performance
of converted SNN to high accuracy of direct SNN training
methods.

2.2 Direct SNN training

Most of the SNN training works use gradient approximations
to resolve non-differentiability issue for direct training of SNN.
BNTT (Neftci et al., 2019) introduces the gradient surrogation,
which approximates the gradient landscape by the designed non-
linear function (e.g., Sigmoid). To improve the training stability
and accuracy, various SG functions have been implemented in
the literature, such as rectangle function, arctangent, and triangle
functions (Deng et al., 2021). Similarly, DSpike (Cannici et al.,
2020) implements a non-linear function in the forward pass during
SNN training. In the meantime, the emergence of the temporal-
batch normalization (Zheng et al., 2021) and residual gradient paths
enables stable SNN training with deep models. Additionally, some
recent works introduce the temporal gradient approximation (Shen
et al., 2022), where the spatial-temporal computation of SNN
can be considered as a special version of a recurrent neural
network (RNN) (Meng et al, 2022; Shen et al., 2022). These
emerging trends in direct SNN training introduce spike-based
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computer vision using large and deep architectures (Zhou et al,,
2023a) with large-scale datasets (e.g., ImageNet).

2.3 Quantization of SNN

Motivated by the nature of SNN with binary spikes, prior
works have investigated low-precision SNN. Chowdhury et al.
(2021) uses post-training quantization (PTQ) to compress the
low-precision weights down to 5-bit for inference. Another work
(Li et al, 2022) demonstrates weight quantization using ANN-
SNN conversion approach with ImageNet dataset. Quantization
of convolution output and weights is also explored in one of
the recent works to reduce the memory footprint (Castagnetti
et al,, 2023). Since SNN introduces the temporal dimension
during inference, besides quantizing the weights (Davies et al,
2018; Yin et al., 2023), considering the quantization of membrane
potential is important for memory-efficient SNNs Figure 1. Some
recent works have explored membrane potential quantization in
SNNs, albeit to a limited scale with a significant performance
drop. Q-SpiNN (Putra et al., 2021) uses PTQ and QAT for low-
precision representation of membrane potential and weights at
a limited scale. Using 4-bit precision of weight and membrane
potential, the proposed work reports a significant drop in accuracy
for MNIST and DVS-Gensture datasets. Furthermore, Putra et
al. (2022) has also employed fixed-point representation for the
membrane potential. However, none of these methods are verified
against large-scale datasets or achieved the ultra-low-precision (<
4-bit) membrane. Additionally, the naive implementation of
conventional symmetric or asymmetric quantization decreases
the hardware benefits of SNNs. The accumulation of membrane
potential across multiple time steps makes the hardware-aware
quantization process challenging.

2.3.1 Optimal quantization boundary selection

The key aspect of the quantization algorithm involves
determining the optimal clipping boundary within the full-
precision range of weights and activation in the deep neural
network (DNN). However, Spiking Neural Networks (SNNs) are
different because the membrane potential is iteratively updated at
various time steps during inference. Thus, identifying the ideal
clipping boundary is critical and challenging for the effective
quantization of the membrane potential in SNNs.

2.3.2 Incompatibility of iterative dequantization
in SNNs

The standard quantization process, involving the high-
precision scaling factor, includes the “quantize and dequantize”
workflow to scale the low-precision representation (e.g., INT8)
back to the high precision floating point range. As demonstrated
by the prior work (Jacob et al, 2018), post-quantization
scaling is required to avoid the mismatched numerical range.
In SNN, time step information requires iterative quantization
to maintain low precision. However, rescaling the updated
membrane potential at each time step magnifies the cost of its
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hardware implementation. Therefore, the traditional quantization-
aware training (QAT) scheme is incompatible with low-precision
membrane potential. Furthermore, the choice of integer-only
representation of membrane potential gives infinite value in the
backward propagation. The cost of conventional QAT scaling
at the hardware level and the non-differentiability of integer-
only quantization, make the low-precision representation of the
membrane challenging.

2.4 Pruning of SNN

Different from the static weight pruning in DNNs, sparsity
in SNN can be explored in the weights and time domain. Apart
from quantization, recent works (Perez-Nieves and Goodman,
2021; Lien and Chang, 2022) have explored sparse SNN training
to compress the models’ computations with reduced computations.
Kim et al. (2022) investigated the lottery ticket hypothesis to SNNs,
which explores the winning ticket in both weights and temporal
steps for the computation skipping. However, most of these
previous works have explored pruning and quantization dis-jointly
with significant performance degradation on simple datasets.

2.4.1 Quantized SNNs with pruning opportunities
Some of the prior works have tried to explore SNN pruning with
quantization using naive DNN-based approaches. Chowdhury et
al. (2021) jointly compresses the low-precision weights down
to 5-bit and sparsify the SNN with temporal pruning during
training. Another work investigates NM-sparsity (Chen et al,
2018) by masking the negative membrane potential values in the
spatial domain. Most of these works have either implemented
naive masking on negative neuron values or introduced extra
computations for weight or activation skipping. Furthermore,
the quantized membrane potential tensors, in these cases are
floating point values that incur high-precision scaling costs during
the cyclic quantization and dequantization process. In addition,
temporal pruning without considering membrane potential
saliency degrades SNN performance with complex datasets.

2.5 Learnable dynamics in SNN

SNN involves parametrized neurons (e.g., LIF neurons) with
spike functions. Instead of heuristic parameter selection, very
limited prior works consider trainable optimization of spike
neurons. Neuroscience work (Kole and Stuart, 2008) with the
location-dependent potential threshold in nervous systems implies
the adaptive firing procedure within the mechanism of spike
generation. Following this, some recent works introduced the
learning dynamics into SNN training, albeit to a limited degree.
Fang et al. (2021) uses a large-sized SNN model and extensive
training efforts (up to 1,024 epochs) to introduce the learnable
time constant for direct SNN training. LTMD (Wang et al., 2022)
introduced the learnable neuron threshold with dropout in SNN
training. Optimization of threshold value based on naive weight
gradient in the backward pass compromised LTMD performance

frontiersin.org


https://doi.org/10.3389/fnins.2024.1440000
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Hasssan et al.

against basic event datasets. Similarly, DSR (Meng et al., 2022)
optimizes the potential threshold during training by multiplying a
scaling factor «. In addition, the binary output spikes generated by
DSR are multiplied by the threshold value. Iterative high-precision
scaling with a fixed ratio limits the adaptiveness, resource efficiency,
and freedom of SNN learning and makes it computationally
inefficient for resource-constrained hardware.

3 Basics of spiking neural networks

SNNs mimic the biological nervous system and propagate
binary spikes in the spatial-temporal domain. Membrane potential
exceeding the threshold value in the Leaky Integrate-and-Fire (LIF)
function generates spikes, Equation 1.

=7l -8 41 and I' = Z whs! (1
i

Where u; represents the membrane potential for layer index [
at time f, SLI is the output spike of the previous time step, and If
is the synapse current for layer index [ at time ¢, w is the synapse
weight, and 7 is the time constant. In our experiments, we set 7 =
0.5.

During the forward pass, the membrane potential is
accumulated with high precision and if it exceeds the potential
threshold value, the spike is generated according to Equation 2.

1 iful > vy

0 otherwise

Sh=0(u — vy) = )

Where 0 represents the Heaviside step function, and Vi,
represents the membrane potential threshold for spiking neurons.
In the backward pass, the weight gradient can be computed based
on Equation 3:

L aL 3Sh aul Bl
T O

acl a0 a7l 1
~ 0S; duy OI; IW

Since the Heaviside step function is non-differentiable in nature,
3¢
B
training, backward pass approximations are implemented in SNN.

becomes non-deterministic. To continue the learnability in

Various surrogate gradient functions are proposed to preserve the
differentiability in SNNs (Lee et al., 2016; Wu et al., 2019; Che et al.,
20225 Chen et al,, 2022) and we adopt vanilla triangle function as
mentioned in Equation 4:

EN
aTﬁ =0'(ul — Vi) = max(0, 1 — |ul — Vi) (4)
t

4 Proposed method

Full-precision SNNs without pruning are hard to implement
on the resource-constrained hardware. To achieve maximum
hardware awareness with high performance, we sequentially
implement low-precision, sparsity, and adaptability in SNN.
Starting from membrane potential and weight quantization for
low-precision SNN (Quant-SNN), we explore and resolve the

Frontiersin Neuroscience

10.3389/fnins.2024.1440000

challenges of clipping boundary selection and interactive scaling
during the quantization process in Section 4.1 and Section 4.2.
Further, we analyze the abundance of negative membrane potential
with a low-spiking rate in Quant-SNN and propose a solution
to explore the pruning opportunities by implementing sparse and
quantized SNN (SpQuant-SNN) in Section 4.3. Finally, we discuss
the gradient mismatch dynamics in SNN and implement a layer-
wise adaptive threshold to improve the performance of SpQuant-
SNN in Section 4.4.

4.1 Membrane potential clipping for
deterministic boundary

In SNNs, post-spike membrane potentials are stored in the
local memory and get iteratively fetched for accumulation in the
next time steps. To maintain low precision of membrane potential,
time step information requires iterative quantization. Clipping
boundary selection during the quantization process for each time
step elevates the cost of its hardware deployment. To address
this challenge, we aim to unify the negative clipping boundary
of membrane potential for each time step. We propose a two-
step analysis for evaluating the robustness of SNN with respect to
different quantization boundaries.

We first denote the negative clipping boundary as ¢, and the
entire quantization range becomes [, y |, where y is the maximum
membrane potential after spiking. Naturally, 0 < y < Vy,.
of SNN makes each
membrane potential neuron possible to fire during the consecutive

The mechanism of “accumulate-and-fire”

time steps. However, the relationship between membrane potential
value and spiking activity is non-observable during inference. Lets
assume that I';, represents the membrane values that are below
the clipping threshold ¢. Naively unifying all the I';, values to the
clipping threshold ¢ will change the spiking rate of the next time
step, and also the final output of the layer. To quantify such impact,
we investigate the robustness of SNN with respect to different
clipping thresholds ¢ with the following two perspectives:
e Step 1: We first quantify the impact of the membrane
potential clipping by analyzing the firing rate of neurons I',.
e Step 2: We evaluate the robustness and accuracy of the SNN
model with different clipping thresholds.

Given the input sample X of the size of N x T'x C x H x W,
with total time steps = T, we first investigate the distribution of the
post-spike membrane potential #! at the very first time step ¢ = 1.
Mathematically, the membrane values I, are defined as below in
Equation 5:

T,={i_ |d_ <¢ (5)

For the remaining ¢ € [2, ... T] time steps, the firing rate r of I',,
can be computed using Equation 6:

card(My;)

1
rSZ?Xt:CxHXW

whereM; = 1r, (W) ASL  (6)

Where 1 is the indicator function and it returns the binary flag
that represents whether the membrane value u is unfired and also
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FIGURE 2
Analysis of spiking activity with different membrane potential
clipping boundaries.

small enough. A is the “AND” logic, S! is the binary spikes of
layer [ at time step ¢, and card(-) returns the number of non-zero
elements inside M. Therefore, r; in Equation 6 characterizes how
many membrane potential neuron values are initially (f+ = 1)
silent and inactive (less than c) but spike in the future ¢.

Based on the theoretical setup above, we sweep over different
clipping boundaries ¢ from -5.0 to -1.0. For each value of ¢, we
compute the average firing rate ry across each t € [2...T],
and record the layer-wise firing rate (percentage). Figure 2 shows
the layer-wise firing rate of a 9-layer lightweight MobileNet-V1
SNN pre-trained on the DVS-CIFAR10 dataset with 30 total time
steps. Compared to the widely used ResNet models, the lightweight
MobileNet models exhibit higher sensitivity to quantization (Park
and Yoo, 2020), which provides accurate insights into the
clipping distortion.

Let’s assume the minimum membrane potential (Min Uy) of
each layer is Upin. As shown in Figure 2, the early layers exhibit
a high magnitude of Ui, (e.g., -21.07 for the first layer) in the
floating point baseline. However, there are only 6.35% of neurons
that fire in the future time steps with all the accumulations, where
Umin < Uy < —1. In other words, the remaining unfired 93.6% of
neurons create a “silent region”, where the membrane neurons have
zero contribution to future time steps and the next layer. Although
Umin increases in the latter layers, the silent region in the negative
membrane potential extends. As a result, clipping distortions have a
negligible impact on the majority of the membrane potential, even
with the most aggressive clipping (c=-1.0). Therefore, we have the
following observation:

Observation: If the membrane potentials are negative enough,
their impact on spikes is minimal.

We further prove the clipping robustness with the accuracy
impact during inference with no fine-tuning.

Figure 2 shows that, given the pre-trained full-precision model
with 71.70% inference accuracy for DVSCIFAR-10 dataset, when
the membrane potential is clipped to ¢ = —1.0, the inference
accuracy can still be maintained at 70.50%. We extend the
verification of this observation on CIFAR-10 dataset with ResNet-
19 and validate the accuracy degradation by sweeping the clipping
boundary values from -5.0 to -1.0, as reported in Table 1. The
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TABLE 1 Robustness of Quant-SNN for ResNet-19 against different
negative clipping boundaries.

Clipping FP-Baseline —5.0 —4.0 —3.0 —2.0 -1.0
threshold
CIFAR-10 94.53 94.33 94.21 94.34 94.22 94.09
Accuracy

minimal accuracy degradation allows us to extend the Observation
into: If the membrane potential values are negative enough, their
impact on accuracy is minimal, which implies the robustness of
membrane potential to low-precision representation.

4.2 Quantization algorithm

4.2.1 Incorporating membrane potential
quantization in SNN training

With the proven robustness of SNN with quantized membrane
potential, recovering accuracy degradation becomes a critical task.
To counter this issue, we propose a novel quantization algorithm
designed for SNN training with low-precision membranes.

Motivated by the dequantization challenge in the introduction
section, the proposed method quantizes the membrane potential
without introducing dequantization scaling (Jacob et al., 2018),
leading to high hardware simplicity and efficiency. Unlike prior
works (Putra et al., 2022) that incorporated high-precision scaling
for quantization, we design an integer-only quantization scheme to
assign the membrane potential to the nearest integer level directly.
Different from Davies et al. (2018) and Putra et al. (2021) which
uses high precision fixed point integer on membrane potential,
our method compresses the membrane using Equation 7 down to
ternary.

-1 if ut
Qu) =140 if u' <05 (7)
+1 if u'>05

The non-differentiable quantization operation hinders the
backward propagation in both spatial and temporal directions,
which can be factorized as per Equations 8 and 9:

oL AL ast 9L 08, )
a8 asitt S asl,, 98
w.r.t Layer w.r.t time step
Where
l ! 1
3811 B8Si duyy, aig ©

9 qul,, aul 9S:

With the proposed quantization scheme, the membrane
potential at each time step is updated with low precision based on
Equation 10:

ubyy =7 x Q) + 5! (10)

The temporal gradient du! 1/ dul is inaccessible due to the
quantization function Q(-) which outputs integer levels only. To
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TABLE 2 Training results of VGG-9 model on DVS-CIFAR10 dataset with
different SG schemes.

Architecture  Epochs T  SGS Accuracy (%)
VGG-9 200 30 ArcTan 77.81
VGG-9 200 30 Triangle 70.83
VGG-9 200 30 | Piece-wise 78.81
VGG-9 200 30 Sigmoid 80.04

resolve this issue, we propose Stacked Gradient Surrogation (SGS),
which approximates the temporal gradient using the sigmoid
function during the backward propagation to overcome the non-
differentiability of quantization. The choice of Sigmoid function
as SGS is empirical and the performance comparison of different
surrogation functions is summarized in Table 2. Formally in
Equations 11 and 12, we define SGS-based Q* as follows:

K

1 1
o —_ —_
Q(uz)—kX;T1+e_T(uqt_sk) ) (D
and sy = (ki +kiy)/2 (12)

Where T, k, and s; represent the smoothness, quantization
interval, and shift of each surrogation term respectively. With SGS,
we have:

3ult+1/8u§ =tQ"(uy) (13)

Combining Equations 8-13, we formulate a smooth gradient
propagation flow of low-precision membrane potential training. To
endorse the performance of the proposed low-precision membrane
potential with the stacked surrogate gradient in Quant-SNN, we
demonstrate the high memory efficiency achieved with minimal
performance degradation against the DVS-CIFARIO dataset in
Table 5.

4.2.2 Incorporating weight quantization in SNN
training

On top of membrane potential quantization, we incorporate
low-precision weights to reduce memory occupancy. To implement
complete low-precision inference in Quant-SNN, we adopt and
modify the Power of Two (PoT) quantizer (Przewlocka-Rus et al.,
2022).

ay = (w — 1)(argming |w — wyl)) (14)
Ay 1
o= round(7 + 5) (15)
we = clip(round(K), min, max) (16)
o

In Equation 14-16, w, wy, and w, represent input, quantized
and clipped weights. To achieve exact POT weight quantization,
we also keep « in the power of two. Subsequently, we draw a POT-
based grid g in Equation 17 and round the full precision and clipped
weight to the nearest bit-map level in Equation 18:

ifk<0

0
= (17)
¢ ifo<k<b

- 2—k—l
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wq = round(w.[min(|w; — g|)].a) (18)

We choose 8-bit, 4-bit, and 2-bit precision to compress the
layer-wise weights for both object detection and classification tasks.
Binary input spikes of each layer convolving the low precision
weights can be formulated as approximated computing or look-up
tables, which further enhance the hardware efficiency in practice. In
the end, we compute the total memory of Quant-SNN and develop
a total memory vs. accuracy comparison with the current SOTA in
Section 5.

4.3 Sparse binary membrane: motivation
for sparsity exploration in SNNs

The integer-only membrane exhibits a strong potential
for sparsity. Directly ignoring the negative membrane neuron
values after quantization shows minimum accuracy degradation.
Mathematically, after quantizing the membrane potential with Q(-),
using Equations 19 and 20 we disable the spikes that are generated
by the negative membrane values with U,

Upask = Boo1(Q(uy) < 0)
S = St(l - Umask)

(19)
(20)

In particular, the negative membrane neuron values are
“pruned” from the spiking process, which can be skipped during
membrane potential updates.

In other words, the membrane potential of the proposed
Quant-SNN can be further compressed down to binary by
sparsifying the original ternary membrane. As shown in Table 3,
directly silencing all the “-1” of the membrane shows minimal
accuracy degradation without any fine-tuning.

The accuracy the
improved robustness empowered by the sparse and quantized
SNN (SpQuant-SNN) training along with pruning opportunities.
The pruned binary membrane potential improves the memory

minimum degradation  implies

efficiency of SpQuant-SNN even further. The low firing rate,
high percentage of the negative potential, and robustness of
quantized SNN motivate us to explore the membrane potential-
based spatial-channel sparsity before the membrane potential
accumulation process.

4.3.1 Spatial pruning with membrane potential
importance

Following the aforementioned assumptions of low firing rate
and a high percentage of negative membrane potential, we skip the
membrane potential accumulation for non-significant membrane
values before the “accumulate-and-fire” operation. To implement
this, we compute the importance score for each time step and apply
the pruning threshold using Equations 21 and 22 to mask unwanted
spatial membrane values.

ot = o,

= Usn X Q(ui)
(22)

Ugn = Impi > kthvalue(Imp, Q(u;) - sparsity), Utl
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TABLE 3 Quant-SNN performance with pruned ternary membrane potential on different datasets.

Architecture Dataset Binarized Mem Time step Accuracy
ResNet-19 CIFAR-100 No 2 74.63
ResNet-19 CIFAR-100 Yes 2 74.30
VGG-9 DVS-CIFAR-10 No 2 78.13
VGG-9 DVS-CIFAR-10 Yes 2 77.16
VGG-9 N-Caltech No 2 80.45
VGG-9 N-Caltech Yes 2 79.14

For example, we compute the spatial mask U’,, after the first
convolution operations at layer “I” and mask out the neuron
values at each time step before the accumulate operation. In
contrast to post-spike masking, this approach saves redundant
additions and skips the weak convolution connections in the
subsequent layers. The choice of sparsity value is linked with
the robustness of our proposed SpQuant-SNN. Therefore, we
mask out 35% neuron values in the spatial domain to maintain
the performance along with reduction in computations. We
also implement dynamic channel masking to further reduce the
compute operations inside SNNs. Channel gating for DNNs
has been very well explored in the prior works (Hua et al,
2019; Li et al, 2021a), however, its implementation in SNNs
is limited due to the spatial-temporal information propagation.
Since SNNs involve time step information for membrane potential
accumulation, naive parallel path computation for time step data
adds more FLOPs in comparison to the skipped connections.
Furthermore, the lottery (Kim et al, 2022) ticket hypothesis
does not fit well on the complex architectures and datasets. To
address such shortcomings, we propose a straightforward channel-
skipping approach, with minimal computational overhead, using
membrane potential prior. In the convolution layer of SNN,
Ul e RCQXCZI.XTIXWIXHI

feature map of first convolution layer where T represents the

represents the membrane potential

time step dimension, C,, is the number of output channels,
and C; is the number of input channels per layer. Before the
actual convolution for layer [ + 1, we apply a parallel path to
compute the attention score of each channel using membrane
potential prior.

4.3.2 Channel masking with membrane potential
prior

To achieve low-compute and resource-efficient channel

! ! 1 1

masking, we first pass the U € RGXGXWXH through the

average pooling layer and extract the succinct spatial attention

U RCxClxW!j2xH! /2 ; : ; :

mp € 0% . We consider time-domain pooling

by assuming that the first step of spatial pruning leaves salient

membrane values across all the time steps. In the second stage,

e RGMxW!2axH2 (o

compute the channel-wise attention and sync the out-channels

we use point-wise convolution U‘lm
of each input feature map with subsequent layers. To compute

the probability score, we use softmax after convolution. Finally,
. ! . .
we obtain binary score vector Uim e RG using Equation 23
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FIGURE 3

Spatial-channel masking flow of SpQuant-SNN using membrane
potential prior.

and apply it as a mask to compress the number of active
channels for membrane potential accumulation, as illustrated

in Figure 3.
Ui 1 ifUu, >0
eVatt 1 U,
Ug= >  Um= ,ijf , @
Zj:l e“att 0 i sf < Uv.

To evaluate the impact of spatial-channel pruning, we train
SpQuant-VGG9-SNN on the DVS-CIFAR10 dataset. From Table 5,
SpQuant-SNN achieves 5x reduction in FLOPs with <1%
accuracy degradation from the quantized membrane and quantized
weight SNN baseline. Furthermore, we compare the SpQuant-
SNN performance for VGG-9 model with existing full-precision
and non-sparse SOTA works and observe a minimal drop in
performance with significant resource optimization.

4.4 Learning the threshold of membrane
potential

To further improve the performance of the proposed SpQuant-
SNN, we implement a novel SNN training algorithm that
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TABLE 4 Performance comparison of SGP with existing SOTA works on DV5-CIFAR10.

Method Learnable threshold SG function Top-1 accuracy (%)
TET (Deng et al., 2021} Triangle 77.33
Penalty for all GPW for all 76.40
This work SGP 80.04

resolves the contradiction between threshold optimization, training
stability, and hardware compatibility. We optimize the layer-wise
potential threshold during training, maximizing the biological
plausibility of SNN without introducing any learning constraints.

Previous works assume that the surrogate gradient of g—ﬁi and

335‘,' is transferrable, and the identical gradient surrogation is
[

suitable for separate loss landscape with respect to u; and V. To
implement the membrane threshold optimization, we correct the
common surrogate landscape assumption and propose a Separate
Gradient Path (SGP), which treats the gradient computation of u;
and Vy, from Equation 24 with dedicated gradient approximations.
We compare the performance of our proposed SGP with the
existing threshold optimization technique and validate a better
performance based on our proposed SGP optimization in Table 4.
Specifically, SGP trains SNNs by introducing the Gradient Penalty
Window (GPW), a simple-yet-effective method that optimizes the
potential threshold without losing training stability. On top of the
gradient approximation in Equation 4, GPW is characterized as a
non-linear function o (-), which reshapes the surrogate gradient of
the layer-wise potential threshold V};,. Mathematically, the GPW-
aided separate gradient path is characterized as:

as ,
an = 0'(us — Vi) = max(0,1 — |uy — Vi) (24)
i
as; ’
| — | =60"(ur — Vip)o(ur — Vi) = max(0,1 — |us — Vi|)
AV
o(ur— V) (25)

In this work, we choose the Sigmoid function as the gradient
penalty window, presented in Equation 26, for the potential
threshold. Here the choice of Sigmoid function is based on the
ablation study, presented in Table 2.

1

1 +e—(“r—vtﬁ) {26}

o(ur— Vi) =
For gradient computation of Vi, we accumulate the gradient
computed in Equation 25 to avoid the dimensionality mismatch:

aL

= 27
Vi @)

5 (et = Vi) x 15)
Since the unfired neurons have no contribution to the final loss,

the indicator function ¥{u; > Vy,} in Equation 27 only keeps the

gradient with respect to the active neurons in the forward pass.

We evaluate the performance of SpQuant-SNN with an
adaptive threshold using a similar training setup as Quant-SNN.
Before implementing the adaptive threshold to SpQuant-SNN
directly, we implement it on vanilla SNN and Quant-SNN to
properly benchmark the performance. Using adaptive-SNN, we
first improve the baseline of vanilla SNN by 1.3% and Quant-SNN

Frontiers in Neuroscience

by 1.2%. Similarly, from Table 5, applying SpQuant-SNN for VGG-
9 model with layer-wise adaptive threshold improves the baseline
accuracy by 0.86%.

5 Experimental results

We validate the proposed SpQuant-SNN algorithm with both
event-based and static image computer vision datasets. From
event-based datasets, we use DVS-CIFAR10 (Li et al., 2017), N-
Cars (Sironi et al.,, 2018), N-Caltech101 (Orchard et al., 2015)
and Prophesee Automotive Genl (de Tournemire et al., 2020) to
train SpQuant-SNN. Further, we use CIFAR-10 (Krizhevsky et al.,
2009), CIFAR-100 (Krizhevsky et al., 2009), ImageNet-100 (Deng
et al., 2009), and ImageNet-1k (Deng et al., 2009) datasets for
SpQuant-SNN training and inference on static image datasets.

5.1 Data preprocessing

The open-sourced DVS datasets are in the shape of indexed
bit stream where each chunk represents the axis information,
spike polarity, time-step information, and addresses. At the data
preprocessing stage, we extract spike polarity and time-step
information from the bit streams and convert them to 128x128
binary frames. We sample over different time steps and transform
events to 5-D tensors of shape [Batch, Time, Channels, Height,
Width]. For static image data including CIFAR-10, CIFAR-100,
and ImageNet-100, we use the 8-bit static images for the training
and inference (Garg et al, 2021). In the case of static image
data (e.g., ImageNet-100), the input shape is in the form of a
5D tensor [N, T, C, H, W], representing batch size, time steps,
channel, height, and width, respectively. We repeat the static
RGB frames by T times to introduce the temporal domain to
the input.

On the other hand, we convert Prophesee Genl events to
binary histograms by sampling over all the time steps. Then
the generated binary histograms are synchronized with artificial
ground truth from Perot et al. (2020). Finally, the events and
annotations are translated to the tensors of shape [Batch, Time,
Channels, Height, Width] and [Batch, Number of boxes, Bounding
box]| respectively. Unlike prior works (Zhou et al, 2023b),
we do not use data augmentation to train SpQuant-SNN for
performance improvements.
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TABLE 5 Impact of quantization, pruning, and adaptive threshold on SpQuant-SNN performance with VGG-9 model using DVS-CIFAR10 dataset.

Learnable Membrane pot. Total FLOPs Top-1

threshold precision memory (MB) reduction accuracy (%)
TET (Deng et al., 2021) x 32-bit 32-bit 4858 1X 77.33
DSR (Meng et al,, 2022) x 32-bit 32-bit 4858 1X 7550
SNN-Baseline x 32-bit 32-bit 4858 1X 77.20
Quant-SNN x 1.58-bit 2-bit 3.75 1X 76.84
Quant-SNN-Baseline x 1.58-bit 2-bit 3.75 1X 76.84
SpQuant-SNN x 1.58-bit 2-bit 3.75 5X 75.96
Adaptive-SNN-Baseline v 32-bit 32-bit 4858 1X 79.45
Adaptive-Quant-SNN v 1.58-bit 2-bit 3.75 1X 77.94
Adaptive-SpQuant-SNN v 1.58-bit 2-bit 3.75 5X 76.80

TABLE 6 Model architectures for SpQuant-SNN training.

Model Architecture

32C3-64DW-64DW-AP2-128DW-

MobileNet-Light
128DW-AP2-256DW-AP2-FC256-FC10
32C3-32C3-AP2-64C3-64C3-AP2-
VGG-7
128C3-128C3-AP2-256C3-256C3-AP2-FC10
64C3-128C3-AP2-256C3-256C3-AP2-
VGG-9

512C3-512C3-512C3-512C3-AP2-1024C3-AP2-FC10

32C3-MP2-64C3-MP2-128C3-64C1-128C3-MP2-
Custom-Yolo-V2 256C3-128C1-256C3-MP2-512C3-256C1-512C3-

256C1-MP2-1024C3-512C1-1024C3-AP2-FC512-FC576

64C3-128C3-128C3-128C3-128C3-128C3-128C3-

ResNet-19 256C3-256(C3-256C3-256C3-256C3-256C3-256C3-
256C3-512C3-512C3-512C3-512C3-AP2-FC256-FC10
64C3-128C3-128C3-128C3-128C3-128C3-128C3-
256C3-256(C3-256C3-256C3-256C3-256C3-256C3-
ResNet-26

256C3-512C3-512C3-512C3-512C3-512C3-512C3-

512C3-512C3-512C3-512C3-512C3-512C3-AP2-FC256-FC10

“C37, “DW”, “MP2", “"AP2” and “FC” represent 3x3 convolution layer, 2x2 max-pooling,
2x2 average-pooling, and fully connected layer.

5.2 Experimental setup

For static image-based tasks, we train SpQuant-SNN-based
ResNet-19, ResNet-34, and SpikeFomer architectures and
characterize the accuracy for CIFAR and ImageNet datasets. For
the event-based tasks, we choose the SpQuant-SNN aided VGG-9
and Custom-YOLO-V2 for classification and object detection
algorithms on DVS-CIFAR10, N-CalTech101, and Prophesee Gen1
datasets, as shown in the Table 6.

We train our proposed SpQuant-SNN-based classification and
object detection architectures using PyTorch (Paszke et al., 2019)
version 1.9.0 with CUDA version 11.1. Regarding hyperparameter
selection, we use the Adam optimizer where the learning rate is
set to 0.001. We computed TET (Deng et al., 2021) loss between
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the logits and the target labels then compute the average along
the time domain. The regularization level 8 is set to 0.45 and 0.90
for both the full-precision and low-precision training of VGG and
ResNet architectures, respectively. Instead of the fixed threshold,
we use the learnable threshold in the LIF function for all the
classification and object detection networks. With the proposed
SpQuant-SNN, we sweep across the different quantization levels
to choose the optimal precision, presented in Figure 4, for the
membrane potential quantization to achieve high performance
with maximum memory reduction across various architectures and
datasets. Therefore, considering the performance vs memory trade-
off, we optimally quantize the membrane potential to ternary levels
[—1.0,0.0,1.0] for each time step. In addition to the membrane
potential, we quantize the weights to achieve the complete low-
precision flow of SNN. We implement 8-bit, 4-bit, and 2-bit weight
precision using the APOT quantization scheme (Przewlocka-Rus
et al,, 2022) for SpQuant-SNN training. Further, to evaluate the
pruning opportunities, we choose a 35% pruning ratio in the
spatial domain and set the channel masking threshold to 0.47 to
balance out the performance with maximum FLOP reduction. To
benchmark the performance of the proposed SpQuant-SNN, we
compare the Ops (integer-only operations) of SpQuant-SNN with
FLOPs of recent SOTA works.

5.3 Evaluation metric

We evaluate the SpQuant-SNN based on memory reduction,
FLOPs reduction, robustness, and accuracy. We compute the
total memory (MB) acquisition of each SpQuant-SNN-based
architecture for all the datasets, where the total memory constitutes
weight, membrane potential, and convolution output memory:

]

M = wp x Ny+up x Nr+us x Ny Where N, = Z W (28)
=1

]
And  Ny=) (Cx W xH) (29)

=1

M; is the total memory, wj, is weight precision, u, is membrane
potential precision, u; is the binary spike precision (0,1), N, is total
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FIGURE 4
Membrane potential precision vs. accuracy for CIFAR-10 and
DVS-CIFAR10 datasets and membrane potential vs. mean average
precision for Prophesee Genl object detection dataset.

network weights, and Ny is layer-wise spikes. Further, w represents
network weights, £ is the number of layers, C is the number of
output channels, and W and H represent the width and height of
the input frame.

FLOPs
Equation 30 we consider spatially active neurons with active

Furthermore, to evaluate the compression in

channels and compare them with the conventional SNN flow:

FLOPS$pQuant—snN = 2 X C'(1 —8) x W x H x k! x K4

, (30)
TxBxC(—8)xWxHx(1-Sp)

Here FLOPSspQuant—sNN is the reduced FLOPs, s, Sp> T, and
k represent the out-channels, channel sparsity, spatial sparsity, time
step and kernel-size respectively.

5.4 RGB/DVS classification

5.4.1 SpQuant-SNN performance on DVS
datasets

We compare the performance of sparse quantized SNN
SpQuant-SNN  with
full-precision, low-precision SNNs with and without sparse

existing SOTA works, implementing
computations. For DVS datasets, we benchmark SpQuant-SNN
on DVS-CIFAR10 and N-Caltech for the object classification task.
As mentioned in the previous sections, we evaluate the adaptive
SpQuant-SNN performance sequentially. We distinguish the
impact of quantization and pruning and evaluate low-precision
SNN with sparsity (SpQuant-SNN) and without sparsity (Quant-
SNN). Table 7 demonstrates the comparison of the proposed
algorithm with existing SOTAs in the context of memory efficiency,
time step, robustness, FLOPs reduction, and top-1 accuracy.
For the DVS dataset, our low-precision adaptive Quant-SNN
implementation reduces the memory by 13x with a 0.51%
accuracy drop from the full precision baseline. Furthermore,
Quant-SNN with high memory efficiency surpasses the existing
convolution-based full-precision counterparts. Finally, with
SpQuant-SNN, we attain up to 5x FLOPs reduction and 13x
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memory reduction with an accuracy drop of 1.14% and 1.8%
for DVS-CIFAR-10 and N-Caltech datasets. Compared with
existing SOTA, the proposed low-precision algorithm, reducing
memory occupancy by 13 x and FLOPs by 5 x, almost matches the
cutting-edge SNN accuracies for DVS-CIFAR-10 and N-Caltech
datasets, respectively. Furthermore, Figure 5A shows the memory
and performance comparison of SpQuant-SNN for VGG-9 on
DVS-CIFARI10 dataset.

5.4.2 SpQuant-SNN performance on static image
datasets

Similarly, we evaluate SpQuant-SNN performance on various
complex static image datasets. We compare SpQuant-SNN with
full-precision and low-precision sparse and non-sparse SOTA SNN
works. Identical to the DVS datasets, we evaluate the performance
of both Quant-SNN and SpQuant-SNN sequentially. From Table 8,
Quant-SNN with low-precision of membrane and weight, yields
8.13x high memory efficiency with 0.45% and 0.91% drop in
performance for both CIFAR-10 and CIFAR-100 datasets. On top
of this, along with 8.13x reduction in memory consumption,
SpQuant-SNN achieves up to 5.1 x FLOPs reduction with minimal
accuracy degradation of 1.48% and 1.91% from SOTA SNN
baseline for CIFAR-10 and CIFAR-100. For Imagenet datasets,
Quant-SNN achieves 4.58x memory reduction with an accuracy
drop of 0.34% and 0.64% for ImageNet-100 and ImageNet-1k
datasets. Furthermore, SpQuant-SNN achieves 4x FLOPs and
4.58x memory reduction with 1.36% and 1.34% accuracy drop
from the baseline on the ImageNet-100 and ImageNet-1k datasets.

Finally, we compared the performance of SpQuant-SNN
with very recent low-precision SNN works i-e. MINT (Yin et
al., 2023). Compared to the MINT-SNN which incorporates
low precision membrane potential from 8-bit to 2-bit, the
proposed  SpQuant-SNN 2.3%
together with the 1.58-bit membrane potential and 5.1x

achieves higher accuracy
FLOPs reduction with spatial-channel pruning, as shown in

Table 8.

5.5 Object detection with SpQuant-SNN

We further demonstrate the performance of the proposed
SpQuant-SNN on a large-sized Automotive Prohesee Genl
dataset (de Tournemire et al., 2020). We convert the DVS events
to binary frames and synchronized them with their actual ground
truths. To avoid the gradient vanishing in SpQuant-SNN-YoloV2,
we customize the YoloV2 model by skipping one convolution
block from the original architecture. We quantize the membrane
potential to ternary levels [—1.0,0.0, 1.0] just like the classification
task and use 4-bit precision for weights to train SpQuant-SNN-
Custom-YoloV2. As shown in Table 9, our proposed SpQuant-
SNN algorithm with custom-YoloV2 reduces memory utilization
by 7.07x and FLOPs by 4.7x in comparison to the full-
precision baseline with a decrement of 0.042 in the mAP against
Prophesee Genl dataset. Furthermore, we illustrate the memory
vs. mAP performance comparison of SpQuant-SNN-YoloV2 in
Figure 5B.
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TABLE 7 Experimental results of Quant-SNN and SpQuant-SNN on DVS datasets using T = 10.

Architecture Weight Umem Weight Umem memory (MB) Total memory (MB) FLOPs reduction Top-1 accuracy
precision precision memory (MB)

DVS-CIFAR10
tdBN (Zheng et al., ResNet-19 32-bit 32-bit 49.94 12.09 74.20 1x 67.80%
2021)
TET (Deng et al., VGG-Like 32-bit 32-bit 40.65 3.68 48.01 1x 77.33%
2021)
DSR (Meng et al., VGG-11 32-bit 32-bit 70.43 9.7 89.7 1x 75.70%
2022)
Dspike (Li et al., ResNet-18 32-bit 32-bit 44.72 11.7 68.12 1x 75.45%
2021b)
Spikformer (Zhou Spikformer-2-256 32-bit 32-bit 38.5 NA 385 1x 80.90%
et al., 2023b)
Our VGG-9 32-bit 32-bit 41.12 3.68 48.58 1x 78.45%
work (SNN-BL)
Our VGG-9 2-bit 1.58-bit 2.57 0.23 3.75 1x 77.94% (-0.51)
work (Quant-SNN)
Our VGG-9 2-bit 1.58-bit 2.57 0.23 BY5, 5.0x 76.80% (-1.14)
work (SpQuant-
SNN)
N-Caltech
YOLE (Cannici VGG7-Like 32-bit 32-bit 42.69 2.01 46.71 1x 70.02%
etal., 2019)
EST (Gehrig et al., ResNet-34 32-bit 32-bit 88.39 434 175.19 1x 78.70%
2019)
Asynet (Messikommer] VGG-13 32-bit 32-bit 2232 4.09 30.50 1x 76.10%
et al., 2020)
Our VGG-9 32-bit 32-bit 41.12 3.68 48.58 Ix 80.45%
work (SNN-BL)
Our VGG-9 2-bit 1.58-bit 2.57 0.23 3.75 1x 79.45% (-1.0)
work (Quant-SNN)
Our VGG-9 2-bit 1.58-bit 2.57 0.23 3.75 4.8x 78.65% (-1.8)
work (SpQuant-
SNN)
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TABLE 8 Experimental results of SpQuant-SNN on static image datasets including CIFAR-10 with T = 4 and T = 2 (our work), CIFAR-100 with T = 2, ImageNet-100 with T = 2, and Imagenet-1k with T = 4.

92USIDS0NSN Ul SI213U0.

T

640°UISI2IUOIY

Method Architecture  Weight precision Umem Weight Umem memory  Total memory (MB)  FLOPs reduction Top-1 accuracy
precision memory (MB) (MB)
CIFAR-10
tdBN (Zheng et al., 2021) ResNet-19 32-bit 32-bit 49.94 55 60.94 1x 93.16%
DSR (Meng et al., 2022) ResNet-18 32-bit 32-bit 44.72 533 55.38 1x 91.89%
Dspike (Li et al., 2021b) ResNet-18 32-bit 32-bit 44.72 533 55.38 1x 94.25%
Spikformer (Zhou et al., Spikformer-4-256 32-bit 32-bit 38.20 NA 38.20 1x 95.51%
2023b)
MINT (Yin et al., 2023) ResNet-19 8-bit 8-bit 12.48 1.37 15.22 1x 91.36%
MINT (Yin et al., 2023) ResNet-19 4-bit 4-bit 6.24 0.69 8.30 1x 91.45%
MINT (Yin et al., 2023) ResNet-19 2-bit 2-bit 3.12 0.35 4.84 1x 90.79%
Our work (SNN-BL) ResNet-19 32-bit 32-bit 49.94 5.5 60.94 1x 94.56%
Our work (Quant-SNN) ResNet-19 4-bit 1.58-bit 6.24 0.25 7.49 1x 94.11% (-0.45)
Our work (Quant-SNN) Spikformer-4-256 8-bit 1.58-bit 9.62 0.25 15.26 1x 94.99% (-0.52)
Our ResNet-19 4-bit 1.58-bit 6.24 0.25 7.49 5.1x 93.09% (-1.48)
work (SpQuant-SNN)
CIFAR-100
DSR (Meng et al., 2022) ResNet-18 32-bit 32-bit 44.72 533 55.38 1x 68.33%
TET (Deng et al., 2021) ResNet-19 32-bit 32-bit 49.94 533 60.94 1x 72.87%
Our work (SNN-BL) ResNet-19 32-bit 32-bit 49.94 5.5 60.94 1x 72.78%
Our work (Quant-SNN) ResNet-19 4-bit 1.58-bit 6.24 0.25 7.49 1x 71.87% (-0.91)
Our ResNet-19 4-bit 1.58-bit 6.24 0.25 7.49 4.7x 70.87% (-1.91)
work (SpQuant-SNN)
ImageNet-100
TET (Deng et al., 2021) ResNet-34 32-bit 32-bit 87.19 11.03 109.25 1x 74.70%
Our work (SNN-BL) ResNet-34 8-bit 1.58-bit 21.27 0.51 23.83 1x 74.76%
Our work (Quant-SNN) ResNet-34 8-bit 1.58-bit 21.27 0.51 23.83 1x 74.42% (-0.34)
Our ResNet-34 8-bit 1.58-bit 21.27 0.51 23.83 4x 73.40% (-1.36)
work (SpQuant-SNN)
ImageNet-1K
tdBN (Zheng et al., 2021) ResNet-34 32-bit 32-bit 87.19 11.03 109.25 1x 63.72%
TET (Deng et al., 2021) ResNet-34 32-bit 32-bit 87.19 11.03 109.25 1x 68.00%
Dspike (Li et al., 2021b) ResNet-34 32-bit 32-bit 87.19 11.03 109.25 1x 68.41%
Our work (SNN-BL) ResNet-34 8-bit 1.58-bit 21.27 0.51 23.83 1x 68.46%
Our work (Quant-SNN) ResNet-34 8-bit 1.58-bit 21.27 0.51 23.83 1x 67.82% (-0.64)
Our ResNet-34 8-bit 1.58-bit 21.27 0.51 23.83 4x 67.12% (-1.34)

work (SpQuant-SNN)

‘|e 10 uessseH

00007 T'¥202 sulu/685¢°0T


https://doi.org/10.3389/fnins.2024.1440000
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Hasssan et al.

10.3389/fnins.2024.1440000

TABLE 9 Experimental results of the proposed SpQuant-SNN on Prophesee Automotive Gen1 dataset.

Dataset Weight kv FLOPs
precision precision reduction
Asynet (Messikommer et al., 2020) FB-Dense No 32 - 532.00 1x 0.145
MatrixLSTM (Cannici et al., 2020) ResNet-19 No 32 - 260.00 1x 0.300
RED (Perot et al., 2020) RetinaNet No 32 - 96.00 1x 0.410
VGG-114SSD (Cordone et al., 2022) VGG+SSD- Yes 32 32 302.39 1x 0.187
SNN
This work (SNN-BL) Custom- Yes 32 32 223.20 1x 0.240
YoloV2-SNN
This work (Quant-SNN) Custom- Yes 4 1.58 31.57 1x 0.198
YoloV2-SNN
This work (SpQuant-SNN) Custom- Yes 4 1.58 31.57 4.7x 0.176
YoloV2-SNN
A B
82 0.45
LT-SNN (T=30) o Spikeformer, ICLR, 23 (T=10) 0.4 .
80 o 4 4
Cotant SN Tm10) OurSNN.BL (T=10) Py RED, NeurIPS, 20 (Not SNN)
=78 e o TETVGG, ICLR, 22 (T=10) 997
o~ - = 0.3 - & Matrix LSTM, ECCV, 20 (Not SNN)
= 76 o squant-sNN (T-10) DSR, VGG, CVPR,22 (T=30)
% 74 DSpike, ResNet-18, NeurlPS, 22 (T=10) & 0.25 - @ Yolo-V2-BL
- 1 Quant-Yolo-V2
3 g 0.2 p< @ VGG-11+SSD, IJCNN, 22
8 72 4 0.15 { sQuant-Yolo-v2 °
<C 70 - 041 - Asynet, ECCV, 22 (Not SNN)
tdBN, ResNet-19, AAAI,21 (T=10)
68 - 0.05 1
66 T T T T T 0 T T T T ¥
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Total Memory (MB) Total Memory (MB)
FIGURE 5

SpQuant-SNN for Yolo-V2 on

Prophesse Gen 1 dataset.

(A) Memory and performance comparison of SpQuant-SNN for VGG-9 on DVS-CIFAR10 dataset. (B) Memory and performance comparison of

TABLE 10 Theoretical energy consumption vs. performance of SpQuant-SNN with different architectures.

Architecture Dataset Weight Membrane  E_mul(uJ) E_add (uJ) E_total (uJd) Top-1

precision pot. theoretical theoretical theoretical accuracy (%)
precision

SpQuant-SNN- DVS-CIFAR-10 2-bit 1.58-bit 0.29 0.156 045 10 76.80

VGG9

SpQuant-SNN- CIFAR-10 4-bit 1.58-bit 1.04 0.58 1.62 4 93.09

ResNet19

SpQuant-SNN- ImageNet-1k 8-bit 1.58-bit 5.54 2.62 8.16 4 67.12

ResNet34

SpQuant-SNN- Prophesee-Genl 4-bit 1.58-bit 4.63 2.362 6.99 1 0.176

Yolov2

5.6 Theoretical energy consumption of
SpQuant-SNN

Finally, we compute the theoretical energy consumption of our
proposed SpQuant-SNN algorithm for different architectures. We
follow BitNet (Wang et al., 2023) to compute the theoretical energy
of our proposed work. Since we perform the training on NVIDIA
A6000 GPUs, we adopt 7nm energy for add and multiplication

Frontiersin Neuroscience

operation from Table 2 of BitNet (Wang et al., 2023). Overall, we
use Equation 31 to compute the theoretical energy consumption:
Theoretical EspQuant—SNN =
Byt ¥ C'(1 = S0) x W x H x k! x K+
Eaga X C(1 = S) x W x H x K x K+
Egaa x Tx Bx Cl(1 = 8) x W x H x (1—8,)

(31)
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Table 10 demonstrates the theoretical energy consumption
of our proposed SqQuant-SNN-based along
with their performance. Furthermore, we observe that
Spikformer (Zhou et al, 2023b) and BitNet (Wang et al,
2023)
in their energy modeling. For a fair comparison of energy

architectures

do consider the membrane potential accumulation

consumption between SpQuant-SNN and Spikformer, it is
important to count the membrane potential accumulation
energy.

6 Conclusion

In this paper, we propose SpQuant-SNN, a novel SNN
algorithm that implements both quantization and pruning to
achieve highly efficient SNN with double compression. The integer-
only SNN with high sparsity largely reduces memory and compute
complexity. The proposed algorithm successfully compresses the
membrane potential down to ternary representation, achieving
up to 13x memory footprint reduction, while maintaining
the high simplicity of SNN. Furthermore, SpQuant-SNN shows
strong robustness in dynamic membrane pruning. SpQuant-SNN,
learning the membrane potential prior, implements spatial-channel
pruning and achieves >4.7x reduction in FLOPs. SpQuant-SNN
is evaluated on a comprehensive spectrum of computer vision
tasks, including both static image classification and event-based
object detection. The outstanding versatility makes the proposed
SpQuant-SNN a powerful solution for energy-efficient on-device
computer vision.
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