
Constraint-aware Resource Management for
Cyber-Physical Systems

Justin McGowen, Ismet Dagli, Neil T. Dantam, and Mehmet E. Belviranli
Computer Science Department at Colorado School of Mines
{jmcgowen, ismetdagli, ndantam, belviranli}@mines.edu

Abstract—Cyber-physical systems (CPS) such as robots and self-
driving cars pose strict physical requirements to avoid failure.
Scheduling choices impact these requirements. This presents
a challenge: how do we find efficient schedules for CPS with
heterogeneous processing units, such that the schedules are
resource-bounded to meet the physical requirements?

We propose the creation of a structured system, the Constrained
Autonomous Workload Scheduler, which determines scheduling
decisions with direct relations to the environment. By using a
representation language (AuWL), Timed Petri nets, and mixed-
integer linear programming, our scheme offers novel capabilities
to represent and schedule many types of CPS workloads, real
world constraints, and optimization criteria.

Index Terms—accelerator, autonomous systems, gpu, heteroge-
neous, cyber-physical systems

I. INTRODUCTION

Embedded heterogeneous computing systems offer improved
latency and energy use in Cyber-Physical Systems (CPS), but
to do so under the physical requirements of a CPS requires a
way to simultaneously consider both different processors and
physical requirements. CPS have two factors that fundamentally
limit the ability to handle their requirements. The first factor
is physical—e.g., braking distance or battery charge. The other
limiting factor is computational—i.e., moving and processing
data to make a decision takes time and energy. Many recent
CPS embed powerful heterogeneous system-on-chips (SoC),
such as NVIDIA’s Xavier or Tesla’s FSD, which can improve
these computational limits. A key property of these SoCs is that
they employ a variety of processing units (PUs): often a general
purpose CPU and various domain specific accelerators (DSAs).

Autonomous systems place multiple requirements on resource
use. Systems with time-critical components or strict constraints
on energy or power place upper bounds on resource use for any
PU (i.e., CPUs or DSAs); if computation takes more time, energy,
etc., such a system might fail. For example, an aerial drone
may fly at 50mph, when—considering the true computation
time—it only has enough time to react if flying at 40mph. Such
requirements may pose a variety of constraints and objectives to
optimize, such as, minimizing power while maintaining safety,
flying as fast as safely possible, or minimizing latency. Finding
the optimal task schedule under such tradeoffs is non-trivial.

Scheduling for diversely heterogeneous systems has broadly
been investigated over the last decade [1], [2], [7]. A limited
number of studies [5], [6], [8] have structurally approached
timing in CPS computation by building models relating physical
constraints and computational elements. However, these studies
are restricted to a specific physical constraint and do not address
domain-independent criteria.

task unit

pi,in

pcpu

pgpu

pi,outpi,gpu

pi,cpuτi,cpu τ ′i,cpu

τi,gpu τ ′i,gpu

. . .

. . .

. . .

. . .

.

Fig. 1: Proposed Petri net construction. (a) Petri net “unit” for one task.
Each unit has multiple “paths”, one for each PU. The unit operates
by (1) firing τi,xpu to consume tokens for its input and a selected PU
and setting a token on the place to remember the selected PU, and
(2) firing τ ′i,xpu to set a token in the output place and restore the PU
availability token. In this example, the GPU is available.

In this study, we propose a constraint-based autonomous
workload modeling and scheduling technique for CPSs with
embedded heterogeneous PUs. Our approach offers a generalized
solution to the heterogeneous (i.e., multi-DSA) scheduling
problem that accounts for the physical constraints using a novel
representative language (AuWL), Timed Petri nets, and mixed-
integer linear programming. Our scheduler creates schedules that
are optimal with respect to the user-defined objective (including
time) and profiled executions, and the schedules maintain the
constraints defined in AuWL, as computation can impact time,
power, or other factors limited by the physical requirements.

II. PETRI NETS FOR HETEROGENEOUS SCHEDULING

A Petri net [3] is a directed, bipartite graph.
Definition 1: A Petri net is the tuple N = (P, T, E), where,

P and T is the finite set of place nodes and transition nodes,
respectively, and E ⊆ (P×T ∪T ×P) are edges between places
and transitions. Each place P may contain a number of tokens.
We call the number of tokens contained in all places a configu-
ration or marking of the Petri net. When a particular transition
fires, it changes the marking by decrementing the tokens at
incoming places and incrementing tokens at outgoing places.

In our application of Petri nets (as shown in Figure 1), we
use places to represent the availability of a PU. Transitions
specify the possible changes in resources. The incoming
places to a transition represent resources that are acquired or
consumed, and the outgoing places represent resources that are
released or produced. The Petri net captures the parallelism
by allowing transitions to fire in any order, as long as their
incoming places have positive token counts.

III. PROPOSED METHODOLOGY

The input to our proposed scheme is a specification that
includes (1) the control flow graph (CFG) represented using

2024 Design, Automation & Test in Europe Conference (DATE 2024)
Special Initiative "Autonomous Systems Design"	

 979-8-3503-4859-0/DATE24/© 2024 EDAA

	

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on September 20,2024 at 23:15:23 UTC from IEEE Xplore. Restrictions apply.

model AuWL_example {
constraint (= total-power 30)
constraint (= velocity 5)
constraint (= motor-power (* velocity velocity))
constraint (< ENERGY 50)
constraint (< POWER (- total-power motor-power))
objective (- TIME)
data camera, lidar
data obj_bounding_boxes, localized_position, route
op object_detection {in=camera;out=bounding_boxes}
op localization {in=lidar;out=localized_position}
op route_planning {in=obj_bounding_boxes,

localized_position; out=route}
}

Fig. 2: An example AuWL program, defining the primary operations,
their dependencies, CPS constraints and the objective for a simplified
model of an autonomous vehicle.

operations in AuWL file, (2) the necessary performance criteria
(e.g., a constraint on time, energy or power), and (3) the
profiling data for estimated runtimes and energy consumption
of tasks on available PUs. The output is a heterogeneous
schedule that includes (1) the set of tasks, (2) the ordering of
tasks, and (3) the mapping of tasks to PUs.

We use the system specification (CFG, performance criteria,
and profiling data) to construct a Petri net as an intermediate
representation of the CPS. Our method utilizes the Petri net to
generate a set of constraints and objectives corresponding to
valid and optimal (with respect to the objective) schedules. We
find a solution to these constraints using a state-of-the-art solver
(specifically, Z3 [4]) to obtain a schedule that satisfies the phys-
ical requirements. Z3 guarantees optimality given an objective,
selecting from the wider set of Pareto-optimal schedules.

Our proposed methodology introduces the Autonomous
Workload Language (AuWL) representation. AuWL describes
the data flow of tasks (i.e., the CFG) and the necessary schedule
criteria (e.g., minimizing computation time, meeting an energy
budget). Figure 2 illustrates an example AuWL representation
for a simplified autonomous scenario, which must minimize
execution time under several constraints. The Petri net captures
the structure of control flow choices and resource use, facilitating
the subsequent generation of constraints. We achieve this by
constructing a set of timing constraints for valid schedules using
the information in AuWL representation.

IV. EVALUATION
We evaluate our proposed scheme on a search-and-rescue

simulation with a quadcopter (3DR Iris) in a burning house.
The drone must explore the house to monitor fires and discover
those in need of help. This environment induces 3 constraints:
Heat, Power and Stopping Distance. As the computing platform,
we target NVIDIA’s Xavier AGX and NX. They both provide
two accelerators: GPU (low-latency) and DLA (low-power). We
run and profile a variety of neural networks (NN) supported by
TensorRT on both GPU and DLA.

Our experiments show that our methodology can find a
schedule predicted to meet the constraints as long as the drone
stays within the region where there are valid schedules. The
drone adapts to the varying conditions with these schedules
depicted in Figure 3. When the drone, right before passing
close to the fire, goes around the corner and skirts the wall,
the corner reduces obstacle distance and required latency
(Schedule 1). As the drone gets near the heat source, a more

Fig. 3: The set of schedules generated for the case study. CAuWS
can pre-compute multiple schedules for varying physical parameters,
creating a policy such as “if speed is less than 3m/s and ambient
temperature less the 76, run NN 1 on the GPU and NN 2 on the
DLA simultaneously”. Schedule 1 is fast but uses more energy, while
Schedule 3 is slow but more energy efficient, due to the choice of PUs.

energy-efficient schedule must be chosen (Schedule 3). In other
cases, it defaults to Schedule 2. Past schedulers, which do
not consider physical constraints, could only choose one of
these possible schedules and would violate physical constraints
for at least 25% of the length of the path. If the path went
significantly closer to the wall or fire, there would be no
possible schedules regardless of which scheduler is used.

V. CONCLUSION
We presented a scheme to represent and generate schedules for

heterogeneous devices that satisfy changing physical constraints.
Our scheme works for a wide variety of devices, and its
capability is demonstrated on a heterogeneous compute platform
controlling a simulated drone. Our proposed scheme offers
foundation to address an expanded set of scheduling problems
that take physical constraints into account.

ACKNOWLEDGEMENTS
This material is based upon work supported by NSF under

Grant No. CCF-2124010. Any opinions, findings, or recommen-
dations expressed in this material are those of the authors and
do not necessarily reflect the views of NSF.

REFERENCES
[1] Ismet Dagli and Mehmet Belviranli. Shared memory-contention-aware

concurrent dnn execution for diversely heterogeneous socs. In PPoPP’24.
[2] Ismet Dagli, Alexander Cieslewicz, Jedidiah McClurg, and Mehmet E

Belviranli. Axonn: Energy-aware execution of neural network inference on
multi-accelerator heterogeneous socs. In DAC, 2022.

[3] Cassandras et al. Introduction to discrete event systems. Springer, 2008.
[4] Leonardoet De Moura et al. Z3: An efficient SMT solver. In Tools and

Algorithms for the Construction and Analysis of Systems. Springer, 2008.
[5] Ramyad Hadidi et al. Quantifying the design-space tradeoffs in autonomous

drones. In ASPLOS, pages 661–673, 2021.
[6] Srivatsan Krishnan et al. Sky is not limit: A visual performance model for

cyber-physical co-design in autonomous machines. IEEE CAL, 2020.
[7] Van Craeynest et al. Scheduling heterogeneous multi-cores through

performance impact estimation (pie). In ISCA, 2012.
[8] Zishen Wan et al. Analyzing and improving fault tolerance of learning-based

navigation systems. In DAC, 2021.

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on September 20,2024 at 23:15:23 UTC from IEEE Xplore. Restrictions apply.

