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AbstractÐMulti-band transmission is a promising solution
for capacity enhancement in optical networks. We propose a
novel strategy, named C to C+L Upgrade (CLU), to gradually
upgrade links from C to C+L bands. We develop a Recurrent
Neural Network (RNN)-based model to efficiently predict links
for upgrade, based on network state and resource utilization, to
reduce blocking and upgrade cost. Our results show that CLU
outperforms baseline strategies (which do not employ predictive
decisions) by upgrading fewer links at appropriate times.

Index TermsÐC+L, recurrent neural network, upgrade, spec-
trum utilization, blocking probability.

I. INTRODUCTION

With the growth of bandwidth-hungry services in the 5G/6G

era, it is crucial for network operators to allocate sufficient re-

sources in optical backbone networks [1]. With the emergence

of Elastic Optical Networks (EONs), spectral efficiency of the

available C-band spectrum in single-mode fibers (SMFs) can

be enhanced; however, C-band capacity is limited to approx. 5

THz [2]. Hence, Multi-band (MB) technology is emerging as

a promising solution for the capacity-crunch issue by utilizing

additional bands in SMFs - especially the L band which

exhibits only a negligible increase in attenuation compared to

C band while providing an additional 5 THz bandwidth [3].

Expansion to MB requires network operators to upgrade

network links, but this operation incurs significant Capital Ex-

penditure (CapEx) and Operational Expenditure (OpEx). Prior

works have proposed link-upgrade strategies for MB expansion

to sustain traffic growth, while considering upgrade costs. For

example, authors in [4] showed the significance of proper

link selection by introducing a framework which accounts for

geographical dependence of fiber-capacity upgrades. Authors

in [5] proposed a planning strategy for determining the set of

fibers for upgrade which could lower upgrade costs. Similarly,

Ref. [6] proposed a multi-period batch-upgrade model from

C to C+L using resource utilization as a metric to select

a group of links for upgrade. Although these studies offer

various upgrade strategies, they consider only current resource

utilization in the network to assess the need for upgrades and

do not consider monitoring-based prediction mechanism for

timely and effective link selection for upgrade.

Emphasizing the significance of timely upgrades, we note

that, while early upgrades can mitigate occurrence of blocked

connections, i.e., reduce Blocking Probability (BP) in the

network, delaying upgrades can yield cost benefits stemming

from equipment depreciation. Therefore, it is important for

network operators to carefully choose times for upgrade to

reduce blocking and reduce upgrade cost in the network. Since

dynamics of blocking and cost are time-dependent, a Machine

Learning (ML)-based model capable of continuously monitor-

ing changes in the network state would be ideal to predict

suitable links for upgrade at appropriate times. The Long

Short-Term Memory (LSTM) variant of Recurrent Neural

Network (RNN), thanks to its capability of storing/retrieving

information over both short- and long-time periods and of

capturing non-linear patterns, make it a strong candidate for

tracking changes over time [7]. In this paper, we propose a

novel link-upgrade strategy, named C to C+L Upgrade (CLU),

and develop an LSTM-based model that leverages information

such as resource utilization, fragmentation, etc., over time

to efficiently predict the links that will more likely need an

upgrade. Our objective is to reduce BP in the network, while

increasing cost savings by adhering to a given upgrade budget.

II. SYSTEM MODEL

We consider an elastic backbone optical network topology,

G(V,E), comprising |V | nodes and |E| links, where V repre-

sents the set of nodes and E represents the set of links. In our

study, we consider C and L bands, with each band comprising

133 channels (considering 37.5 GHz frequency spacing [2]),

and the network initially operates only in C band. Incoming

traffic is quasi-static where requests enter and remain in the

network (which is a common scenario for telecom network

operators catering to clients requesting high-bandwidth pipes).

Source-destination pairs are generated using a gravity model

where traffic generation probability of each node is based on

its population density. The set of requests is denoted by R;

each request i ∈ R is represented by a tuple (Si, Di, Fi) where

S, D, and F are source, destination, and required Frequency



Slots (FSs), respectively. We define an upgrade budget Ĵ ,

which is decremented after each link upgrade in the network.

In this work, given an EON operating in C band, a set of

requests, and an upgrade budget, we employ a ML model to

effectively select which links to upgrade at what time, such

that BP and upgrade costs are reduced.

A. Upgrade Cost Model

Authors in [8] show that the cost of upgrading a link is

influenced by two key factors: number of Erbium-Doped Fiber

Amplifiers (EDFAs) and type of switches employed on links.

When upgrading from C to C+L bands, the cost significantly

rises due to the necessity of installing separate EDFAs to sup-

port L-band transmission [5], [9]. On the other hand, to support

both C- and L-band transmission, wavelength-selective, band-

switchable, multi-band optical cross-connect switches (MB-

OXCs) must be installed at all nodes, eliminating the need for

separate switches for L band.

We denote de and d∗ as the length of link e and the

maximum amplifier span for C and L bands, respectively.

Taking into account one pre-amplifier and one post-amplifier

on each link, the total number of L-band EDFAs required for

upgrade on link e is given by (⌈de/d
∗⌉ + 2) [9]. We denote

JEDFA as the cost of each EDFA on link e and JWSS as

the cost of a Wavelength-Selective Switch (WSS) at each end

of link e. Considering an equipment depreciation factor of

δ ∈ [0, 1] for EDFA over a span of y years [6] (impact of cost

depreciation for WSS is considered negligible due to its lower

cost), the cost of upgrade for link e is given by:

Je =

(

⌈de
d∗

⌉

+ 2

)

· JEDFA · (1− δ)
y
+ 2 · JWSS (1)

Eq. (1) implies that the upgrade cost exponentially decreases

w.r.t. the upgrade time so that delaying an upgrade can lead to

significant cost savings. However, it can increase BP; hence,

determining the appropriate upgrade time is crucial.

B. Cumulative Blocking Probability per Link

Total BP in a network depends on spectrum utilization (SU)

and fragmentation ratio (FR) of the links. SU is defined as the

ratio of FSs occupied on a link to the total bandwidth of the

link [10]. Considering Re(t) as the set of requests provisioned

over link e at time t and Be as the total capacity of link e,

SU (denoted by µ) is given as:

µe(t) =

∑

i∈Re(t)
Fi

Be

(2)

On the other hand, FR of a link depends on sets of available

continuous FSs, known as Slot Blocks (SBs). Considering

Ge(t) as the set of available SBs on link e at time t and

Hj as the size of the j-th available SB on link e, FR (denoted

by η) is expressed as [11]:

ηe(t) = 1−
maxj∈Ge(t) Hj
∑

j∈Ge(t)
Hj

(3)

To alleviate total BP in the network, links over which more

requests are likely to be blocked need to be upgraded sooner.

Fig. 1. Proposed RNN-based model incorporating link features.

In this regard, we define Cumulative Blocking Probability per

Link (CBPL) as the ratio of the number of blocked requests

to the total number of requests over a link. Since requests are

provisioned using a Routing and Spectrum Allocation (RSA)

strategy, which influences the SU and FR of a link, exact

mathematical representation of CBPL is challenging. Hence,

we develop a LSTM (variant of RNN)-based model to predict

CBPL of the links as a function of SU and FR; details of the

model are described in Section III-A.

III. CLU: C TO C+L UPGRADE STRATEGY

During MB upgrades, it is crucial to reduce both blocking

and upgrade cost in the network. We propose a novel upgrade

strategy, namely CLU, to reduce BP and avoid untimely

upgrades leading to high cost. To achieve this goal, we design

an algorithm to identify the most suitable link(s), based on

CBPL threshold (i.e., the maximum allowable CBPL as set by

the operator) and budget constraint, for upgrade at appropriate

times. The upgrade budget (Ĵ) is derived by calculating the

cost of upgrading all links in the network at the beginning,

which results in the maximum cost as it does not consider

any link selection criteria and equipment cost depreciation.

A. RNN-Based CBPL Estimation Model

To efficiently predict CBPL of the links, we develop an

RNN-based model employing a LSTM architecture. In Fig.

1, we show the structure of the proposed model, which

comprises an input layer, a hidden layer, and an output layer.

Each link e ∈ E has a set of five features, indicated by

xe(t) = {µe(t), ηe(t), re(t), r̄e(t), qe(t)}, where µe(t), ηe(t),
re(t), r̄e(t), and qe(t) represent SU, FR, total number of

served requests, total number of blocked requests, and number

of remaining FSs on link e, respectively. The input layer is

composed of the features of all links for τ time steps, e.g., in

Fig. 1, we show the features of link 1 (x1) at time t = 0. On

the other hand, the output layer consists of |E| nodes, each

corresponding to CBPL (denoted by αe) of a link e ∈ E; the

model observes previous time steps to predict CBPL at t+1.

B. Algorithm

Algorithm 1 summarizes the steps of CLU which takes net-

work topology, set of requests (R), CBPL threshold (α̃), and

upgrade budget (Ĵ) as inputs. Total BP (ATotal) is initially set

to 0. Then, it employs the k-Shortest Path algorithm to identify

candidate paths for the incoming requests and allocates FSs

to each request using the First-Fit (FF) mechanism. Requests

unable to secure FSs are classified as blocked. Following this,
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Algorithm 1 CLU Algorithm

Input: G(V,E), R, α̃, Ĵ ;
Output: Total upgrade cost, upgraded links, ATotal;

1: Initialize: ATotal = 0;
2: for each time t do
3: for all incoming requests do
4: Perform corresponding RSA;

5: Update ATotal accordingly;
6: for each e ∈ E do
7: Estimate αe(t+ 1) using the RNN-based model;
8: Calculate Je using Eq. (1);

9: E′
← Sorted links in descending order of αe(t+ 1);

10: for each e ∈ E′ do
11: if αe(t+ 1) ≥ α̃ && Je ≤ Ĵ then
12: Upgrade e and remove it from E;

13: Ĵ − = Je;

ATotal is updated based on the number of blocked requests and

the number of served requests in the network. In the next step,

CLU estimates the CBPL of all un-upgraded links for the next

time instance (t+1) using the proposed RNN-based model and

sorts them in descending order of CBPL. In addition, upgrade

cost of each link at time t is calculated using Eq. (1). Finally,

it chooses the links that satisfy both α̃ and Ĵ for upgrade,

removes them from the set of candidate links, and updates Ĵ .

IV. NUMERICAL EVALUATION

A. Modeling and Simulation Setup

An event-driven, custom-built Python simulator is used

to model (i.e., emulate) a C to C+L upgrade environment.

Simulations are performed on Indian RailTel network (see Fig.

2) consisting of 19 nodes and 28 bi-directional links [2]. L-

band amplifiers are deployed at regular intervals of 80 km. We

repeat and average the simulations for 15 different seeds, each

with about 1800 quasi-static demands. We assume equipment

cost to upgrade one link from C to C+L as JEDFA = 1
unit, with yearly depreciation of δ = 5%, and JWSS = 0.5
unit. Using Eq. (1), we derive Ĵ = 512 units. To train/test the

CBPL model, dataset is obtained by simulating over numerous

seeds and extracting necessary link features. The data is split

in chunks of τ time steps (for our simulation, τ is set to 10).

B. Preliminary Evaluation of Baseline Approaches

To demonstrate the efficiency of CLU, we consider two intu-

itive baseline approaches: Basic Spectrum Utilization (BSU)

and Cost-aware Spectrum Utilization (CSU). In BSU, links

that exceed a predefined SU threshold (µ̃) are candidates for

upgrade. Since it does not consider budget constraint, we

introduce, as an extension of BSU, a cost-aware approach,

CSU, which not only checks µ̃, but also checks if the candidate

links can accommodate one or more requests (over a single

hop) so as to delay upgrades and reduce cost. We model CSU

to postpone upgrades for up to n iterations (e.g., if n = 3, we

check upto three times if a link can accommodate one more

request and hence delay the upgrade).

Since performance of CSU varies over n, we evaluate its

performance w.r.t. n. As shown in Fig. 3, we compare BP of

Fig. 2. Indian RailTel network with link lengths in km. Gradual link upgrades
by CLU (for α̃ = 0.05) are shown by solid and dashed lines.

CSU for different values of n with BSU. Since BSU relies only

on µ̃ to initiate an upgrade and does not wait to accommodate

additional requests, BSU exhibits the lowest BP compared to

CSU. Results also show that, with every increment of n, BP

continues to rise in CSU as postponing the upgrade leads to

higher BP. However, it also leads to lower cost as shown in

Fig. 4 which compares the total upgrade cost of CSU for

different values of n with BSU. Here, the cost of BSU is

almost comparable to CSU when n = 1 and n = 3 for

µ̃ = 0.4. However, when n = 8, the upgrade cost is lower

for all values of µ̃. Since CSU aims to delay upgrade, higher

values of n will lead to lower cost. Considering both blocking

and cost evaluation, CSU (n = 3) is selected for comparison

with CLU as it gives reasonable trade-off between BP and

upgrade cost compared to BSU and other variations of CSU.

Fig. 3. Blocking probability comparison of CSU and BSU.

C. CLU vs. Baseline Approaches

In Fig. 5, we evaluate the performance of CLU and analyze

the trade-off between BP (blue solid line) and upgrade cost

(red dashed line). In addition to comparing with CSU (n = 3)

(as discussed in Section IV-B), we also consider two extreme

cases: Early Upgrade (EU) and No Upgrade (NU). EU initiates

network operation by upgrading all links without considering

any selection criteria which leads to highest cost (512 units)

with lowest blocking. In NU, the entire network operates only
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Fig. 5. Comparison of CLU with baseline strategies.

in C band without any upgrade, which leads to highest BP

(about 16%) and lowest upgrade cost.

In Fig. 5, our strategy CLU outperforms CSU (n = 3) for

different values of µ̃. With α̃ = 0.05, CLU leads to lower BP

of about 4% compared to about 7% and 9% BP by CSU for

µ̃ = 0.5 and 0.6, respectively. CLU also significantly curtails

upgrade cost by about 32% and 15% compared to CSU for µ̃ =

0.5 and 0.6, respectively. As CBPL threshold is increased, i.e.,

α̃ = 0.1, CLU delays the upgrade lowering the cost slightly but

it leads to higher BP of about 6% (which is still lower than BP

of CSU). In terms of cost savings, CLU reduces upgrade cost

by about 41% and 26% compared to CSU for µ̃ = 0.5 and 0.6,

respectively. It is evident that increasing SU threshold reduces

upgrade cost at the expense of increased BP. Hence, a network

operator could benefit from using CLU, which reduces both

BP and upgrade cost compared to CSU.

TABLE I
NUMBER OF LINKS UPGRADED PER YEAR

h
h
h

h
h
h
h

h
h
h

h
h

Method
Year

1 2 3 4 5 6 7 8 9 10 Total

BSU

µ̃ = 0.5 2 1 1 2 3 2 2 3 2 0 18

µ̃ = 0.6 1 1 1 1 2 1 2 2 2 0 13

CSU (n = 3)

µ̃ = 0.5 0 0 1 1 1 2 3 4 4 0 16

µ̃ = 0.6 0 0 0 1 1 1 2 3 5 0 13

CLU
α̃ = 0.05 0 2 4 3 0 0 0 1 0 0 10

α̃ = 0.1 0 0 2 4 2 1 1 0 0 0 10

To analyze the impact of upgrades at appropriate times,

Table I compares the number of links upgraded in a year by

each strategy. We see that BSU and CLU start upgrading at

year 1 and 2, respectively, while CSU starts at year 3. For

CSU, since upgrades are delayed by n = 3 times, most link

upgrades occur much later, e.g., at year 6 and beyond. As

shown in Table I, with increasing µ̃, fewer links are upgraded

by the baseline strategies (since not all links in the network

reach the SU threshold). For example, for µ̃ = 0.5, 18 and 16

links are upgraded by BSU and CSU, respectively, whereas 13

links are upgraded for µ̃ = 0.6. On the other hand, we show

that CLU significantly outperforms both BSU and CSU as it

upgrades only 10 links in appropriate years for α̃ = 0.05 and

0.1. In Fig. 2, we show which 10 links in the topology are

upgraded by CLU for α̃ = 0.05 in years 2, 3, 4, and 8.

V. CONCLUSION

We proposed a novel upgrade strategy, named CLU, uti-

lizing a RNN-based model that effectively identifies links

for upgrade in the network. Numerical results show that our

proposed strategy outperforms the baseline strategies in terms

of both BP and upgrade cost. These findings highlight the

potential for significant cost savings and reduced BP when a

network operator employs a trained ML model for upgrade

decision. Future work should consider a robust physical-

layer model to achieve a more comprehensive analysis of the

behavior of CLU under dynamic conditions.
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