Polar Biology (2024) 47:617-627
https://doi.org/10.1007/s00300-024-03254-9

RESEARCH q

Check for
updates

Soil resources vs. physicochemical soil properties as drivers
of abundance and diversity of low Arctic soil mesofauna communities

R.R. Klein'?2.B. A. Ball

Received: 3 March 2023 / Revised: 27 February 2024 / Accepted: 11 April 2024 / Published online: 3 May 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract

Soil mesofauna play pertinent roles in soil processes. For example, microarthropods strongly influence rates of microbial
decomposition. The relationship between mesofauna and their environment are understudied in low Arctic ecosystems
compared to other regions. A more detailed grasp of these soil assemblages is necessary for understanding the current
functioning of these ecosystems. We characterized the soil mesofauna community across different low Arctic habitats to
determine which soil properties commonly correlated with soil fauna would best explain their distribution, abundance, and
diversity. Samples were taken near five different lakes in northern Finland, in both alpine meadows and sub-alpine birch
forests, across a span of available soil habitats (measured by pH, salinity, organic and nitrogen content, soil moisture). Total
abundance of the mesofauna community was influenced by a combination of soil factors, but most individual taxa, as well as
measures of diversity were best explained by models of one or two influential soil parameters. Poduromorpha springtails and
Oribatid mites were best modeled by measures of resource availability, although only Oribatids were significantly, positively
related to these resources. All mites and Entomobryomorphid springtails were positively influenced by physicochemical soil
moisture and/or salinity. Salinity, in particular, had a strong influence on overall mesofauna community composition. Our
results provide further insight into soil fauna assemblages in Northern Finland and further, more extensive research would
contribute to a more comprehensive foundation. This will allow for better monitoring of community changes and responses
in the face of climate change in the low Arctic.
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Introduction (Bradford et al. 2017). However, arthropods play a perti-

nent role in the decomposition process (sensu Petersen and

Soil biota, most especially soil microbes, are responsible for
much of the nutrient cycling of terrestrial ecosystems. As
plant tissues senesce, these organisms begin to decompose
the plant litter, thus freeing up a multitude of nutrients that
foster soil health, which in turn supports plant health and
subsequently ecosystem health. The immobilization of soil
organic matter, or SOM, is directly controlled by the micro-
bial communities in response to their abiotic environment
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Luxton 1982; Seastedt 1984; Coleman et al. 2017). Despite
being grazers of microbial communities, we see increased
rates of decomposition when they are present, as they dis-
seminate and alter the microbial community, stimulate
their activity, mechanically break down litter material, and
directly consume litter as detritivores (e.g., Hittenschwiler
and Gasser 2005; Kampichler and Bruckner 2009; Peguero
et al. 2019; McCary and Schmitz 2021). As such, their fecal
matter is an essential and foundational component of soil
aggregates and humus (Culliney 2013). Also, it is known
that soil mesofauna can often be used as indicator species
(Linden et al. 1994; Coleman et al. 2017; Menta and Remelli
2020). For example, oribatid mite community size is posi-
tively correlated with the availability of nutrients, and their
relative absence or reduced population size can be reflec-
tions of changes in environmental conditions, such as soil
conditions, vegetation types and availability, and permafrost
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dynamics (Nielsen et al. 2012; Markkula et al. 2018). To
gain better insights into the aboveground patterns seen in an
ecosystem, it is extremely pertinent to have thorough under-
standings of soil biota communities present.

However, Arctic ecosystems remain relatively
understudied regarding the relationships between arthropods
and their environment (sensu Ruess et al. 1999; Wirta et al.
2016). Such soils are considered pivotal for climate change
research, given their susceptibility to rapid change with
small fluctuations in climate (Parker et al. 2022). This is due
in part to the large carbon pools found in these soils, caused
by the slowed decomposition of SOM (Robinson et al. 1995;
Aerts 2006; Klimek et al. 2020), which as established, is
controlled by the soil biota communities. Research in
nearby subarctic ecosystems show that simulated climate
change can influence springtail (Krab et al. 2015), mite
(Alatalo et al. 2017), and overall microarthropod (Hagvar
and Klanderud 2009) community composition, although
this is not always the case (Krab et al. 2014). Such studies
show that altered moisture and temperature could influence
the mesofauna community directly or indirectly through
alterations to the soil habitat. Characteristics of the soil,
like salinity, pH, soil water content (SWC), and nutrient
content, generally play a role in community composition
belowground (e.g., Danks 1992; van Straalen and Verhoef
1997; Chikoski et al. 2006; Pan et al. 2018). Both Arctic
and subarctic mesofauna communities also differ among
vegetation communities, largely through the vegetative
influence on soil organic matter and nutrients (Coulson et al.
2003; Bokhorst et al. 2014, 2017, 2018; Hansen et al. 2016;
Parker et al. 2022). A detailed grasp of the relationships
between soil properties and the mesofauna community can
be beneficial for monitoring changes to the functioning of
Arctic, including low Arctic ecosystems, especially with
the few indicator species available in this region (Markkula
et al. 2018) and the potential lack of functional species
redundancy in polar regions (Wall and Virginia 1999;
Hgye and Sikes 2013). In this project, we aim to describe
the community composition of soil mesofauna and their
relationships with soil physiochemical properties, which are
present in a low Arctic area of northern Finland.

Soil assemblages in low Arctic regions are dominated
by nematodes and arthropods, particularly Acari (mites),
Collembola (springtails), and insects (Danks 1992;
Heggen 2010; Wirta et al. 2016; Gillespie et al. 2020).
A keystone mesofauna species is enchytraeid worms
which are responsible for the tunneling and subsequent
formation of soil aggregates (Aerts 2006; Kaukonen et al.
2013; Briones et al. 2014; Patricio Silva et al. 2014). In
Scandinavia, most studies of the soil mesofauna focus
on regions in subarctic, northern Sweden, or boreal
Norway, where springtail communities in particular
correspond to measures of soil resource availability (N
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and P) (Krab et al. 2010, 2013a; Bokhorst et al. 2017,
2018), and microclimate influences both springtail and
mite communities (Huhta and Hidnninen 2001; Krab et al.
2010; Makkonen et al. 2011; Alatalo et al. 2017). In more
northern low Arctic regions of Finland, however, prior
soil arthropod assemblage research was concentrated in
central and southern regions during the 1960s—1980s
with limited continued research until recently (Huhta
et al. 2010). Therefore, relatively less is known about
the soil mesofauna community in more northerly, colder
low Arctic areas of the Scandinavian Mountains in NW
Finland compared to studies on vegetation and microbial
communities (Virtanen et al. 1997; Minnisto et al. 2009;
Mikola et al. 2014; Boulanger-Lapointe et al. 2017;
Viitamiki et al. 2022). It is important that we study this
unique region since it is under-surveyed both historically
and currently. This low Arctic region houses differing
ecosystem types, including sub-alpine forests to high- and
low-alpine meadows. The few studies of soil mesofauna in
this area show that in the alpine meadows, microarthropod
communities differ across sites and are influenced by
grazing activity, disturbance, nutrient availability, and
SWC (Virtanen et al. 2008; Francini et al. 2014; Mikola
et al. 2014). Prostigmatid mite communities also differ
across habitat types from the high and low-alpine meadows
to sub-alpine forests (Zacharda and Kucera 2010). Beyond
these studies focusing on individual taxa or habitat types,
it is unclear how the entire mesofauna community differs
in relation to soil properties across multiple low Arctic
habitat types, both alpine meadows and sub-alpine birch
forests, in this region of NW Lapland.

In order to establish the relationships between arthropods
and their surrounding environments in Kilpisjarvi, Finland,
we analyzed how soil physiochemical properties relate to
soil mesofauna (I) abundance, (II) diversity, and (IIT) com-
munity composition, as is described in numerous other eco-
systems (e.g., Nielsen et al. 2012; Pan et al. 2018; Menta
and Remelli 2020). We focused measurements on the soil
properties that are known to influence the soil community
across ecosystems, specifically SWC, nitrogen (N) content,
pH, salinity, and SOM (following e.g., Booth and Usher
1984; Xu et al. 2012; Ball et al. 2022; Robinson et al. 2022),
as they vary naturally in the landscape through heterogene-
ity created by, for example, different vegetation communi-
ties and physical gradients. Our goal was to work across a
heterogeneity of these soil properties to determine which of
these commonly related edaphic factors would most strongly
relate to the soil community in this understudied region of
low Arctic Scandinavia. Simply, we hypothesized that the
colder annual temperatures and shorter growing season in
this northern area of the Scandinavian Mountains would
make the soil mesofauna community particularly sensitive
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to resource availability, such as SOM, soil N, and SWC,
rather than chemical characteristics, such as pH and salinity.

Methods
Site description

This study was conducted in the Kilpisjarvi region of north-
ern Finland (69.0443° N, 20.8033° E) near the border with
Norway and Sweden in the Kisivarsi Wilderness Area
(Fig. 1). Kilpisjirvi is categorized as a low Arctic ecosys-
tem, characterized by an average temperature of — 2.6 °C
and 422 mm of precipitation annually (Mikola et al. 2014).
This region experiences a unique combination of climate
conditions, being 400 m above sea level yet only 50 km from
the coast, leading to the convergence of the Foehn wind from
the Scandinavian Alps, continental pressure systems, and
the North Atlantic Current. This gives Kilpisjédrvi one of
the lowest average temperatures in Europe, but with a low
degree of continentality (Kauhanen 2013; Lépy and Pasanen

Fig. 1 Map showing the loca-
tions of the soils sampled in the
Kilpisjérvi region of the 3-coun-
try border of Finland, Norway,
and Sweden
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2017). It has a growing period of only approximately 100
days, shorter than other northern Scandinavian ecosystems,
yet supports a high species richness and abundance of veg-
etation, including shrubs and sedges like Bistorta vivipara,
Vaccinium myrtillus, and Trollius europaeus, and wildlife
(sensu Olofsson and Oksanen 2005; Méinnisto et al. 2009;
Mikola et al. 2014; Boulanger-Lapointe et al. 2017). The
lower elevation areas are dominated by birch forest, with
dwarf birch and sedge-dominated communities at higher
elevations (sensu Virtanen et al. 1997; Mikola et al. 2014).

Data collection

Samples were taken along transects of increasing distance
away from five different bodies of water around the Kilpis-
jarvi region: Kilpisjarvi, Tsahkaljérvi, Saanajdrvi, Kuohki-
majirvi, and Leenanlampi. These lake sites cover varying
elevations in both the sub-alpine birch forests into the higher
elevation alpine meadows, thus representing different veg-
etative communities that could potentially develop different
soil habitats (Table 1). Increasing distance from the lake
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Table 1 Description of each of

; . . Kilpisjarvi Saanajérvi Leenanlampi Kuohkimajdrvi ~ Tsahkaljarvi

the lake sites from which soil

samples were taken, including Elevation (m) 485.5 697.0 648.8 488.6 559.7

elevation, pH, electrical pH 53+0.1° 3.8+02° 44403 412020 42405

conductivity (EC), loss on

ignition (LOI), nitrogen content EC (uS cm™) 680.1+188.5 214.6+449 179.6+59.5 162.7+41.0 581.0+364.0

(N), and soil water content LOI (%) 75.0+13.5 62.0+18.7 31.0+£15.3 36.0+15.3 85.7+1.5

(SWC) Nitrogen (%) 1.9+0.4% 1.8+0.4% 0.5+0.21% 0.6+0.2¢ 2.0+0.1°
SWC (%gg™) 403.6+71.0° 213.8+76.6° 1344+71.6°  100.9+37.1° 180.7 +62.7%

Values are means +standard error. For soil parameters that significantly differed among lake sites, letters
depict the results of a post hoc Tukey HSD test, where lakes with the same letter do not significantly differ

from each other
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allowed for exploration of differing soil habitats that would
arise from the gradient of moisture regimes and vegetation
communities within these ecosystem types. Increasing dis-
tances from standing water encompasses differing diel/sea-
sonal cycles in soil saturation and therefore soil temperature
and plant communities. This also results in a heterogeneity
of SOM, pH, and nutrient content correlated to those. Thus,
distance from lake edge provides a framework to capture
within-site heterogeneity in instantaneous soil moisture,
SOM, pH, salinity, and nutrient content that would shift
beneath the changing vegetation and moisture regime. The
length of the transects varied at each lake to capture the vis-
ible gradient in soil saturation and vegetation, ranging from
30 to 200 m, with samples taken at 3 or 4 intervals (depend-
ing on length). One transect was conducted per lake, with
each lake serving as a replicate site. These samples were
taken in June 2019 using a plastic trowel to remove soil
beneath the vegetation and litter to approximately 10 cm
of depth and placed into a sterile Whirlpak bag. The use of
surface soils therefore incorporated largely the organic soil
horizons high in organic content, with limited incorporation
of deeper, mineral soil layers (Table 1). Samples were then
brought back to the lab at the Kilpisjirvi Biological Station.
Approximately 50 g of fresh soil were weighed and
placed on modified Tullgren funnels for heat extraction
of mesofauna. The modified funnels were made from the
sides of aluminum beverage cans fitted with a piece of nylon
1.5-mm mesh screen between the can and an underlying
funnel (Ball et al. 2022). A 20-mL plastic vial containing
70% ethanol was snapped onto the funnel stem and placed
in a rack. Incandescent C7 clear holiday lights were strung
across the top, with one bulb per aluminum can, on a
dimmer switch that was gradually increased to full intensity
to gradually increase the heat gradient. After 5 d, the vials
containing the extracted mesofauna in ethanol were capped.
The dry mass of the soil was recorded after drying for 5 d
under the funnels and used to calculate gravimetric SWC.
Soil and preserved mesofauna samples were then
shipped to Arizona State University. Mesofauna were
identified and enumerated using a dissecting microscope at
45x magnification, and expressed as abundance per gram
of dry soil. Identification was done to the lowest possible
taxonomic order, which was to the order level for most
taxa with the exception of Acari (suborder). Richness was
measured as the number of taxa in each sample. Shannon
diversity and evenness were calculated for each sample.
We also measured electrical conductivity (hereafter EC),
a proxy for salinity, using a diluted solution of deionized
water to soil (5:1 ratio) on an Orion 4-star pH/EC meter.
To find pH, we created a solution of deionized water and
soil (2:1 ratio) which steeped for 3 h. A 0.5-g subsample
was placed in a muffle furnace set to 550 °C for 3 h, then
reweighed to determine the mass loss on ignition (hereafter
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LOI), a proxy for SOM. To measure %N, dried subsamples
of soil were ground using a Spex ball mill in order to make a
homogeneous powder and measured with in a Perkin-Elmer
Elemental Analyzer (Ball et al. 2022).

Data analysis

All statistical analyses were conducted using R (version
4.0.2, The R Foundation). First, we tested whether lake
sites or distance from the lake edge categorically influence
mesofauna communities or soil properties (which would
suggest the different lake sites or distance from lake
edge represent distinctly different soil habitats rather
than comprising a heterogeneity of soil properties). We
performed a two-way Analysis of Covariance (ANCOVA)
to test for the influence of site (discrete variable) and the
distance to the lake edge (continuous covariate), as well
as their interaction, on soil community (diversity and
abundance, including individual taxa) and physicochemical
properties. Total abundance was log transformed to meet
the assumptions of normality and heteroscedasticity. Where
there was a significant difference among lake sites, a post
hoc Tukey HSD test was conducted using package agricolae.

To determine which soil habitat parameters best
explained the soil mesofauna community, we then used
linear effects mixed models to test for the influence of
soil physicochemical parameters on the measures of soil
community, while accounting for lake site as a random effect
(package ImerTest). Given the very different magnitudes
of scale upon which these soil parameters are measured,
they were first scaled using the “transform” function’s
“scale” argument. The initial model tested for an additive
effect of SWC+LOI+ EC + pH + %N. Model selection was
performed using AIC backward elimination using the “step”
function to identify which soil parameters were included
in the best-fit model to describe each of the individual
measures of soil community abundance and diversity.

Finally, a canonical correspondence analysis (CCA;
function “cca” in package vegan) was run to explore the role
of soil physicochemical properties in structuring arthropod
community composition across the samples.

Results

ANCOVA s revealed no significant influence of lake site or
distance from the lake on soil arthropod abundance, rich-
ness, Shannon diversity, or evenness, barring one exception:
Mesostigmata mites were more abundant at Kilpisjdrvi than
Leenanlampi (P =0.026; Table 2). Soil habitat character-
istics did vary across the lake sites, although not in a uni-
form manner (Table 1), representing the span of soil habi-
tats captured in the study. Across the sites, SWC, %N, and
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Table.2 AYer"‘ge abundance Kilpisjérvi Saanajirvi Leenanlampi ~ Kuohkimajérvi ~ Tsahkaljdrvi

and diversity of soil

microarthropods, as well as the  Total abundance 1255£3.73  10.76+725 527+263  4.87+2.54 8.87+2.69

abundance of dominant (axa, Richness 5504065  3.67+088 575+075 5334034 6.00+0.00
Shannon diversity 1.21+0.07 0.61+0.19 1.24+0.11 1.03+0.16 1.21+0.15
Evenness 0.73+0.08  0.48+0.08  0.72+0.04 0.62+0.08 0.67+0.08
Oribatida 7.64+3.11  727+443  274+1.30 3.49+2.02 3.06+1.25
Prostigmata 0.65+0.18  0.55+£030 0.24+0.13 0.10+0.06 0.21+0.02
Mesostigmata 1.93+0.34*  040+023® 030+0.11"  0.66+0.36™ 0.82+0.59®
Poduromorpha 1234021  252+240  0.84+0.53 0.32+0.19 3.49+0.90
Entomobryomorpha 0.83+0.3 0.00+0.00  0.55+0.54 0.27+0.15 1.11+0.90

Abundances are given in # of individuals per g dry soil. Values are means+standard error. Only
Mesostigmatid mites significantly differed among lake sites, and letters depict the results of a post hoc
Tukey HSD test where lakes with the same letter do not differ from each other

Table3 P values from the linear mixed-effects models exploring
which soil parameters are most influential for soil communities, with
Lake as a random effect

SwC LOI EC pH %N
Total abundance 0.882 0.012  0.008 0.326  0.007
Richness - 0.008 - - 0.017
Shannon diversity - - - 0335 -
Evenness - - - - 0.301
Oribatida 0.669 0.009  0.009 0.154  0.007
Prostigmata <0.001 - - - -
Mesostigmata - - <0.001 - -
Poduromorpha - 0.127 - - 0.558
Entomobryomorpha — - <0.001 - -

AIC backward model selection was used to determine the model that
best fits each metric of soil mesofauna abundance and diversity, from
the initial additive effect of each of the measured soil parameters. P
values are shown only for the factors that were included in the best-fit
model. Full statistical results of the AIC and best-fit models can be
found in Online Resources 1 & 2

LOI were all positively correlated with each other. EC also
increased with % LOI and %N in the soils (P <0.05 for all
three correlations).

Across the sites, the total abundance of all mesofauna was
best explained by a combination of all of the measured soil
parameters, of which LOI, %N, and EC had a significantly
positive effect (Table 3; Fig. 2). Oribatid mites responded
the same as total mesofauna abundance, as they tended to
be the most dominant taxa present. The other dominant
taxa abundant across all samples tended to be best mod-
eled by individual parameters rather than a combination.
Prostigmatid mites were best modeled by, and significantly
increased by SWC, while both Mesostigmatid mites and
Entomobryomorphid springtails were best modeled by a
significantly positive relationship with EC. Poduromorphid
springtails were best modeled by a combination of LOI and

%N, although neither of them had a significant influence on
their abundance.

Shannon diversity and evenness were not strongly related
to soil chemistry and are both best modeled by single soil
parameters (pH and %N, respectively) that did not have a
significant linear relationship (Table 3). The only measure
of diversity to be strongly influenced by soil habitat
characteristics was richness, which was best modeled by a
significant influence of LOI and %N, although the strength
of those statistically significant relationships are weak.

A CCA showed that LOI, pH, %N, and SWC only had
a weak effect on the mesofauna community composition
(Fig. 3). However, EC had a stronger influence associated
with higher abundance of Entomobryomorpha. Similarly, a
few taxa were associated with unique arthropod communi-
ties. The samples containing Coleoptera larvae clustered to
the right of the CCA. Enchytraeids and Diptera also were
associated with unique communities, but these taxa were not
strongly associated with the soil properties we measured.
Notably, samples did not cluster according to site or distance
from the lake edge.

Discussion

We sought to determine which of the commonly associated
soil parameters best accounted for mesofauna abundance,
diversity, and community composition in a low Arctic
region of northwestern Finland. Because distance to lake
shore and lake site did not have a strong influence on the soil
mesofauna community, at least at the Order level, differences
among the soil samples are apparently not the result of
distinctly different soil habitats at each lake site, allowing
us to interpret our results in terms of heterogeneity of soil
habitats available across these low Arctic sites (Hansen et al.
2016).
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«Fig. 2 Linear regressions for each of the soil parameters determined
to have a statistically significant influence for each measure of meso-
fauna community abundance and diversity. Only the soil parameters
determined to be included in the best-fit model that yielded a signifi-
cant P value (<0.05; Table 3) are included

Oribatid mite and total mesofauna abundance were best
explained by a model including all of the soil parameters
measured, but significantly influenced in particular by LOI,
EC, and %N. Therefore, the mesofauna community is influ-
enced by substrate availability, but also substrate quality and
mineral nutrient availability (both encompassed in total soil
%N). This supports our hypothesis that resource availability
would be most influential on the soil community. However,
other taxa, as well as the diversity and evenness of these
communities, were more simply explained by one or two soil
parameters rather than a combination. It has been found that
soil mites, in addition to other soil invertebrates in Arctic
regions, tend to be more affected by variables pertaining
to water availability (Hodkinson et al. 1998; Hansen et al.
2016), and in general, soil mites have been found to be more
sensitive to changes in SWC than collembola (Lindberg et al.
2002; Tsiafouli et al. 2005). This was true for one suborder
of mites in our study, the Prostigmatids, and to an extent
also the Oribatids, but not Mesostigmatid mites. Instead,
EC was most influential for Mesostigmatid mites, as well
as Entomobryomorpha springtails. This suggests that these
taxa prefer slightly saltier soils, perhaps reflecting either a
greater concentration of nutrient ions or a relative lack of
liquid water concentrating those ions, while the other taxa
were resilient to relatively narrow changes in EC. Indeed, the
soils highest in EC also had among the highest %N content
of which much could be present as ions.

Poduromorpha springtail abundance was best accounted
for by a model of LOI and %N, reflecting an importance of
substrate and nutrient availability rather than the physical
environment. Other northern Scandinavian studies also
showed a particular sensitivity of Collembola to basal
resources (Krab et al. 2014; Bokhorst et al. 2017, 2018),
though interestingly neither LOI nor %N had a directly
significant relationship with Poduromorpha, despite being
the best-fit model, or Entomobryomorpha abundance.
Instead, Oribatid mites were more directly influenced by
resources than the Collembola. The importance of LOI to
some taxa is supported by other studies (Bokhorst et al.
2014; Robinson et al. 2022) that found SOM was responsible
for the spatial heterogeneity of key soil properties and
therefore the soil biota communities. Therefore, while
our study reflects an importance of resources on the total
mesofauna community, it also demonstrates that the soil
chemical environment is more influential for predatory
mites and some springtails, counter to our hypothesis. For
predatory taxa, such as Mesostigmatid and Prostigmatid

mites, a direct relationship with basal soil resources (LOI,
%N) may not be apparent because it would only be indirectly
relevant through its influence on prey abundance, resulting
in less distinct associations with soil properties (Coja and
Bruckner 2003; Nielsen et al. 2010; Mitchell et al. 2016).
No organism had a significant relationship to pH, which may
infer that pH does not dictate the presence of the organisms
in focus, although further experimentation should be done
to corroborate these findings.

Like total abundance, order-level richness was
significantly related to LOI and %N, again reflecting this
importance of resources. However, Shannon diversity
and evenness did not share any statistically significant
relationships with the measured soil parameters, signaling
that these soil properties did not have a direct effect on
the evenness or diversity of the mesofauna community
at large. The models that best explained these diversity
metrics were individually either pH or %N (respectively),
although they did not have a significant linear relationship
to diversity. There are several possible explanations for these
findings. For one, these communities are well adapted to
the adverse conditions associated with these ecosystems
(Hodkinson 2005; Alatalo et al. 2017) and, while resource
availability might influence their abundance, diversity can
be maintained because they may not experience the impacts
of these soil variables that are generally seen to influence
soil biota communities in other regions. Though SWC only
significantly influenced one taxon (Prostigmatid mites), had
it been coupled with temperature, a stronger relationship
may have been forged with other taxa. As Hodkinson et al.
(1998) noted in a different Arctic ecosystem, changes in
temperature on its own did not explain the changes in soil
mesofauna composition and should be considered alongside
SWC.

The range of soil properties measured across our samples
was within the range expected for low Arctic soils that are
mildly acidic (pH ~4-5), low to moderate salinity (160-680
pS/cm), organic (30-85% LOI), and wet (100-680% g/g;
Table 1). Thus, while our data demonstrate how the in situ
community responds to soil heterogeneity within this low
Arctic region, it represents only a subset of the global
range of these soil properties. Some studies that have been
conducted over larger gradients of soil properties discovered
stronger correlations between soil properties and mesofauna
communities than we detected (e.g., Cole et al. 2005; Pan
et al. 2018; Ball et al. 2022). It is possible that we would
have found more significant correlations if, for example,
we were sampling soils across alkaline-to-acidic pH or dry-
to-wet soils. However, other studies have detected strong
relationships using similar magnitudes of soil heterogeneity
to our study (e.g., Mitchell et al. 2016; Sterzyriska et al.
2020). Therefore, the limited correlations we found may not
necessarily be the result of an ability to detect them over a
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Fig.3 Canonical correspondence analysis showing how soil samples
differ in their mesofauna community in relation to soil physicochemi-
cal parameters. Circular dots represent soil samples. The X ’s repre-
sent the organisms present, abbreviated by the first three letters of the
taxa name: Enchytraeid, Entomobryomorpha, Symphypleona, Podu-
romorpha, Oribatida, Prostigmata, Mesostigmata, Araneae, Coleop-
tera, Hemiptera, and Diptera. The+’s represented the soil variables
of pH, electrical conductivity (EC), loss on ignition (LOI), nitrogen
content (N), and soil water content (SWC)

narrow range of soil properties, especially given that our
soils represent three—fourfold differences in N, SWC, EC,
and LOI. Alternatively, the limited correlations could be due
to the fact that some taxa are not strongly linked to resources
and the chemical habitat (e.g., Mesostigmatid mites; Coja
and Bruckner 2003; Nielsen et al. 2010). For example,
we measured only soil properties representing bottom-up
resources, and there may be unmeasured influence of top-
down predation, particularly on the smaller, unsclerotized
members of the community (Wardle 2006; Schneider and
Maraun 2009; Thakur and Eisenhauer 2015).

Since this was a short-term study, we can only discuss the
current state of these soil communities. From here, further
work should be done to monitor if and how the communities
are changing. As established, these soil communities can
be sensitive to changes in their local climates (Huhta and
Hénninen 2001; Lindberg et al. 2002; Krab et al. 2013b),
which can be altered both by climate change and direct
human activity. Based on our findings, it is reasonable
to predict, in low Arctic ecosystems, that LOI and %N
levels may increase (Robinson et al. 1995; Hartley et al.
1999; Nielsen and Wall 2013; Rousk et al. 2016), which
could increase populations of microbivorous organisms in
response to an abundance of microbes (Schmidt et al. 2000),
initiating a bottom-up effect on larger organisms. Further,
SWC may decrease due to drought induced by warmer

@ Springer

temperatures (Alatalo et al. 2017) which could decrease
Enchytraeid worm and soil mite abundance (Vestergard
et al. 2015). However, these may not be the only types of
changes that could happen to these communities. It has been
found that the ranges of decomposer species, which includes
macro-detritivores, have begun to shift toward the North
as a consequence of higher temperatures linked to climate
change (van Geffen et al. 2011). This brief but informative
study can serve as a starting point for further research and
monitoring that can prove beneficial for better understanding
soil communities at large.
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