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Abstract
Archetypal analysis is an unsupervised machine learning method that summarizes
data using a convex polytope. In its original formulation, for fixed k, the method finds
a convex polytope with k vertices, called archetype points, such that the polytope is
contained in the convex hull of the data and the mean squared Euclidean distance
between the data and the polytope is minimal. In the present work, we consider an
alternative formulation of archetypal analysis based on the Wasserstein metric, which
we callWasserstein archetypal analysis (WAA). In one dimension, there exists a unique
solution of WAA and, in two dimensions, we prove the existence of a solution, as long
as the data distribution is absolutely continuous with respect to the Lebesgue measure.
We discuss obstacles to extending our result to higher dimensions and general data
distributions. We then introduce an appropriate regularization of the problem, via a
Rényi entropy, which allows us to obtain the existence of solutions of the regularized
problem for general data distributions, in arbitrary dimensions.We prove a consistency
result for the regularized problem, ensuring that if the data are iid samples from a
probability measure, then as the number of samples is increased, a subsequence of the
archetype points converges to the archetype points for the limiting data distribution,
almost surely. Finally, we develop and implement a gradient-based computational
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approach for the two-dimensional problem, based on the semi-discrete formulation of
the Wasserstein metric. Detailed numerical experiments are provided to support our
theoretical findings.

Keywords Archetypal analysis · Optimal transport · Wasserstein metric ·
Unsupervised learning · Multivariate data summarization

Mathematics Subject Classification 62H12 · 62G07 · 65K10 · 49Q22

1 Introduction

Given a probability measure μ ∈ P(Rd), archetypal analysis (AA) aims to find the
convex polytope � ⊆ R

d with k vertices that best approximates μ. As originally
introduced by Culter and Breiman in 1994 [9], given data X = {xi }Ni=1 ⊆ R

d and
k � d + 1, AA finds k vertices, A = {a�}k�=1 ⊆ R

d , that belong to the convex hull of
the data, for which the convex hull co(A) explains the most variation of the dataset.
In particular, AA can be framed in terms of the following constrained optimization
problem

min
A={a�}k�=1⊆Rd

{
1

N

N∑
i=1

d2(xi , co(A)) : A ⊆ co(X)

}
, (1.1)

where d2(·, ·) denotes the squared Euclidean distance. The archetypes, A = {a�}k�=1 ⊆
R
d , may be interpreted as exemplars of extreme patterns of the dataset, a mixture of

which explain the general characteristics of the associated distribution; see [6, 21, 26]
for applications of AA in astronomy, biology, and many others.

AA is closely related to other unsupervised learningmethods, such as k-means, prin-
cipal component analysis, and nonnegative matrix factorization [21]. Under bounded
support assumptions, AA is well-posed [9, 22] and the consistency and convergence
of AA were recently established in [22], laying the foundation for AA to apply to
large-scale datasets [17]. In practice, however, it is often more appropriate to assume
that the distribution generating the data has finite moments but unbounded support, in
which case AA is not well-posed [22]. Also, due to the definition of the loss, AA is
unstablewith respect to outliers [12]. In particular, one can construct datasets forwhich
a single additional data point leads to an arbitrarily large change of the archetypical
polytope. Likewise, AA is insensitive to perturbations of the data distribution on the
interior of the archetypal polytope.

To address both issues, the present work considers a different formulation of the
AA problem, based on the Wasserstein metric.

1.1 Main Results

Let P2(R
d) denote the space of Borel probability measures on R

d with finite second
moment, i.e. M2(μ) := ∫

Rd |x |2 dμ(x) < +∞. Given μ ∈ P2(R
d) and a number of

vertices k � d + 1, we seek to find the (nondegenerate) convex k-gon � ⊆ R
d that
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is closest to μ, in the sense that the uniform probability measure on � is as close as
possible to μ in the 2-Wasserstein metric:

min
�∈Sk

W2(μ, 1�/|�|), Sk =
{
� ⊂ R

d : � is a convex k-gon with nonempty interior
}

,

(WAA)

where

1�(x) =
{
1 if x ∈ �,

0 otherwise
.

Here, we use the term k-gon to mean a bounded polytope with k vertices.
We make mild abuse of notation in the above problem formulation and throughout

this manuscript: if a measure ν ∈ P2(R
d) is absolutely continuous with respect to

d-dimensional Lebesgue measure Ld , we will write ν ∈ P2,ac(R
d) and use the same

symbol to denote both the measure and its density, dν(x) = ν(x) dLd(x). In this way,
we will use 1�/|�| to denote the uniform probability measure on �.

Informally, the 2-Wasserstein metric measures the distance between probability
measures in terms of the amount of effort it takes to rearrange one to look like the
other. More precisely, given μ, ν ∈ P2(R

d), the 2-Wasserstein metric is defined by

W 2
2 (μ, ν) = inf

X∼μ,Y∼ν
E[|X − Y |2], (1.2)

where the expectation is taken with respect to a rich enough underlying probability
space and the infimum is taken over all couplings (X ,Y ) with marginals μ and ν. If
μ ∈ P2,ac(R

d), then there is a unique optimal coupling and, furthermore, the coupling
is deterministic: there exists a measurable function T , which is unique μ-a.e., so that

Y = T (X), (1.3)

see work by Gigli for sharp conditions guaranteeing the existence of deterministic
couplings [16]. For further background on optimal transport and the 2-Wasserstein
metric, we refer the reader to one of the many excellent textbooks on the subject [1,
2, 13, 23, 27, 28].

A notable difference between classical AA, in Eqs. (1.1), and (WAA) is that, in
classical AA, the support of the admissible convex polytope � is constrained to be
in the support of the empirical measure μ = 1

N

∑N
i=1 δxi . On the other hand, in

(WAA), proximity to themeasureμ is enforced by the fact that the uniform probability
measure on � has minimal 2-Wasserstein distance from μ. This leads to two notable
differences between AA and (WAA). In classical AA, given an empirical measure μ

and its archetypal polytope�, any other empirical measure ν that agrees withμ on�c

will have the exact same archetypal polytope�, regardless of howμ and ν differ inside
�. On the other hand, (WAA) is sensitive to changes of the measure μ anywhere in
R
d , in proportion to the size of that change in the W2 metric. A second key difference

between AA and (WAA) is that there exist empirical measures μ = 1
N

∑N
i=1 δxi for
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which one can construct perturbations of the measure by the addition of a single Dirac
mass that lead to an arbitrarily large changes in the archetypal polytope. In contrast,
by definition, (WAA) is robust against outliers that correspond to small perturbations
in W2.

Alternative generalizations of the classical AA problem, based on probabilistic
interpretations, can be found in [24], where data are assumed to be generated from
a parametric model and the corresponding archetypes are found using the maximum
likelihood estimation, resulting in a similar formulation as (1.1). For nonparametric
approaches, aside from the Euclidean and 2-Wasserstein metrics, other discrepancy
measures such as the Kullback–Leibler (KL) divergence may also be used. However,
a KL divergence would treat outliers of a given mass in the same way regardless
of their spatial closeness, whereas a Wasserstein approach places a larger focus on
outliers that are farther from the bulk of the dataset. More generally, one could also
consider p-Wasserstein metrics, where larger choices of p would further penalize the
distance from the dataset. In this way, the choice of metric or statistical divergence
is problem-dependent and encodes modeling assumptions about the structure of the
dataset.

Our result is similar in spirit to work by Digne et. al. [11], which considered the
problem of surface reconstruction. As in the present case, Digne et. al. seek a shape
for which the uniform distribution on that shape is as close as possible to the data
distribution in the 2-Wasserstein metric. However, the goal of this previous work was
to consider a data distribution concentrated on a lower dimensional surface and find a
general simplicial complex that best approximates this surface.

When d = 1, there is a closed-form solution for the 2-Wasserstein metric, and it
is straightforward to directly compute the unique minimizer of (WAA), as previously
done in related work by Cuesta-Albertos, Matrán, and Rodríguez-Rodríguez [8]; see
below for a discussion of this and other related previous works. Our first main result is
that when d = 2, a solution of (WAA) exists, provided thatμ is absolutely continuous.
We summarize the results in the one and two-dimensional setting in the following
theorem.

Theorem 1.1 (Existence of minimizer in one and two dimensions) If d = 1 and k � 2,
then for all μ ∈ P2(R), there exists a unique solution of (WAA), and this solution may
be expressed explicitly as � = [a, b] for

a = 4C0 − 6C1, b = 6C1 − 2C0, C0 =
∫
R

x dμ(x), C1 =
∫
R

xF(x) dμ(x),

(1.4)

where F is the cumulative distribution function (CDF) of μ. If d = 2 and k � 3, then
for all μ ∈ P2,ac(R

2), there exists a solution of (WAA).

In the two-dimensional case, our proof of Theorem 1.1 relies on an explicit charac-
terization of the closure of {1�/|�| : � ∈ Sk} in the narrow topology; see Proposition
3.1. The key difficulty in proving aminimizer exists arises when considering the possi-
bility that the minimizing sequence converges to a limit point with lower dimensional
support. Note, in particular, that limit points with lower dimensional support are in
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Fig. 1 In this figure, we illustrate how limit points of {1�/|�| : � ∈ Sk } in the narrow topology are not,
in general, given by uniform measures on their support. For example, the top row of this figure illustrates
the limit of a sequence of triangles �δ , where the base of the triangle remains fixed, while the height of the
triangle δ converges to zero. The second row of this figure shows the limit of the corresponding probability
measures. We see that the limiting measure ν0 is supported on the one-dimensional interval prescribed by
the base of the triangle, but its density with respect toL1 is not constant, but piecewise linear, concentrating
more mass in the interior of the interval, where the third vertex converged. For reference, in the bottom right
hand panel, we plot the distribution of ν0 in the plane in black, with dashed points representing infinity, and
we plot the density ν0 with respect to one-dimensional Lebesgue measure in blue. In particular, we see that
limδ→0 1�δ

/|�δ | = ν0 �= 1�0/|�0|

general not uniformly distributed on their support; see Fig. 1. For this reason, not all
limit points have a valid interpretation in terms of archetypal analysis, in which the k
vertices or archetypes of their support completely describe the measure via their con-
vex combinations. For this reason, we must rule out the possibility that a limit point of
this type achieves the infimum of W2(μ, 1�/|�|) over � ∈ Sk . We succeed in doing
this when μ ∈ P2,ac(R

2) by adapting a perturbation argument of Cuesta-Albertos, et.
al. [7] to the case of convex polygons. In particular, we construct perturbations around
degenerate limit points that are both feasible for our constraint set and improve the
value of the objective function. It remains an open question how to extend this tech-
nique to μ which is not absolutely continuous with respect to L2; see Remark 3.2.
Furthermore, our approach to proving the value of the objective function strongly
leverages the structure of the 2-Wasserstein metric and a different approach would be
needed to extend the result to p-Wasserstein metrics for p �= 2.

While this perturbative approach allows us to overcome the difficulty of degenerate
limit points in two dimensions, our approach fails in dimensions d � 3, since in the
higher dimensional setting, edges of polygons can cross in the limit, creating artificial
vertices in the perturbations we consider, so that they no longer belong to the constraint
set; see Remark 3.3 and Fig. 2. For this reason, it remains an open problem whether
minimizers of (WAA) exist for dimensions d � 3.
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Finally, in terms of uniqueness, we observe that, in dimensions higher than one, the
minimizer is not unique: for example, if μ is the uniform distribution on the unit ball,
any rotation of an optimal polytope would also be optimal. Understanding whether
uniqueness holds up to such invariances, remains an interesting open question.

As described above, our approach to proving the existence of (WAA) in two
dimensions proceeds by adapting a perturbation argument of Cuesta et al. [7], which
considered a related problem: given μ ∈ P2,ac(R

d), find the convex set � that min-
imizes W2(μ, 1�/|�|). This built on previous work by the same authors, which also
examined optimal W2 approximation of measures μ ∈ P(R) in one dimension by
empirical measures, uniformmeasures on intervals, and ellipsoids [8]. The motivation
of this work was to describe the shape and flatness of a measure μ. Subsequent work
by Belili and Heinich [4] considered W2 approximation of a measure μ over more
general types of measures, including uniform measures on convex sets and uniform
measures on sets of the form �1 \ �2 where �1,�2 are convex. Furthermore, Belili
and Heinich succeeded in proving the existence of a closest approximation under more
general hypotheses on μ: instead of requiring μ ∈ P2,ac(R

d), they require that the
affine hull of the support of μ is d-dimensional. However, an essential hypothesis in
the work of Belili and Heinich is that the class of approximating measures satisfies
certain symmetry properties [4, condition (3)]. For example, if ν0 were the limiting
measure shown in Fig. 1, there would have to exist a triangle� so that the first marginal
of 1�/|�| is ν0 and its second marginal is symmetric about the origin. Unfortunately,
no such triangle exists. For this reason, while our study of the existence of solutions to
(WAA) is closely related to the aforementioned works, the fact that (WAA) constrains
� to be a k-gon requires the development of new techniques.

Motivated by the fact that the key challenge in proving the existence of minimizers
to (WAA) arises when the support of the minimizing sequence collapses to a lower
dimensional set, we introduce a regularized version of the problem that prevents this
degeneracy. For m � 1, the m-Rényi entropy is given by

Um(ν) =
{

1
m−1

∫
ν(x)m dx if ν 	 Ld and dν(x) = ν(x) dx,

+∞ otherwise.

In particular, if ν = 1�/|�| for � ∈ Sk , we have

Um(1�/|�|) =
{

1
(m−1)|�|m−1 if m > 1,

− log(|�|) if m = 1.
(1.5)

For fixed ε > 0, k � d + 1, m � 1, and μ ∈ P2(R
d), we consider the regularized

problem:

min
�∈Sk

W2 (μ, 1�/|�|) + εUm(1�/|�|). (WAAε)
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Due to the fact that the regularization prevents the minimizer from collapsing to a
lower dimensional set,we are able to obtain the existence of solutions in all dimensions,
for general μ ∈ P2(R

d).

Theorem 1.2 (Existence of minimizer for (WAAε), in all dimensions) Fix ε > 0,
k � d + 1, m � 1, and μ ∈ P2(R

d). Then there exists a solution of (WAAε).

The proof of Theorem 1.2 follows via Prokhorov’s theorem and the lower semi-
continuity of the Wasserstein metric and Rényi entropy in the narrow topology. More
generally, the regularizing role of the Rényi entropy could be played by any nonneg-
ative, decreasing function of the volume |�| that diverges to +∞ as |�| → 0 and is
lower semicontinuous with respect to narrow convergence of the probability measures
1�/|�|. Uniqueness again fails in dimensions higher than two, due to the rotational
invariance of the Rényi entropy.

Remark 1.3 (Limit as ε → 0) If d = 1 or 2 and μ ∈ P2,ac(R
d), similar arguments as

in the proof of Theorem 1.1 can be used to show that, for any εn → 0 as n → +∞,
the solutions to (WAAε) with ε = εn , form a minimizing sequence to (WAA) and
converge (up to a subsequence) to a solution of (WAA). This shows the consistency of
the regularized problem with the original problem, as the regularization is removed.

Our final results consider a practical application of the Wasserstein archetypal
analysis to data. In particular, we seek to understand how solutions of the regularized
problem (WAAε) behave when a measureμ ∈ P2(R

d) is approximated by a sequence

of empirical measureμn := 1
n

∑n
i=1 δXi , Xi

iid∼ μ. We show that almost surely and up
to a subsequence, optimizers �n for the empirical measure μn converge as n → ∞
to an optimizer � for μ. We also provide a convergence rate in terms of the value of
the objective function, based on a sharp estimate in [15].

Theorem 1.4 (Consistency and convergence for (WAAε)) Fix ε > 0, k � d + 1,
m � 1, and μ ∈ P2(R

d). Suppose

μn = 1

n

n∑
i=1

δXi , Xi
iid∼ μ.

For each n ∈ N, let {�n}n∈N be a minimizer to (WAAε) for μn. Then the following
hold:

(i) Almost surely, there exists � ∈ Sk so that, up to a subsequence,

1�n/|�n| → 1�/|�| narrowly, (1.6)

and � solves (WAAε) for μ;
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(ii) If Mq(μ) = ∫
Rd |x |q dμ(x) < ∞ for some q > 4, then there exists a constant

C(q, d) > 0 such that

E

[
W2

(
μ,

1

|�n |1�n

)
+ εUm(1�n/|�n |) −

(
min
�∈Sk

W2

(
μ,

1

|�|1�

)
+ εUm(1�/|�|)

)]

� C(q, d)M1/q
q (μ) ·

⎧⎪⎨
⎪⎩
n− 1

4 d < 4

n− 1
4
√
log n d = 4

n− 1
d d > 4

.

In addition to ensuring consistency of WAA under empirical approximation, the
previous theorem is also relevant from the perspective of numerical methods. Our
final main result is the development of a numerical method for solving (WAA) and
(WAAε), based on approximating a given measure μ ∈ P2(R

d) by a sequence of
finitely supported measures μn = ∑n

i=1 δxi mi and approximating the solution of
(WAA) or (WAAε) for μn . Such an approximation greatly simplifies the problem
numerically, since the Wasserstein distance W2(μn, 1�/|�|) can now be computed
using the semidiscretemethod introduced by Mérigot [20]. Based on this perspective,
we introduce an alternating gradient-based method to approximate the optimizer; see
Sect. 5 and Algorithm 1.

In Sect. 6, we consider several numerical experiments for approximating solutions
of (WAA) and (WAAε) in two dimensions. First, we consider the case when μ is
the uniform distribution on a disk (Sect. 6.1) and a normal distribution (Sect. 6.2). In
this case, the solution for each k is a regular k-gon. Next, we study the sensitivity to
the parameter ε in (WAAε) (Sect. 6.3) and provide an example that demonstrates the
non-convexity of the energy landscape in (WAA) (Sect. 6.4). Finally, we consider an
example of the early spread of the COVID-19 virus in theU.S. (Sect. 6.5).We conclude
in Sect. 7 with a discussion of our contributions and directions for future work.

2 Preliminaries

Given a closed, convex set S ⊆ R
d , let πS : R

d → S denote the projection on
the set. Given any (Borel) measurable function T : Rd → R

d and μ ∈ P(Rd), the
push-forward of μ through T , denoted T #μ, is the probability measure defined by

∫
Rd

f (T (x)) dμ(x) =
∫
Rd

f (x) d(T #μ)(x), ∀ f bounded and (Borel) measurable.

We now recall several facts about the Wasserstein metric and uniform measures
on convex polygons. First, recall that in one dimension, we have an explicit formula
for the Wasserstein metric in terms of cumulative distribution functions (CDFs) [27,
Theorem 2.18]. In particular, if μ, ν ∈ P2(R) have CDFs F and G, then

W2(μ, ν) =
(∫ 1

0
|F−1(t) − G−1(t)|2 dt

)1/2

, (2.1)
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where the generalized inverse of F is given by F−1(t) = inf{x ∈ R : F(x) > t}.
Next, we recall relevant notions of convergence, beginning with narrow conver-

gence.

Definition 2.1 (Narrow convergence of probability measures in R
d ) We say that

{μn}∞n=1 ⊆ P(Rd) converges narrowly to μ ∈ P(Rd) if

∫
Rd

f (x) dμn(x) →
∫
Rd

f (x) dμ(x), ∀ f ∈ Cb(R
d), (2.2)

where Cb(R
d) denotes the set of bounded continuous functions on R

d .

In the probability literature, narrow convergence is also called weak convergence or
convergence in distribution. Narrow convergence is slightly weaker than convergence
in W2, and they are equivalent when the second moments also converge.

Lemma 2.2 ([2, Remark. 7.1.11]) Given μn, μ ∈ P2(R
d), the following statements

are equivalent:

lim
n→+∞ W2(μn, μ) = 0 ⇐⇒ μn → μ narrowly and lim

n→+∞ M2(μn) = M2(μ).

(2.3)

Recall that, for any measures μ, ν ∈ P2(R
d), if we consider their translations to

have mean zero, μ′ = (Id− ∫
x dμ(x))#μ and ν′ = (Id− ∫

xdν(x))#ν, then

W 2
2 (μ, ν) = W 2

2 (μ′, ν′) +
∣∣∣∣
∫

x dμ(x) −
∫

xdν(x)

∣∣∣∣
2

. (2.4)

See, for example, [7, Proposition 2.5].

Remark 2.3 (mean of minimizers of WAA and (WAAε)) An immediate consequence
of Eq. (2.4) is that any minimizer � of either (WAA) or the regularized problem
(WAAε) must have the same mean as μ, that is,

1

|�|
∫

�

x dx =
∫
Rd

x dμ(x).

Next, we recall an elementary lemma for the CDFs of real-valued random variables.
For the reader’s convenience, we include a proof.

Lemma 2.4 ([7, Equation 2] and [27, Theorem 2.18]) Let X be a real-valued random
variable with CDF F(x). AssumeE[|X |] < +∞ and the law of X is not a Dirac mass.
Then

E[XF(X)] >
1

2
E[X ]. (2.5)

Furthermore, if X ∼ μ for μ ∈ P2,ac(R), then for any a < b, (b − a)(F(x) + a) is
the optimal transport map from μ to the probability measure 1[a,b]/(b − a).
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Proof First, we show (2.5). To prove this, note

E[XF(X)] =
∫
R

xF(x) dF(x) = 1

2

∫
R

x d(F(x)2) = 1

2
E[X̃ ],

where X̃ has CDF F(x)2. Since F(x) ∈ [0, 1], X̃ stochastically dominates X , i.e.
P(X̃ � t) = 1 − F(t)2 � 1 − F(t) = P(X � t). As a consequence of stochastic
dominance [25, Theorem 1.A.8], E[X̃ ] � E[X ], with equality holding if and only if
F(x)2 = F(x) for all x ∈ R. Thus, equality can only hold if F(x) is either equal to
zero or one for all x ∈ R, which implies the law of X is a Dirac mass. Consequently,
we conclude E[XF(X)] = E[X̃ ]/2 > E[X ]/2.

Now, suppose μ ∈ P2,ac(R). [27, Remark 2.19] ensures that (b − a)(F(x) + a) is
the optimal transport map from the law of X to 1[a,b]/(b − a). ��

Our next lemma concerns optimal transport maps from ameasureμ ∈ P2,ac(R
d) to

a measure ν ∈ P2(R
d) with supp ν ⊆ π1(R

d) = {(x1, . . . , xd) ∈ R
d : xi = 0 ∀i =

2, . . . d}.
Lemma 2.5 Given μ ∈ P2,ac(R

d) and ν ∈ P2(R
d) with supp ν ⊆ π1(R

d), if T is the
optimal transport map from μ to ν, then T = (T1, 0, . . . , 0), where T1 : R → R is the
optimal transport map from π1#μ to π1#ν.

Proof Since supp ν ⊆ π1(R
d), for any Y = (Y1, . . . ,Yd)with Y ∼ ν, we have Yi = 0

almost everywhere, for i = 2, . . . , d. Thus, by definition of the Wasserstein metric in
Eq. (1.2),

W 2
2 (μ, ν) = inf

X∼μ,Y∼ν
E[(X1 − Y1)

2] +
d∑

i=2

E[(Xi − Yi )
2]

= inf
X∼μ,Y∼ν

E[(X1 − Y1)
2] +

d∑
i=2

E[X2
i ]

= M2(π2,...,d#μ) + inf
X1∼(π1#μ),Y1∼(π1#ν)

E[(X1 − Y1)
2],

where the second term in the last expression corresponds with W 2
2 (π1#μ,π1#ν).

Since μ ∈ P2,ac(R
d), π1#μ ∈ P2,ac(R), so there exists an optimal transport map T1

from π1#μ to π1#ν; see Eq. (1.3). Furthermore, the above computation shows that,
T̃ = (T1, 0, . . . , 0) is optimal from μ to ν. Uniqueness of optimal transport maps for
μ ∈ P2,ac(R

d) then gives the result. ��
Another useful fact is that, for uniform distributions on convex k-gons in R

d ,
uniformly bounded second moments imply uniformly bounded support, as well as
convergence, up to a subsequence. This is proved in a slightly different setting in [7,
Lemmas 3.2−3.3] and [4, Proposition 1]. We recall the result in the present setting for
the reader’s convenience, with the proof deferred to Appendix 8.1.

Lemma 2.6 Fix d � 1 and k � d + 1. Suppose {�n}+∞
n=1 ⊆ Sk satisfies

supn M2
(
1�n/|�n|

)
< +∞.
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(i) There exists R > 0 so that �n ⊆ BR(0) := {x ∈ R
d : |x | � R} for all n ∈ N.

(ii) Up to a subsequence, the vertices of �n converge, and if we let � be their convex
hull, then there exists ν ∈ P2(R

d) so that 1�n/|�n| → ν narrowly, 1�n (x) →
1�(x) pointwise Ld-almost everywhere, and supp ν = �.

Our next lemma identifies the density of a narrowly convergent sequence in
P2,ac(R

d), with uniformly bounded support and density.

Lemma 2.7 Consider νn ⊆ P2,ac(R
d), where dνn(x) = νn(x) dLd(x), and suppose

(i) νn has uniformly bounded support,
(ii) supn ‖νn‖L∞(Rd ) < +∞,
(iii) νn → ν ∈ P2(R

d) narrowly.

Then, if there exists f ∈ L∞(Rd) so that νn(x) → f (x) pointwise, we must have
dν = f (x) dLd(x).

Proof Fix ϕ ∈ Cb(R
d). Since νn(x) is uniformly bounded, with uniformly bounded

support, by the dominated convergence theorem.

lim
n→+∞

∫
ϕ(x)νn(x) dLd(x) =

∫
ϕ(x) f (x) dLd(x). (2.6)

Furthermore, narrow convergence of νn to ν ensures that the left-hand side coincides
with

∫
ϕ(x)dν(x). Thus, the Riesz–Markov–Kakutani representation theorem implies

dν(x) = f (x) dx . ��
We close with the following technical lemma, focused on the two-dimensional

case, which characterizes the projection of measures of the form 1�/|�| onto a one-
dimensional affine space.

Lemma 2.8 Let d = 2 and k � d + 1. For every � ∈ Sk and affine space V ⊆ R
d

with dim(V ) = 1, the density of the marginal distribution of 1�/|�| along V , denoted
πV #1�/|�|, with respect to one dimensional Lebesgue measure on V , is a piecewise
linear function on �, with at most k vertices, that is concave on its support.

Proof When k = 3, the result can be checked by brute force. For k > 3,we observe that
any measure of the form 1�/|�| for � ∈ Sk can be written as a conical combination
of uniform distributions on triangles,

1�/|�| =
l∑

i=1

1Ti /|�|.

Thus, by linearity of the push forward,

πV #1�/|�| =
l∑

i=1

(πV #1Ti )/|�|.

By the k = 3 case, we know that πV #1�/|�| is piecewise linear. The concavity part
follows from Brunn’s concavity principle [3, Theorem 1.2.1]. ��
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3 Existence of Minimizers

To prove Theorem 1.1 on the existence of a minimizer for (WAA), we begin with
the following lemma, characterizing the closure of the constraint set in the narrow
topology. We consider three cases, depending on the dimension of the affine hull of
the support of the measure.

Proposition 3.1 Let d � 1 and k � d+1, and suppose ν ∈ P2(R
d) is the narrow limit

of 1�n/|�n|, for {�n}+∞
n=1 ⊆ Sk with supn M2(1�n/|�n|) < +∞. Let � = supp ν.

(i) If dim(aff(�)) = 0, then ν is a Dirac mass at supp(ν), i.e., ν = δsupp(ν).
(ii) If d = 2 and dim(aff(�)) = 1, then the projection of ν onto aff(�) is absolutely

continuous with respect to the Lebesgue measure on aff(�) and has a piecewise
linear density with at most k vertices, which is concave on its support.

(iii) If dim(aff(�)) = d, then ν = 1�/|�| for � ∈ Sk.

Proof of Proposition 3.1 First, recall from Lemma 2.6, that � is a convex k-gon, �n

and � are uniformly bounded in Rd , and 1�n converges pointwise a.e. to 1�.
We now consider part (i). This result is immediate, since the limit of any narrowly

convergent sequence of probability measures must be a probability measure, and the
only probability measure concentrated on a point is a Dirac mass at that point.

Next, we show part (ii), under the assumption that d = 2. Since � is a bounded,
convex k-gonwith dim(aff(�)) = 1,�must be a bounded line segment. For simplicity
of notation, let V = aff(�), and let πV #(1�n/|�n|) denote the marginal distribution
of 1�n/|�n| along V . By Lemma 2.8, the density of πV #(1�n/|�n|) with respect
to one-dimensional Lebesgue measure on V , which we denote by fn , is a piecewise
linear function with at most k vertices, which is concave on its support. Without loss
of generality, suppose V coincides with the x1-axis, so fn is a function of x1.

We now show that fn is uniformly bounded for all n. To do this, we begin by
showing that, up to a subsequence, infn L1(πV (�n)) > 0. By Lemma 2.6, the vertices
{vin}ki=1 of �n converge to {vi }ki=1, where � is the convex hull of these limit points.
By definition of V , vi = (vi1, 0) and πV (vi ) = vi1 for all i = 1, . . . , k. Furthermore,
note that πV (�n) is a sequence of uniformly bounded intervals on the x1-axis, with
nonempty interior with respect to R. Thus, by Lemma 2.6, up to a subsequence, the
endpoints of the intervals converge, and we may let �′ ⊆ R denote the convex hull of
their limits. By uniqueness of limits and the continuity of πV , we have �′ = πV (�),
so Lemma 2.6 ensures 1πV (�n)(x1) → 1πV (�)(x1) pointwise L1 almost everywhere.
Thus, by the dominated convergence theorem,

lim
n→+∞L1(πV (�n)) = lim

n→+∞

∫
1πV (�n) dL1 =

∫
1πV (�)(x1) dx1 = L1(πV (�)).

Since dim(aff(�)) = 1, L1(πV (�)) > 0. Thus, up to another subsequence, we may
assume that infn L1(πV (�n)) > 0.

Since fn is a concave piecewise linear density, for any x1 ∈ R, the area of the
triangle with base L1(πV (�n)) and height fn(x1) is always smaller than

∫
fn dL1.
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Therefore, for all n ∈ N and x1 ∈ πV (�n),

1

2

(
inf
m

L1(πV (�m))
)
fn(x1) � 1

2
L1(πV (�n)) fn(x1)

�
∫

fn dL1 = 1 ⇒ fn(x1) � 2
(
inf
m

L1(πV (�m))
)−1

.

This shows that the densities fn are uniformly bounded in n.
We now seek to apply Lemma 2.7. By the Continuous Mapping Theorem,

fn dL1 = πV #(1�n/|�n|) → πV #ν narrowly.

Given that fn(x) is piecewise linear with at most k vertices, we may let xn,1 � · · · �
xn,k denote the vertices in increasing order. Since the support of fn is bounded, up to a
subsequence, xn,i converges to some xi for all i = 1, . . . , k, and since fn is uniformly
bounded, fn(xn,i ) converges to some yi as for all i = 1, . . . , k. Let f be the piecewise
linear functions that interpolates between {(xi , yi )}ki=1. Then fn → f pointwise so,
by Lemma 2.7, d(πV #ν) = f dL1. Finally, since fn are concave on their support, so
is f . This completes the proof of part (ii).

It remains to show part (iii), which holds for general d � 1. Since 1�n converges
pointwise Ld a.e. to 1� and both have uniformly bounded support, the dominated
convergence theorem ensures

lim
n→+∞ |�n| = lim

n→+∞

∫
1�n dLd =

∫
1� dLd = |�|.

Therefore, up to a subsequence, we may assume infn |�n| > 0. Applying the dom-
inated convergence theorem again, we conclude that for any Borel measurable set
A ⊆ R

d ,

lim
n→+∞

1

|�n|
∫

�n

1A dLd = lim
n→+∞

1

|�n|
∫

1A1�n dLd =
∫
1A1�

|�| dLd .

This shows that 1�n/|�n| → 1�/|�| strongly as measures, hence narrowly. By
uniqueness of limits,we conclude that ν = 1�/|�|. Furthermore, since dim(aff(�)) =
d, � ⊆ R

d must have non-empty interior, so � ∈ Sk . ��
We now turn to the proof of Theorem 1.1.

Proof of Theorem 1.1 First, suppose d = 1. Let F be the CDF of μ, and let G be the
CDF of the probability measure 1

|b−a|1[a,b]. Then G−1(t) := a + (b− a)t , so, by Eq.
(2.1),

W 2
2

(
μ,

1

|b − a|1[a,b]
)

=
∫ 1

0

(
F−1(t) − G−1(t)

)2
dt

=
∫ 1

0

(
F−1(t) − [a + (b − a)t]

)2
dt
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= 1

6

(
a
b

)t (
2 1
1 2

) (
a
b

)
− 2

(
C0 − C1

C1

)t (
a
b

)
+ C2

=: ϕ(a, b),

where

C0 =
∫ 1

0
F−1(t) dt =

∫
Rd

x dμ(x),

C1 =
∫ 1

0
t F−1(t) dt =

∫
Rd

x F(x) dμ(x),

C2 =
∫ 1

0

(
F−1(t)

)2
dt =

∫
Rd

x2 dμ(x).

The result then follows from the fact thatϕ(a, b) is a strictly convex quadratic function,
with a unique minimizer given in (1.4).

Now, we turn to the case d = 2. By Eq. (2.4), we may assume without loss
of generality that μ has mean zero and restrict the minimization problem to the
set {� ∈ Sk : ∫

�
x dLd(x) = 0}. Consider a minimizing sequence �n ∈ Sk with∫

�n
x dLd(x) = 0 so that

lim
n→+∞ W2(μ, 1�n/|�n|) = inf

�∈Sk
W2(μ, 1�/|�|). (3.1)

By the triangle inequality,

sup
n

M2(1�n/|�n|) = sup
n

W 2
2 (1�n/|�n|, δ0)

� sup
n

2
(
W 2

2 (μ, δ0) + W 2
2 (μ, 1�n/|�n|)

)
< +∞.

Thus, Lemma 2.6 ensures that, up to a subsequence, there exists ν ∈ P2(R
d) and

a closed, convex k-gon � so that 1�n/|�n| → ν narrowly and supp ν = �. Since
1�n/|�n| hasmean zero for all n ∈ N and uniformly bounded support, ν also hasmean
zero. By the lower semicontinuity of the Wasserstein metric with respect to narrow
convergence,

W2(μ, ν) � lim
n→+∞ W2(μ, 1�n/|�n|) = inf

�∈Sk
W2(μ, 1�/|�|). (3.2)

Thus, it suffices to show that ν = 1�/|�| for � ∈ Sk in order to conclude that a
minimizer exists. By Proposition 3.1, if dim(aff(�)) = 2, the result holds. Thus,
it remains to exclude the possibility that dim(aff(�)) � 1. We accomplish this by
showing that, if either dim(aff(�)) = 0 or dim(aff(�)) = 1, then there exists �̃ ∈ Sk
with W2(μ, 1�̃/|�̃|) < W2(μ, ν), contradicting Eq. (3.2).

Let X = (X1, X2) be a random variable with distribution μ, and let F(x1) denote
the CDF of X1. Let X2|X1 denote the conditional distribution of X2 given X1, with
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CDF FX1(x2). By Lemma 2.4, F is the optimal transport map from π1#μ to 1[0,1],
F −1 is the optimal transport map from π1#μ to 1[−1,0], and, almost everywhere, FX1

is the optimal transport map from the law of X2|X1 to 1[0,1]. Suppose that

g : R → [0,+∞) is compactly supported,
∫

g = 1, and, on its support,

g is concave and piecewise linear, with at most k vertices. (3.3)

In particular, we have

g(x1) > 0 for x1 ∈ int(supp g). (3.4)

For α ∈ R \ {0}, β > 0, consider the following family of convex k-gons:

�(α, β) := {(x1, x2) : x2 ∈ [0, αg(x1/β)]} ∈ Sk .

Note that |�(α, β)| = αβ. Let T1 be the optimal transport map from π1#μ to
π1#1�(1,1). Define the random variables

Z1 = T1(X1),

Z2 = g(T1(X1))(FX1(X2) − Cα), for Cα =
{
0 if α > 0,

1 if α < 0,

Y = (βZ1, |α|Z2).

By construction, Y ∼ 1�(α,β)/|�(α, β)|. Since π1#1�(1,1) ∈ P2,ac(R) and T1(X1) ∈
int(π1#1�(1,1)) = int(supp g) almost everywhere, Eq. (3.4) and Lemma 2.4 ensure

|α|E[Z2X2] = |α|E[g(T1(X1))(FX1(X2) − Cα)X2]
= |α|E[g(T1(X1))

(
E[FX1(X2)X2|X1] − CαE[X2|X1]

)],
> |α|E

[
g(T1(X1))

(
1

2
E[X2|X1] − CαE[X2|X1]

)]

=
{ |α|

2 E [g(T1(X1)) (E[X2|X1])] if α > 0,

−|α|
2 E [g(T1(X1)) (E[X2|X1])] if α < 0.

(3.5)

We now apply this construction to rule out the possibility dim(aff(�)) � 1. First,
suppose dim(aff(�)) = 0. By Proposition 3.1 and the fact that ν has mean zero,
ν = δ0, so W 2

2 (μ, ν) = E[X2
1 + X2

2]. Define

g(x1) =
{
1 + x1 if x1 ∈ [−1, 0],
1 − x1 if x1 ∈ [0, 1].
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Then g satisfies (3.3). Furthermore,

W 2
2 (μ, ν) − W 2

2 (μ, 1�α,β /|�(α, β)|)
� E[X2

1 + X2
2] − E[(X1 − βZ1)

2 + (X2 − |α|Z2)
2]

= 2βE[X1Z1] − β2
E[Z2

1] + 2|α|E[Z2X2] − α2
E[Z2

2]. (3.6)

We now apply inequality (3.5) to bound this strictly from below. If E [g(T1(X1))

(E[X2|X1])] � 0, then E[Z2X2] > 0 for all α > 0. Thus, we may choose α > 0 and
β > 0 sufficiently small so that the right-hand side of (3.6) is strictly positive. On the
other hand, if E [g(T1(X1)) (E[X2|X1])] � 0, then E[Z2X2] > 0 for all α < 0. Thus,
we may choose α < 0 sufficiently close to zero and β > 0 sufficiently small so that
the right-hand side of (3.6) is strictly positive. In particular, in either case, there exist
α ∈ R\{0} and β > 0 so that

W 2
2 (μ, ν) > W 2

2 (μ, 1�(α,β)/|�(α, β)|),

which contradicts (3.2). This shows that dim(aff(�)) = 0 is impossible.
It remains to exclude the possibility that dim(aff(�)) = 1. We proceed by contra-

diction, assuming dim(aff(�)) = 1. Without loss of generality, we may rotate μ and
ν so that aff(�) coincides with the x1-axis. By Proposition 3.1, d(π1#ν) = g dL1, for
g satisfying (3.3) above. Note that, in this case, π1#(1�(1,1)/|�(1, 1)|) = π1#ν. By
Lemma 2.5, the optimal coupling between μ and ν is of the form (X , T (X)), where
T (x1, x2) = (T1(x1), 0) and T1 is the optimal transport map from π1#μ to π1#ν.
Therefore,

W 2
2 (μ, ν) − W 2

2

(
μ, 1�(α,1)/|�(α, 1)|)

� E[(X1 − T1(X1))
2 + X2

2] − E[(X1 − Z1)
2 + (X2 − |α|Z2)

2]
= E[(X1 − T1(X1))

2 + X2
2] − E[(X1 − T1(X1))

2 + (X2 − |α|Z2)
2]

= 2|α|E[X2Z2] − α2
E[Z2

2]. (3.7)

As before, we apply inequality (3.5) to bound this from below. If E [g(T1(X1))

(E[X2|X1])] � 0, then E[X2Z2] > 0 for all α > 0. Thus, we may choose α > 0
sufficiently small so that the right-hand side of (3.6) is strictly positive. On the other
hand, if E [g(T1(X1)) (E[X2|X1])] � 0, then E[X2Z2] > 0 for all α < 0. Thus, we
may choose α < 0 sufficiently close to zero so that the right-hand side of (3.6) is
strictly positive. In particular, in either case, there exists α ∈ R\{0}

W 2
2 (μ, ν) > W 2

2 (μ, 1�(α,β)/|�(α, β)|),

which contradicts (3.2). This shows that dim(aff(�)) = 1 is impossible. ��
Remark 3.2 (regularity of μ when d = 2) While in the one-dimensional case, our
proof of the existence of minimizers to (WAA) holds for all μ ∈ P2(R), in the two-
dimensional case, we requireμ to be absolutely continuous with respect toL2. This is
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used in our application of Lemma 2.4. In particular, we must have the following: after
an arbitrary rotation of the coordinate plane, if X = (X1, X2) is a random variable
with law μ, then, on a set of positive measure, the conditional distribution of X2 given
X1, X2|X1, is not a single Dirac mass. Note that this fails to be true when μ is an
empirical measure. The assumption that μ ∈ P2,ac(R

2) also implies that π1#μ and
the conditional distribution dμx1(x2) are absolutely continuous with respect to one
dimensional Lebesgue measure, hence that optimal transport maps exist from these
measures to any other measure in P2(R

d).
It remains an open question how to extend our result to more general μ ∈ P2(R

d),
particularly μ with lower dimensional support, such as an empirical measure. While
related work due to Belili and Heinich [4] on approximating measures by gen-
eral convex sets � succeeded in weakening the condition on μ to merely require
dim(aff(suppμ)) = d, their approach strongly uses symmetry arguments, which fail
in our setting.

Remark 3.3 (existence of minimizers for d � 3) There are two key gaps preventing
obtaining the existence of minimizers to (WAA) when d � 3 by a similar approach.
The first is an analog of Proposition 3.1, characterizing how limits of minimizing
sequences could degenerate. This becomes more difficult in higher dimensions, as a
degeneracy can occur downwards by more than one dimension: for example, a three-
dimensional polytope can collapse to a line segment.

The second, more significant, gap is that even given an appropriate analog of Propo-
sition 3.1, the perturbation argument used in the proof of Theorem 1.1 would fail. For
example, consider the following sequence �n ∈ Sk for d = 3 with k = 4, illustrated
in Fig. 2,

�n = conv
({

(−1, 0, 0), (0, 1, 0), (0,−1, 0),
(
cos

( π

2n

)
, 0, sin

( π

2n

))})
, n ∈ N.

While the polygons �n converge to the square � = conv{(−1, 0, 0), (0, 1, 0),
(0,−1, 0), (1, 0, 0)} in the xy-plane, the measures 1�n/|�n| narrowly converge to
the measure ν = f dL2, where f is the piecewise linear density, supported on �,
that interpolates between (−1, 0, 0), (0, 1, 0), (0,−1, 0), (1, 0, 0), and (0, 0, 3/2). In
other words, f is a tent-like function with a peak in the interior. In this case, one cannot
construct a competitive element in Sk , k = 4, following the same path as in the proof
of Theorem 1.1. In particular, perturbing ν by scaling the z-direction according to f ,
since would result in an element in S5, instead of S4.

While there do exist elements in S4 whose marginal distributions in the xy-plane
coincide with ν, e.g. the polytopes with vertices (−1, 0, 0), (0, 1, 0), (0,−1, 0),
(1, 0, h) for any h �= 0, this example illustrates how a different approach from that
used in Theorem 1.1 would be needed to deal with the more intricate structure of the
narrow closure of the constraint set found in higher dimensions.

In spite of the difficulty of obtaining the existence of minimizers to (WAA) when
d � 3, by introducing an arbitrarily small regularization term, we are able to obtain
existence in all dimensions. We begin with a lemma, providing compactness of the
constraint set for the regularized problem (WAAε).
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Fig. 2 Visualization of �n as n → +∞

Lemma 3.4 Consider μn ∈ P2(R
d) with supn M2(μn) < +∞. Fix ε > 0, k � d + 1,

and m � 1. Suppose �n ∈ Sk satisfy

sup
n

W2(μn, 1�n/|�n|) + εUm(1�n/|�n|) < +∞.

Then there exists� ∈ Sk so that, up to a subsequence, 1�n/|�n| → 1�/|�| narrowly.
Proof When m > 1, Um(1�/|�|) � 0, and when m = 1, a Carleman-type estimate
[5, Lemma 4.1] shows that, for all δ > 0, U1(1�/|�|) � −(2π/δ)d/2−δM2(1�/|�|).
Thus, along the minimizing sequence, taking δ = 1/(4ε) and applying the triangle
inequality gives

sup
n

M2(1�n/|�n|) = sup
n

2W 2
2 (1�n/|�n|, δ0) − M2(1�n/|�n|)

� sup
n

4
(
W 2

2 (μn, δ0) + W 2
2 (μn, 1�n/|�n|)

)
− M2(1�n/|�n|)

� sup
n

4M2(μn) + 4W 2
2 (μn, 1�n/|�n|) + 4εUm(1�n/|�n|)

+ 4ε(8επ)d/2 < +∞.

Thus, Lemma 2.6 ensures that, up to a subsequence, there exists ν ∈ P2(R
d) and a

closed, convex k-gon � so that 1�n/|�n| → ν narrowly, 1�n (x) → 1�(x) pointwise
almost everywhere, and supp ν = �. Furthermore, there exists R > 0 so that �n ⊆
BR(0) for all n ∈ N. Since ε > 0, Um(1�n/|�n|) is bounded above uniformly along a
minimizing sequence, so byEq. (1.5), |�n | is bounded below.Hence, by the dominated
convergence theorem,

|�| =
∫
Rd

1� = lim
n→+∞

∫
Rd

1�n = lim
n→+∞ |�n| > 0. (3.8)

Therefore dim(aff(�)) = d, so by Proposition 3.1, we have ν = 1�/|�|. ��
Now, we turn to the proof of Theorem 1.2, which ensures the existence of solutions

of the regularized problem (WAAε), for all μ ∈ P2(R
d), d � 1.
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Proof of Theorem 1.2 Our proof begins similarly to the proof of Theorem 1.1. By Eq.
(2.4) and the fact that Um is invariant under translations, we may assume without
loss of generality that μ has mean zero and restrict the minimization problem to the
set {� ∈ Sk : ∫

�
x dLd(x) = 0}. Consider a minimizing sequence �n ∈ Sk with∫

�n
x dLd(x) = 0 so that

lim
n→+∞ W2(μ, 1�n/|�n|) + εUm(1�n/|�n|) = inf

�∈Sk
W2(μ, 1�/|�|) + εUm(1�/|�|).

(3.9)

By Lemma 3.4, with μn ≡ μ, there exists � ∈ Sk so that, up to a subsequence
1�n/|�n| → 1�/|�| narrowly. By lower semicontinuity of the Wasserstein metric
and Um in the narrow topology, we have

inf
�∈Sk

W2(μ, 1�/|�|) + εUm(1�/|�|) = lim inf
n→+∞ W2(μ, 1�n/|�n|) + εUm(1�n/|�n|)

� W2(μ, 1�/|�|) + εUm(1�/|�|). (3.10)

Therefore, � is a minimizer of (WAAε). ��

4 Consistency

We now turn to the proof of consistency for the regularized Wasserstein archetypal
analysis problem, as the measure μ is approximated by a sequence of empirical mea-
sures.

Proof of Theorem 1.4 First, note that by definition of �n as the solution of (WAAε),
for any �̃ ∈ Sk , we have

W2(μn, 1�n/|�n|) + εUm(1�n/|�n|) � W2(μn, 1�̃/|�̃|) + εUm(1�̃/|�̃|). (4.1)

We now turn to part (i). Since μ ∈ P2(R
d), the law of large numbers ensures

M2(μn) → M2(μ) and μn → μ narrowly, almost surely. Thus, Eq. (2.3) ensures
W2(μn, μ) → 0 almost surely. Thus, Lemma 3.4 ensures that, almost surely, there is
a subsequence such that 1�n/|�n| → 1�/|�| narrowly, where � ∈ Sk .

To see � is optimal, note that, by inequality (4.1) and lower semicontinuity of the
Wasserstein metric and Um with respect to narrow convergence, almost surely, for any
�̃ ∈ Sk ,

W2(μ, 1�̃/|�̃|) + εUm(1�̃/|�̃|) = lim inf
n→+∞ W2(μn, 1�̃/|�̃|) + εUm(1�̃/|�̃|)

� lim inf
n→+∞ W2(μn, 1�n/|�n|) + εUm(1�n/|�n|)

� W2(μ, 1�/|�|) + εUm(1�/|�|),

so � solves (WAAε).
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Finally, to get the convergence rate in part (ii), note that for all n ∈ N,

W2
(
μ, 1�n/|�n|

) + εUm(1�n/|�n|)
� W2

(
μn, 1�n/|�n|

) + εUm(1�n/|�n|) + W2(μn, μ)

� W2 (μn, 1�/|�|) + εUm(1�/|�|) + W2(μn, μ)

� W2 (μ, 1�/|�|) + εUm(1�/|�|) + 2W2(μn, μ).

Taking expectations on both sides and rearranging,

E
[
W2

(
μ, 1�n/|�n|

) + εUm(1�n/|�n|) − (W2 (μ, 1�/|�|) + εUm(1�/|�|))]
� 2E[W2(μn, μ)] � 2(E[W 2

2 (μn, μ)])1/2,

where the last term can be further bounded using [15, Theorem 1], completing the
proof. ��

5 Computational Approach in Two Dimensions

Here, we develop a computational approach for solving (WAA) and (WAAε) in dimen-
sion d = 2, when μ is a sum of Dirac masses, based on the semidiscrete approach
introduced by Mérigot [20]; see also [23, Section 6.4.2]. This approach is based on
the dual formulation of the 2-Wasserstein metric, which we now recall; see also [2,
Theorem 6.1.1, Theorem 6.1.4].

5.1 Semidiscrete Formulation of (WAA) and (WAA")

Suppose thatμ ∈ P(X) and ν ∈ P(Y ), where X ,Y are compact subsets ofRd .1 Then

W2(μ, ν) = max
ϕ∈C(X)

�ν(ϕ)

for

�ν(ϕ) :=
∫
X

ϕ(x) dμ(x) +
∫
Y

ϕ∗(y) dν(y), (5.1)

ϕ∗(y) := inf
x∈X |x − y|2 − ϕ(x). (5.2)

In the special case that μ is a sum of Dirac masses, μ = ∑n
i=1 miδxi , we may

suppose X = {xi }ni=1 and identify C(X) � R
n , abbreviate ϕi := ϕ(xi ), for any

ϕ ∈ C(X) � R
n . Given any such ϕ ∈ R

n , we may define the weighted Voronoi

1 The compactness assumptions on X and Y can be removed, but then the maximum in the dual problem
becomes a supremum. Also, X , Y compact is sufficient for our purposes, since our discrete measure μ and
uniform distribution on a polygon ν will always be contained in compact sets.

123



Applied Mathematics & Optimization            (2024) 90:36 Page 21 of 34    36 

tessellation corresponding to the points {xi }ni=1 by

Vorϕμ(xi ) = {y ∈ R
d : |xi − y|2 − ϕi � |x j − y|2 − ϕ j for all j = 1, . . . , n}.

Using this partition of the domain R
d , we may rewrite �ν as

�ν(ϕ) =
n∑

i=1

(
ϕimi +

∫
Vorϕμ(xi )

ϕ∗(y) dν(y)

)
,

=
n∑

i=1

(
ϕimi +

∫
Vor

ϕi
μ (xi )

|xi − y|2 − ϕi dν(y)

)
.

In this way, we may equivalently reformulate (WAA) and (WAAε) by writing, for
ε � 0,

min
�∈Sk

W 2
2 (μ, 1�/|�|) + εUm(1�/|�|)

= min
�∈Sk

max
ϕ∈Rn

�1�/|�|(ϕ) + ε
1

(m − 1)|�|m−1

= min
�∈Sk

max
ϕ∈Rn

n∑
i=1

(
ϕimi + 1

|�|
∫
Vorϕμ(xi )∩�

(|y − xi |2 − ϕi )dy + ε
1

(m − 1)|�|m−1

)
,

(5.3)

where in the second equality, we apply Eq. (1.5) for Um(1�/|�|), with the convention
that |�|0/0 = − log(|�|).

5.2 Optimization Approach

We now discuss our approach for finding a polygon � ∈ Sk and dual vector ϕ ∈ R
n

that solves Eq. (5.3), via an alternating gradient descent/ascent method in � and ϕ.
First, we consider the gradient ascent step in ϕ. Since ϕ only appears in the first two

terms of our objective functional, it suffices to compute the variation of �1�/|�|(ϕ)

with respect to ϕ, as in Mérigot’s original work [20]. For the reader’s convenience,
we recall the form of this variation, following the presentation of Santambrogio [23,
Sect. 6.4.2], with the derivation deferred to Appendix 8.2.

Proposition 5.1 Suppose μ = ∑n
i=1 δxi mi and ν 	 Ld . Then, for all l = 1, . . . , n,

∂�ν

∂ϕl
= ml − ν(Vorϕμ(xl)). (5.4)

Now,we turn to the gradient descent step in�, whichwewill perform by perturbing
the vertices of �. In particular, in the two-dimensional case, we may assume that � is
a convex k-gon with vertices {a�}k�=1, ordered in the clockwise direction. We denote
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the edge connecting vertices a� and a�+1 by E� = [a�, a�+1], where we use circular
indexing, andwe denote the outward normal vector to E� by n�. The following theorem
will allow us to compute the gradient of the objective function in (5.3) with respect to
the vertex a�, � = 1, . . . , k.

Proposition 5.2 Let g ∈ L1(R2) ∩ W 1,1(R2) and consider the function J (�) =∫
�
g(x) dx, where � = conv({a�}k�=1) is a convex k-gon. Using the above notation,

the gradient of J with respect to vertex a�, � = 1, . . . , k, is given by

∇a�
J = L�n�−1 + R�n�, (5.5)

where

L� =
∫
E�−1

g(x)F�−1,�(x) dx and R� =
∫
E�

g(x)F�+1,�(x) dx

are constants computed on the intervals to the left and right of vertex a� and
Fj,k : R2 → R is the affine function defined by

Fj,k(x) = 〈x − a j , ak − a j 〉
‖ak − a j‖2 . (5.6)

The proof of Proposition 5.2 is deferred to Appendix 8.3. We may now compute
the gradient descent step in (5.3) by rewriting the second two terms in the objective
function as

n∑
i=1

1

|�|
∫
Vorϕμ(xi )∩�

(|y − xi |2 − ϕi ) dy + ε
1

(m − 1)|�|m−1

= 1

|�|
∫

�

fϕ(y) dy + ε
1

(m − 1)|�|m−1 , (5.7)

for

fϕ(y) =
n∑

i=1

1Vorϕμ(xi )(y)
(
|y − xi |2 − ϕi

)
,

and taking the gradient of (5.7) with respect to each vertex by applying Proposition
5.2, the formula for |�| in terms of its vertices, and the quotient rule.

In summary, our method aims to optimize the saddle point problem (5.3) by alter-
nating gradient ascent steps according to (5.4) and gradient descent steps of (5.7), for
each vertex of �; see Algorithm 1. We emphasize that the output of our algorithm is
the extremal points {al}kl=1. The convex hull of these points determines the archety-
pal polygon. While our algorithm performs well in practice (see Sect. 6) we leave
convergence analysis to future work. In particular, as illustrated in Fig. 9, we gener-
ically expect the energy landscape to have multiple stationary points so that further
hypotheses would be needed to ensure our method converges to a global optimizer.
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Algorithm 1:An alternatingmethod to approximately solve (WAA) and (WAAε).

Input: A distribution μ = ∑n
i=1 δxi mi , an initial dual variable ϕ0, a number of vertices k � 3, an

initial polygon �0 = conv
(
{a0

�
}k
�=1

)
, regularization parameters ε � 0 and m � 1, step sizes

τ1, τ2 > 0, and tolerances δ1, δ2 > 0.
Output: A polygon �n that is a candidate approximate solution for (WAA) or (WAAε).

1 for s ∈ N do
2 1. Gradient ascent in ϕ. Set ϕ̄s,1 = ϕs

3 for r ∈ N do
4 Find the power diagram at ϕ̄s,r , compute |Vorϕμ(xi ) ∩ �|/|�| and compute

ϕ̄
s,r+1
i = ϕ̄

s,r
i + τ1(mi − |Vorϕμ(xi ) ∩ �|/|�|)

5 If ‖ϕ̄s,r+1 − ϕ̄s,r‖1 � δ1, STOP
6 end for
7 Set ϕs+1 = ϕ̄s,r

8 2. Gradient descent in �. Update the vertices {as
�
}k
�=1 of � by

as+1
�

= as� − τ2∇a�

(
1

|�|
∫
�

fϕs+1 (y) dy + ε
1

(m − 1)|�|m−1

)
.

If ‖αs+1 − αs‖∞ < δ2, STOP
9 end for

6 Numerical Experiments

In this section,we illustrate the performance of the algorithmvia several computational
experiments. In all numerical experiments, we set τ1 = 0.5, τ2 = 0.1, δ1 = 10−3,
and δ2 = 10−5. In our numerical studies, we observe that the algorithm is not very
sensitive to the choice of step sizes τ1 and τ2. We choose the initial dual variable ϕ0

to be a zero vector with dimension n in all experiments.

6.1 Example 1: Uniform Distribution in a Disk

We first consider the case where the measure μ is the uniform probability measure on
the unit disk. The measure μ is approximated as follows. We first generate 10, 000
data points, where each data point xi = (x1i , x

2
i ) is randomly generated by

{
x1 = √

r cos(2πθ),

x2 = √
r sin(2πθ),

with r and θ drawn fromuniform distributions on [0, 1].We generate a uniform 15×15
discretization of the square [xmin, xmax] × [ymin, ymax] where xmin /max, ymin /max are
the smallest or largest value in x, y, respectively. We then set the center of the i-th cell
as xi and the ratio of random points located in this cell as mi to have the approximate
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Fig. 3 Snapshots of the evolution of the triangle computed by Algorithm 1 until convergence. See Sub-
sect. 6.1

Fig. 4 Figure 3 of [22]: A
minimizer for 30,033 random
data points. The red curve is the
boundary of the convex hull of
the archetype points and the
magenta curve is the boundary
of the convex hull of random
data points. See Subsect. 6.1

measure μn = ∑n
i=1 miδxi by dropping those cells wheremi = 0. In this experiment,

n = 172. We seek to solve (WAA), with no regularization (ε = 0), and k = 3.
Figure 3 illustrates the evolution of the triangle computed using Algorithm 1. We

observe that the triangle evolves gradually to a regular triangle centered at the origin.
Note that all three vertices lie outside of the disk. This is in contrast to the classi-
cal archetypal analysis problem (1.1), where the solution is an inscribed triangle, as
depicted in Fig. 4. For more detail see [22, Proposition 3.1].

In Fig. 5, we display the results of (WAA) for k = 3, 4, . . . , 10. In all experiments,
the optimal solutions appear to be regular polygons. It is known that the solution
for the classical archetypal analysis is a regular k-gon [22, Proposition 3.1] and we
conjecture that this holds true for the solution to (WAA) as well. As k increases, the
k−gon becomes closer to a disk. In Fig. 5, we also plot the change of the radius of the
polygons as k increases, and the asymptotic behavior is consistent with the fact that
the polygon converges to a disk as k → ∞.
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Fig. 5 Solutions obtained from Algorithm 1 for different numbers of vertices, k = 3, 4, . . . , 10, where μ

is the uniform probability measure on the unit disk. Bottom: The change of radius of the optimal k-gon as
the number of vertices increases. See Subsect. 6.1

6.2 Example 2: Normal Distribution

In this experiment, we study the behavior of the solution of (WAA) when μ is a
normal distributionN (0, I ), where I is the identity matrix. The approximate measure
μn = ∑n

i=1 miδxi is generated in a similar way as those described in Sect. 6.1, except
that the empiricalmeasure is directly generated by a 2-dimensional normal distribution
with n = 92. In Fig. 6, we plot the solution for the cases when k = 3, 4. The initial
choice of points is given by k randomly generated vertices on the circle. We observe
that the solution is in the interior of the convex hull of data points randomly generated
from the normal distribution. For the case k = 4, we observe that the solution is a
square with a side length ≈ 3.3855, which approximately coincides with the length
of the optimal interval (≈ 3.3862) for the analogous 1-dimensional problem; see Eq.
(1.4).

6.3 Example 3: Sensitivity to " in (WAA")

In this experiment, we consider the solution of the problem (WAAε) with

μ = N (0, �) , � =
[
5 0
0 1

]
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Fig. 6 Solutions for k = 3 and k = 4, when μ is a normal distribution N (0, I )

Fig. 7 Solutions for k = 4 with target distribution N
(
0,

[
5 0
0 1

])
and different choices of ε ∈

{0, 5, 10, 15, 20, 30, 40, 50}

Fig. 8 Change of ratio between
the longest side and shortest side
of the obtained quadrilateral
with ε

approximatingμ as inExample 2with n = 90.As before,we compute the approximate
optimizer via Algorithm 1. In Fig. 7, we study how the solution changes as the value
of ε increases from 0 to 50. In all cases, we set m = 2 and initialize the points
at the ε = 0 archetypes. We observe that as ε increases, the quadrilateral becomes
larger and closer to a square, that is, the ratio between the long side and the short side
decreases, as shown in Fig. 8. This is consistent with the motivation on introducing
the regularization term, as it rewards larger areas.
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6.4 Example 4: Non-convexity of the Energy Landscape

We now consider an example that provides numerical evidence suggesting (WAA) is
a non-convex optimization problem. Let μ = 1T /|T | ∈ P(R2), where T ⊆ R

2 is
the triangle with base length two, height one, and center of mass zero, where the base
and height are chosen to be parallel with the coordinate axes: see black triangles on
the left-hand side of Fig. 9. In this case, (WAA), with k = 3, has an obvious unique
global minimizer:� = T . We seek to compute the values ofW2(μ, 1�/|�|) for many
different triangles � to investigate the nonconvexity of the energy landscape.

In order to compute the 2-Wasserstein distance, we begin by approximating μ and
1�/|�| byn = 3792Diracmasses, arranged on a uniformgrid.We then apply theemd
function from the Python Optimal Transport library [14] to compute the 2-Wasserstein
distance between the approximations. Our approximation by Dirac masses introduces
numerical error on the order of ∼ 0.01 in the distance computation.

On the left-hand side of Fig. 9, we computeW2(μ, 1�/|�|) as the triangle� varies
according to two parameters: p1 controls the height (different values of p1 are shown
in each row) and p2 controls the width of the base (different values of p2 are shown
in each column). The triangles � are constrained to always have the center of mass 0
since the optimal choice of � will have the center of mass coinciding with μ. Each
cell in the grid shows the varying triangle � in blue, the target triangle T in black,
and the value of the 2-Wasserstein distance between them. We see that the minimum
distance is obtained when � = T , shown in the second row, third column. Due to
the error of our numerical approximation of the 2-Wasserstein distance, the distance
between them is shown as 0.01.

The right-hand side of Fig. 9 depicts the value ofW2(μ, 1�/|�|), as the triangles�

vary in the same manner, visualized as a contour plot. We observe the global minima
when � = T at the top of the figure. The bottom of the figure shows a potential local
minimum, though due to the accuracy limits of our numerical computation, it could
also be a flat area of the energy landscape. Either way, it is clear from the contour plot
that the energy landscape is nonconvex. For this reason, it is an important direction
for future work to understand under what conditions our gradient-based minimization
algorithm is guaranteed to converge to the global minimum, as well as to develop
non-convex minimization methods for the general setting.

6.5 Example 5: Early Spread of the Covid-19 Virus in the U.S

In this section, we apply (WAA) to explore the early-stage evolution of the Covid-
19 virus in the U.S. The dataset used for analysis is freely available at https://
covidtracking.com/data/api. In total, there are 51 data points (50 states + D.C.), each
corresponding to a time series of the average positivity rates (PRs), where

PR = total # of positive cases by the day

total # of tests by the day
,
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Fig. 9 We numerically investigate the energy landscape of (WAA), when k = 3 and μ = 1T /|T |, when
T ⊆ R

2 is given by the black triangle shown in each cell. On the left, the figure shows howW2(μ, 1�/|�|)
changes as the form of the triangles� is varied according to parameters p1 (height) and p2 (width). The blue
triangle in each cell shows the shape of� for a given choice of (p1, p2), and the number in each cell shows
the value of W2(μ, 1�/|�|). On the right, the figure shows contour plots for the value of W2(μ, 1�/|�|)
as � varies, depicting a nonconvex energy landscape

and the average is computed using the centered 5-day moving average scheme. The
time range is chosen between April 20 and September 20, 2020, the relatively early
stage of the pandemic. Visualization of the dataset can be found in Fig. 10.

In this example, the dimension of the time series data is 154, which is much higher
than the number of data points. For convenience, we first use PCA to reduce the
dimension of the data before applying WAA, with the explained variances by the first
five principal components (PCs) plotted in Fig. 10. In this example, the first two PCs
combined account for about 99% variation of the dataset. As a result, we use the first
two PCs to obtain a reduced representation for the dataset. A quantitative analysis of
such an approximation procedure in the context of AA can be found in [17].

In Fig. 11, we applyWAA to the dataset, choosing k = 3, using the empirical elbow
rule. The initial points for Algorithm 1 are given by three arbitrarily chosen points,
the convex hull of which contains the entire dataset. We also compare WAA to both
classical AA and k-means, applied to the same dataset. It can be seen that both WAA
andAAyield similar results, with the former demonstrating amore robust performance
to the outliers. In both cases, the archetypes correspond to exemplars of the different
evolutionary patterns. The upper right archetype is close to the northeastern states like
New York (NY) and New Jersey (NJ), which is where the first outbreak in the U.S.
took place. The bottom archetype is close to many southern states, which corresponds
to the second outbreak. The upper left archetype is surrounded by states that have a
low population density and experienced a relatively slow positive rate curve at the
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Fig. 10 Visualization of average PRs of the 50 states plus D.C. from April 20 to September 20, 2022 (left)
and the variances explained by the first 5 PCs (right)
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Fig. 11 Three archetypes (red triangles) given by WAA (left) and the original AA (right) applied to the
reduced dataset. Green squares correspond to the k-means centers

beginning stage of the pandemic. In contrast, the k-means centers are more difficult
to interpret.

7 Discussion

In this paper, we considered a Wasserstein metric-based Archetypal Analysis, where
a probability measure μ ∈ P(Rd) is approximated by a distribution that is uniformly
supported on a polytope with a fixed number of vertices. We established that, in one
dimension, there is a unique minimizer of (WAA), and in two dimensions, we showed
that a minimizer exists, under the additional assumption that μ is absolutely con-
tinuous with respect to Lebesgue measure (Theorem 1.1). By adding an appropriate
regularization in terms a Rényi entropy, we were able to prove that a solution of the
regularized problem (WAAε) exists for all ε > 0, d � 1 and μ ∈ P2(R

d) (Theo-
rem 1.2). Finally, we proved a consistency and convergence result for the (WAAε)
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problem (Theorem 1.4). In Sect. 5, we introduced a computational approach for the
(WAA) and (WAAε) problems using the semi-discrete formulation of the Wasserstein
metric; seeAlgorithm 1.We concluded by implementing the algorithm and conducting
several numerical experiments in Sect. 6 to support our analytical findings.

There are many interesting future directions for this work.

• Extend the analysis for ε = 0 to higher dimensions (see remark 3.3) and μ with
lower dimensional support (see remark 3.2).

• Consider formulations of the archetypal analysis problem formore general optimal
transport metrics, e.g. p-Wasserstein, p �= 2.

• Analyze the uniqueness of solutions up to global invariances.
• For μ the uniform distribution on the unit disk (Sect. 6.1) and a standard normal
distribution (Sect. 6.2), establish that the optimal solution is given by a regular
k-gon.

• Develop computational methods for higher dimensional problems. Here one could
use the back and forth method [19] or the entropic approximations of the 2-
Wasserstein distance [10].

• Further study the differences between the original archetypal analysis problem and
WAA.

• Analysis of a variant ofWAA inwhich the archetypes are projected onto the convex
hull of the support of the measure, either during the iterations of Algorithm 1 or
as a post-processing step.

• Analysis of sufficient conditions on the data distribution and the initialization of
our numerical method to ensure convergence to an optimizer.

8 Appendices

8.1 Proof of Lemma 2.6

First, we prove part (i). By Hölder’s inequality and the fact that μn := 1�n/|�n| are
probability measures,

∫
x dμn(x) �

(∫
|x |2 dμn(x)

)1/2

= M2(μn)
1/2,

so that the means ofμn are uniformly bounded. Assume, for the sake of contradiction,
that item (i) fails. Then there must exist a line segment Ln ⊆ �n so that, up to a
subsequence, |Ln| = L1(Ln) → +∞. Then, using the fact from [7, Lemma 3.2] that
there exists γ = γ (d) > 0 so that M2(πLn#μn) � γ |Ln|2, we obtain∫

|x |2 dμn(x) �
∫

|πL(x)|2 dμn(x) = M2(πL#μn) � γ |Ln|2 → +∞,

which is a contradiction.
Now, since (i) holds, by Prokhorov’s theorem, the sequence is tight. Thus, up to a

subsequence, the sequence converges in the narrow topology to some ν ∈ P(Rd). By
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lower-semicontinuity of M2 with respect to narrow convergence, we have M2(ν) <

+∞, so ν ∈ P2(R
d). By Heine-Borel, up to a subsequence, each of the vertices

{vin}ki=1 of �n converges to some {vi }ki=1. Let � be the closed, convex hull of these
limit points.

In order to prove convergence of the indicator functions Ld -a.e., we first prove the
following:
Claim Let {�n}∞n=1 be a sequence of convex k-gons with nonempty interior so that
their vertices converge, and let � be the convex hull of the limit points (which may
have empty interior). Then if x belongs to the interior of �, there exists δ > 0 so that
Bδ(x) ⊆ �n for n sufficiently large.
Proof of Claim Let {w j }lj=1 denote the vertices of �. By assumption, for all j =
1, . . . , l, there exists w

j
n ∈ �n so that limn→+∞ w

j
n = w j . Thus, for all ε > 0, there

exists N so that n > N ensures |w j − w
j
n | < ε for all j = 1, . . . , l. Since �n is

convex, this implies there exists δ > 0 so that Bδ(x) ⊆ �n for all n > N .
We now apply this claim to prove convergence of the indicator functions Ld -a.e.

In particular, if x ∈ �◦, then the previous claim shows x ∈ �◦
n for n sufficiently

large. Likewise, if x ∈ �c, then convergence of the vertices ensures that x ∈ �c
n for

n sufficiently large. Combining these gives

1�(x) = 1 = lim
n→+∞ 1�n (x) if x ∈ �◦, (8.1)

1�(x) = 0 = lim
n→+∞ 1�n (x) if x ∈ �c. (8.2)

Since Ld(∂�) = 0, this shows that 1�n → 1� Ld -a.e.
We now show supp ν = �. First, we show supp ν ⊆ �. Suppose x ∈ �c. Since �c

is open, there exists an open ball so that x ∈ B ⊂⊂ �c. Convergence of the vertices
ensures B ⊆ �c

n for n sufficiently large. Thus, by the fact that μn → ν narrowly,

0 = lim inf
n→+∞ μn(B) � ν(B).

This shows x /∈ supp ν.
Now, we show � ⊆ supp ν. Let π be a projection onto the affine hull of �,

aff(�). If dim(aff(�)) = 0, then � is a single point, and the previous implication that
supp ν ⊆ �, combined with the fact that ν ∈ P2(R

d) must have nontrivial support,
ensures supp ν = �. Now, assume dim(aff(�)) > 0. Fix x ∈ � and let C ⊆ R

d be a
closed ball containing x . It suffices to show that ν(C) > 0. Note that the convex k-gons
π(�n) have nonempty interior with respect to the topology on π(Rd) and π(�) is the
convex hull of the limits of their vertices. Furthermore, since π(�) is convex, there
exists y ∈ π(�)◦ (interior taken with respect to the topology on π(Rd)) and ε > 0 so
that Bε(y) ⊆ π(C)∩π(�), where Bε(y) is an open ball in the affine subspace π(Rd).

By the above claim, there exists δ > 0 so that Bδ(y) ⊆ π(�n) ∩ π(C) for n
sufficiently large. Then, by [4, Lemma 5], there exists k > 0 so that
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k � |�n ∩ π−1(Bδ(y))|
|�n| = μn(π

−1(Bδ(y))) = π#μn(Bδ(y)) � π#μn(Bδ(y)).

(8.3)

Since Bδ(y) is closed and the continuous mapping theorem ensures π#μn → π#ν
narrowly, taking the limsup of (8.3) as n → +∞ gives

k � π#ν(Bδ(y)) = ν(π−1(Bδ(y))) � ν(C),

where the last inequality follows since Bδ(y) ⊆ π(C), so π−1
(
Bδ(y)

)
∩supp ν ⊆ C .

This gives the result. ��

8.2 Proof of Proposition 5.1

By definition of �ν and ϕ∗ in Eqs. (5.1)-(5.2), we may rewrite this as

d

dϕl
�ν(ϕ) = d

dϕl

n∑
i=1

ϕimi +
∫ (

inf
j

|x j − y|2 − ϕ j

)
dν(y) (8.4)

= ml + d

dϕl

∫ (
inf
j

|x j − y|2 − ϕ j

)
dν(y). (8.5)

To compute the remaining derivative, we follow Santambrogio [23, p243].We proceed
by decomposing the domain of integration into the following three regions:

S1 := {y : |xl − y|2 − ϕl < |x j − y|2 − ϕ j for all j �= l}
S2 := {y : |xl − y|2 − ϕl > |x j − y|2 − ϕ j for some j �= l}
S3 := {y : |xl − y|2 − ϕl = |x j − y|2 − ϕ j = inf

j ′
|x j ′ − y|2 − ϕ j ′ for some j �= l}.

These regions may be interpreted as the region for which l is the unique index that
attains the infimum in inf j |x j − y|2 − ϕ j , the region for which l does not attain the
infimum, and the region for which l attains the infimum, but not uniquely. Then,

d

dϕl

∫
S1

(
inf
j

|x j − y|2 − ϕ j

)
dν(y) = d

dϕl

∫
S1

(
|xl − y|2 − ϕl

)
dν(y)

= −ν(S1) = −ν(Vorϕμ(xl))

d

dϕl

∫
S2

(
inf
j

|x j − y|2 − ϕ j

)
dν(y) = d

dϕl

∫
S2

(
|x j − y|2 − ϕ j

)
dν(y) = 0

d

dϕl

∫
S3

(
inf
j

|x j − y|2 − ϕ j

)
dν(y) = d

dϕl
0 = 0

where the last equality follows since S3 has zero Lebesgue measure and ν 	 Ld .
Combining these estimates with Eq. (8.4) above gives (5.4).
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8.3 Proof of Proposition 5.2

If we perturb the �-th vertex a� �→ a� + εu for u ∈ R
2 and ε ∈ R, this perturbs the

two adjacent edges E�−1 and E�. Let Fj,k : R2 → R be the affine function defined in
(5.6) which satisfies Fj,k(a j ) = 0 and Fj,k(ak) = 1. Let v ∈ W 1,∞(R2) satisfy

v(x) =

⎧⎪⎨
⎪⎩
F�−1,�(x)u, x ∈ E�−1

F�+1,�(x)u, x ∈ E�

0 x ∈ Em,m �= � − 1, �.

.

Denote the perturbed polygon by�ε = (I+εv)(�). Noting that� = �0 has Lipschitz
boundary, we apply the Leibniz integral formula (see, e.g., [18, Thm.5.2.2]) to obtain

d

dε

∣∣∣∣
ε=0

J (�ε) =
∫

∂�

g(x) v(x) · n(x) dx,

where n = n(x) denotes the outward normal vector at x ∈ ∂�. Observing that

d

dε

∣∣∣∣
ε=0

J (�ε) =
∫

∂�

g(x) v(x) · n(x) dx = (L�n�−1 + R�n�) · u

for arbitrary u ∈ R
2, we obtain the desired result.
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