
Cicada: A framework for private non-interactive on-chain

auctions and voting

Noemi Glaeser∗1,2, István András Seres†3, Michael Zhu‡4, and Joseph Bonneau§4,5

1University of Maryland
2Max Planck Institute for Security and Privacy

3Eötvös Loránd University
4a16z crypto research
5New York University

March 14, 2024

Abstract

Auction and voting schemes play a crucial role in the Web3 ecosystem. Yet currently deployed implementa-
tions either lack privacy or require at least two rounds, hindering usability and security. We introduce Cicada,
a general framework for using linearly homomorphic time-lock puzzles (HTLPs) to enable provably secure, non-
interactive private auction and voting protocols. We instantiate our framework with an efficient new HTLP
construction and novel packing techniques that enable succinct ballot correctness proofs independent of the
number of candidates. We demonstrate the practicality of our approach by implementing our protocols for the
Ethereum Virtual Machine (EVM).

1 Introduction

Auctions and voting are essential applications of Web3. For example, decentralized marketplaces run auctions to sell
digital goods like non-fungible tokens (NFTs) [Ope23] or domain names [XWY+21], while decentralized autonomous
organizations (DAOs) deploy voting schemes to enact decentralized governance [Opt23]. Most auction or voting
schemes currently deployed on blockchains, e.g., NFT auctions on OpenSea or Uniswap governance [FMW22],
lack bid/ballot privacy. This can negatively influence user behavior, for example, by vote herding or discouraging
participation [EL03, GY18, SY03]. The lack of privacy can also cause surges in congestion and transaction fees as
users try to outbid each other to participate, a negative externality for the entire network.

Existing private voting protocols [PE23, GG22, PE] achieve privacy at the cost of introducing a trusted authority
who is still able to view all submissions. Alternatively, the only deployed private and trustless auction we are aware
of [XWY+21] deploys a two-round commit-reveal protocol: in the first round, every party commits to their bid,
and in the second round they open the commitments and the winner can be determined. Other protocols relying
on more heavyweight cryptographic building blocks have been proposed in the literature. We summarize several
approaches for private voting and auctions in Table 1. Unfortunately, each approach suffers from at least one of
the following limitations, hindering widespread adoption:

Interactivity. Interactivity is a usability hurdle that often causes friction in the protocols’ execution. Mandatory
bid/ballot reveals are also a target for censorship. A malicious party can bribe the block proposers to exclude
certain bids or ballots until the auction/voting ends [PRF23].

Trusted third party (TTP). Many protocols use a trusted coordinator to tally submissions during the vot-
ing/bidding phase to achieve essential security (e.g., availability, liveness) or privacy [PE23] guarantees. We
argue that in most decentralized applications, relying on a trusted third party or a threshold of them is at
odds with the ethos of decentralization and trust-minimization.

∗nglaeser@umd.edu. The majority of this work was done at a16z crypto research.
†seresistvanandras@gmail.com. The majority of this work was done at a16z crypto research.
‡mzhu@a16z.com
§jbonneau@gmail.com

1

Approach Non-interactive No TTPs Efficient Tally privacy Everlasting privacy

Commit-reveal [FOO93, GY18] # #

Zero-knowledge (shuffle) proofs [Adi08, PE23] # #

Fully homomorphic TLPs [MT19] # #

Fully homomorphic encryption [Gen09, CGGI16, DPLNS17] # #

Multi-party computation [BDJ+06, AOZZ15] # G#

TLPs + homomorphic encryption [CJSS21] G# #

HTLPs (our approach)
∗

 G#

Table 1: Qualitative comparison of major cryptographic approaches for designing private auction/voting schemes.
An asterisk indicates that those schemes can be instantiated with a transparent setup using class groups, cf. Sec-
tion 7.1. Everlasting ballot privacy can be added to our approach via an extension (Section 8.1).

Inefficiency. Compute and storage costs are substantial bottlenecks in decentralized applications running on a
public blockchain. Some approaches [CGGI16, DPLNS17] avoid the previous pitfalls by relying on complex
cryptographic primitives such as fully-homomorphic encryption (FHE), whose overheads are impractical in
the blockchain setting.

1.1 Our high-level goals

We aim to build voting and auction protocols that possess the following distinguishing features compared to prior
work.

Trust-minimization. In our protocols, we do not want to assume (a quorum of) trusted third parties. The
cryptographic voting literature extensively applies trusted parties, for example, to operate a public bulletin
board or tally votes. The classic tools used in prior work, e.g. (fully) homomorphic encryption, inherently
imply a handful of trusted parties to decrypt the ballots/bids. Apart from the liveness and safety of the
blockchain consensus, we solely employ standard cryptographic assumptions.

One-round protocol. We argue that usability is one of the major challenges of deploying privacy-preserving
voting and auction protocols in practice. Multi-round protocols, e.g., commit-reveal-style protocols, have
incentive issues and considerable usability hurdles. We solve these pressing issues with efficient one-round
protocols.

Ballot/bid privacy. Last but not least, we want to achieve ballot/bid privacy. Our approach naturally provides
privacy until the end of the voting/bidding phase. Additionally, we show novel cryptographic techniques
in Section 8.1 how we can achieve everlasting ballot and bid privacy without sacrificing our two previously
stated goals.

Coercion resistance, i.e., the adversary’s inability to coerce voters to cast specific ballots demanded by the
adversary, is a crucial property of voting schemes. In the privacy-respecting e-voting literature, it is well-known
that receipt-freeness (since the voters cannot prove how they voted) implies coercion-resistance [BT94]. However,
we consider receipt-freeness as a non-goal in our protocol design. Still, we sketch an extension to our framework
in Section 8.3, where we achieve coercion resistance via a different pathway than receipt freeness. We leave it to
future work to achieve the property of receipt freeness for on-chain voting schemes.

1.2 Our approach

In this work, we introduce Cicada, a general framework for practical, privacy-preserving, and trust-minimized
protocols for both auctions and voting. Cicada uses time-lock puzzles (TLPs) [RSW96] to achieve privacy and non-
interactivity in a trustless and efficient manner. Intuitively, the TLPs play the role of commitments to bids/ballots
that any party can open after a predefined time, avoiding the reliance on a second reveal round. Since solving
a TLP is computationally intensive, ideally, we would solve only a sublinear number of TLPs (in the number
of voters/bidders) for efficiency. This is achieved using homomorphic TLPs (HTLPs): bids/ballots encoded as
HTLPs can be “squashed” into a sublinear number of TLPs. Although fully homomorphic TLPs are not practically
efficient, Malavolta and Thyagarajan [MT19] introduced efficient additively and multiplicatively homomorphic TLP
constructions. This is enough for simple constructions like first-past-the-post (FPTP) voting, but it has been an
open challenge to use HTLPs to realize more complicated auction and voting protocols, e.g., cumulative voting.

2

An adversary may attempt to read ballots/bids before the submission phase is complete. This is prevented by
the security properties of (H)TLPs (Section 3.3) assuming the delay T is longer than the submission phase.

3 Preliminaries

3.1 Notation

We use [n] to denote a range of positive integers {1, . . . , n}. For other ranges (mostly zero-indexed), we explicitly
write the (inclusive) endpoints, e.g., [0, n]. Concatenation of vectors x,y is written as x||y. We will use n as the
number of users, m as the number of candidates, and w as the maximum weight to be allocated to any one candidate
in a ballot/bid (n,m,w ∈ N). For simplicity and without loss of generality, we assume the user identities are unique
integers i ∈ [n]. We generally use i ∈ [n] to index users and j ∈ [m] for candidates. We use a calligraphic font,
e.g., S or X , to denote sets or domains. When we apply an operation to two sets of equal size ℓ we mean pairwise
application, e.g., Z = X +Y means zi = xi + yi ∀i ∈ [ℓ]. The output y of a randomized algorithm Alg is written as

y
R← Alg(x) and randomly sampling an element x from a set X is written as x

R← X . Many of our algorithms take
some public parameters pp as input, and we also drop this input when pp is clear from context.

3.2 Voting and auction protocols

We recall the specifics of FPTP, approval, range, and cumulative voting, along with single-item sealed bid auctions.
The cryptographically relevant details of these schemes (i.e., the valid ballots’ structure: their domain, Hamming
weight, and norm) are summarized in Table 2. In Section 5, we create private voting protocols for these schemes of
interest.

Majority, approval, range, and cumulative voting. In the classic majority (i.e., first-past-the-post or FPTP)
voting scheme, users can cast 0 (oppose) or 1 (support) for a given candidate (or cause). A slight generalization of
FPTP is approval voting, where users can submit a binary vote to multiple candidates, i.e., the cast ballot s can be
seen as s ∈ {0, 1}m, where m is the number of causes. A different generalization is range voting(also known as score
voting), where users can give each candidate up to some weight w(thus, FPTP is the special case where w = 1). A
related scheme is cumulative voting, where users can distribute w votes (points) among the candidates(now approval
voting is the special case where w = 1).

Ranked-choice voting. In a ranked-choice voting scheme, voters can signal more fine-grained preferences among
m candidates. In the Borda count version [Eme13], each voter can cast m− 1 points to their first-choice candidate,
m−2 points to their second-choice candidate, etc. In general, they can cast m−k points to their kth choice. Several
other counting functions exist for ranked voting, but in this work, we only focus on Borda counts. Our protocols
can easily be adapted to other counting functions, such as the Dowdall system [FG14] via minor modifications.

Quadratic voting. In quadratic voting [LW18], each user’s ballot is a vector b = (b1, . . . , bm) such that ⟨b,b⟩ =
∥b∥22 ≤ w. Once again, the winner is determined by summing all the ballots and determining the candidate with
the most points. Thus, this is also an additive voting scheme. However, proving ballot well-formedness efficiently
in this particular case benefits greatly from the novel application of the residue numeral system (RNS) to private
voting (see Section 5.1).

Single-item sealed-bid auction. In a sealed-bid auction for a single item (e.g., an NFT or domain name), users
submit secret bids to the auction contract. The domain of the bids might be constrained, e.g., b ∈ {0, 1}k (in our
implementations k ≈ 8− 16; see Section 7.2). Therefore, bidders must prove that their bid is well-formed, i.e., falls
into that domain. Once all secret bids are revealed, the contract selects the highest bidder and awards them the
auctioned item. The price the winner must pay depends on the auction scheme: e.g., highest bid in a first price
auction, second-highest in a Vickrey auction.

3.3 (Homomorphic) Time-lock puzzles

A time-lock puzzle (TLP) [RSW96] consists of three efficient algorithms TLP = (Setup,Gen, Solve) allowing a party
to “encrypt” a message to the future. To recover the solution, one needs to perform a computation that is believed
to be inherently sequential, with a parameterizable number of steps.

4

Submission domain Hamming wt Norm

Voting schemes
Cumulative [0, w]m ≤ m ≤ w
Range [0, w]m ≤ m ≤ wm
Ranked-choice (Borda) π([0,m− 1]) m− 1 m(m− 1)/2
Quadratic (Section 6.2) [0,

√
w]m ≤ m ∥b∥22 = ⟨b,b⟩ = w

Single-item sealed-bid auction [0, w] 1 ≤ w
Bayesian truth serum (B.1) [0, 1]m × Nm 1, 1 1,≤ m

Table 2: Requirements for the domain, Hamming weight, and norm of a vector b in order for it to be a valid
submission in various voting/auction schemes. π(S) denotes the set of permutations of S. The norm is an ℓ1 norm
unless otherwise specified. m is the number of candidates and w is the maximum weight which can be assigned to
any one candidate.

Definition 1 (Time-lock puzzle [RSW96]). A time-lock puzzle scheme TLP for solution space X consists of the
following three efficient algorithms:

TLP.Setup(1λ, T)
R→ pp. The (potentially trusted) setup algorithm takes as input a security parameter 1λ and a

difficulty (time) parameter T , and outputs public parameters pp.

TLP.Gen(pp, s)
R→ Z. Given a solution s ∈ X , the puzzle generation algorithm efficiently computes a time-lock puzzle

Z.

TLP.Solve(pp, Z)→ s. Given a TLP Z, the puzzle solving algorithm requires at least T sequential steps to output
the solution s.

Informally, we say that a TLP scheme is correct if TLP.Gen is efficiently computable and TLP.Solve always
recovers the original solution s to a validly constructed puzzle. A TLP scheme is secure if Z hides the solution
s and no adversary can compute TLP.Solve in fewer than T steps with non-negligible probability. For the formal
definitions, we refer the reader to [MT19].

Homomorphic TLPs. Malavolta and Thyagarajan [MT19] introduce homomorphic TLPs (HTLPs). An HTLP
is defined with respect to a circuit class C and has an additional algorithm Eval. defined as:

HTLP.Eval(pp, C, Z1, . . . , Zm)→ Z∗. Given the public parameters, a circuit C ∈ C where C : Xm → X , and input
puzzles Z1, . . . , Zm, the homomorphic evaluation algorithm outputs a puzzle Z∗.

Correctness requires that the puzzle obtained by homomorphically applying the circuit C to m puzzles should
contain the expected solution, namely C(s1, . . . , sm), where si ← HTLP.Solve(Zi). Again, we refer the reader
to [MT19] for the formal definition. Moving forward, we will use ⊞ for homomorphic addition and · for scalar
multiplication of HTLPs. For the homomorphic application of a linear function f , we write f(Z1, . . . , Zm).

Malavolta and Thyagarajan [MT19] construct two HTLPs with, respectively, linear and multiplicative homo-
morphisms in groups of unknown order. For our purposes we are only interested in the former, which is based on

the Paillier cryptosystem [Pai99]. It uses N = pq a strong semiprime, g
R← Z∗

N and h = g2
T

, and has solution space
ZN :

Z := (gr, hr·N (1 +N)s) ∈ JN × Z
∗
N2 (1)

To recover s, a solver must recompute hr = (gr)2
T

, which is believed to be inherently sequential in a group of
unknown order.

As an alternative, we introduce a novel linear HTLP based on the exponential ElGamal cryptosystem [CGS97]
over a group of unknown order. This construction requires a small solution space X ⊂ ZN , i.e., X = {s : s ∈
JN ∧ s≪ N}. Let g, y R← Z∗

N and again h = g2
T

, and construct the puzzle as

Z := (gr, hrys) ∈ (Z∗
N)2 (2)

This scheme is only practical for small X since, in addition to recomputing hr, recovering s requires brute-forcing
the discrete modulus of ys. We discuss the efficiency trade-off between these two constructions in Section 7.2 and
relegate the construction details to Appendix A.1.

5

Non-malleability. Introducing a homomorphism raises the issue of puzzle malleability, i.e., the possibility of
“mauling” one puzzle (whose solution may be unknown) into a puzzle with a related solution. This could lead to
issues when HTLPs are deployed in larger systems, prompting research into non-malleable TLPs [FKPS21]. In our
case, we define and enforce non-malleability at the system level (Section 4).

3.4 Non-interactive zero-knowledge proofs

A proof system Π = (Setup,Prove,Verify) is defined with respect to relation RL with NP language L with statement-
witness pairs (x;ω) ∈ RL. We will use non-interactive zero-knowledge proofs (NIZKs) to enforce well-formedness
of user submissions while maintaining their secrecy. This prevents users from “poisoning” the aggregate HTLP
maintained by the on-chain coordinator. For efficiency, we make use of custom NIZKs(see Section 6). We refer
to [Tha23] for the formal security definitions of NIZKs (soundness and zero-knowledge).

Applied NIZKs in Groups of Unknown Order. Since submissions will be instantiated as HTLPs in our
application and all known HTLP constructions use groups of unknown order, our proofs of well-formedness must
also operate over these groups. Previous ballot correctness proofs [Gro05] and sigma protocols [Sch89, CP92]
generally operate in groups of prime order and cannot directly be applied in groups of unknown order [BCM05]. To
circumvent these impossibility results, we follow the blueprint of [BBF19] and instantiate our protocols in generic
groups of unknown order [DK02] with a common reference string. We detail our protocols in Section 6.

4 Syntax of Time-Locked Voting and Auction Protocols

We now introduce a generic syntax for a time-locked voting/auction protocol. Any such protocol is defined with
respect to a base scoring function Σ : Xn → Y (e.g., second-price auction, range voting), which takes as in-
put n submissions (bids/ballots) s1, . . . , sn in the submission domain X and computes the election/auction re-
sult Σ(s1, . . . , sn) ∈ Y. It is useful to break down the scoring function into the “tally” or aggregation function
t : Xn → X ′ and the finalization function f : X ′ → Y, i.e., Σ = f ◦ t. For example, in first-past-the-post voting, the
tally function t is addition, and the finalization function f is argmax over the final tally/bids.

Definition 2 (Time-locked voting/auction protocol). A time-locked voting/auction protocol ΠΣ = (Setup, Seal,
Aggr,Open,Finalize) is defined with respect to a base voting/auction protocol Σ = f ◦ t, where t : Xn → X ′ and
f : X ′ → Y.

Setup(1λ, T)
R→ (pp,Z). Given a security parameter λ and a time parameter T , output public parameters pp and

an initial list of HTLP(s) Z that corresponds to the running tally or bid computation.

Seal(pp, i, s)
R→ (Zi, πi). User i ∈ [n] wraps its submission s ∈ X in a (list of) HTLP(s) Zi. It also outputs a proof

of well-formedness πi.

Aggr(pp,Z, i,Zi, πi)→ Z ′. Given a list of (tally) HTLPs Z, time-locked submission Zi of user i, and proof πi, the
transparent contract potentially aggregates the sealed submission homomorphically into Z to get an updated
(tally) Z ′ = t(Z,Zi).

Open(pp,Z)→ (S, πopen). Open Z to solution(s) S, requiring T sequential steps, and compute a proof πopen to prove
correctness of S.

Finalize(pp,Z,S, πopen)→ {y,⊥}. Given proposed solution(s) S to Z with proof πopen, the coordinator may reject S
or compute the final result y = f(S) ∈ Y.

We note that the Setup(·) algorithm in our protocols may use private randomness. In particular, our construc-
tions use cryptographic groups (RSA and Paillier groups) that cannot be efficiently instantiated without a trusted
setup (an untrusted setup would require gigantic moduli [San99]). This trust can be minimized by generating the
group via a distributed trusted setup, e.g., [BF01, CHI+21, DM10]. Alternatively, the HTLPs in our protocols
could be instantiated in class groups [TCLM21], which do not require a trusted setup; however, HTLPs in class
groups are less efficient and verifying them on-chain would be prohibitively costly (see Section 7.1).

A time-locked voting/auction protocol ΠΣ must satisfy the following three security properties:

6

Correctness. ΠΣ is correct if, assuming setup, submission of n puzzles, aggregation of all n submissions, and
opening are all performed honestly, Finalize outputs a winner consistent with the base protocol Σ.

Definition 3 (Correctness). We say a voting/auction protocol ΠΣ with Σ : Xn → Y is correct if for all T, λ ∈ N

and submissions s1, . . . , sn ∈ X ,

Pr











Finalize(pp,Zfinal,S, πopen)
= Σ(s1, . . . , sn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

(pp,Z) R← Setup(1λ, T) ∧
(Zi, πi)

R← Seal(pp, i, si) ∀i ∈ [n] ∧
Zfinal ← Aggr(pp,Z, {i,Zi, πi}i∈[n]) ∧

(S, πopen)← Open(pp,Zfinal)











= 1

where the aggregation step is performed over all n submissions in any order.

Submission privacy. The scheme satisfies submission privacy if the adversary cannot distinguish between two
submissions, i.e., bids or ballots. Note that this property is only ensured up to time T .

Definition 4 (Submission privacy). We say that a voting/auction protocol ΠΣ with Σ : Xn → Y is submission
private if for all T, λ ∈ N, i ∈ [n] and all PPT adversaries A running in at most T sequential steps, there exists a
negligible function negl(·) such that

Pr











b = b′

∣

∣

∣

∣

∣

∣

∣

∣

∣

(pp,Z) R← Setup(1λ, T) ∧
b

R← {0, 1} ∧
(Zi, πi)

R← Seal(pp, i, b) ∧
b′ ← A(pp,Z, i,Zi, πi)











≤ 1

2
+ negl(λ).

Non-malleability. Notice that submission privacy alone does not suffice for security: even without knowing the
contents of other puzzles, an adversary could submit a value that depends on other participants’ (sealed) submissions.
For example, in an auction, one could be guaranteed to win by homomorphically computing an HTLP containing
the sum of all the other participants’ bids plus a small value ϵ. Therefore, we also require non-malleability, which
requires that no participant can take another’s submission and replay it or “maul” it into a valid submission under
its own name.

Definition 5 (Non-malleability). We say that a voting/auction protocol ΠΣ with Σ : Xn → Y is non-malleable if
for all T, λ ∈ N and all PPT adversaries A running in at most T sequential steps, there exists a negligible function
negl(·) such that the following probability is bounded by negl(λ):

Pr

[

Aggr(pp,Z, i,Zi, πi) ̸= Z ∧
(i, ·,Zi, πi) /∈ Q

∣

∣

∣

∣

∣

(pp,Z) R← Setup(1λ, T) ∧
(i,Zi, πi)← AOSeal(pp,·,·)(pp,Z)

]

where OSeal(pp, ·, ·) is an oracle which takes as input any j ∈ [n] and sj ∈ X and outputs (Zj , πj)
R← Seal(pp, j, sj),

and Q is the set of queries and responses (j, sj ,Zj , πj) to the oracle.

A note on anonymity. We consider user anonymity an orthogonal problem. In the applications we have in mind,
users can increase their anonymity by using zero-knowledge mixers [PSS19] or other privacy-enhancing overlays,
e.g., zero-knowledge sets [Eth19]. Additionally, users can decouple their identities from their ballots by applying
a verifiable shuffle [Nef01], although the on-chain verification of a shuffle proof might be prohibitively costly for
larger elections. In Section 8.1 we describe how our protocols can be extended to achieve bid privacy even after the
election ends, thus disclosing nothing besides a user’s (non-)participation.

5 The Cicada framework

5.1 Efficient vector encoding for HTLPs

In many voting schemes, a ballot consists of a vector indicating the voter’s relative preferences or point allocations
for all m candidates. To avoid solving many HTLPs, it is desirable to encode this vector into a single HTLP, which
requires representing the vector as a single integer.

7

Definition 6 (Packing scheme). A setup algorithm PSetup and pair of efficiently computable bijective functions
(Pack,Unpack) is called a packing scheme and has the following syntax:

• PSetup(ℓ, w)→ pp. Given a vector dimension ℓ and maximum entry w, output public parameters pp.

• Pack(pp,a)→ s. Encode a ∈ (Z+)ℓ as a positive integer s ∈ Z+.

• Unpack(pp, s)→ a. Given s ∈ Z+, recover a vector a ∈ (Z+)ℓ.

For correctness we require Unpack(Pack(a)) = a for all a ∈ (Z+)ℓ.

The classic approach to packing [Gro05, HS00] uses a positional numeral system (PNS) to encode a vector of
entries bounded by w as a single integer in baseM := w(see Construction 1 below). Instead, we will setM := nw+1
to accommodate the homomorphic addition of all n users’ vectors: each voter submits a length-m vector with entries
≤ w. Summing over n voters, the result is a length-m vector with a maximum entry value nw; to prevent overflow,
we set M = nw + 1.

Construction 1 (Packing from Positional Numeral System).

• PSetup(ℓ, w)→M : Return M := w + 1.

• Pack(M,a)→ s : Output s :=
∑|a|

j=1 ajM
j−1.

• Unpack(M, s)→ a : Let ℓ := ⌈logM s⌉. For j ∈ [ℓ], compute the jth entry of a as aj := s mod M j−1.

We also introduce an alternative approach in Construction 2 which is based on the residue numeral system
(RNS). The idea of the RNS packing is to interpret the entries of a as prime residues of a single unique integer
s, which can be found efficiently using the Chinese Remainder Theorem (CRT). In other words, for all j ∈ [ℓ], s
captures aj as s mod pj .

Construction 2 (Packing from Residue Numeral System).

• PSetup(ℓ, w) → p : Let M := w + 1 and sample ℓ distinct primes p1, . . . , pℓ s.t. pj ≥ M ∀j ∈ [ℓ]. Return
p := (p1, . . . , pℓ).

• Pack(p,a)→ s: Given a ∈ (Z+)ℓ, use the CRT to find the unique s ∈ Z+ s.t. s ≡ aj (mod pj) ∀j ∈ [ℓ].

• Unpack(p, s)→ a: return (a1, . . . , aℓ) where aj ≡ s mod pj ∀j ∈ [ℓ].

A major advantage of this approach is that, in contrast to the PNS approach, which is only homomorphic
for SIMD (single instruction, multiple data) addition, the RNS encoding is fully SIMD homomorphic: the sum
of vector encodings

∑

i∈[n] si encodes the vector a+ =
∑

i∈[n] ai, and the product
∏

i∈[n] si encodes the vector

a× =
∏

i∈[n] ai. Note that as in the PNS approach, we set M = nw + 1 to accommodate homomorphic addition
of submissions; homomorphic multiplication, however, would require M = wn + 1, and the primes in p would
therefore be larger as well. Although the RNS has found application in error correction [KPT+22, TC14], side-
channel resistance [PFPB19], and parallelization of arithmetic computations [AHK17, BDM06, GTN11, VNL+20],
to our knowledge it has not been applied to voting schemes. We show in Section 6.2 that RNS is in fact a natural
fit for some voting schemes, e.g., quadratic voting, leading to more efficient proofs of ballot correctness.

5.2 Our framework

We present Cicada, our framework for non-interactive private auctions/elections, in Figure 2. Cicada can be applied
to voting and auction schemes where the scoring function Σ = f ◦ t has a linear tally function t. The framework is
instantiated with a linear HTLP (Section 3.3), vector packing scheme (Section 5.1), and matching NIZK to ensure
correctness of submissions by proving both the well-formedness of the puzzle and the solution’s membership in X .
Theorem 1. Given a linear scoring function Σ, a secure NIZKPoK NIZK, a secure HTLP, and a packing scheme
(PSetup,Pack,Unpack), the Cicada protocol ΠΣ (Figure 2) is a secure time-locked voting/auction protocol.

Intuitively, submission privacy follows from the security of the HTLP and zero-knowledge of the NIZK used: the
submission can’t be opened before time T and none of the proofs leak any information about it. Non-malleability
is enforced by requiring the NIZK to be a proof of knowledge and including the user’s identity i in the instance
to prove, e.g., including it in the hash input of the Fiat-Shamir transform. This prevents a malicious actor from
replaying a different user’s ballot correctness proof. We delegate the full proof to Appendix E.

As we will see next, this captures many common schemes such as cumulative voting and sealed-bid auctions.
We note that Cicada introduces a crucial design choice via the packing parameter ℓ ∈ [m], which defines a storage-
computation trade-off that we detail in Section 7.2.

8

The Cicada Framework
Let Σ : Xn → Y be an linear voting/auction scheme where X = [0, w]m, HTLP a linear HTLP, T ∈ N a time
parameter representing the election/auction length, and (PSetup,Pack,Unpack) a packing scheme. Let NIZK

be a NIZKPoK for submission correctness (language depends on Σ,HTLP; see Section 6.2) and PoE a proof of
exponentiation(see Section 6.1).

Setup(1λ, T, ℓ)
R→ (pp,Z). Set up the public parameters ppNIZK

R← NIZK.Setup(1λ), pptlp
R← HTLP.Setup(1λ, T),

and pppack ← PSetup(ℓ, w). Let Z = {Zj}j∈[m/ℓ] where Zj
R← HTLP.Gen(0). Output pp :=

(pptlp, pppack, ppNIZK) and Z.

Seal(pp, i,vi)
R→ (Zi, πi). Parse vi := vi,1||. . . ||vi,m/ℓ. Compute Zi,j ← HTLP.Gen(Pack(vi,j)) ∀j ∈ [m/ℓ] and

πi ← NIZK.Prove((i,Zi),vi). Output (Zi := {Zi,j}j∈[m/ℓ], πi)

Aggr(pp,Z, i,Zi, πi)→ Z ′. If NIZK.Verify((i,Zi), πi) = 1, update Z to Z ⊞ Zi.

Open(pp,Z)→ (S, πopen). Parse Z := {Zj}j∈[m/ℓ] and solve for the encoded tally S = {sj}j∈[m/ℓ] where
sj ← HTLP.Solve(Zj). Prove the correctness of the solution(s) as πopen ← PoE.Prove(S,Z, 2T) and
output (S, πopen).

Finalize(pp,Z,S, πopen)→ {y,⊥}. If PoE.Verify(S,Z, 2T , πopen) ̸= 1, return ⊥. Otherwise, parse S :=
{sj}j∈[m/ℓ] and let v := v1||. . . ||vm/ℓ, where vj ← Unpack(sj) ∀j ∈ [m/ℓ]. Output y such that y = Σ(v).

Figure 2: The Cicada framework for non-interactive private auctions and elections.

Additive voting. Many common voting schemes are “additive”, meaning each ballot (a length-m vector) is
simply added to the tally, and a finalization function f is applied to the tally after the voting phase has ended to
determine the winner. Additive voting schemes include first-past-the-post (FPTP), approval, range, and cumulative
voting. Simple ranked-choice voting schemes, e.g., Borda count [Eme13], are also additive, differing only in what
qualifies as a “proper” ballot (restrictions on vector entry domain, vector norm, etc.; see Table 2). Thus, we can
use Cicada to instantiate private voting protocols for all these schemes.

Sealed-bid auctions. The Cicada framework can also be used to implement a sealed-bid auction with a number
of HTLPs which is independent of the number of participants n. Assuming bids are bounded by M , we use an
HTLP with solution space X such that |X | > Mn. Each user i submits Zi ← HTLP.Gen(bidi) and πi, where
πi proves 0 ≤ bidi ≤ M . A packing of the bids is computed at aggregation time, with Aggr updating Z to
Z ⊞ (M i−1 ·Zi). After the bidding phase, the final “tally” is opened to s∗ and the bids are recovered as Bids := {s∗
mod M i−1}i∈[n]. Any payment and allocation function can now be computed over the bids; in the simplest case,
the winner is argmaxi(Bids) and their payment is maxi(Bids). Notice that the full set of bids is revealed after
the auction concludes. This cannot be avoided when using Cicada with linear HTLPs, since maxi is a nonlinear
function, i.e., it cannot be computed it homomorphically.

Locking up collateral is necessary for every (private) auction scheme. We treat the problem of collateral lock-up
as an important but orthogonal problem and refer to [TAF+23] for an extensive discussion.

6 Ballot/bid correctness proofs

6.1 Proof of Solution

During the finalization phase of our protocol, any party can solve the final HTLP off-chain and submit a solution
to the contract. To enforce the correctness of this solution we require the solver to include a proof of the following
relation:

RPoS = {((h, y, u, v, w ∈ G, s ∈ Z);⊥) : w = u2
T ∧ v = wys ∈ G} (3)

This can be realized as the conjunction of two proofs of exponentiation [Pie18, Wes19] for w = u2
T

and ys = v/w.
In more detail, a Proof of Exponentiation (PoE) [Pie18, Wes19] is a proof for the following relation:

RPoE = {((u,w ∈ G, x ∈ Z);⊥) : w = ux ∈ G}

9

Note that there is no witness in the RPoE relation, i.e., the verifier knows the exponent x. The primary goal
of the PoE proof system for the verifier is to outsource a possibly large exponentiation in a group G of unknown order.

Wesolowski’s proof of exponentiation protocol (PoE)

Public parameters: G
R← GGen(λ).

Public inputs: u,w ∈ G, x ∈ Z.
Claim: ux = w.

1. V sends l
R← Primes(λ) to P.

2. P computes q = ⌊xl ⌋ ∈ Z ∧ r ∈ [l], where x = ql + r. P sends Q = uq ∈ G to V.

3. V computes r = x mod l.

V accepts iff w = Qlur.

Observe that the verifier sends a prime number as a challenge. When we make this protocol non-interactive via the
Fiat-Shamir transform, we use a standard HashToPrime(·) function to generate the correct challenge for the prover.
In our implementation, we use the Baillie-PSW primality test [PSW80] to show that a randomly hashed challenge
is indeed prime.

6.2 Proofs of well-formedness

To prove that HTLP ballots are well-formed during the submission phase, we will use several different proofs of
knowledge about TLP solutions. We assume HTLPs of the form (u, v) = (gr, hrys) ∈ G1 × G2, where G1,G2

are groups of unknown order. This captures all known constructions of HTLPs: in the case of the Paillier HTLP

(Construction 3), G1 = JN , G2 = Z∗
N2 , h = (g2

T

)N , and y = 1 + N . For the exponential ElGamal HTLP

(Construction 5), G1 = G2 = Z∗
N , h = g2

T

, and y ∈ G1. And for the class group HTLP [TCLM21], G1,G2 are

cyclic subgroups of the respective class groups Cl(∆K), Cl(q2∆K), respectively, h = ψq(G
2T) where G is a generator

of G1 and ψq : Cl(∆K) → Cl(q2∆K) is an injective map, and y ∈ G2 is the generator of a subgroup in which the
discrete logarithm problem is easy (see [TCLM21] for details). Most of our protocols make use of the fact that for
such HTLPs, v has the same structure as a Pedersen commitment [Ped92].

Since we are operating in groups of unknown order, to circumvent the impossibility result of [BCK10] and
achieve negligible soundness error for Schnorr-style sigma protocols, we assume access to some public element(s) of
G1,G2 whose representations are unknown. We prove security assuming G1,G2 are generic groups output by some
randomized algorithm GGen(λ). For more on instantiating Schnorr-style protocols in groups of unknown order
while maintaining negligible soundness error, see [BBF19].

Well-formedness and knowledge of solution. To prove knowledge of a puzzle solution in zero-knowledge, our
starting point is the folklore Schnorr-style protocol for knowledge of a Pedersen-committed value. Our protocol
zk-PoKS is shown below.

10

zkPoK of TLP solution (zk-PoKS)

Public parameters: G1,G2
R← GGen(λ), b > 22λ|Gi| ∀i ∈ {1, 2}, and g ∈ G1, h, y ∈ G2.

Public input: HTLP Z = (u, v).
Private input: s, r ∈ Z such that Z = (gr, hrys).

1. P samples α, β
R← [−b, b] and sends A := hαyβ , B := gα to V.

2. V sends a challenge e
R← [2λ].

3. P computes w = re+ α and x = se+ β, which it sends to V.

V accepts iff the following hold:

veA = hwyx

ueB = gw

Equality of solutions. Again, our starting point is the folklore protocol of equality of Pedersen-committed
values: given two HTLPs with second terms v1, v2, if the solutions are equal the quotient is v1/v2 = hr1−r2 . To
prove the equality of the solutions, it therefore suffices to show knowledge of the discrete logarithm of v1/v2 with
respect to h using Schnorr’s classic sigma protocol [Sch89] with the previously described adjustments. Because of
its simplicity we do not explicitly write out the protocol, which we will refer to as zk-PoSEq.

Binary solution. In an FPTP (or majority) vote for m = 2 candidates, users only need to prove that their ballot
(gr, hrys) encodes 0 or 1. More formally, users prove the statement (u = gr ∧ v = hr)∨ (u = gr ∧ vy−1 = hr). This
can be proved using the OR-composition [CDS94] of two discrete logarithm equality proofs [CP92] with respect to
bases g and h and discrete logarithm r. A similar proof strategy could be applied if the user has multiple binary
choices, e.g., approval and range voting. The OR-composition of multiple discrete logarithm equality proofs yields
a secure ballot correctness proof for those voting schemes.

Positive solution. We use Groth’s trick [Gro05], based on the classical Legendre three-square theorem from
number theory, to show that a puzzle solution s is positive by showing that 4s + 1 can be written as the sum of
three squares. Our protocol deals only with the second component of the TLP, making use of the proof of solution
equality (zk-PoSEq) described above and a proof that a TLP solution is the square of another (zk-PoKSqS, described
next).

Proof of positive solution (zk-PoPS)

Public parameters: G2
R← GGen(λ), a secure HTLP, and h, y ∈ G2.

Public input: v ∈ G2 such that (·, v) ∈ Im(HTLP.Gen).
Private input: s, r ∈ Z such that v = hrys and s > 0.

1. Find three integers s1, s2, s3 ∈ Z such that 4s + 1 = s21 + s22 + s23 and, for each j = 1, 2, 3, compute two
HTLPs:

Zj ← HTLP.Gen(sj)

Z ′
j ← HTLP.Gen(s2j)

2. Use zk-PoKSqS to compute a proof σj of square solution for each pair (Zj , Z
′
j) for j = 1, 2, 3.

3. Use zk-PoSEq to compute a proof σeq of solution equality for 4 · Z ⊞ 1 and Z ′
1 ⊞ Z ′

2 ⊞ Z ′
3.

The full proof consists of (σ1, σ2, σ3, σeq), all computed with the same challenge e ∈ [2λ].

Square solution. To prove that a puzzle solution is the square of another, we use a conjunction of two zk-PoKS

variants which proves knowledge of the same solution with respect to different bases. In particular, we consider

11

only the second terms v1 = hr1ys and v2 = hr2ys
2

. We use the fact that v2 can be rewritten as hr2−r1svs1 and prove
that its opening w.r.t. base v1 equals the opening of v1.

Proof of square solution (zk-PoKSqS)

Public parameters: G2
R← GGen(λ), b > 22λ|G2|, and h, y ∈ G2.

Public input: v1, v2 ∈ G2.
Private input: s, r1, r2 ∈ Z such that v1 = hr1ys and v2 = hr2ys

2

= hr2−r1svs1.

1. P samples α1, α2, β
R← [−b, b] and sends A1 := hα1yβ , A2 := hα2vβ1 to V.

2. V sends a challenge e
R← [2λ].

3. P computes w1 = r1e+ α1, w2 = (r2 − r1s)e+ α2, and x = se+ β, which it sends to V.

V accepts iff the following hold:

ve1A1 = hw1yx

ve2A2 = hw2vx1

Quadratic voting [LW18]. Each voter i submits two linear HTLPs: Ztally
i containing si and Z

norm
i containing

s2i , where si is an encoding of the ballot bi. Z
tally
i will be accumulated into the running tally as usual, and Znorm

i

will be used to enforce the norm bound. A well-formed sealed ballot is therefore of the form Zi = (Ztally
i , Znorm

i)
such that:

Check #1. The vector entries enclosed in Znorm
i are the squares of those enclosed in Ztally

i .

Check #2. Znorm
i has ℓ1 norm strictly equal to w.1

The first check is much simpler and more efficient when using RNS packing. Recall that with this packing,
a solution s encodes the ballot (b1, . . . , bm) as s mod pj ≡ bj ∀j ∈ [m], and that this encoding is fully SIMD
homomorphic. It follows that s2 mod pj ≡ b2j for all j ∈ [m].2 With the RNS packing it therefore suffices to prove

a square relationship once for the puzzles encoding s and s2 (e.g., using zk-PoKSqS) rather than m times for all the
vector entries. This is in contrast to the PNS packing used by all previous private voting schemes in the literature,
where the absence of a multiplicative homomorphism would require proving the square relationship for every vector
entry individually.

Regardless of the vector encoding, the second check is more involved: the user needs to open a sum of vector
entries (the residues) without revealing the entries (residues) themselves. One approach is for the user to commit
to each vector entry in Znorm

i , i.e., aij = s2i mod pj , with a Pedersen commitment, and use a variant proof of
knowledge of exponent modulo pj (PoKEMon [BBF19]) to show the commitments contain the appropriate values
aij . Then, it can open the sum of the commitments. PoKEMon proofs are batchable, so the contract can verify
them efficiently and check that the sum of the commitments opens to w.

7 Performance evaluation

We evaluate three instantiations of our Cicada framework (Section 5): binary voting, cumulative voting, and a
sealed-bid auction. We chose these schemes as they are the most often deployed in today’s blockchain ecosys-
tems [Ope23, Opt, XWY+21]. We use the PNS packing system because, for these schemes, it results in more
efficient NIZKs than RNS.

1We make this stricter requirement to simplify the norm check. Note that voters should be incentivized to submit such votes, since
it maximizes their voting power.

2Assuming s2j < pj for all j, which in our case will hold regardless, we set each pj < nw to avoid overflow when adding ballots and

s2j ≤ w < nw.

12

required storage and the complexity of the group operation. On the other hand, due to its larger solution space,
the Paillier HTLP supports much broader parameter settings for a given security parameter.

Class group HTLP Class group offer the sole HTLP construction without a trusted setup [TCLM21]. This
comes at the cost of the largest groups for a given security parameter. Class groups are not widely supported
by major cryptographic libraries, and their costly group operation makes blockchain deployment difficult. We are
unaware of any class group implementations for Ethereum smart contracts.

Impractical parameter settings Accommodating very large settings of n,w,m,M requires larger groups, lead-
ing to group operations and storage requirements which are intolerably inefficient for certain applications.

7.2 Implementation

We implemented our transparent on-chain coordinator as an Ethereum smart contract in Solidity.3 For efficiency,
we use the exponential ElGamal HTLP with a 1024-bit modulus N . To enable 1024-bit modular arithmetic in Z∗

N ,
we developed a Solidity library which may be of independent interest. This size of N corresponds to approximately
λ = 80 bits of security. Although this security level is no longer deemed cryptographically safe, the secrecy of the
HTLP solutions is only guaranteed up to time T regardless, so this security level will suffice for our use case as long
as the best-known factoring attack takes at least T time. A 2012 estimate for factoring 1024-bit integers is about a
year [BHL12], which is significantly longer than the typical submission period of a decentralized auction or election.

The main factors influencing gas cost (see Section 7.3) are submission size, correctness proof size, and verification
complexity. These factors mainly depend on the packing parameter ℓ ∈ [m], which determines a storage-computation
trade-off with the following extremes:

One aggregate HTLP for all. If ℓ = m, the contract maintains a single aggregate HTLP Z. This greatly reduces
the on-chain space requirements of the resulting voting or auction scheme at the expense of typically more
complex and larger submission correctness proofs.

One aggregate HTLP per candidate. If ℓ = 1, the contract must maintain m aggregate HTLPs {Zj}j∈[m].
This increases the on-chain storage, but the submissions of correctness proofs become smaller and cheaper to
verify.

In Section 7.3, we empirically explore this trade-off space by measuring the gas costs of various deployments of our
framework with a range of parameter settings M,n,m,w, ℓ.

First, we briefly describe the proof systems used for each scheme we implement; detailed descriptions are given
in Section 6.

Binary voting. In a binary vote (i.e., approval voting with m = 1), such as a simple yes/no referendum, users
prove that the submitted ballot Z = (u, v) is an exponential ElGamal HTLP with solution 0 or 1: (u = gr ∧ v =
hr) ∨ (u = gr ∧ vy−1 = hr). This is achieved via OR-composition [CDS94] of two sigma protocols for discrete
logarithm equality [CP92].

Cumulative voting. In cumulative voting, each user distributes w votes among m candidates. To accommodate
a larger number of candidates, our implementation keeps m tally HTLPs Zj , one for each candidate (in other
words, ℓ = 1). Each voter i submits m ballots Zij = (grij , hrijysij) for all j ∈ [m]. Besides proving (using the
protocol zk-PoKS) that each HTLP is well-formed (the same rij is used in both terms), the voter must prove that
0 ≤ sij ∀ j ∈ [m] and

∑m
j=1 sij = w. The first condition is shown with a proof of positive solution (zk-PoPS) via

Legendre’s three-square decomposition theorem [Gro05]. As a building block, we use a proof of square solution
(zk-PoKSqS) to show that a puzzle solution is a square. The second condition is proven by providing the randomness
Ri =

∏

j rij which opens
∏

j Zij to w.

3Open-sourced at https://github.com/a16z/cicada.

14

Cumulative vote (ℓ = 1)

m 2 3 4 5 6

Aggr 3, 391, 514 5, 081, 542 6, 781, 389 8, 489, 786 10, 208, 185
Finalize 269, 505 397, 789 521, 895 644, 814 770, 934

Sealed-bid auction (ℓ = 1) Sealed-bid auction (ℓ = b)

b 8 10 12 14 16 any

Aggr 3, 586, 022 4, 488, 050 5, 394, 047 6, 304, 164 7, 218, 905 3,055,107
Finalize 1, 005, 208 1, 253, 119 1, 497, 760 1, 749, 489 2, 003, 282 147, 634

Table 3: Gas costs for Cicada cumulative voting and sealed-bid auctions with various numbers of candidates m, bid
bit-lengths b (max. bid M = 2b−1), and packing parameters ℓ.

Sealed-bid auction. To illustrate two extremes of the packing spectrum, we implement two flavors of sealed-bid
auctions. The first uses a single aggregate HTLP as described in Section 5 (this can be viewed as ℓ = b, where
b = ⌈log2(M)⌉ is the bit-length of a bid): Bidder i submits a single HTLP Zi = (gri , hriysi), proving well-formedness
with zk-PoKS and two zk-PoPS to show 0 ≤ s ≤ M . The coordinator aggregates the ith bidder’s bid by adding
M i−1 · Zi to its tally.

The second approach applies b aggregate HTLPs (i.e., ℓ = 1): Each bidder i submits b HTLPs {Zij}j∈[b] and
uses the same proof system as in binary voting to prove their well-formedness, i.e., the user inserted for each bit of
the bid 0 or 1. The coordinator adds 2i · Zij to each corresponding aggregate HTLP Zj .

7.3 Empirical Performance Evaluation

Submission costs. The on-chain cost of submitting a bid/ballot is the cost of running the Aggr function by the
contract, i.e., the verification of the well-formedness proofs plus adding the users’ submissions to the tally HTLPs
(if and only if they verify). We report our measurements without packing (i.e., ℓ = 1) in Table 3. Submitting a
binary vote ballot costs 418, 358 gas (≈ 11.02 USD).4 For cumulative voting, the submission cost scales linearly in
m: with m = 2 candidates, submitting a ballot costs 3, 391, 514 gas (≈ 94.49 USD), and each additional candidate
adds ≈ 1, 699, 847 gas (≈ 44.79 USD).

An auction with a single HTLP for each bit of the bid (the ℓ = 1 case) requires a submission cost of 3, 586, 022
gas (≈ 94.49 USD) for an 8-bit bid. Every additional bit in the submitted bid burns ≈ 451, 014 gas (≈ 11.89 USD).

On the other hand, if one applies packing, i.e., ℓ = b, then the cost of submitting a sealed bid is constant at
3, 055, 107 gas (≈ 80.50 USD). As seen in Table 3, with bid-space M = 27 it is already more economical to have a
single aggregate HTLP and use a packing scheme, despite more complex bid-correctness proofs.

Finalization costs. Our voting and auction schemes end with solving the tally HTLP(s) off-chain, i.e., computing

(gr)2
T

(= hr). With exponential ElGamal, solving the puzzle also requires a brute-force discrete logarithm com-
putation by the off-chain solver. The correctness of this computation is proven to the contract with Wesolowski’s
PoE [Wes19](recalled in Section 6). The Finalize cost comes from verifying the PoE(s) on-chain, which burns 101, 066
gas (≈ 2.66 USD) per proof. Without packing, the untrusted solver must provide a Wesolowski proof per tally
HTLP, so the Finalize gas cost is linear in the number of tally HTLPs, as evidenced by Table 3. A portion of the
Wesolowki verification cost comes from checking that the challenge is a prime number. In our implementation, the
prover provides a Baillie-PSW [PSW80] primality certificate, whose verification cost is 44, 972 gas (≈ 1.18 USD).

Verification costs We implemented the sigma protocols described in Section 6 in Solidity and report their
verification costs in Table 4. Recall that with Groth’s trick [Gro05] in the proof of positivity (zk-PoPS), we must to
decompose the integer solution into the sum of only three squares. Therefore, the gas cost of verifying zk-PoPS is
equal to the cost of verifying three proofs of knowledge of square solutions (zk-PoKSqS) and one proof of knowledge
of equal solution (zk-PoSEq).

In the short-term, deploying on Layer 2 (L2) already brings these costs down by 1–2 orders of magnitude. For

4We can estimate gas costs for approval voting using the cost of binary voting, as the former uses a disjunction of m copies of the
same NIZK and thus scales linearly.

15

Sigma protocol Verification gas cost

Proof of Exponentiation (PoE [Wes19]) 101, 066
PoK of solution (zk-PoKS) 266, 096
Proof of solution equality (zk-PoSEq) 336, 155
Proof of square solution(zk-PoKSqS) 336, 168
Proof of positive solution (zk-PoPS) 1, 351, 958

Table 4: EVM gas costs of verification for the proof systems described in Section 6.

example, when deploying our implementation on the Optimism L2 rollup, casting a binary vote would cost less
than US$0.30. Further optimizations (e.g., Karatsuba multiplication [KO62], batched Wesolowski proof verifica-
tion [Rot21], or verification via efficient zkSNARKs [Gro16, GWC19]) can bring the costs down even more.

8 Extensions

This section introduces extensions to the Cicada framework that may be useful in future applications.

8.1 Everlasting ballot privacy for HTLP-based protocols

The basic Cicada framework does not guarantee long-term ballot privacy. Submissions are public after the Open

stage. This is because users publish their HTLPs on-chain: once public, the votes contained in the HTLPs are only
guaranteed to be hidden for the time it takes to compute T sequential steps, after which point it is plausible that
someone has computed the solution. In many applications, it is desirable that individual ballots remain hidden even
after voting has ended since the lack of everlasting privacy may facilitate coercion and vote-buying. As mentioned
in Section 4, this can be achieved modularly by first decoupling the ballots from their voters via a privacy-enhancing
overlay. Alternatively, we describe how the Seal procedure can be modified to prevent the opening of individual
ballots, achieving everlasting privacy.

Observe that all known efficient HTLP constructions are of the form (u, v) = (gr, h′
r
X),5 where the solution is

encoded in X and recovering it requires recomputing hr = (gr)2
T

via repeated squaring of the first component. Our
insight is that the puzzle information-theoretically hides the solution X without the first component. Importantly,
publishing gr is not necessary in any of our HTLP-based voting protocols except as a means to verifiably compute
the first component of the final HTLP, i.e., gR = g

∑
i∈[n] ri . The observation that gR can be computed without

revealing the individual values gri enables us to construct the first practical and private voting protocols that
guarantee everlasting ballot privacy with a single on-chain round.

For simplicity, consider a protocol in which both the ballot of user i and the tally consists of a single HTLP,
respectively Zi = (gri , hriXi) and Z = (gR, hRX). Observe that for everlasting ballot privacy, updates to Z
must inherently be batched: a singleton update Aggr(pp, Z, Zi, π) → (gR+ri , hR+riY) (for some Y) would reveal
gri = gR+ri/gR, which is the opening information to Zi, as the quotient of the first component of Z after and
before the update. Hence, the ballot Xi of user i would be recoverable in T sequential steps, i.e., after computing

hri = (gri)2
T

.
Batching ballot submissions off-chain in groups of k allows parties to achieve everlasting privacy as long as at

least one party is honest. The parties aggregate their submissions off-chain as (gR, hRX) = (
∏

i g
ri ,

∏

i h
riXi) and

compute a proof πbatch of well-formedness in a distributed-prover zero-knowledge proof protocol [DPP+21]. We use
the observation that the individual second components vi are hiding to optimize the batching by computing hRX
in the clear, See Figure 5 for the details of the protocol.

This idea opens up a new design space for the MPC protocol used for batching, such as doing the randomness
generation in a preprocessing phase instead, allowing dynamic additions to the anonymity set, optimizing the batch
proof generation, and dealing with parties who fail to submit. We leave the full exploration of this large design
space and related questions to future work.

5In the exponential ElGamal case, h′ = h, while in the Paillier construction, h′ = hN (see Appendix A.1). We will drop the tickmark
on h′ in the remainder of this section to avoid notational clutter.

16

Off-chain batching

Public parameters: A semiprime N and h, y ∈ Z∗
N , a voting scheme Σ : Xn → Y.

Let P1, . . . , Pk be a group of k < n parties with addresses addr1, . . . , addrk wishing to batch their bal-
lots (ui, vi) := (gri , hriXi).

1. Each party broadcasts vi. Now, every party can compute v :=
∏

i vi = hRX, which encodes the sum of
their submissions.

2. The parties use an k − 1 malicious-secure MPC protocol [DKL+13, Kel20] on inputs ui to compute
u :=

∏

i ui = gR.

3. They also compute two distributed-prover zero-knowledge proofs [DPP+21] in the MPC: (i) a discrete
logarithm equality proof πR that dlogg(u) = dlogh(v) with distributed witness R, and (ii) a submission
correctness proof πs that the aggregated solution s encoded in X is consistent with the sum of k valid
submissions, i.e., s ∈ k · X . Let πbatch = (πR, πs).

4. Finally, each party signs the final aggregated submission Zbatch = (u, v).

Output: (Zbatch, πbatch, {addr1, . . . , addrk}, {σ1, . . . , σk}).

On-chain batched ballot submission

Public parameters: Cicada public parameters pp.

1. The designated party P1 submits Zbatch, πbatch, {addr1, . . . , addrk}, {σ1, . . . , σk} to the tallying contract,
which verifies the proofs and signatures, and adds (u, v) to the tally HTLP Z as in the basic protocol.

2. If P1 doesn’t submit by time T − τ , any other party in the batch group can submit instead.

Figure 5: The on- and off-chain ballot batching protocols that k < n parties can use to achieve everlasting ballot
privacy.

17

8.2 Succinct ballot-correctness proofs

Real-world elections often have hundreds of candidates, e.g., Optimism’s retroactive public good funding [Opt].
However, the state-of-the-art ballot correctness proofs [BBCG+23, Gro05] for all voting schemes (e.g., majority,
approval voting, etc.) are linear in the number of candidates, rendering these schemes impractical in the blockchain
setting. To counter these issues, we design constant-size ballot correctness proofs with constant verification time at
the expense of an added preprocessing phase. The high-level idea is as follows. All correct ballots (e.g., {Pack(s) : s ∈
{0, 1}m} in the case of approval voting) are inserted into an accumulator or polynomial commitment (PC) [KZG10]

during a transparent preprocessing phase. When users submit their votes Z
R← HTLP.Gen(s), they prove in zero-

knowledge that Z encodes a correct ballot, i.e., the users show that the solution s of Z had been previously
inserted into the accumulator or PC with a succinct (blinded) membership proof [ZBK+22]. We detail our succinct
ballot-correctness proof using the KZG commitment in Appendix C.

8.3 Coercion-resistance

Lastly, we briefly outline how one could add coercion resistance [JCJ05] to our framework. In the e-voting literature,
there are two main pathways to obtaining coercion resistance: receipt-freeness or allowing unlikable revotes. Receipt-
freeness seems challenging to achieve in the blockchain context, and we leave it to future work. Therefore, we follow
the revoting paradigm akin to Lueks et al. [LQAT20]. One can allow indistinguishable revotes as follows. We could
store our ballots in a zero-knowledge set (e.g., Semaphore is a readily available implementation of this concept for
Ethereum [Eth19]). Additionally, a Merkle tree of nullifiers would be also stored on-chain containing the ballots
that are revoked due to revoting. Whenever users want to revote, they could prove in zero-knowledge that they
revoke a previous ballot that they inserted in the zero-knowledge set while they reveal the accompanying nullifier
and insert it into the nullifier tree. We leave it to future work to flash out the technical details and implementation
of this important added feature.

9 Related work

The cryptographic literature on both voting schemes and sealed-bid auctions is enormous, dating to the 1990s.
However, most of these schemes are unsuitable for a fully decentralized and trust-minimized setting due to their in-
efficiency or reliance on trusted parties, i.e., tally authorities, servers running the public bulletin board, auctioneers,
etc. Below, we review auction and voting protocols that use a blockchain as the public bulletin board.

Voting. The study of voting schemes for blockchain applications dates to at least 2017, when McCorry et
al. [MSH17] proposed a “boardroom” voting protocol for DAO governance. The main disadvantage of their protocol
is that the entire protocol can be aborted due to a single party. Groth [Gro05] and Boneh et al. [BBCG+23] develop
techniques to create ballot correctness proofs for various voting schemes. These protocols all have proofs with size
linear in the number of candidates. We break this barrier with the application of polynomial commitments and
assuming a transparent, lightweight pre-processing phase. The application of HTLPs to voting was suggested when
they were proposed by Malavolta and Thyagarajan [MT19]. However, they left the details of making such a protocol
practical, secure, and efficient to future work. We aim to fill this gap with our techniques for various election types
and our EVM implementation.

Auctions. Auctions are a natural fit for blockchains and were suggested as early as 2018 [GY18], albeit with a
trusted auctioneer. Bag et al. introduced SEAL, a privacy-preserving sealed-bid auction scheme without auction-
eers [BHSR19]. However, their protocol employs two rounds of communication, since they apply the Hao-Zielinski
Anonymous Veto network protocol [HZ06]. Tyagi et al. proposed Riggs [TAF+23], a fair non-interactive auction
scheme using timed commitments [FKPS21, §6]. This is perhaps the closest work to ours in implementing auctions
(though not voting) in a fully decentralized setting using time-based cryptography, though their design does not
utilize homomorphism to combine puzzles. As a result, gas costs are high and to achieve practicality Riggs relies
on an optimistic second round in which users voluntarily open their puzzles. Chvojka et al. suggest a TLP-based
protocol for both e-voting and auctions [CJSS21]. Their protocol has a per-auction trusted setup. In Appendix D,
we propose a distributed setup protocol to reduce the trust assumption, which may be of independent interest.

Time-based cryptography. Time-based cryptography, which uses inherently sequential functions to delay the
revelation of information, also has a lengthy history dating to Rivest, Shamir, and Wagner’s proposal of time-lock

18

encryption in 1996 [RSW96]. Numerous variants have emerged since then, including timed commitments [BN00],
proofs-of-sequential-work [MMV13], VDFs [BBBF18], and homomorphic time-lock puzzles [MT19], which we employ
here. For a recent survey, we refer the reader to Medley et al. [MLQ23]. The only practical work we know of taking
advantage of HTLPs is Bicorn [CATB23], which builds a distributed randomness beacon with a single aggregate
HTLP for an arbitrary number of entropy contributors.

10 Conclusion and Future Directions

In this work, we introduced Cicada, a framework for creating non-interactive private auction and voting schemes
from HTLPs. Cicada is compatible with many popular schemes, including majority, approval, range, cumulative,
ranked-choice, and quadratic voting as well as single-item sealed-bid auctions. We include a performance evaluation
which shows that these schemes can be deployed todayon Ethereum, although with gas costs up to hundreds of
dollars. When deployed on a Layer 2 chain, these costs decrease by 1–2 orders of magnitude to a few dollars,
resulting in a promising paradigm for efficiently achieving voting and auctions with strong properties.

Acknowledgements. We thank Foteini Baldimtsi, Jeremy Clark, Brett Falk, and Elaine Shi for insightful discus-
sions. This work was supported by a16z crypto research. Joseph Bonneau was additionally supported by DARPA
Agreement HR00112020022 and NSF grant CNS-2239975. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the authors and do not necessarily reflect the views of the United
States Government, DARPA, a16z, or any other supporting organization.

19

References

[Adi08] Ben Adida. Helios: Web-based open-audit voting. In USENIX Security, 2008. [page 2.]

[AHK17] Shahzad Asif, Md Selim Hossain, and Yinan Kong. High-throughput multi-key elliptic curve cryp-
tosystem based on residue number system. IET Computers & Digital Techniques, 11(5), 2017. [page 8.]

[AM23] Aydin Abadi and Steven J. Murdoch. Decentralised Repeated Modular Squaring Service Revisited:
Attack and Mitigation. Cryptology ePrint Archive, Paper 2023/1347, 2023. [page 3.]

[AOZZ15] Joël Alwen, Rafail Ostrovsky, Hong-Sheng Zhou, and Vassilis Zikas. Incoercible multi-party computa-
tion and universally composable receipt-free voting. In CRYPTO, 2015. [page 2.]

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In CRYPTO,
2018. [page 19.]

[BBCG+23] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Arithmetic sketching.
In CRYPTO, 2023. [page 18.]

[BBF19] Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for accumulators with applications
to iops and stateless blockchains. In CRYPTO, 2019. [pages 6, 10, 12, 26, 28, and 29.]

[BCK10] Endre Bangerter, Jan Camenisch, and Stephan Krenn. Efficiency limitations for σ-protocols for group
homomorphisms. In TCC, 2010. [page 10.]

[BCM05] Endre Bangerter, Jan Camenisch, and Ueli Maurer. Efficient proofs of knowledge of discrete logarithms
and representations in groups with hidden order. In PKC, 2005. [page 6.]

[BDJ+06] Peter Bogetoft, Ivan Damg̊ard, Thomas Jakobsen, Kurt Nielsen, Jakob Pagter, and Tomas Toft. A
practical implementation of secure auctions based on multiparty integer computation. In Financial
Crypto, 2006. [page 2.]

[BDM06] Jean-Claude Bajard, Sylvain Duquesne, and Nicolas Méloni. Combining Montgomery Ladder for El-
liptic Curves Defined over Fp and RNS Representation. PhD thesis, LIR, 2006. [page 8.]

[BF01] Dan Boneh and Matthew Franklin. Efficient generation of shared RSA keys. Journal of the ACM
(JACM), 48(4):702–722, 2001. [page 6.]

[BGG18] Sean Bowe, Ariel Gabizon, and Matthew D Green. A multi-party protocol for constructing the public
parameters of the Pinocchio zk-SNARK. In Financial Crypto, 2018. [page 27.]

[BHL12] Daniel J Bernstein, Nadia Heninger, and Tanja Lange. Facthacks: Rsa factorization in the real world.
https://www.hyperelliptic.org/tanja/vortraege/facthacks-29C3.pdf, 12 2012. [page 14.]

[BHSR19] Samiran Bag, Feng Hao, Siamak F Shahandashti, and Indranil Ghosh Ray. Seal: Sealed-bid auction
without auctioneers. IEEE Transactions on Information Forensics and Security, 15, 2019. [page 18.]

[BN00] Dan Boneh and Moni Naor. Timed commitments. In CRYPTO, 2000. [page 19.]

[BT94] Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections. In STOC, 1994. [page 2.]

[CATB23] Kevin Choi, Arasu Arun, Nirvan Tyagi, and Joseph Bonneau. Bicorn: An optimistically efficient
distributed randomness beacon. Financial Crypto, 2023. [page 19.]

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowledge and simplified
design of witness hiding protocols. In CRYPTO, 1994. [pages 11 and 14.]

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. A homomorphic LWE based
e-voting scheme. In PQC, 2016. [page 2.]

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A Secure and Optimally Efficient Multi-
Authority Election Scheme. In Eurocrypt, 1997. [page 5.]

20

[CHI+21] Megan Chen, Carmit Hazay, Yuval Ishai, Yuriy Kashnikov, Daniele Micciancio, Tarik Riviere, Abhi
Shelat, Muthu Venkitasubramaniam, and Ruihan Wang. Diogenes: Lightweight scalable rsa modulus
generation with a dishonest majority. In IEEE Security and Privacy, 2021. [page 6.]

[CJSS21] Peter Chvojka, Tibor Jager, Daniel Slamanig, and Christoph Striecks. Versatile and sustainable timed-
release encryption and sequential time-lock puzzles. In ESORICS, 2021. [pages 2, 18, 27, and 28.]

[COPZ22] Melissa Chase, Michele Orrù, Trevor Perrin, and Greg Zaverucha. Proofs of discrete logarithm equality
across groups. Cryptology ePrint Archive, 2022. [page 27.]

[CP92] David Chaum and Torben Pryds Pedersen. Wallet databases with observers. In CRYPTO, 1992.
[pages 6, 11, and 14.]

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against adap-
tive chosen ciphertext attack. In CRYPTO, 1998. [page 28.]

[DK02] Ivan Damg̊ard and Maciej Koprowski. Generic lower bounds for root extraction and signature schemes
in general groups. In Eurocrypt, 2002. [page 6.]

[DKL+13] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P Smart. Prac-
tical covertly secure mpc for dishonest majority–or: breaking the spdz limits. In Computer Security–
ESORICS 2013: 18th European Symposium on Research in Computer Security, Egham, UK, September
9-13, 2013. Proceedings 18, pages 1–18. Springer, 2013. [page 17.]

[DM10] Ivan Damg̊ard and Gert Læssøe Mikkelsen. Efficient, robust and constant-round distributed rsa key
generation. In TCC, 2010. [page 6.]

[DPLNS17] Rafaël Del Pino, Vadim Lyubashevsky, Gregory Neven, and Gregor Seiler. Practical quantum-safe
voting from lattices. In ACM CCS, 2017. [page 2.]

[DPP+21] Pankaj Dayama, Arpita Patra, Protik Paul, Nitin Singh, and Dhinakaran Vinayagamurthy. How to
prove any np statement jointly? efficient distributed-prover zero-knowledge protocols. Cryptology
ePrint Archive, 2021. [pages 16 and 17.]

[EL03] Edith Elkind and Helger Lipmaa. Interleaving cryptography and mechanism design: The case of online
auctions. Cryptology ePrint Archive, Paper 2003/021, 2003. [page 1.]

[Eme13] Peter Emerson. The original Borda count and partial voting. Social Choice and Welfare, 40:353–358,
2013. [pages 4 and 9.]

[Eth19] Ethereum Foundation. Semaphore: a zero-knowledge set implementation for ethereum, May 2019.
[pages 7 and 18.]

[Exp] Privacy Scaling Explorations. Perpetual powers of tau. [page 27.]

[FG14] Jon Fraenkel and Bernard Grofman. The Borda Count and its real-world alternatives: Comparing
scoring rules in Nauru and Slovenia. Australian Journal of Political Science, 49(2), 2014. [page 4.]

[FKPS21] Cody Freitag, Ilan Komargodski, Rafael Pass, and Naomi Sirkin. Non-malleable time-lock puzzles and
applications. In TCC, 2021. [pages 6 and 18.]

[FMW22] Robin Fritsch, Marino Müller, and Roger Wattenhofer. Analyzing voting power in decentralized gov-
ernance: Who controls DAOs? arXiv preprint arXiv:2204.01176, 2022. [page 1.]

[FOO93] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting scheme for large scale
elections. In Auscrypt, 1993. [page 2.]

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification and signature
problems. In CRYPTO, 1986. [page 29.]

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, 2009. [page 2.]

[GG22] Aayush Gupta and Kobi Gurkan. Plume: An ecdsa nullifier scheme for unique pseudonymity within
zero knowledge proofs. Cryptology ePrint Archive, Paper 2022/1255, 2022. [page 1.]

21

[Gro05] Jens Groth. Non-interactive zero-knowledge arguments for voting. In ACNS, pages 467–482, 2005.
[pages 6, 8, 11, 14, 15, 18, and 30.]

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Eurocrypt, 2016. [page 16.]

[GTN11] Mahadevan Gomathisankaran, Akhilesh Tyagi, and Kamesh Namuduri. Horns: A homomorphic en-
cryption scheme for cloud computing using residue number system. In CISS, 2011. [page 8.]

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over Lagrange-
bases for Oecumenical Noninteractive arguments of Knowledge. Cryptology ePrint Archive, Paper
2019/953, 2019. [page 16.]

[GY18] Hisham S. Galal and Amr M. Youssef. Verifiable sealed-bid auction on the ethereum blockchain.
Cryptology ePrint Archive, Paper 2018/704, 2018. [pages 1, 2, and 18.]

[HS00] Martin Hirt and Kazue Sako. Efficient receipt-free voting based on homomorphic encryption. In
Eurocrypt, 2000. [page 8.]

[HZ06] Feng Hao and Piotr Zieliński. A 2-round anonymous veto protocol. In Security Protocols Workshop,
2006. [page 18.]

[JCJ05] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic elections. In WPES,
2005. [page 18.]

[Kel20] Marcel Keller. MP-SPDZ: A versatile framework for multi-party computation. In Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications Security, 2020. [page 17.]

[KL51] Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathematical
statistics, 22(1):79–86, 1951. [page 26.]

[KO62] Anatolii Alekseevich Karatsuba and Yu P Ofman. Multiplication of many-digital numbers by automatic
computers. Doklady Akademii Nauk, 145(2):293–294, 1962. [page 16.]

[KPT+22] Igor Anatolyevich Kalmykov, Vladimir Petrovich Pashintsev, Kamil Talyatovich Tyncherov, Alek-
sandr Anatolyevich Olenev, and Nikita Konstantinovich Chistousov. Error-correction coding using
polynomial residue number system. Applied Sciences, 12(7):3365, 2022. [page 8.]

[KZG10] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. Constant-size commitments to polynomials
and their applications. In Asiacrypt, 2010. [pages 18 and 27.]

[LQAT20] Wouter Lueks, Iñigo Querejeta-Azurmendi, and Carmela Troncoso. VoteAgain: A scalable coercion-
resistant voting system. In USENIX Security, 2020. [page 18.]

[LW18] Steven P Lalley and E Glen Weyl. Quadratic voting: How mechanism design can radicalize democracy.
In AEA Papers and Proceedings, volume 108, 2018. [pages 4 and 12.]

[MLQ23] Liam Medley, Angelique Faye Loe, and Elizabeth A. Quaglia. SoK: Delay-based Cryptography. In
Computer Security Foundations, 2023. [page 19.]

[MMV13] Mohammad Mahmoody, Tal Moran, and Salil Vadhan. Publicly verifiable proofs of sequential work.
In ITCS, 2013. [page 19.]

[MSH17] Patrick McCorry, Siamak F Shahandashti, and Feng Hao. A smart contract for boardroom voting with
maximum voter privacy. In Financial Crypto, 2017. [page 18.]

[MT19] Giulio Malavolta and Sri Aravinda Krishnan Thyagarajan. Homomorphic time-lock puzzles and ap-
plications. In CRYPTO, 2019. [pages 2, 5, 18, 19, 24, 25, and 27.]

[Nef01] C Andrew Neff. A verifiable secret shuffle and its application to e-voting. In ACM CCS, 2001. [page 7.]

[NRBB24] Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan Boneh. Powers-of-tau to the people:
Decentralizing setup ceremonies. In ACNS, 2024. [page 28.]

[Ope23] OpeanSea. How to sell an NFT, June 2023. [pages 1 and 12.]

22

[Opt] Optimism. Optimism RetroPGF 2: Badgeholder manual. Accessed 2023-09-18. [pages 12 and 18.]

[Opt23] Optimism. What is the Optimism Collective?, February 2023. [page 1.]

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Eurocrypt,
1999. [pages 5 and 24.]

[PE] Privacy and Scaling Explorations. Rate-limiting nullifier. https://rate-limiting-nullifier.git

hub.io/rln-docs/. [page 1.]

[PE23] Privacy and Scaling Explorations. Maci: Minimal anti-collusion infrastructure. https://maci.pse.d
ev/, 2023. [pages 1 and 2.]

[Ped92] Torben Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In
CRYPTO, 1992. [page 10.]

[PFPB19] Louiza Papachristodoulou, Apostolos P Fournaris, Kostas Papagiannopoulos, and Lejla Batina. Prac-
tical evaluation of protected residue number system scalar multiplication. In CHES, 2019. [page 8.]

[Pie18] Krzysztof Pietrzak. Simple verifiable delay functions. In ITCS. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2018. [page 9.]

[Pol78] John M Pollard. Monte carlo methods for index computation (mod p). Mathematics of computation,
32(143):918–924, 1978. [page 13.]

[Pre04] Drazen Prelec. A bayesian truth serum for subjective data. science, 306(5695):462–466, 2004. [page 25.]

[PRF23] Mallesh Pai, Max Resnick, and Elijah Fox. Censorship resistance in on-chain auctions. arXiv preprint
arXiv:2301.13321, 2023. [page 1.]

[PSS19] Alexey Pertsev, Roman Semenov, and Roman Storm. Tornado cash privacy solution version 1.4.
Tornado cash privacy solution version, 1, 2019. [page 7.]

[PSW80] Carl Pomerance, John L Selfridge, and Samuel S Wagstaff. The pseudoprimes to 25 10ˆ9. Mathematics
of Computation, 35(151):1003–1026, 1980. [pages 10 and 15.]

[Rot21] Lior Rotem. Simple and efficient batch verification techniques for verifiable delay functions. In TCC,
2021. [page 16.]

[RSW96] Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and timed-release crypto.
Technical Report 486, Massachusetts Institute of Technology. Laboratory for Computer Science, 1996.
[pages 2, 4, 5, and 19.]

[San99] Tomas Sander. Efficient accumulators without trapdoor extended abstract. In Information and Com-
munication Security, 1999. [page 6.]

[Sch89] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In CRYPTO, 1989. [pages 6,

11, and 28.]

[SY03] Koutarou Suzuki and Makoto Yokoo. Secure Generalized Vickrey Auction Using Homomorphic En-
cryption. In Financial Cryptography, 2003. [page 1.]

[TAF+23] Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby, Joseph Bonneau, and David Mazières. Riggs:
Decentralized sealed-bid auctions. In ACM CCS, 2023. [pages 9 and 18.]

[TC14] Thian Fatt Tay and Chip-Hong Chang. A new algorithm for single residue digit error correction in
redundant residue number system. In ISCAS, 2014. [page 8.]

[TCLM21] Sri Aravinda Krishnan Thyagarajan, Guilhem Castagnos, Fabian Laguillaumie, and Giulio Malavolta.
Efficient cca timed commitments in class groups. In ACM CCS, 2021. [pages 6, 10, and 14.]

[TGB+21] Sri Aravinda Krishnan Thyagarajan, Tiantian Gong, Adithya Bhat, Aniket Kate, and Dominique
Schröder. Opensquare: Decentralized repeated modular squaring service. In ACM CCS, 2021. [page 3.]

23

[Tha23] Justin Thaler. Proofs, arguments, and zero-knowledge, July 2023. [page 6.]

[VNL+20] M.V. Valueva, N.N. Nagornov, P.A. Lyakhov, G.V. Valuev, and N.I. Chervyakov. Application of the
residue number system to reduce hardware costs of the convolutional neural network implementation.
Mathematics and Computers in Simulation, 177:232–243, 2020. [page 8.]

[Wes19] Benjamin Wesolowski. Efficient verifiable delay functions. In Eurocrypt, 2019. [pages 9, 15, and 16.]

[XWY+21] Pengcheng Xia, Haoyu Wang, Zhou Yu, Xinyu Liu, Xiapu Luo, and Guoai Xu. Ethereum name service:
the good, the bad, and the ugly. arXiv preprint arXiv:2104.05185, 2021. [pages 1 and 12.]

[ZBK+22] Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller, Anca Nitulescu, and Mark
Simkin. Caulk: Lookup arguments in sublinear time. In ACM CCS, 2022. [pages 18 and 27.]

A Extended Preliminaries

In this section, we detail the preliminaries that we could not include in the main body of the paper due to space
constraints.

A.1 HTLP Constructions

Malavolta and Thyagarajan [MT19] give two HTLP constructions with linear and multiplicative homomorphisms,
respectively. They require N to be a strong semiprime, i.e., N = p · q such that p = 2p′ + 1 and q = 2q′ + 1
where p′, q′ are also prime. The linearly-homomorphic HTLP is based on Paillier encryption [Pai99], while the
multiplicative homomorphism is achieved by working over the subgroup JN ⊆ Z∗

N of elements with Jacobi symbol
+1. We recall their constructions in Figure 6.

Correctness of the linear HTLP holds because for all s ∈ ZN and Z = (u, v)← HTLP.Gen(pp, s),

HTLP.Open(pp, Z) =
(v/(hR)N mod N2)− 1

N
=

((1 +N)s)− 1

N
= s (4)

since (1+N)x = 1+Nx mod N2. Correctness of the homomorphism follows since for all linear functions f(x1, x2) =
b+ a1x1 + a2x2 and all Zi = (ui, vi) ∈ Im(HTLP.Gen(pp, si; ri)) for i ∈ {1, 2},6

HTLP.Eval(pp, f, Z1, Z2) = (ua1
1 · ua2

2 , (1 +N)b · va1
1 · va2

2)

= (gr1a1 · gr2a2 , (1 +N)b · hr1Na1 · (1 +N)s1a1 · hr2Na2 · (1 +N)s2a2)

= (gr1a1+r2a2 , h(r1a1+r2a2)·N · (1 +N)b+s1a1+s2a2)

= HTLP.Gen(pp, f(s1, s2); r1a1 + r2a2)

which opens to f(s1, s2) by eq. (4).
The multiplicative HTLP operates over the solution space JN (instead of ZN). It is easy to see that HTLP.Open(pp,

HTLP.Gen(pp, s)) = s for all s ∈ Z∗
N . Furthermore, for all f(x1, x2) = ax1x2 and all Zi = (ui, vi) ∈ Im(HTLP.Gen(pp,

si; ri)) for i ∈ {1, 2},

HTLP.Eval(pp, f, Z1, Z2) = (u1 · u2 mod N, a · v1 · v2 mod N)

= (gr1gr2 mod N, hr1hr2 · as1s2 mod N)

= (gr1+r2 mod N, hr1+r2 · as1s2 mod N)

= HTLP.Gen(pp, f(s1, s2); r1 + r2).

Thus correctness holds.
Lifting the multiplicative HTLP to put s in the exponent yields a more efficient linear HTLP for a small solution

space S ⊂ ZN , where S = {s : s ∈ JN ∧ s≪ N} (Figure 7, changes shown in). This can be viewed as a construction
based on exponential ElGamal encryption over Z∗

N .

6For space and clarity we drop the moduli and assume that we are working in the appropriate ring in each coordinate (namely ZN

and ZN2 , respectively).

24

Construction 3 (Linear HTLP [MT19].).

HTLP.Setup(1λ, T)
R→ pp. Sample a strong semiprime N and a generator g

R← Z∗
N , then compute h = g2

T

mod N ∈ Z∗
N . (This can be computed efficiently using the factorization of N). Output pp := (N, g, h).

HTLP.Gen(pp, s; r)→ Z. Given a value s ∈ ZN , use randomness r ∈ ZN2 to compute and output

Z := (gr mod N, hr·N · (1 +N)s mod N2) ∈ JN × Z
∗
N2

HTLP.Open(pp, Z, r)→ s. Parse Z := (u, v) and compute w := u2
T

mod N = hr via repeated squaring.

Output s := (v/wN mod N2)−1
N .

HTLP.Eval(pp, f, Z1, Z2)→ Z. To evaluate a linear function f(x1, x2) = b+ a1x1 + a2x2 homomorphically on
puzzles Z1 := (u1, v1) and Z2 := (u2, v2), return

Z = (ua1
1 · ua2

2 mod N, va1
1 · va2

2 · (1 +N)b mod N2).

Construction 4 (Multiplicative HTLP [MT19].).

HTLP.Setup(1λ, T)
R→ pp. Same as construction 3.

HTLP.Gen(pp, s; r)→ Z. Given a value s ∈ JN , use randomness r ∈ ZN2 to compute and output

Z := (gr mod N, hr · s mod N) ∈ Z
∗
N × Z

∗
N

HTLP.Open(pp, Z, r)→ s. Parse Z := (u, v) and compute w := u2
T

mod N = hr via repeated squaring.
Output s := v/w.

HTLP.Eval(pp, f, Z1, Z2)→ Z. To evaluate a multiplicative function f(x1, x2) = ax1x2 homomorphically on
puzzles Z1 := (u1, v1) and Z2 := (u2, v2), return

Z = (u1 · u2 mod N, a · v1 · v2 mod N)

Figure 6: The HTLP constructions of [MT19].

B Additional voting and scoring protocols

B.1 Bayesian truth serum

Bayesian truth serum [Pre04] is a method for eliciting truthful subjective answers where objective truth does not
exist or is not knowable. The core of the idea is to reward answers that are “surprisingly common” by leveraging
respondents’ own predictions of what will be common. Thus, for a question with many (mutually exclusive) potential
answers, the score of user i responding xi := (xi1, . . . , xim) and yi := (yi1, . . . , yim) is calculated as

scorei :=
∑

j∈[m]

xij log
xj
yj

+ α
∑

j∈[m]

xj log
yij
xj

(5)

where α > 0 is a constant. The variable xij ∈ {0, 1} denotes user i’s decision (choose or don’t choose) for option
j ∈ [m], xj is the empirical frequency of choice j over all the users’ answers, yij is user i’s estimate of xj (i.e., their
estimate of the probability of answer j among all users), and yj is the empirical (geometric) average of yij over all
the users’ answers. Since each user can only choose a single answer, xij will be 0 for all but one value of j, which
we denote j∗. Thus, we can think of the equation above as equivalent to

xij∗ log
xj∗

yj∗
+ α

∑

j∈[m]

xj log
yij
xj
.

The first term is referred to as the information score and the second as the prediction score. The information
score is highest when the user’s choice k∗ is “surprisingly common”, i.e., when the empirical frequency of answer

25

Construction 5 (Efficient linear HTLP.).

HTLP.Setup(1λ, T)
R→ pp. Output pp := (N, g, h, y), where y

R← Z∗
N and the remaining parameters are the same

as in constructions 3 and 4.

HTLP.Gen(pp, s; r)→ Z. Given a value s ∈, use randomness r ∈ ZN to compute and output

Z := (gr mod N, hr · mod N) ∈ Z
∗
N × Z

∗
N

HTLP.Open(pp, Z, r)→ s. Parse Z := (u, v) and compute w := u2
T

mod N = hr via repeated squaring.

HTLP.Eval(pp, f, Z1, Z2)→ Z. To evaluate a homomorphically on puzzles Z1 := (u1, v1) and Z2 := (u2, v2),
return

Figure 7: Efficient linear HTLP for small solution space.

j∗ (xj∗) is higher than the crowd’s estimate of the empirical frequency of j∗ (yj∗). Therefore participants are
incentivized to submit their truthful responses, even (and especially) if they believe them to be uncommon.

The prediction score is the Kullback-Leibler divergence [KL51] between the user’s estimate of the average answer
and the true average answer, weighted by α. This is maximized when the two values are equal (i.e., the divergence
is 0), and so incentivizes truthful reporting of yij , the user’s estimate of xj .

We show how Bayesian truth serum can be implemented in the Cicada framework. First, rewrite Equation (5)
as

scorei :=
∑

j∈[m]

xij(log xj − y′j) + α
∑

j∈[m]

xj(y
′
ij − log xj) (6)

where y′ij = log yij and y′j = log yj . The smart contract will use two (lists of) HTLPs Ztally
x

,Ztally

y
′ to keep track

of two running “tallies”:

x = (x1, . . . , xm) =
∑

i

xi

y′ = (y′1, . . . , y
′
m) =

∑

i

1

n
y′
i

Each user’s ballot consists of the vectors xi,y
′
i, where xi ∈ [0, 1]m has ℓ1 norm 1 and y′

i = logy ∈ Nm with
∑

j∈[m] yij = n. Assuming no packing for simplicity, the ballot is encoded as three lists of HTLPs: a list of linear

HTLPs Zans
i := {Zans

ij }j∈[m] for the entries of xi, and two lists of (respectively) linear and multiplicative HTLPs

Z+
i := {Z+

ij}j∈[m] and Z×
i := {Z×

ij}j∈[m], both encoding the entries of y′
i. The smart contract coordinator must

ensure that the following hold:

Check #1a. All Zans
ij encode xij ∈ [0, 1].

Check #1b.
∑

j∈[m] xij = 1.

Check #2a. All Z+
ij encode y′ij > 0.

Check #2b.
∑

j∈[m] 2
y′

ij = n (assuming log base 2).

Check #3. Z×
ij contains the same value as Z+

ij for all j ∈ [m].

Most of these checks can be achieved using the protocols in Section 6: Check #1a with the binary solution
protocol, #1b and #2b by providing randomness which opens the homomorphic sum to the correct value, and #2a
with zk-PoPS. Check #2b additionally requires a zero-knowledge proof of exponentiation, e.g., [BBF19]. Because
the puzzles to check in #3 use different constructions, we can’t apply zk-PoSEq directly; instead, one can combine
two zk-PoKS proofs with a standard PoK for discrete logarithm.

The aggregation algorithm Aggr((Ztally
x

,Ztally

y
′), i,Zi, πi) updates the tally to (Ztally

x
⊞Zans

i ,Ztally

y
′ ⊞

1
n ·Z

+
i). During

the opening phase, anyone can solve for the final tallies xfinal,y
′
final and the individual user submissions {(xi,y

′
i)}i∈[n].

If correct, they are used in Finalize to compute the final set of scores as follows:

26

Preprocessing ballots for succinct ballot-correctness proofs

Public parameters: The common reference string crs := {gτj

1 }dj=1 ∈ Gd
1. A semiprime N and h, y ∈ Z∗

N . A
voting scheme Σ : Xn → Y, e.g., approval voting.

1. Let X be the set of correct ballots and |X |= d

2. Let f(x) ∈ F≤d
p [x] be a univariate polynomial s.t. ∀si ∈ X : f(i) := Pack(si). The polynomial f(x) could

be computed using Lagrangian interpolation.

3. Let com be the KZG commitment to the polynomial f .

Output: com.

Figure 8: Preprocessing ballots to enable succinct ballot-correctness proofs.

1. Let x′ := logx. Compute I′ := x′ − y′ and P′ := x · x′.

2. For each user i ∈ [n]:

(a) Compute i’s information score Ii :=
∑

j∈[m] Iij , where Ii = (Ii1, . . . , Iim) := xi · I′.
(b) Compute i’s prediction score Pi :=

∑

j∈[m] Pij , where Pi = (Pi1, . . . , Pim) := x · y′
i −P′.

(c) User i’s score is Ii − Pi.

C Succinct ballot-correctness proofs from polynomial commitments

In this section, we assume that a common reference string for the KZG polynomial commitment (PC) scheme [KZG10]

is already available to users, namely crs := {gτj

1 }dj=1, where g1 ∈ G1 is a generator in a bilinear pairing-friendly

cyclic group G1 over Fp for some prime p, τ
R← Fp hidden to everyone. The crs is typically established during a

sequential, secure multi-party computation (MPC), e.g., [BGG18].
Let us assume that users have established during a preprocessing phase (Figure 8) a short commitment com

that encodes all the possible ballots in a particular voting scheme, e.g., X = [0, 1]m for approval voting. The
size of classical proofs of well-formedness, e.g., OR-composition of sigma-protocols, scale linearly in the number of
candidates m. The following proof strategy yields a constant-size proof of correctness for moderately-sized X , i.e.,
|X | ≤ d7.

First, given a ballot Z = (gr, hrys) ∈ G̃1 × G̃2, the user creates an elliptic curve point Z1 = hr1y
s
1 ∈ G1 for

random generators h1, y1
R← G1 in a pairing-friendly group. Using the discrete logarithm across different groups

techniques developed in [COPZ22], the user can show that Z and Z1 have the same discrete logarithms r and s with
for their bases h, y ∈ G, h1, y1 ∈ G1, respectively. Now that Z1 and the polynomial commitment are in the same
pairing-friendly group G1, the user can create a blinded KZG opening proof [ZBK+22] to prove ballot correctness.
Specifically, the proof π shows that the value s in Z1 matches an evaluation of the polynomial f committed by com

at some (hidden) point j, i.e., f(j) = s. Note that the verifier only sees constant-size commitments of f, j, and s.
Since the blinded KZG proof π is also constant-size, this strategy yields the first succinct ballot-correctness proofs
for many common voting schemes, e.g., approval and range voting.

D A trusted setup protocol for the CJSS scheme

Chvojka, Jager, Slamanig, and Striecks [CJSS21] describe how to combine a public-key encryption scheme with a
TLP to obtain a private voting or auction protocols which, unlike the HTLP-based approach suggested by [MT19],
is “solve one, get many for free”. The high-level idea of the protocol is to encrypt each user’s bid with a common
public key whose corresponding secret key is inserted into a TLP (see Figure 9). Therefore, none of the bids can
be decrypted until the corresponding encryption secret key is obtained by solving the TLP. One drawback of this

7The largest KZG CRS we know of [Exp] is for d = 228, so in the case of X = [0, 1]m this strategy requires m ≤ 28.

27

scheme, however, is that it requires an additional trusted setup procedure to create a TLP containing the secret
key corresponding to the encryption public key used. Furthermore, unlike the HTLP approach, the setup cannot
be reused and must be re-run for every protocol invocation.

The CJSS Framework
Let ΠE be a CCA-secure public-key encryption scheme, TLP a time-lock puzzle scheme, and Σ : Xn → Y a
base voting/auction protocol.

Setup(1λ, T)
R→ (pp,Z). Sample a key-pair (pk, sk) ← ΠE.Gen(1

λ) and TLP parameters pptlp ←
TLP.Setup(1λ, T). Compute Zsk

R← TLP.Gen(pptlp, sk) and return pp := (pptlp, pk) and Z := (Zsk,⊥).

Seal(pp, i, s)
R→ (cti, πi). Parse pk from pp and compute an encrypted bid/ballot as cti ← ΠE.Enc(pk, si) along

with a proof πi that cti is a valid encryption under pk.

Aggr(pp,Z, cti, πi)→ Z ′. Verify πi. If the check passes, parse Z := (Zsk, C) and update to Z ′ := (Zsk, C∪{cti}).

Open(pp,Z,⊥)→ sk. Let Z := (Zsk, C) and publish sk← HTLP.Solve(pptlp, Zsk).

Finalize(pp, sk)→ y. Use the secret key sk to decrypt each ciphertext cti ∈ C to si ← ΠE.Dec(sk, cti). Compute
the final result in the clear as Σ(s1, . . . , sn).

Figure 9: The “solve one, get many for free” paradigm (CJSS) [CJSS21].

We observe that, for encryption schemes with discrete-log key-pairs such as Cramer-Shoup [CS98], there is a
natural decentralized setup protocol secure against all-but-one corruptions. Using the blockchain as a broadcast
channel (similar to [NRBB24]), a simple sequential MPC protocol to set up the parameters works as follows.
Suppose there is some smart contract that stores the public key pk = gsk mod N and a TLP Zsk containing sk

(initially, one can set sk = 0). Each contributor i can update pk by adding si homomorphically in the exponent and
contributing an HTLP Zi = (gri mod N, hri·N · (1 +N)si). The contribution must be accompanied by a proof of
well-formedness. For the previous state pk, Zsk, contributor i proves that its contribution pki, Zi passes the following
checks:

Check #1. It knows the discrete logarithm of pki with respect to the base g. This can be achieved with a proof
of knowledge of the exponent [Sch89].

Check #2. It knows the representation of the HTLP contribution Zi with respect to the bases g, hN , (1+N) (i.e.,
the discrete logarithms ri, ri, si). This can be proven by a “knowledge of representation” proof system in
groups of unknown order (e.g., the PoKE family of proofs [BBF19]; see Section 3.4).

Check #3. Finally, the discrete logarithms a, b, c from check #2 are such that a = b and c = dlogg(pki).

The state is updated with the ith contribution iff all the checks pass. After the update, Zsk := Zsk · Zi and
pk := pk · pki = gs+si . A single honest contributor suffices to guarantee a uniformly distributed keypair.

E Security Proofs

We use D1 ≈λ D2 to denote that two distributions D1,D2 have statistical distance bounded by negl(λ).

E.1 The Cicada framework

Proof of Theorem 1. For simplicity, we give a proof for the simple case of X = [0, 1], i.e., submissions consist of a
single bit, but our argument generalizes to larger domains X . Let n ∈ N be the number of users.

The correctness of the Cicada framework (cf. Definition 3) follows by construction and from the correctness of
the underlying building blocks (i.e., soundness in the case of NIZKs).

Next, we prove submission privacy. Let ExpSPrivAΠΣ
(λ, T, i) be the original submission privacy game for the

Cicada scheme ΠΣ with T -bounded adversary A, cf. Definition 4. We define a series of hybrids to show that
Pr[ExpSPrivAΠΣ

(λ, T, i) = 1] ≤ negl(λ) for all λ, T ∈ N and i ∈ [n].

28

H0: This is the original game ExpSPrivAΠΣ
(λ, T, i), where Zi ← HTLP.Gen(b) and πi ← NIZK.Prove(i, Zi, b).

H1: Replace π with π̃ ← NIZK.Sim(i, Zi). H1 is indistinguishable from H0 by the zero-knowledge property of
NIZK.
H2: Replace Zi with Yi ← HTLP.Gen(1− b) and π̃ with σ̃ ← NIZK.Sim(i, Yi). H1 and H2 are indistinguishable

because the distributions {Zi, Sim(i, Zi)} and {Yi, Sim(i, Yi)} are indistinguishable since {Zi}, {Yi} are indistin-
guishable by the security of HTLP.
H3: Replace σ̃ with σ ← NIZK.Prove(i, Yi, 1−b). H3 is indistinguishable fromH2 by the zero-knowledge property

of NIZK.
This series of hybrids implies Pr[b′ = b] ≈λ Pr[b′ = 1− b], where b′ is the output of A in H0 or H3, respectively.

Therefore Pr[ExpSPrivAΠΣ
(λ, T, i) = 1] ≤ 1

2 + negl(λ).
Finally, we show that if NIZK is a PoK and HTLP is secure, then Cicada is non-malleable, cf. Definition 5.

Suppose towards a contradiction that Cicada is malleable. We will use this and the fact that NIZK is a PoK to
construct an adversary B which has non-negligible advantage in the HTLP security game. Again, we work in the
simple case X = [0, 1], i.e., m, ℓ, w = 1, but the argument generalizes to other parameter settings.

Since by our assumption Cicada is malleable, there existsA which outputs (i, ·,Zi, πi) /∈ Q such that NIZK.Verify((i,
Zi), π) = 1 with non-negligible probability. Given a puzzle Zb containing some unknown bit b, B works as follows.

First, it computes (pp, Z)
R← Setup(1λ, T, 1) and sends them to the non-malleability adversary A. B responds to A’s

oracle queries (j, bj) with honestly computed (Zj , πj), keeping track of queries and responses in the set Q. When
A outputs (i, Zi, πi), B looks for (i, bi, Zi, πi) ∈ Q and outputs bi. Since A has non-negligible advantage, it follows
that NIZK.Verify((i, Zi), πi) = 1. This implies that either Pr[bi = b] = 1

2 + negl(λ) or NIZK is not knowledge sound.
Both possibilities contradict our assumptions, namely that the HTLP is secure and the NIZK is knowledge sound.
Thus, Cicada must be non-malleable.

E.2 Sigma Protocols

We prove special-soundness and honest-verifier zero-knowledge (HVZK) of our sigma protocols (Section 6). Any
such protocol can be made into a non-interactive zero-knowledge proof of knowledge (NIZKPoK) via the Fiat-Shamir
transform [FS86].

Theorem 2 (zk-PoKS). The protocol zk-PoKS in Section 6.2 is a special sound and HVZK proof system in the
generic group model.

Proof. For special soundness, we show that given two distinct accepting transcripts with the same first message, i.e.,
(A,B, e, w, x) and (A,B, e′, w′, x′) where e ̸= e′, we can extract the witnesses r, s. The proof follows the blueprint
of the proof of Theorem 10 in [BBF19]. Since the transcripts are accepting, we have

hwyx = veA hw
′

yx
′

= ve
′

A

= hre+αyse+β = hre
′+αyse

′+β

Combining the two equations we get

hr∆eys∆e = h∆wy∆x

⇐⇒ v∆e = h∆wy∆x (7)

where ∆e = e−e′ and ∆y,∆x are defined similarly. Then with overwhelming probability, r∆e = ∆w and s∆e = ∆x
(cf. Lemma 4 of [BBF19]), so ∆e ∈ Z divides ∆w ∈ Z and ∆x ∈ Z and we can extract r, s ∈ Z as r = ∆w/∆e and
s = ∆x/∆e.

We will now show that these values are correct, i.e., v = h∆w/∆ey∆x/∆e. Assume towards a contradiction that
this does not hold and µ = h∆w/∆ey∆w/∆e ̸= v. Since µ∆e = v∆e by Equation (7), this must mean that (µ/v)∆e = 1
and therefore µ/v ∈ G2 is an element of order ∆e > 1. Since ∆e is easy to compute and µ/v is a non-identity
element of G2, this contradicts the assumption that G2 is a generic group (specifically, it contradicts non-trivial
order hardness [BBF19, Corollary 2]). We thus conclude that our extractor successfully recovers the witnesses r
and s.

We still need to verify that the r∗ we can extract from u will be consistent with the one extracted from v, i.e.,
r∗ = r. Again we know

gw = ueB gw
′

= ue
′

B

= gr
∗e+α∗

= gr
∗e′+α∗

29

so by a similar argument r∗ = ∆w/∆e, which equals r. Thus the protocol satisfies special soundness.
To prove HVZK, we give a simulator which produces an accepting transcript (Ã, B̃, ẽ, w̃, x̃) that is perfectly

indistinguishable from an honest transcript (A,B, e, w, x). The simulator is quite simple: it samples ẽ
R← [2λ]

identically to an honest verifier, then samples w̃, x̃
R← Z and sets Ã := hw̃yx̃v−ẽ and B̃ := gw̃u−ẽ. It follows by

inspection that the transcript is an accepting one. Furthermore, notice that Ã and B̃ are uniformly distributed in
G2 and G1, respectively, just like A,B in the honest transcript. Also, both x̃ and x are uniform in Z. Thus the
simulated transcript is perfectly indistinguishable from an honest one.

Theorem 3 (zk-PoKSqS). The protocol zk-PoKSqS in Section 6.2 is a special sound and HVZK proof system in
the generic group model.

Proof. For special soundness, we show that given two distinct accepting transcripts with the same first message,
i.e., (A1, A2, e, w1, w2, x) and (A1, A2, e

′, w′
1, w

′
2, x

′) where e ̸= e′, we can extract the witnesses r1, r2, s. Notice that

v2 is not guaranteed to encode the square of s1, so v2 = hr2−r1s2/s1v
s2/s1
1 . Let σ2 = s2/s1 and ρ2 := r2− r1s2/s1 =

r2 − r2σ2.
Using the same extractor as in the proof of Theorem 2, we can extract correct integers r1 = ∆w1/∆e, s1 =

∆x/∆e, ρ2 = ∆w2/∆e, and σ2 = ∆x/∆e. Notice s1 = σ2, which implies σ2 = s21. Finally we use r1, s1, ρ2 ∈ Z to
recover r2 := ρ2 + r1s1 ∈ Z. Thus the protocol is special sound.

To prove HVZK, we give a simulator which produces an accepting transcript (Ã1, Ã2, ẽ, w̃1, w̃2, x̃) that is perfectly

indistinguishable from an honest transcript (A1, A2, e, w1, w2, x). The simulator is quite simple: it samples ẽ
R← [2λ]

identically to an honest verifier, then samples w̃1, w̃2, x̃
R← Z and sets Ã1 := hw̃1yx̃v−ẽ

1 and Ã2 := hw̃2vx̃1v
−ẽ
2 .

It follows by inspection that the transcript is an accepting one. Furthermore, notice that Ã1, Ã2 are uniformly
distributed in G2, respectively, just like A1, A2 in the honest transcript. Also, both w̃1, w̃2, x̃ are uniform in Z just
like w1, w2, x. Thus the simulated transcript is perfectly indistinguishable from an honest one.

Theorem 4 (zk-PoPS). The protocol zk-PoPS in Section 6.2 is sound and HVZK.

Proof. Soundness follows directly from the (knowledge) soundness of zk-PoKSqS and zk-PoSEq as well as Legendre’s
three-square theorem [Gro05].

For HVZK, note that an honest zk-PoPS transcript has the form ({A1,j , A2,j}j∈[3], R, e, {w1,j , w2,j , xj}j∈[3]),
where (R, e, x) is an honest zk-PoSEq transcript and (A1,j , A2,j , e, w1,j , w2,j , xj) for j = 1, 2, 3 are honest zk-PoKSqS

transcripts. Given the instance v, our zk-PoPS simulator first computes some random HTLPs (ũj , ṽj), (ũ
′
j , ṽ

′
j)

R←
HTLP.Gen(0) for j = 1, 2, 3. These simulated underlying instances are indistinguishable from the honest instances
an honest prover would use. This follows from the security of HTLP.

Next, our simulator samples ẽ
R← [2λ] identically to an honest verifier and uses the simulators of the proof

systems, always with the same challenge ẽ, to produce a simulated transcript:

(Ã1,j , Ã2,j , ẽ, w̃1,j , w̃2,j , x̃j)← Simzk−PoKSqS(ṽj , ṽ
′
j ; ẽ) ∀j = 1, 2, 3

(R̃, ẽ, x̃)← Simzk−PoSEq

(

4 · v ⊞ 1

ṽ′1 ⊞ ṽ′2 ⊞ ṽ′3
; ẽ

)

By HVZK of zk-PoKSqS and zk-PoSEq, these transcripts are accepting and indistinguishable from an honestly
generated transcript.

30

	Introduction
	Our high-level goals
	Our approach

	System Model
	Preliminaries
	Notation
	Voting and auction protocols
	(Homomorphic) Time-lock puzzles
	Non-interactive zero-knowledge proofs

	Syntax of Time-Locked Voting and Auction Protocols
	The Cicada framework
	Efficient vector encoding for HTLPs
	Our framework

	Ballot/bid correctness proofs
	Proof of Solution
	Proofs of well-formedness

	Performance evaluation
	Choice of HTLP construction
	Implementation
	Empirical Performance Evaluation

	Extensions
	Everlasting ballot privacy for HTLP-based protocols
	Succinct ballot-correctness proofs
	Coercion-resistance

	Related work
	Conclusion and Future Directions
	Extended Preliminaries
	HTLP Constructions

	Additional voting and scoring protocols
	Bayesian truth serum

	Succinct ballot-correctness proofs from polynomial commitments
	A trusted setup protocol for the CJSS scheme
	Security Proofs
	The Cicada framework
	Sigma Protocols

