Theoretical Computer Science 1010 (2024) 114714

Contents lists available at ScienceDirect -

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Check for

Boundary sketching with asymptotically optimal distance and wdaies
rotation

Varsha Dani?, Abir Islam ", Jared Saia”

2 Department of Computer Science, Rochester Institute of Technology, Rochester, NY, United States
Y Department of Computer Science, University of New Mexico, Albuquerque, NM, United States

ARTICLE INFO ABSTRACT

Keywords: We address the problem of designing a distributed algorithm for two robots that sketches the
Boundary sketch boundary of an unknown shape. Critically, we assume a certain amount of delay in how quickly
Robotics

our robots can react to external feedback. In particular, when a robot moves, it commits to move
along path of length at least 4, or turn an amount of radians at least 4 for some positive 4 < 1/2°,
that is normalized based on a unit diameter shape. Then, our algorithm outputs a polygon that is

Drones
Distributed algorithms

Euclidean plane
an e-sketch, for € = 84/ 4, in the sense that every point on the shape boundary is within distance €

of the output polygon. Moreover, our costs are asymptotically optimal in two key criteria for the
robots: total distance traveled and total amount of rotation.
Additionally, we implement our algorithm, and illustrate its output on some specific shapes.

1. Introduction

What if a robot cannot react instantaneously? In particular, suppose a robot alternates between (1) analyzing past sensor data in
order to plan motion of some minimum amount; and (2) executing that plan and gathering new data. Thus, some small, but finite
time elapses between first sensing data; and then planning motion.

Now imagine we want such robots to traverse the boundary of an unknown shape in the Euclidean plane. The robots know
nothing about the shape in advance, and can only gather local information as they traverse the shape boundary. If the boundary is
a continuous curve, efficiently tracing the exact boundary seems challenging. Instead, our goal is to obtain an e-sketch: a traversal
curve with the property that every point in the actual boundary is within distance ¢ of some point of the sketch; e will be related to
the parameter giving the minimum amount a robot can move.

Finally, we want to obtain this e-sketch “efficiently”. Unfortunately, for most efficiency measures like time or energy usage, cost
is a complicated function of the path traveled, since it must account for both angular and linear momentum. This makes it hard to
devise an algorithm with provable asymptotic bounds. Instead, prior work generally either provably optimizes at most one parameter
related to efficiency, such as amount turned [23], or distance traveled [31].

In this paper, we take a different approach. Our goal is a bicriteria: minimize both (1) distance traveled, and (2) amount turned.
Rather serendipitously, we show that using 2 robots it is possible to asymptotically minimize both criteria. This has broad implications

* This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.
* Corresponding author.
E-mail addresses: varsha.dani@rit.edu (V. Dani), abir@cs.unm.edu (A. Islam), saia@cs.unm.edu (J. Saia).

https://doi.org/10.1016/j.tcs.2024.114714
Received 17 July 2023; Received in revised form 10 May 2024; Accepted 21 June 2024

Available online 28 June 2024
0304-3975/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:varsha.dani@rit.edu
mailto:abir@cs.unm.edu
mailto:saia@cs.unm.edu
https://doi.org/10.1016/j.tcs.2024.114714
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2024.114714&domain=pdf
https://doi.org/10.1016/j.tcs.2024.114714

V. Dani, A. Islam and J. Saia Theoretical Computer Science 1010 (2024) 114714

for minimizing a large class of efficiency measures. In particular, our algorithm is also asymptotically optimal for any efficiency
function that is polynomial in distance traveled and/or amount turned.

Novelty of Result. The novelty of our results is thus three-fold. First, we handle non-zero robot reaction time and also non-
instantaneous sensor measurements. Thus, we improve over control-theoretic results which assume instantaneous reaction time, and
instantaneous and continual measurements of quantities such as boundary gradient [16,17,20,34], boundary distance [15,21,32,33],
or field measurements [1,6,7]. Second, we assume no a priori shape knowledge. Thus we improve over “robotic coverage” re-
sults [8,23,31], which assume a priori knowledge of the boundary. Finally, we asymptotically optimize two key criteria: distance
traveled and amount turned. Thus, we improve over results [23,31] that provably only optimize only one such criterion.

1.1. Problem statement

We consider the problem of approximately traversing the boundary of an unknown shape in the Euclidean plane, using two
robots.

Problem parameters The diameter of the shape is normalized so that it is 1 unit. Our model depends critically on a parameter
A< 1/2°, which describes both the “smoothness” of the shape boundary and the reaction time of the robots as described below.

The robots We make the following assumptions about the two robots.

+ Every time a robot moves, it must commit to traveling a path that has distance of at least A, or turning at least A radians.

* At any point in time, each robot knows its location and whether it is inside or outside the shape. The robots are both initially
located a distance of at most ﬁ from the shape boundary.

+ When a robot crosses the shape boundary, it learns the gradient at the crossing point.’

« The robots can instantaneously communicate with each other.

Our robot model can thus be seen as a variant of the synchronous, unbounded memory case of the Look-Compute-Move or OBLOT
model, described in [13]. Two key differences are: (1) our robots “sense” during a cycle instead of “look” at the end of the cycle: they
sense when they have traversed the boundary and also sense the gradient at that crossing point; and (2) our robots communicate via
shared memory.

The boundary The boundary of the shape is a curvilinear polygon,” which informally is a closed, non-intersecting loop consisting
of a finite number of curves, connected at vertices. Curvilinear polygons include all shapes with boundaries whose gradients are
continuous at all but a finite number of points; for example, shapes defined by unions of Gaussians and polygons. They also seem to
be the most general shape for which the total rotation of the shape is well-defined.

We make the following additional assumptions about the shape boundary.

« The intersection of the boundary with any ball of a radius 4\6 centered on a point of the boundary contains exactly one path
component.>
« The vertices of the boundary are at least \/Z distance apart from each other.

« The boundary is twice continuously differentiable except at the vertices.

Our goal Our goal is to use the robots to estimate the boundary in the form of an e-sketch, while minimizing both distance traveled
and the amount turned by the robots.

1.2. Main result

Our main result is given in the following theorem.

Theorem 1. For any positive A < 1/2°, there exists an algorithm that uses 2 robots to compute an e-sketch of the boundary, for ¢ = 8\/1
Moreover the algorithm requires the robots to travel a total distance and rotate a total amount that are both asymptotically optimal.

As a corollary we can use this e-sketch to estimate the area of the shape.

Corollary 1. Our algorithm can estimate the area of the shape up to an additive error of O(¢ ﬁ), where ¢ is the perimeter of the shape.

1 A robot can consider the last gradient encountered in any path of length 4, so estimation of the gradient at the crossing can be computed efficiently (Details in
Section 4.1).
2 These terms are formally defined in Section 3.1 in Definition 5 and Definition 7.



V. Dani, A. Islam and J. Saia Theoretical Computer Science 1010 (2024) 114714

|

Fig. 1. Illustration of BOUNDARY-SKETCH and CROSS-BOUNDARY. Red curve indicates the shape boundary, blue and green curves indicate the trajectory of the
robots that sandwich the boundary. Notice that upon crossing, a dotted blue line (illustrating CROSS-BOUNDARY) indicates a change in direction and step length
as discussed in this section. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

1.3. Technical overview
We now give some intuition behind our algorithm and the proof of Theorem 1.

BOUNDARY-SKETCH intuition Our algorithm works by trying to ensure a sandwich invariant: the robots are traveling in parallel
lines on both sides of the boundary. When a robot crosses the boundary, this invariant fails since both robots are now on the same
side of the shape. We want the robot that crossed to go back to the other side of the shape in order to reestablish the sandwich
invariant. The subroutine CROSS-BOUNDARY performs this function.

The main idea in CROSS-BOUNDARY is to use the boundary gradient learned at the crossing point, to guide the robot back to
the other side of the shape and reestablish the sandwich invariant. In CROSS-BOUNDARY, the crossing robot successively takes
small steps at a gradually increasing offset from the gradient at the last crossing. The angular offset is in the direction (clockwise or
counterclockwise) of the shape boundary. Essentially the robot travels a regular polygon that approximates a small circle, until it
crosses the boundary again. After the crossing, the robot reorients its direction so that both robots are moving in parallel lines that
sandwich the boundary. See Fig. 1. By repeatedly re-establishing the sandwich invariant whenever it fails, BOUNDARY-SKETCH
progressively computes an e-sketch of the boundary.

BOUNDARY-SKETCH analysis Our proof of correctness requires tools from real analysis, differential geometry and topology. A
main technical challenge is the proof that BOUNDARY-SKETCH produces an € sketch, for € = 8\/1 Key milestones in this proof
include lemmas showing that the sketch exists; it does not self-intersect; and that the sketch and the shape boundary are “close”. We
use proof by contradiction extensively to show these results. In particular, we repeatedly construct balls of radius 4\/} that violate
the path component assumption unless our desired result holds.

Optimality of distance traversed This part of the asymptotic analysis is relatively straightforward. First, we claim when the sandwich
invariant fails, the robots at the end of CROSS-BOUNDARY 1) either cover €( \/E) distance of the shape boundary or 2) traverse a
small distance 0(\/1) between successive instances of Case 1 during a number of executions of CROSS-BOUNDARY. This is proven
in Lemma 15, which immediately shows that since the former Case 1 occurs at most O(¢/ ﬁ) times, the robots traverse O(¢)
distance to restore the sandwich invariant.

Second, the robots take the shortest path when the sandwich invariant holds, since they move in a straight line parallel to each
other, they also traverse O(¢) distance in this case. The optimality of distance traversed follows by combining these two facts.

Optimality of rotation To prove bounds on rotation, we need to introduce additional formal definitions in Section 3.1, and develop
a few helper lemmas in Section 3.2. Our first result is an application of Rolle’s Theorem to show the existence, between any points x
and y on the shape boundary, of a tangent line somewhere on the boundary between these points that is parallel to the line joining
x and y (See Lemma 5). This result has multiple applications including proving two key lemmas, Lemmas 9 and 19. These lemmas
were proven via a reduction from the problem for general shapes to shapes that are a polygon. The case of a polygon is one that we
can handle easily in the first few lemmas in Sections 3.2 and 3.4.

Lemma 9 is our first key lemma about our unit-diameter shape. It states that the perimeter of our shape is asymptotically bounded
by the total “rotation” in the boundary. In particular, it states that £ = O(¢), where # is the shape perimeter and ¢ is the boundary
rotation, i.e. the total amount a single robot would rotate if it could follow the shape boundary exactly.

The proof of Lemma 9, requires usage of the property of uniform continuity of the curvature (a fact that we prove using continuity
of the curvature along with some topological properties) to split the curve into a finite number of segments, whose endpoints we
define to be vertices of a certain polygon. Next, to compare the perimeter of the shape against the perimeter of this polygon, we
borrow a key result in differential geometry from [10] stated as Lemma 6. This lemma from differential geometry compares the path
length of a curve with bounded curvature against the length of a line segment connecting two endpoints of that curve, and shows that
the former is bounded by a constant times the latter. The other case of unbounded curvature is easy to handle from the definition of
total rotation in terms of curvature.



V. Dani, A. Islam and J. Saia Theoretical Computer Science 1010 (2024) 114714

Finally, to compare the total rotation of the polygon against the total rotation of the shape boundary, we recall Lemma 5, which
says that the shape has at least some point with a boundary gradient that is parallel to the respective side of the polygon. Thus,
the total rotation of the polygon is a lower bound on the total rotation of the shape boundary. Thus, we conclude that the shape
boundary rotates at least as much as the constructed polygon boundary.

Lemma 19 is another key lemma for bounding the robot rotation. Lemma 19 bounds the number of times the robots make a
turn of \/ 4 radians during CROSS-BOUNDARY. Once again, we consider the case where the shape boundary between crossings is a
polygon first, and then apply Lemma 5 to derive the asymptotics for the general case. Next, we multiply this bound with the rotation
angle \/Z to bound the overall rotation during all executions of CROSS-BOUNDARY.

Lemma 9 handles an intermediate step where total rotation during CROSS-BOUNDARY include the term ¢ and Lemma 19
handles the rest of the analysis of CROSS-BOUNDARY. Together, these two lemmas prove the optimality of rotation by the robots.

1.4. Related work

Application Domains. Robot exploration of a shape is a long-standing problem, which has exploded in popularity recently with
the advent of drones and other autonomous devices. Application domains are numerous, running the gamut from surveillance of:
forest fires [4,5]; harmful algae blooms [24]; mosquito populations [3,23,30]; oil spills [9,12]; radiation leaks [2]; and volcanic
emissions [11].

Boundary Search. Our algorithm assumes that the robots are initially located close to the boundary. The boundary search problem
instead requires the robots to actually find the boundary. Many algorithms for boundary search have been proposed, techniques used
include: random walk [2], spiral search [9], gradient following [27], and finite difference approximation based on partial differential
equations [19].

Boundary Following. In boundary following, the goal is for the robots to traverse the shape boundary, given that they all initially
start close to the boundary. This is the problem addressed in our paper. Many control-theoretic algorithms for boundary following
offer provable guarantees that their output converges to the exact boundary under certain assumptions on the boundary shape.
However, to the best of our knowledge all such results: (1) assume instantaneous and continuous tracking of some quantity such as
boundary gradient or distance to boundary; (2) assume infinitesimally accurate control of the robots; and (3) do not give asymptotic
bounds on robot travel time or energy expenditure.

Many such prior results use instantaneous and continuous gradient measurements to control the robots tracking the boundary [16,
17,20,34]. Some prior results depend on instantaneous and continuous measurements of other quantities; for example, distance from
the boundary [15,21,32,33]; or field measurements defining the shape [1,6,7].

Robotic Coverage. In the robotic coverage problem, a robot must visit within some given distance of every point in a target shape.
Many variants of this problem are known to be NP-Hard, even with a single robot. Thus, many results either use approximation
algorithms or heuristics to optimize some criteria such as distance traveled [31] or amount turned [23]. See [8] for a general
overview of results. The problem has been extended to multiple robots [18,29]. Our problem is both easier and harder than the
typical robotic coverage problem. It is easier in that we only seek to cover a 1-dimensional boundary, and not a 2-dimensional shape.
It is harder in that it is online: no information about the shape is known in advance.

2. Our algorithm: BOUNDARY-SKETCH

Our algorithm BOUNDARY-SKETCH is described in Algorithm 1. In addition to its main subroutine CROSS-BOUNDARY,
which is described in Algorithm 3, the algorithms make use of GRADIENTDIRECTION and SYNCHRONIZE which are described in
Algorithms 2, 4. We assume an auxiliary function incomplete that the robots are capable of, that checks if they have completed a tour
around the shape. In addition, by gradient at a given point in this algorithm, we mean a vector with the direction tangent to the
shape boundary at the given point. Finally, an initial orientation (clockwise or counter-clockwise) should be selected by the user to
determine the direction to start tracing the boundary.

For simplicity of presentation our algorithms are described in a centralized manner, without explicit communication. To paral-
lelize our algorithms, the robots use shared memory. For example, if a robot crosses the boundary during some step, that information
is shared with the other robot. (See Figs. 2, 3, 4, 5.)

3. Analysis

In this section, we give the proof of Theorem 1, which assumes that the diameter of the shape is normalized so that it is 1 unit. We
divide the analysis into four sections. First, we formalize the notions of curve, path length and total rotations of a curve in our problem
model. In addition, we formally state in the language of topology what path and path component means. The second section establishes
some helper lemmas in computational geometry that will be applied in the later sections. Next, we prove that BOUNDARY-SKETCH
terminates and outputs an e-sketch of y, where ¢ = 8\/1 Finally, we provide asymptotic analysis of BOUNDARY-SKETCH.



V. Dani, A. Islam and J. Saia

Theoretical Computer Science 1010 (2024) 114714

Fig. 2. A high level execution of the BOUNDARY-SKETCH, where the robots cross the boundary over timestamps #, through #,. Here CROSS-BOUNDARY is
executed whenever the sandwich invariant fails, in particular around timestamps #,1,,1,,1¢, 3. In our formal problem model and analysis, y denotes the parametrized
shape boundary in red and {;,{, denote the parametrized path of the robots in blue and green.

Computed Orientation

v/

Initial Orientation

Fig. 3. A sample execution of GRADIENTDIRECTION. After computing the cross product between the direction of D, (arrowed green line) and V' (arrowed yellow
line), the algorithm compares the orientation (counter clockwise) with the initial orientation of the drones (clockwise), and decides to go clockwise from V'.

Algorithm 1 Initially, robots are

A apart; one inside and one outside.

1
2
3
4
5.
6
7
8
9:
10
11
12
13;

: procedure BOUNDARY-SKETCH(4)
: Dy, D, < the two robots

: V « boundary gradient at point of crossing with line segment between D, and D,
cae—yi

while Incomplete(D,, D,) do

if inside (D,) XOR inside (D,) then

‘ D, and D, both move A distance in the direction of V
if inside (D,) = false and inside (D,) = false then

a— \/;
CROSS-BOUNDARY(D,, D, )

elseif inside (D) = true and inside (D,) = true

n<——\/;

CROSS-BOUNDARY (D,, D,,a)




V. Dani, A. Islam and J. Saia Theoretical Computer Science 1010 (2024) 114714

Algorithm 2 Finds the direction of the gradient at a given point p of intersection.

1: procedure GRADIENTDIRECTION(p, D;, D,)
Orient « inside (D,) XOR inside (D,)
Initial Orientation « false
V' « Estimated normal vector to the gradient at p
Sign « CrossProductSign (Direction vector of D, V' ).
if Orient = Initial Orientation then

| Orient « inside (D,)
if Orient = Sign then

| return V' +7/2
else

| return V' —7/2

HQU® NI RWN

==

Algorithm 3 Reestablishes “Sandwich” Invariant.

1: procedure CROSS-BOUNDARY(D,, D,,a)
2: p < last position of D, before crossing

3: R « the vertices of the regular polygon including D, ’s position with exterior angle ﬁ and the edge beginning at D, ’s position facing the direction of V + a.
4: P « the vertices of the convex hull of RU {p}. For all i : 0 <i <|P| -1, let P, be the i-th vertex in this convex hull, ordered such that P, =p and P, = D,’s
current position.

5 V « gradient at the last boundary crossing of D,
6. i1
7 while neither robot has crossed the boundary AND i + 1 < | P| do
8 | D, movesto P, ;.
9: D, moves to closest point from it that is ﬁ distance away from P, and orthogonal to V + ia
10 i—i+]1
11 while neither robot has crossed the boundary do
12 | D, moves towards point p taking steps of length A.
13: | D, moves to closest point from it that is ﬁ distance away from D, and orthogonal to D,’s direction.
14: if D, crossed the boundary then
15: | SYNCHRONIZE (D, D,)
16: else
17: | V « the current direction of D,.

Algorithm 4 Ensures the robots are at distance ﬁ from each other and are oriented in the same direction.

1: procedure SYNCHRONIZE(D,, D,)

Path < the polyline path of D, from last crossing of BOUNDARY-SKETCH with the shape till current position.
V « the gradient at the last boundary crossing for D,.

L, < the line in the direction of V through D,’s position.

L, « the line in the direction of V through D,’s position.

if L, crosses Path then

| Move D, in its current direction until it is ﬁ distance away from L,. Change direction to V and take a single step of length A.

| Move D, along L; until it is 1/4 away from D,.
else
Move D, in its current direction until it is ﬁ distance away from L,. Change direction to V and move until the distance from D, is ﬁ
Swap (D, D,).

QO VR N TRWN

==

3.1. Formal problem model

The shape is represented by a curve in the Euclidean space. We make use of several definitions, repeated below, about this curve
from [25].

Definition 1. A point y(f) of a parameterized curve y is called a regular point if y’(¢) # 0; otherwise y(¢) is a singular point of y. A
curve is regular if all of its points are regular.

Definition 2. A curve y : [a,b] — R? is called a unit-speed curve if for all 1 € [a,b], |y’ (1)| = 1.

The next claim which is Proposition 1.3.6 from [25] relates unit-speed parametrization of curves with regular curves.
Lemma 1. A parametrized curve has a unit-speed reparametrization if and only if it is regular.

In what follows, we assume y is regular unless otherwise stated.

Definition 3. The length of a curve y : [a, b] —» R? is defined as,

b
f(7)=/ly'(t)|dt



V. Dani, A. Islam and J. Saia Theoretical Computer Science 1010 (2024) 114714

Fig. 4. A high level execution of the CROSS-BOUNDARY subroutine, where the top part indicates the execution of the Algorithm from lines 1 through 10 and the
bottom part the rest. Here a small regular polygon R is drawn and then a convex hull P is considered from the vertices of R and the starting position p of the robot
moving across the green path. Upon crossing the boundary again, the subroutine SYNCHRONIZE is invoked (see Fig. 5).

Fig. 5. A sample execution of SYNCHRONIZE. Here dotted blue line indicates a segment of the Path of D,, with L, L, as indicated in the algorithm.
Definition 4. If y is a unit-speed curve with parameter ¢, its curvature x(¢) at the point y(¢) is defined to be |y” (¢)|.

Next we generalize the notion of curve by allowing the possibility of corners. More precisely, we use the definition 13.2.1 from
[25].

Definition 5. A curvilinear polygon in R? is a continuous map y : R — R? such that, for some real number T and some values
O=ty<t)<..<t,=T:



V. Dani, A. Islam and J. Saia Theoretical Computer Science 1010 (2024) 114714

1. y(t) =y(¢') if and only if ' — ¢ is an integer multiple of T'.

2. y is smooth on each of the open intervals (ty,#;), (t{,15), ..., (t,_1,,)-

3. The one-sided derivatives,

y@® —r@)
t—t;

1

.y —r@)
lim ———

’— . ’+
t.)= lim s t)=
y @) A y @) g

exist for all i = 1, ..., n and are non-zero and not parallel.
The points y(t;) are called the vertices of the curvilinear polygon y, and the segments of it corresponding to the open intervals (¢;_;, ;)

are called its edges. Here T is called the period of y and if the curve has unit-speed i.e. |y’(t)] =1 for all t € R, then the length of y,
denoted Z(y) is T, which is the sum of the length of its edges.

Definition 6. Given a curvilinear polygon y with vertices at #,?(,...,t, € [0,T] where T is its period, let 0;—' be the angles between
y'*(1;) and X-axis. Define §; = 9;’ — 07 to be the external angle at the vertex y(7;). The total rotation of y over the entire period T,
denoted ¢(y), is defined to be,

(y)

¢(y>=26i+/|x<z>|dz
i=1 0

where we set the speed of y to be the unit speed.

We will use the following notational practice for simplicity, whenever we mention ¢, y without specifying the curve in parenthesis,
it means Z(y), ¢(y) where y is the shape boundary, otherwise it refers to the curve in parenthesis.
Next, we state a couple of definitions from the Topology textbook of [22].

Definition 7. Given points x and y of a topological space X, a path in X from x to y is a continuous map f : [a,b] - X of some
closed interval in the real line into X, such that f(a) = x and f(b) = y. Furthermore, x,y € X are said to be path connected if there
is a path from x to y. In addition, define an equivalence relation between pairs x,y € X if there is a path in X from x to y. The
equivalence classes are called the path components of X.

Finally, we define e-sketch.

Definition 8. For ¢ > 0 and a regular curvilinear polygon y, we say a non self-intersecting polygon P is an e-sketch of y if every
point on y lies at most an ¢ distance away from P.

Next we begin the analysis with some helper lemmas.
3.2. Helper lemmas
Lemma 2. 7 is Q(1)
Proof. Since the diameter of the shape is scaled to be 1, # > 1 and the lemma follows. []

Lemma 3. The number of vertices in y is at most £/ \/;

Proof. This is immediate from the assumption that each of the vertices are at least ﬁ distance apart. []
Lemma 4. If a curve y is a polygon and ¢ is the total rotation of this polygon, then £(y) < ¢.

Proof. Suppose the vertices of the polygon P are given by a list of n points vy, v,,...,v,. Then £ =" | |v; — v;,|| where we set
Unt1 = U1 Upy2 = U2-

Now fix three successive vertices, v;,v;,,0;4, for 1 <i <n and denote them A, B, C respectively. In addition, let a=|AB|,b =
|BC|,c=|CA|,a=2BAC,f = 2ABC,w = 2BCA.

By the law of sines,

a b ¢ _
sina  sinf sinw

where p is the radius of the circumcircle of the triangle ABC.



V. Dani, A. Islam and J. Saia Theoretical Computer Science 1010 (2024) 114714

}'(,) )

~
AN

N
Fig. 6. Figure illustrating Lemma 6.

Since the polygon is bounded by a unit square, p < 1. By the inequality sin x < x for all x € R, we have,

as<la

b<2p

Hence,

a+b<L2a+p)=2r—w)=2¢,

where ¢, is the i-th exterior angle of P.
Summing over all i € [1,n] we get,

n n
220(yr) = 2 [0 = Vi1 | + 10341 = V2| < 22(15[ =2¢
i=1 i=1
This implies,
fr)<¢ O

Lemma 5. Let y : [0, L] — R2 be a regular curve parametrized by its arc length L such that y(0) # y(L). Then there exists ¢ € (0, L) such
that y'(c) is parallel to the line segment joining y(0) and y(L).

Proof. Let y(t) = (x(7), y(t)) for all # € [0, L] where x, y are differentiable single valued real functions defined over [0, L].
Let u be the vector from y(0) to y(L). That is,

u=y(0) —y(0) = (x(L) — x(0), (L) — (0))

Let v be a vector perpendicular to y(L) — y(0). Since, (u,v) =0, we can write,

v =(¥(0) — y(L), —x(0) + x(L))

Now consider the function f defined as follows over [0, L],

SO =y® - v=x®)(0) = y(L)) + y()(x(L) — x(0))
Observe that, f(0) = f(L). Hence by Rolle’s theorem there exists ¢ € (0, L) such that, f/(c) =0. Since, for all r € (0, L), f'() =
' (@), ) + (y(0), V") = (y' (1), v), we conclude, (y'(c),v) =0.
This means y’(c) is perpendicular to v. Since u is perpendicular to v as well, we conclude that, y'(c) is parallel to u. []

Next is a lemma found in the following simplified form (p. 272) in [10]. (See Fig. 6.)

Lemma 6. Let y be any parametrized curve in R and consider t,,t, € [0, £(y)]. For every real number K > 0, if the curvature of y at every
point within [t,,t,] is not greater than K, then the length of y over [t,,1,] is not longer than half the perimeter of a circle with radius 1/K
where the end points of its diameter are y(t,), y(t,).

Lemma?7. Let y : [a,b] > R2 be a regular curve and k : [a,b] — R be the curvature function of y. If |k (t)| < 1/x for all t € [a, b], then

b

ondr < F7®) = r@

[ vwian< O
t=a



V. Dani, A. Islam and J. Saia Theoretical Computer Science 1010 (2024) 114714

£(AB) < 7|AB|/2

——
B T

/
.

~5° #(CD) < z|CD| 12

¢(EF) < z| EF|/2

Fig. 7. Figure illustrating the proof for Lemma 9, where #(AB),#(CD),¢(EF) indicate the length of the shape (in red color) between the respective endpoints. The
black line segments are the sides of the polygon construction and the dotted blue lines indicate the tangents parallel to the respective polygon sides. Here Case 1 is
represented by the segments BC, DE, F A while Case 2 is represented by the segments AB,CD, EF.

Proof. Let A=y(a), B=y(b) and p = |y(b) — y(a)|. Now consider the circle drawn from the midpoint of AB with radius p/2, where
the curvature at every point in this circle is 2/p. Since the shape has unit diameter, p < 1. In addition, we have for all ¢ € [a, b],
k@) <1/x<2/p.

Setting K =2/p, we get by Lemma 6,

p_frly(b) y(a)|
/|y (lar < =TI

This completes the proof. []
Next we recall a definition from real analysis.

Definition 9. A function f : X — Y with X C R” and Y ¢ R™ for n,m € N is called uniformly continuous on X if for every real
number ¢ > 0, there exists a natural number N such that for every x,y € X,

[x=yI<1/N = |f(0) - f(»l<e
We now state the following lemma that is a simplified form of Theorem 4.19 in [26].
Lemma 8. Let f : [a,b] — R be a continuous mapping with a,b € R. Then f is uniformly continuous on [a, b].
Lemma 9. Let y be a curvilinear polygon in R2. Then #(y) is O(¢), where ¢ is the total rotation of y.

Proof. Partition into Segments:

Let y be parametrized by its length, then its period T'= #. Suppose y has m vertices y(d,), y(d»), ...,y(d,,) where d; € [0,7] for all
i=1,...,m Wealsosetd,  =d,.

Since [d;,d;, ] is closed and « is continuous over [d dil, by Lemma 8, k is uniformly continuous over [d ihdj] That means
forall x,y € [dj,d;] and j € [1,m] NN, there exists n € N such that,

= < gy = d))/n = KGO = KO £ K = k()] < 5 &)

We now partition each [d;,d;;,] into at most n segments of the form [a;, b; ] where a; = (k — 1)5~/n b= k64/n 6;=d; —d;
for k € [1,n] N N. Observe that, by inequality (1) for each of these segments [a,, b; ], either for all t € [a;, b; ], |x(?)] > — or for all
t € [ay, byl, |k(t)| < 1/x. We denote these cases by cases 1, 2 in their respective order. (See Fig. 7.)

Finally, over the entire domain [0, 7] there are mn segments. Let these segments be indexed by i and let #; and ¢; indicate the
perimeter length and the angle turned by the shape in the i-th segment [a;, b;].

10



V. Dani, A. Islam and J. Saia Theoretical Computer Science 1010 (2024) 114714

Fig. 8. The regular polygon R constructed in Algorithm 3 with side length A and exterior angle ﬁ

Case 1:
Since for all 1 € [g;, b;], |x(1)| > i then,

b; b;
d)i:/lK(Z)ldtZ/Ldl
2r
a; a;

1
== ¢12§I/p1

= ¢; <2n¢;

Case 2:

Next we handle the other case where the segment [g;, b;] has the property that for all 7 € [a;, 5,1, |k ()| < 1/xz.

Let P be a polygon consisting of vertices equal to the endpoints of each segment of the shape. For a fixed side of this polygon the
endpoints are y(a;),y(b;). Let £p be the perimeter length of P.

By Lemma 7, we have ¢; < x|y (b;) — y(a;)| /2. Hence the total length of the shape over all segments covered by these two cases is
at most 7¢p /2.

By Lemma 5, there exists a value ¢ € [ga;, b;] such that y’(c) is parallel to y(b;) — y(a;).

Clearly then ¢ > n where 7 is the sum of the exterior angles of P.

By Lemma 4, #p <#. This means the length of the perimeter of the shape over all the segments covered by this case is at most
np/2.

Conclusion:

Combining both cases gives £(y) <2z¢ i.e. £(y) =0(¢). [

3.3. Correctness of BOUNDARY-SKETCH

Let ¢}, ¢, be the parametrized curves for the path of the robots D, and D, in BOUNDARY-SKETCH. Let ¢; € [0,£(y)] such that
y(t;) is i-th point of crossing of either robot with the boundary.

Lemma 10. The regular polygon constructed in Step 3 of Algorithm 3 has diameter at most 2\/1

Proof. During Step 10 or Step 13, the regular polygon (see Fig. 8) has side length A and exterior angle \/E Applying the sine law,

- A\/E By the inequality sin(2x) > x for x € [0, 7 /4] and since 0 < ﬁ < /4, we have
s

this polygon has diameter

<2V O

siny/ A

Lemma 11. Suppose Algorithm 3 is invoked after crossing the shape for the i-th time. Then y(t;,) is at most 3ﬁ distance away from

the nearest robot for all invocations of Algorithm 3. In addition, |y(t;) — y(t;;1)| < 3\/1 and the nearest robot traverses no more than 3ﬂ
distance during the execution of Algorithm 3.

Proof. First we show that y(¢;, ) is at most 3\/1 distance away for all invocations of Algorithm 3. If y(¢,, ;) is on the boundary of the

regular polygon, then it is at most Zﬁ distance away by Lemma 10. Otherwise by triangle inequality it is at most, 2\/1 +A< 3ﬁ
distance away, where the first term is the distance from last visited vertex to the starting vertex of the polygon and the second term is
the distance from the starting vertex to y(z;), which are bounded by the diameter of the regular polygon and step length respectively.

11



V. Dani, A. Islam and J. Saia Theoretical Computer Science 1010 (2024) 114714

Furthermore, following the argument above, |y(t;,) — y(t;; )| < 3ﬁ and the nearest robot traverses no more than 3\/1 O

Lemma 12. During the While loop of Algorithm 1, BOUNDARY-SKETCH maintains a distance of at most ﬂ between each of the robots
and the shape boundary throughout all executions of Step 7.

Proof. This is immediate from the assumption that the robots maintain a distance of ﬁ between them and that the shape is
sandwiched there. []

Lemma 13. BOUNDARY-SKETCH maintains a distance of at most Sﬁ between the shape boundary and each of the robots.

Proof. By Lemma 12, throughout all executions of Step 7 inside the While loop in Algorithm 1, every point of y is at a distance of
at most \/I from ¢ and &,.

Suppose here Algorithm 3 is invoked after crossing the shape for the i-th shape. We will show that over the interval [7;,#;, ], y is
always at most 7ﬁ distance away from the nearest robot.

First by Lemma 11 y(z,, ) is at most 3\/] distance away for all invocations of Algorithm 3. In addition, |y(z;) — y(t;;1)] < Sﬁ.

Now define d(x) = |y(t;;1) — y(x)| for all x € [t;,1;;]. We claim that d(x) < 4ﬁ for all x € [t;,t;,1]. If not, consider a ball B of
radius 4\/1 centered at y(#,, ). Observe that the path from y(¢;) to y(#,, ;) must be contained in B or else we will have two different
sections that are disjoint inside this ball. This contradicts our path component assumption.

That means we can get to y(t;,) first with at most 3\/1 distance traversal by Lemma 11 and then from y(¢;,) to the respective

point, which is at most 4\/2 distance away by the above argument. Finally, noting that the robots are apart by at most ﬂ distance
and by triangle inequality, the lemma follows. []

Lemma 14. {|,{, do not self-intersect.

Proof. We will prove this for ¢;, the proof is identical for ¢,.

Suppose there exists u, v such that {;(u) = {;(v) and u # v.

Observe that, unless crossed y is always on the same orientation (clockwise or counterclockwise) from D; and opposite otherwise.

Without loss of generality, assume that y was on the clockwise direction of D, at u. Note that {; (u) must be inside the shape or
else it implies D, selected the wrong orientation i.e. Algorithm 2 computed the wrong direction of the gradient.

Let L be the interval of y with distance at most 2\/1 from ¢ (u) on this direction. By Lemma 12, L is nonempty.

Now consider for v an interval R of y that is on the counterclockwise direction from D; at u and that the distance of every point
in R from ¢, (u) is at most 2\/1 By Lemma 12 R is nonempty.

Now consider the ball B centered at {; () with radius Zﬁ. We now show that the intersection of B with L and R are disjoint. If
they are not disjoint, they are path connected without crossing themselves, since the latter violates the assumption that y is a simple
i.e. non self-intersecting curve.

If they are path connected, BOUNDARY-SKETCH crosses this path since L and R are on different orientations (clockwise and
counter-clockwise) of {;(u). But since D; upon crossing the shape, chooses to move with the orientation computed by Algorithm 2,
it must be that R is on the counterclockwise orientation of ¢;(v), a contradiction.

Therefore L and R must be disjoint. Finally, we pick any point ¢ € L and consider a ball B, of radius 41/ 4 centered at c. Observe
that, L and R can only be connected inside this ball in the same orientation, otherwise it will imply the shape has a bounding box
of side length O(ﬂ), which contradicts our assumption that the 4 is scaled with respect to the diameter of the shape and is at most
1/26.

If L and R connects inside B, consider the robot path going in the other orientation. We can extend L and R in this orientation
a distance of at most Sﬂ until we can construct another ball B, where L and R do not connect. If this construction is not possible,

one of the robots must have crossed the boundary and we can construct this ball B, with radius 4ﬁ centered at that point of
crossing, but this contradicts our assumption on path component. []

Lemma 15. For each execution of Algorithm 4, the robots cover Q(\/;) distance of the shape boundary. In addition, the distance traversed
by the robots between successive executions of Algorithm 4 and during executions of CROSS-BOUNDARY is O( ﬁ).

Proof. The first claim follows immediately since the robot that crosses the boundary changes from D, to D, and the robots are \/E
distance apart from each other.

Next, between successive executions of Algorithm 4, robot D; may cross the boundary at the end of CROSS-BOUNDARY. The
total number of steps robot D, can take over this period cannot be more than 27/ ﬁ since at each step it turns \/E and a total turn
over a convex path is at most 2. Since each step is of length A, the claim follows. []

12



V. Dani, A. Islam and J. Saia Theoretical Computer Science 1010 (2024) 114714

Fig. 9. Figure for Lemmas 16 and 17, the red color indicates the shape boundary, blue color indicates path of the nearest robot, black colored segment is a construction
for the proof.

3.4. Asymptotic analysis

Let ¢; be the angle the shape turns over [t;,#;,] and f : N — N such that f(i) is the number of iterations the While loop inside
Algorithm 3 executes in between the robots crossing the shape boundary for the i and i + 1-th time. We first analyze the case of a

polygon.

3.4.1. y as a polygon

Lemma 16. Let j > 1 be an index such that, after crossing the boundary at point D (Fig. 9), D, D, are both outside or D, D, are both
inside. Then the number of times the While loop in Step 7 of Algorithm 3 executes before the robots cross the line DB is at most ‘b’—\/}l +1.
Proof. Define y; to be the change of gradient in radians between y(7;_;) and y(¢;). Clearly, ¢;_; > y;.

The vertical distance from the robot at the beginning of the execution of Algorithm 3 to the line DB is at most Asin(y; + \/E).
Thus after % +1< ¢j—\/_;1 + 1 steps, the robots will cross DB, which concludes the proof. []
Lemma 17. Suppose y defines a polygon. Given an instance of crossing the shape at a point D, let § be the first exterior angle of the shape
continuing from D. If f is the only exterior angle of y from D to the next point of crossing and \/I < p < /8, then the While loop in Step 7
of Algorithm 3 executes at most 8/ \/E times to cover the distance from B to C.

Proof. Fig. 9 illustrates this lemma where BAC = f. Note that the radius of the circumcircle of the triangle /\ ABC is at most the
radius p of the circumcircle of the regular polygon in the diagram indicated by dotted lines. Given the exterior angle \/E and side

A
. By Li 10, p< VA
Fy——y y Lemma p< \/—

Now by the law of sines, | BC|/sin f = 2p and this implies |BC| <28 \/Z
Next, the angle f’ formed by the chord BC with the center of the regular polygon is at most,

.<wmﬁ>
2arcsin | ————

Vi

length A of the regular polygon, the radius of the circumcircle is p =

4p < 4p
_ 2 22
Vi-@2p) ¢“E

Next we multiply this angle with the radius to get the arc length between B and C,

<8p

) <2arcsin(2f) <

s=pp <88V

Finally, noting that the arc length covered by every step of the robots is at least A, we get that after 84/ ﬂ steps from B the
robots will cross AC. []
8¢1

i 4 Pic
+ 4=+ 1
Vi

Lemma 18. If y is a polygon and if for some i < m, ﬁ < ¢, <n/8, then f(i) < - -

Proof. The trivial case is where Algorithm 3 is not executed at all i.e. f(i) =0.

Observe that the motion of the robots during the execution of Algorithm 3 forms part of the perimeter of a convex polygon with
side lengths and exterior angles being 4 and \/Z respectively (except for the first and last sides).

Now suppose there are j vertices of y defined over [f,,7,,{]. Let these vertices be indexed y(a;) where a; € [t;,1,,] for all

k €[1,/]. Finally, let §, be the exterior angle at y(a;). By Lemma 16, there will be at most ¢‘—\/‘/_1‘ + 1 before the robot crosses the

nearest side of the exterior angle at y(a,).

13



V. Dani, A. Islam and J. Saia Theoretical Computer Science 1010 (2024) 114714

Case 1 Case 2a Case 2b

Fig. 10. Illustration of the three cases 1, 2a, 2b in the proof of Lemma 21.

Next, observe that by Lemma 17 the nearest robot to the shape will cross one of the sides of the exterior angle at y(a,) by at most

86/ \/Z iterations of the While loop in Algorithm 3.
In addition, the shape boundary turns either in convex or concave manner. If the turn at an index changes from convex to concave
or concave to convex, it may actually move the sides of y closer for the robot and hence the amount the angle f, contributes to the

overall iterations run inside the While loop of Algorithm 3 is at most 88,/ ﬂ Therefore,

! i—1 8¢ ¢tl
f(z)5287+\/_ +1= \f /i +1 0

3.4.2. y as a curvilinear polygon

Lemma 19. If ﬁ < ¢; < n/8 for some positive integer i <m, f(i) < 8y Sy,

it

Proof. The trivial case is where Algorithm 3 is not executed at all i.e. f(i) =0.

Suppose there are j vertices of y defined over [7;,7,,]. Let these vertices be indexed y(a,) where a; € (t;,1,) forall 1 <k < j. If
j =0, select a value a; = (#,;) +1,)/2. In addition, let ay =1#;,a;,; =1;4.

By Lemma 5, for all 0 < k < j, there exists a ¢, € (ay,a,, ) such that y’(c,) is parallel to the line segment joining y(a,) and
7(ag41). This means if we consider a polygon P with j + 1 vertices being y(a;) for 0 < k < j, the amount P rotates is at most the
amount y rotates over [;,7;,].

If ¢,f is the amount of rotation of P, then by Lemma 18,

fiys— 8 Oty 3 by O

Vi'vil Vi Vi

Lemma 20. If 7/8 > ¢; > \/1 after resetting V in lines 15 or 17 of Algorithm 3, the robots turn at most 8¢); + ¢;_; + ﬁ as the algorithm
continues to execute Algorithm 1.

Proof. The angle the robot needs to turn to reorient itself with respect to the boundary just crossed is at most 8¢; + ¢;_; + \/I, since
the robot orientation itself is no more off than 8¢, + ¢,_; + ﬁ by Lemma 19. []

Lemma 21. {;,{, have finite periods and therefore they intersect the shape finitely many times.

Proof. Note that during each execution of CROSS-BOUNDARY, since the exterior angle of the polygon R is \/;, BOUNDARY-
SKETCH turns at least ﬁ If ¢; > % during execution of Algorithm 3, BOUNDARY-SKETCH turns at most 2z. Thus, the radians

turned is bounded by 16¢;. Next, by Lemma 20, the indices i for which 7/8 > ¢, > ﬁ, BOUNDARY-SKETCH lower bounds the
total radians turned by the shape y.

Since the total radians turned by y overall is lower bounded by the amount turned by the robots over these indices, the number
of such indices must be finite.

Now consider the indices i such that ¢, < \/I In this case CROSS-BOUNDARY will cross the boundary immediately after taking
one step after crossing the boundary on ¢;.

There are two cases, the robots sandwiched the boundary prior to crossing on #; (Case 1) or they did not (Case 2).

Now we analyze the length of y over [¢,,7,,] for these two cases.

Case 1: The length of y over [t;,1,,,] is lower bounded by 4, since that is the step length of the robots and they move in straight
line in parallel while the boundary does not (see Fig. 10).

Case 2: We claim that the length of y over [t;,7,,] is once again lower bounded by A. To show this, first observe Case 2a where
if CROSS-BOUNDARY is called again on ¢; then the robots cover ﬁ distance of y since the boundary has been crossed by both
of the robots. The other Case 2b is reduced to a similar situation as before (see Fig. 10), where if we have successive indices i,i + 1

14



V. Dani, A. Islam and J. Saia Theoretical Computer Science 1010 (2024) 114714

if else

Fig. 11. Illustration of the two cases in SYNCHRONIZE.

for which ¢;,¢;,, are both less than \/Z, the claim holds. Otherwise we can include the index i among the count of indices with

b1 2 VA

Since the total length of y is finite, the number of such indices is also going to be finite.

Hence, CROSS-BOUNDARY is executed only finitely many times and BOUNDARY-SKETCH terminates with ¢;,{, having a
finite period. []

Lemma 22. Let I be those indices such that, \/E < ¢; <n/8 for i € I. Then the total radians turned by the algorithm for the ¢; values
indexed by I is O(¢).

Proof. Observe that, Y., ¢; < ¢. In addition by Lemma 19 f(i) < % + d)l_\/_il + 1 and by Lemma 20 the angle turned after resetting

V in lines 15 or 17 in Algorithm 3 is at most 8¢); + ¢,_; + \/E
Thus the total radians turned by the algorithm for the ¢; values indexed by I is at most:

D VAL +8¢;+ by + VAL Y166, + 26, + VA= 164+ 1]VA=0¢)

iel iel

where we note ¢; > ﬁ implies |I]| = O(¢/ﬁ). O
Lemma 23. BOUNDARY-SKETCH terminates with the output curves {;, {, which are Sﬁ—sketches of y.
Proof. This follows immediately from Lemmas 13, 14, 21 and Definition 8. []

3.4.3. Lemmas about synchronization

Our final two lemmas show that the other robot do not rotate or traverse asymptotically more than the robot nearest to the
boundary. In addition, we discuss briefly the synchronization steps in Algorithm 4.

Observe that in Fig. 11, after reorientating itself to the curve gradient direction, the green and blue curves can become “closer”
to each other if they simply turn towards the gradient. This is handled by letting the blue or green curve based robot traverse a
little longer, in particular greater than \//_1 — A> A distance and then turn. This synchronization that maintains the distance of \//_1
between the two robots guarantees that between successive executions of Algorithm 4, the robots will cover Q( ﬁ) distance of the
shape boundary, in turn we are able to prove Lemma 15.

Lemma 24. For each execution of Algorithm 3, D, traverses a distance of O( ﬁ).

Proof. In Fig. 12, the line segment AC describes the path of D; and D, can move either directly from B to D or B to D via

E. Now, by Algorithm 3 description, |AC| = |DE| = A. Note that, ZBAE = ﬁ and |BA| = |AE| = \/Z Thus by the law of sine,
IEBl _ __ V3
sin \/Z sin((z— \/Z)/Z)

A

cos( \/Z/Z)
Thus, the path length of D, at each step is at most 34.

Hence,

|EB| < <24

15



V. Dani, A. Islam and J. Saia Theoretical Computer Science 1010 (2024) 114714

Fig. 12. Figure for Lemmas 24 and 25.

In the last step independent of which robot encountered the shape boundary and whether they are both inside or outside or one
inside and one outside, D, will traverse at most a constant factor of ﬁ by the above discussion based on Fig. 11. Finally, noting
that D, traverses 0(\/1) distance according to Lemma 11, D, traverses O(ﬁ) during each execution of Algorithm 3. []

Lemma 25. For each execution of Algorithm 3, D, does not rotate asymptotically more than D).

Proof. We only need to check that the rotation of the green path towards BE and then ED is asymptotically bounded by D,’s
rotation. For brevity, we simply note this follows by elementary euclidean geometric comparison of various angles, beginning from
the rotation of the blue path to AC.

Finally, in the last step, both robots turn towards a common direction i.e. gradient at a point of crossing the boundary. []

3.4.4. Proof of the main theorems
Theorem 2. The robots in BOUNDARY-SKETCH traverse a total distance of O(¢).

Proof. During Step 7 of Algorithm 1, the robots take the shortest path and thus the distance traversed is bounded by the shape
perimeter. Hence overall the total distance traversed during execution of Step 7 is O(?).

Now each time Algorithm 4 is executed, the robots cover at least Q( \/Z) distance of the shape boundary. This means Algorithm 4
is executed at most O(Z/ ﬁ) times. In addition, between successive executions of Algorithm 4 and during executions of CROSS-

BOUNDARY the robots traverse a distance at most O( ﬂ) by Lemma 15.
Combining we have that () and £(¢,) are both O(¢). [

Theorem 3. The total rotation by the robots in BOUNDARY-SKETCH is O(¢).

Proof. The number of indices i <m such that ¢, < \/Z is O(¢/ A). For each of these indices, the robots rotate O(1) angle in CROSS-
BOUNDARY by Lemma 16. Since ¢ = O(¢), for these indices the robots rotate O(¢).

Now, if 7/8 > ¢; > \/E, by Lemma 22, the robots rotate a total of O(¢) radians.

If ¢, > % during execution of Algorithm 3, BOUNDARY-SKETCH turns at most 2. Thus, the radians turned is bounded by 16¢;.

In total, across all iterations of Algorithm 3 where ¢; > %, the robots rotate at most 16¢.
In addition, by Lemma 25, the robots asymptotically rotate the same.
Finally, during execution of Step 7 the robots do not rotate at all. Combining all of the above, we have the theorem. []

Corollary 2. The area estimated by BOUNDARY-SKETCH differs from the actual shape area by O(¢ \/I).

Proof. BOUNDARY-SKETCH computes the area of the polygon generated by successive positions of one of the robots (say the one
that starts from the inside). By Lemma 13, this polygon stays within at most 8\/1 distance from the shape boundary. Hence, the area
of the polygon differs from the shape area by at most O(¢ \/E). O

4. Implementation guide and simulations
4.1. Implementation guide

BOUNDARY-SKETCH is largely agnostic to specific details of its implementation. However, below we make a few suggestions
with regards to i) representation of the boundary in practice ii) computation of the gradient iii) possible laws governing the motion

of the robots.

16



V. Dani, A. Islam and J. Saia Theoretical Computer Science 1010 (2024) 114714

4.1.1. Representation of the boundary

Analytically, we have used the formal language of curvilinear polygon from differential geometry. In practice, any representation
can be used that can be mapped to our analytical representation. For example, we can define y to be any level contour of a surface
given by f : R — R. By setting a value k, the implicit equation f(x,y) = k then determines y. In addition, the robots D,, D, can
make use of some kind of sensor to measure or estimate the value of f at a given point, which allows them assess if they are inside
(e.g. when f(x,y) > k) or outside (e.g. when f(x,y) < k) of the boundary.

4.1.2. Computation of the gradient
Our algorithm BOUNDARY-SKETCH assumes an oracle access to the gradient. We acknowledge in practice this might be in-
hibiting. However, we present a suggestion below how one might estimate the gradient using Least Squares (LSQ) Error formulation.

Least squares error formulation Assume we have three points a, b, ¢ that are close together, and that we have the values f(a), f(b),
f(c). For the sake of the BOUNDARY-SKETCH, these three points can be said to be successive points of a robot’s path with the
middle one being where it crosses the shape boundary. Then we estimate the vector (V’ in Algorithm 2) normal to the gradient
Vf(b)=(x',y") as a vector that minimizes the following sum:

(f(@) = f(b)=Vf(b)-(a=b) +(f(c) = f(b) = VS(B) - (c = b))’

Setting the rows of a 2 X 2 matrix A to be a — b, ¢ — b respectively and the entries of vector f to be f(a) — f(b), f(c) — f(b)
respectively, this problem is formally solving for the vector v such that, |Av — f|? is smallest.
Finally, we utilize the pseudo-inverse method for solving LSQ as discussed in numerous sources e.g. in Section 4.5 of [14].

4.1.3. Motion of the robots

BOUNDARY-SKETCH is additionally agnostic to laws governing the motion of the robots. However, a real-world application
domain of particular interest to us is tracing boundaries of volcanic CO2 plumes using drones. In that case, control laws govern the
motion of the drones which can be mapped to the various actions necessary in the algorithm, in particular turning a certain angle,
moving in tandem and the synchronization steps in Algorithm 4.

Finally, CO2 plumes can be represented by a function f : RZ - R where f(x,y) is the CO2 measurement at point (x,y) and
sensors can be used to estimate f(x,y), thus effectively determining whether a robot is inside or outside.

4.2. Simulations

We present preliminary simulation results (with GitHub source code [28]) to illustrate the precision of ¢-sketch for various values
of A. These simulations specifically do not perform any physical motion of the robots. However, they do estimate the gradient instead
of assuming a perfect oracle access.

To start with, we tested our algorithm for a small number of intersecting gaussians with different variances. Next, we test
our algorithm on the boundary of shapes drawn from real world shape data. Both of these simulations demonstrate encouraging
convergence of e-sketch to the shape as 4 decreases.

4.2.1. Intersecting Gaussians
In our experiments, the shape is an intersection of a few two dimensional gaussians.

Definition 10. In two dimensions, the elliptical gaussian function f for uncorrelated varieties X and Y having a bivariate normal
distribution and standard deviations o, oy, is defined to be,

(lmen? , 0oy
FOrp) = e o G

2roy0,

To estimate the gradient at a point of intersection, we used the least squares error (LSQ) problem as suggested above.

Test shape We generate a test shape in MATLAB with four gaussians with centers (1, 1),(-2,0),(1,0), (4,0) and corresponding stan-
dard deviations

(0.8,0.8),(1,1),(1.2,1.2),(0.7,0.7).

We also ignore the 1/2x factor in front of the definition.

BOUNDARY-SKETCH for different A For the same shape as above, we run BOUNDARY-SKETCH for 4 values of 0.0001, 0.000025,
0.000001. Fig. 13 illustrates the output for 4 =0.0001 and the other two Figs. 14, 15 demonstrate notable improvement in precision
as A gets smaller.

17



V. Dani, A. Islam and J. Saia

2.5

1.5

0.5

-1

25

-1

Theoretical Computer Science 1010 (2024) 114714

T

2

-1 0 1 2 3

T

T

T T T T T

T

T ~

-2

-1 0 1 2 3

Fig. 14. BOUNDARY-SKETCH for 1= 0.000025, the green border marks the shape boundary sandwiched by the inner and outer robots.

4.2.2. Real world plume shapes

We also utilize a real world shape from a volcanic plume in La Palma (see Fig. 16) and use a Python program to generate a
polytope approximation of it. The gradient of the boundary then is easily found by the gradient of the corresponding side of the
polygon. Next we ran BOUNDARY-SKETCH for different values of 4 on this shape. Fig. 17 illustrates the output of the algorithm

and Figs. 18, 19 demonstrate notable improvement once again in precision as A gets smaller.

5. Conclusion

We have described a distributed algorithm to enable two robots to traverse the perimeter of a curvilinear polygon. Our algorithm
is novel in three key ways. First, it does not assume that the robots can respond instantaneously to sensor data, instead assuming
a minimum amount of movement or rotation occurs between motion planning events. Second, it does not assume that the robots
have access to instantaneous and continual sensor readings. Finally, our algorithm is simultaneously asymptotically optimal in two
criteria: both total distance traveled by the robots, and also total amount turned by the robots.

18



V. Dani, A. Islam and J. Saia Theoretical Computer Science 1010 (2024) 114714

25 T T T T T T T T T

0.5

Fig. 15. BOUNDARY-SKETCH for 4 =0.000001, the green border marks the shape boundary sandwiched by the inner and outer robots.

Sentinel-5P/TROPOMI - 09/20/2021 14:12-14:13 UT - Orbit 20404
SO, mass: 32.95 kt; Area: 110195 km? SO, max: 740.57 DU at lon: -17.79 lat: 28.57 ; 14:13UTC
-18 -17 -16 -15 -14 -13

Data: BIRA-IASB/DLR/ESA/EU Copemicus Program

SO, column TRM [DU]

< . T T

0.5 1 5 10 50 100 500

Fig. 16. Volcanic plume in La Palma observed on September 20, 2021.

Several open problems remain including the following. First, lower bounds: even though our algorithm is asymptotically optimal
in both distance traveled and distance turned, we still would like to know if 2 robots are strictly necessary. Can a single robot achieve
the same asymptotic results? We conjecture the answer is no, even if the single robot is attempting to follow a (unknown) function
in the Euclidean plane defined from the values x =0 to x = 1. Second, Can we reduce the value of ¢ in the e-sketch returned by our
algorithm? In particular, is it possible to obtain a value of ¢ that is o( ﬁ)? Finally, How does our algorithm perform when deployed
in the real world? An application domain of particular interest is tracing boundaries of volcanic CO2 plumes. We are currently
adapting BOUNDARY-SKETCH for this domain and expect to publish our results in the near future.

Acknowledgements
We would like to acknowledge the members of the UNM Volcan team for their contributions to this paper.

19



V. Dani, A. Islam and J. Saia Theoretical Computer Science 1010 (2024) 114714

0.7 A

0.6 1

0.5 A1

0.4

0.3 1

0.2 1

0.1 A

0.0 A

Fig. 17. BOUNDARY-SKETCH for 4 =0.0001, the green border marks the shape boundary sandwiched by the inner and outer robots (red and blue border).

0.7 1

0.6 1

0.5 1

0.4 1

0.3 1

0.2 1

0.1 1

0.0 1

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 18. BOUNDARY-SKETCH for 4 =0.000025, the green border marks the shape boundary sandwiched by the inner and outer robots (red and blue border).

0.7 |

0.6

0.5 1

0.4 1

0.3 1

0.2 1

0.1

0.0 1

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 19. BOUNDARY-SKETCH for 4 =0.000001, the green border marks the shape boundary sandwiched by the inner and outer robots (red and blue border).

20



V. Dani, A. Islam and J. Saia Theoretical Computer Science 1010 (2024) 114714

In particular, John Ericksen contributed code for some of the geometric operations in the Sketch Algorithm and the rendering
of the plume, which was used to generate Figures 13, 14, 15, 17, 18, 19. He also contributed ideas through numerous technical
discussions that helped inform the simulation of the Sketch Algorithm. We also thank Melanie Moses and Matthew Fricke for
numerous discussions and feedback that shaped the development of the paper.

CRediT authorship contribution statement

Varsha Dani: Writing — original draft, Writing — review & editing. Abir Islam: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Resources, Software, Validation, Visualization, Writing — original draft, Writing — review & editing.
Jared Saia: Supervision, Writing — original draft, Writing — review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
interests: Abir Islam reports financial support was provided by National Science Foundation grant IIS 2024520. Jared Saia reports
financial support was provided by National Science Foundation grant IIS 2024520.

References

[1] S. Al-Abri, F. Zhang, A distributed active perception strategy for source seeking and level curve tracking, IEEE Trans. Autom. Control 67 (2021) 2459-2465.
[2] D.J. Bruemmer, D.D. Dudenhoeffer, M.D. McKay, M.O. Anderson, A robotic swarm for spill finding and perimeter formation, Technical Report, Idaho National
Engineering and Environmental Lab Idaho Falls, 2002.
[3]1 G. Carrasco-Escobar, M. Moreno, K. Fornace, M. Herrera-Varela, E. Manrique, J.E. Conn, The use of drones for mosquito surveillance and control, Parasites
Vectors 15 (2022) 473.
[4] D.W. Casbeer, R.W. Beard, T.W. McLain, S.M. Li, R.K. Mehra, Forest fire monitoring with multiple small uavs, in: Proceedings of the 2005, American Control
Conference, IEEE, 2005, pp. 3530-3535.
[5] D.W. Casbeer, D.B. Kingston, R.W. Beard, T.W. McLain, Cooperative forest fire surveillance using a team of small unmanned air vehicles, Int. J. Syst. Sci. 37
(2006) 351-360.
[6] S. Chatterjee, W. Wu, Cooperative curve tracking in two dimensions without explicit estimation of the field gradient, in: 2017 4th International Conference on
Control, Decision and Information Technologies (CoDIT), IEEE, 2017, pp. 0167-0172.
[7] S. Chatterjee, W. Wu, A modular approach to level curve tracking with two nonholonomic mobile robots, in: International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, 2019, VOO9T12A051.
[8] H. Choset, Coverage for robotics—a survey of recent results, Ann. Math. Artif. Intell. 31 (2001) 113-126.
[9] J. Clark, R. Fierro, Cooperative hybrid control of robotic sensors for perimeter detection and tracking, in: Proceedings of the 2005, American Control Conference,
IEEE, 2005, pp. 3500-3505.
[10] B. Dekster, The length of a curve in space with curvature at most k, American Mathematical Society 79 (2) (1980) 271-278.
[11] J. Ericksen, G.M. Fricke, S. Nowicki, T.P. Fischer, J.C. Hayes, K. Rosenberger, S.R. Wolf, R. Fierro, M.E. Moses, Aerial survey robotics in extreme environments:
mapping volcanic co2 emissions with flocking uavs, Frontiers in Control Engineering 3 (2022) 7.
[12] M. Fahad, N. Saul, Y. Guo, B. Bingham, Robotic simulation of dynamic plume tracking by unmanned surface vessels, in: 2015 IEEE International Conference on
Robotics and Automation (ICRA), IEEE, 2015, pp. 2654-2659.
[13] P. Flocchini, G. Prencipe, N. Santoro, Distributed computing by mobile entities, Current Research in Moving and Computing (2019) 11340.
[14] 1. Goodfellow, Y. Bengio, A. Courville, Deep Learning, The MIT Press, 2016.
[15] M. Hoy, A method of boundary following by a wheeled mobile robot based on sampled range information, J. Intell. Robot. Syst. 72 (2013) 463-482.
[16] M.A. Hsieh, V. Kumar, L. Chaimowicz, Decentralized controllers for shape generation with robotic swarms, Robotica 26 (2008) 691-701.
[17] M. Kemp, A.L. Bertozzi, D. Marthaler, Multi-uuv perimeter surveillance, in: Proceedings of IEEE/OES Autonomous Underwater Vehicles, 2004, pp. 102-107.
[18] S. Koenig, B. Szymanski, Y. Liu, Efficient and inefficient ant coverage methods, Ann. Math. Artif. Intell. 31 (2001) 41-76.
[19] D. Marthaler, A.L. Bertozzi, Collective motion algorithms for determining environmental boundaries, in: SIAM Conference on Applications of Dynamical Systems,
2003, pp. 1-15.
[20] D. Marthaler, A.L. Bertozzi, Tracking environmental level sets with autonomous vehicles, in: Recent developments in cooperative control and optimization,
2004, pp. 317-332.
[21] A.S. Matveev, M.C. Hoy, A.V. Savkin, The problem of boundary following by a unicycle-like robot with rigidly mounted sensors, Robot. Auton. Syst. 61 (2013)
312-327.
[22] J. Munkres, Topology, Prentice-Hall Pearson, 2000.
[23] A. Nguyen, D. Krupke, M. Burbage, S. Bhatnagar, S.P. Fekete, A.T. Becker, Using a uav for destructive surveys of mosquito population, in: 2018 IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2018, pp. 7812-7819.
[24] L.H. Pettersson, D. Pozdnyakov, Monitoring of Harmful Algal Blooms, Springer Science & Business Media, 2012.
[25] A. Pressley, Elementary Differential Geometry, Springer, 2012.
[26] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill Education, 1976.
[27] D. Saldana, R. Assuncdo, M.F. Campos, A distributed multi-robot approach for the detection and tracking of multiple dynamic anomalies, in: 2015 IEEE
International Conference on Robotics and Automation (ICRA), IEEE, 2015, pp. 1262-1267.
[28] Sketch, Simulation of sketch algorithm, https://github.com/encyclol/sketchalgorithm, 2023.
[29] D. Spears, W. Kerr, W. Spears, Physics-based robot swarms for coverage problems, Int. J. Intell. Control Syst. 11 (2006) 11-23.
[30] M.C. Stanton, P. Kalonde, K. Zembere, R. Hoek Spaans, C.M. Jones, The application of drones for mosquito larval habitat identification in rural environments: a
practical approach for malaria control?, Malar. J. 20 (2021) 1-17.
[31] P. Tokekar, E. Branson, J. Vander Hook, V. Isler, Tracking aquatic invaders: autonomous robots for monitoring invasive fish, IEEE Robot. Autom. Mag. 20 (2013)
33-41.
[32] F. Zhang, S. Haq, Boundary following by robot formations without gps, in: 2008 IEEE International Conference on Robotics and Automation, IEEE, 2008,
pp. 152-157.
[33] F. Zhang, E.W. Justh, P.S. Krishnaprasad, Boundary following using gyroscopic control, in: 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE
Cat. No. 04CH37601), IEEE, 2004, pp. 5204-5209.
[34] F. Zhang, N.E. Leonard, Cooperative filters and control for cooperative exploration, IEEE Trans. Autom. Control 55 (2010) 650-663.

21


http://refhub.elsevier.com/S0304-3975(24)00331-1/bibB079A48A3B629FF316DC6EA3A6FC4500s1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib1DC5C607CA13AFBC7AE8C9742AF12130s1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib1DC5C607CA13AFBC7AE8C9742AF12130s1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib42DD3F9841B453E85437F7265B32595Bs1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib42DD3F9841B453E85437F7265B32595Bs1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bibFC46AE88463669E8C6053F3C216E953As1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bibFC46AE88463669E8C6053F3C216E953As1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bibAF8AD22362808CB47BBB866A11AC7734s1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bibAF8AD22362808CB47BBB866A11AC7734s1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib5F4FFB8C58A34F4CE69560A98FE2FF82s1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib5F4FFB8C58A34F4CE69560A98FE2FF82s1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bibE92F52B6A25FCF7C710CC0DD9F96CBEEs1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bibE92F52B6A25FCF7C710CC0DD9F96CBEEs1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib0E9847927165FDC4C3D28011A6108CDEs1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib88647F540179A6A923F880DF58FDF4E9s1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib88647F540179A6A923F880DF58FDF4E9s1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib87A47565BE4714701A8BC2354CBAEA36s1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bibB435CD089B0D8CD6DE4E5642191CBE1Cs1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bibB435CD089B0D8CD6DE4E5642191CBE1Cs1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib3CF5F4120BBC2F470F35DAF11D5A7B6Es1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib3CF5F4120BBC2F470F35DAF11D5A7B6Es1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bibC55C49AB93F98432E1A25EDE1C9F9E77s1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib9065DF87F119D90D95D857DD67DF5AD0s1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib797522A3F837CFD294037F07F5BB25D3s1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bibF1A37F4957856C8AFFA15E0B22298D8Es1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib1BE5587EA600803972DA87996CD279F9s1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bibBC3763948B2C39750037CEC6140F3BA2s1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib5E89FFC07B6DA1B1B7A70A7A124541DBs1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib5E89FFC07B6DA1B1B7A70A7A124541DBs1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bibB2C4907567A27F9EB837FDDF5A62EBFFs1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bibB2C4907567A27F9EB837FDDF5A62EBFFs1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bibA946D7888688A77F907D1D1381314865s1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bibA946D7888688A77F907D1D1381314865s1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib0A682E26AF1ABA4105F75533A3C25EBEs1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib389AB7D2326F14C52A1CC587AD2AC433s1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib389AB7D2326F14C52A1CC587AD2AC433s1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib887D5B5CDCFECE4C11FCFFDF7BF78AE6s1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib6010E5F0C27F8A93078E21E3600ABD08s1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bibDAC794E5D64A090337C5DDEDD1F3DC54s1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib65016E6EBDC8A1FC3347695159C77C4Bs1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib65016E6EBDC8A1FC3347695159C77C4Bs1
https://github.com/encyclo1/sketchalgorithm
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib4FDB6AF5944FAB25988D578CB37B139Cs1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib5CC7E3F14F95313A22E18205A5345591s1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib5CC7E3F14F95313A22E18205A5345591s1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bibAC5C6AE2958D009067982969D5B7606As1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bibAC5C6AE2958D009067982969D5B7606As1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib09C1A897165F51521CA69C3F44FF1A57s1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib09C1A897165F51521CA69C3F44FF1A57s1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bibDCE3F91F65781E59EB1130CF4D291269s1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bibDCE3F91F65781E59EB1130CF4D291269s1
http://refhub.elsevier.com/S0304-3975(24)00331-1/bib4AB4E8CD48E6FDB1BFA92B29C00B2E45s1

	Boundary sketching with asymptotically optimal distance and rotation
	1 Introduction
	1.1 Problem statement
	1.2 Main result
	1.3 Technical overview
	1.4 Related work

	2 Our algorithm: BOUNDARY-SKETCH
	3 Analysis
	3.1 Formal problem model
	3.2 Helper lemmas
	3.3 Correctness of BOUNDARY-SKETCH
	3.4 Asymptotic analysis
	3.4.1 γ as a polygon
	3.4.2 γ as a curvilinear polygon
	3.4.3 Lemmas about synchronization
	3.4.4 Proof of the main theorems


	4 Implementation guide and simulations
	4.1 Implementation guide
	4.1.1 Representation of the boundary
	4.1.2 Computation of the gradient
	Least squares error formulation

	4.1.3 Motion of the robots

	4.2 Simulations
	4.2.1 Intersecting Gaussians
	Test shape
	BOUNDARY-SKETCH for different λ

	4.2.2 Real world plume shapes


	5 Conclusion
	Acknowledgements
	CRediT authorship contribution statement
	Declaration of competing interest
	References


