Text-Augmented Open Knowledge Graph Completion via
Pre-Trained Language Models

Pengcheng Jiang” , Shivam Agarwal” , Bowen Jin", Xuan Wang' ,
Jimeng Sun” and Jiawei Han"

*Department of Computer Science, University of Illinois at Urbana-Champaign

TDepartment of Computer Science, Virginia Tech

{pj20, shivama2, bowenij4,

Abstract

The mission of open knowledge graph (KG)
completion is to draw new findings from known
facts. Existing works that augment KG comple-
tion require either (1) factual triples to enlarge
the graph reasoning space or (2) manually de-
signed prompts to extract knowledge from a
pre-trained language model (PLM), exhibiting
limited performance and requiring expensive
efforts from experts. To this end, we propose
TAGREAL that automatically generates quality
query prompts and retrieves support informa-
tion from large text corpora to probe knowledge
from PLM for KG completion. The results
show that TAGREAL achieves state-of-the-art
performance on two benchmark datasets. We
find that TAGREAL has superb performance
even with limited training data, outperforming
existing embedding-based, graph-based, and
PLM-based methods.

1 Introduction

A knowledge graph (KG) is a heterogeneous graph
that encodes factual information in the form of
entity-relation-entity triplets, where a relation con-
nects a head entity and a tail entity (e.g., “Miami-
located_in-USA”) (Wang et al., 2017; Hogan et al.,
2021). KG (Dai et al., 2020) plays a central role
in many NLP applications, including question an-
swering (Hao et al., 2017; Yasunaga et al., 2021),
recommender systems (Zhou et al., 2020), and drug
discovery (Zitnik et al., 2018). However, existing
works (Wang et al., 2018; Hamilton et al., 2018)
show that most large-scale KGs are incomplete and
cannot fully cover the massive real-world knowl-
edge. This challenge motivates KG completion,
which aims to find one or more object entities given
a subject entity and a relation (Lin et al., 2015). For
example, in Figure 1, our goal is to predict the ob-
ject entity with “Detroit” as the subject entity and
“contained_by” as the relation.

However, existing KG completion approaches
(Trouillon et al., 2016b; Das et al., 2018) have sev-
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Figure 1: The quality of hand-crafted prompts can be
limited, while prompt mining is a scalable alternative.
Support information also helps PLM understand the pur-
pose of prompts. In this example, Canada and Michigan
are potentially valid options but given prompt mining
and support information retrieval, the model becomes
confident about Michigan as the answer here.

eral limitations (Fu et al., 2019). First, their perfor-
mance heavily depends on the density of the graph.
They usually perform well on dense graphs with
rich structural information but poorly on sparse
graphs which are more common in real-world ap-
plications. Second, previous methods (e.g., Bordes
et al. (2013)) assume a closed-world KG without
considering vast open knowledge in the external
resources. In fact, in many cases, a KG is usually
associated with a rich text corpus (Bodenreider,
2004), which contains a vast amount of factual data
not yet extracted. To overcome these challenges we
investigate the task of open knowledge graph com-
pletion, where KG can be constructed using new
facts from outside the KG. Recent text-enriched
solutions (Fu et al., 2019) focus on using a pre-
defined set of facts to enrich the knowledge graph.
Nonetheless, the pre-defined set of facts is often
noisy and constricted, that is, they do not provide
sufficient information to efficiently update the KG.
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Pre-trained language models (PLMs) (Devlin
et al., 2019; Liu et al., 2019a) have shown to be
powerful in capturing factual knowledge implicitly
from learning on massive unlabeled texts (Petroni
et al., 2019b). Since PLMs are superb in text en-
coding, they can be utilized to facilitate knowl-
edge graph completion with external text informa-
tion. Recent knowledge graph completion methods
(Shin et al., 2020; Lv et al., 2022) focus on using
manually crafted prompts (e.g., “Detroit is located
in [MASK]” in Figure 1) to query the PLMs for
graph completion (e.g., “Michigan”). However,
manually creating prompts can be expensive with
limited quality (e.g., PLM gives a wrong answer
“Canada” to the query with a handcrafted prompt,
as shown in Figure 1).

Building on the above limitations of standard KG
and the enormous power of PLMs (Devlin et al.,
2019; Liu et al., 2019a), we aim to use PLMs for
open knowledge graph completion. We propose an
end-to-end framework that jointly exploits the im-
plicit knowledge in PLMs and textual information
in the corpus to perform knowledge graph comple-
tion (as shown in Figure 1). Unlike existing works
(e.g., (Fuetal., 2019; Lv et al., 2022)), our method
does not require a manually pre-defined set of facts
and prompts, which is more general and easier to
adapt to real-world applications.

Our contributions can be summarized as:

* We study the open KG completion problem
that can be assisted by facts captured from
PLMs. To this end, we propose a new frame-
work TAGREAL that denotes text augmented
open KG completion with real-world knowl-
edge in PLMs.

* We develop prompt generation and infor-
mation retrieval methods, which enable
TAGREAL to automatically create high-
quality prompts for PLM knowledge prob-
ing and search support information, making
it more practical especially when PLMs lack
some domain knowledge.

» Through extensive quantitative and qualitative
experiments on real-world knowledge graphs
such as Freebase! we show the applicability
and advantages of our framework.”

"https://github.com/thunlp/OpenNRE
2Qur code is available at: https://github.com/
pat-jj/TagReal

2 Related Work
2.1 KG Completion Methods

KG completion methods can be categorized
into embedding-based and PLM-based methods.
Embedding-based methods represent entities and
relations as embedding vectors and maintain their
semantic relations in the vector space. TransE (Bor-
des et al., 2013) vectorizes the head, the relation
and the tail of triples into a Euclidean space. Dist-
Mult (Yang et al., 2014) converts all relation em-
beddings into diagonal matrices in bilinear models.
RotatE (Sun et al., 2019) presents each relation em-
bedding as a rotation in complex vector space from
the head entity to the tail entity.

In recent years, researchers have realized that
PLM:s can serve as knowledge bases (Petroni et al.,
2019a; Zhang et al., 2020; AlKhamissi et al.,
2022). PLM-based methods for KG comple-
tion (Yao et al., 2019; Kim et al., 2020; Chang
et al.,, 2021; Lv et al., 2022) start to gain atten-
tion. As a pioneer, KG-BERT (Yao et al., 2019)
fine-tunes PLM with concatenated head, relation,
and tail in each triple, outperforming the conven-
tional embedding-based methods in link prediction
tasks. Lv et al.(2022) present PKGC, which uses
manually designed triple prompts and carefully se-
lected support prompts as inputs to the PLM. Their
result shows that PLMs could be used to substan-
tially improve the KG completion performance,
especially in the open-world (Shi and Weninger,
2018) setting. Compared to PKGC, our frame-
work TAGREAL automatically generates prompts
of higher quality without any domain expert knowl-
edge. Furthermore, instead of pre-supposing the
existence of support information, we search rele-
vant textual information from the corpus with an
information retrieval method to support the PLM
knowledge probing.

2.2 Knowledge Probing using Prompts

LAMA (Petroni et al., 2019a) is the first framework
for knowledge probing from PLMs. The prompts
are manually created with a subject placeholder
and an unfilled space for the object. For exam-
ple, a triple query (Miami, location, 7) may have
a prompt “Miami is located in [MASK]” where
“<subject> is located in [MASK]” is the tem-
plate for “location” relation. The training goal is to
correctly fill [MASK] with PLM’s prediction. An-
other work, BertNet (Hao et al., 2022), proposes
an approach applying GPT-3 (Brown et al., 2020)
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to automatically generate a weighted prompt en-
semble with input entity pairs and a manual seed
prompt. It then uses PLM again to search and se-
lect top-ranked entity pairs with the ensemble for
KG completion.

2.3 Prompt Mining Methods

When there are several relations to interpret, man-
ual prompt design is costly due to the require-
ment of domain expert knowledge. In addition,
the prompt quality could not be ensured. Hence,
quality prompt mining catches the interest of re-
searchers. Jiang et al. 2020 propose an approach
MINE which searches middle words or dependency
paths between the given inputs and outputs in a
large text corpus (e.g., Wikipedia). They also pro-
pose a reasonable approach to optimize the ensem-
ble of the mined prompts by weighting prompt in-
dividuals regarding their performance on the PLM.

Before the emergence and widespread use of
PLMs, textual pattern mining performed a similar
function to find reliable patterns for information ex-
traction. For instance, MetaPAD (Jiang et al., 2017)
generates quality meta patterns by context-aware
segmentation with the pattern quality function, and
TruePIE (Li et al., 2018) proposes the concept of
pattern embedding and a self-training framework,
that discovers positive patterns automatically.

3 Methodology

We propose TAGREAL, a PLM-based framework
to handle KG completion tasks. In contrast to the
previous work, our framework does not rely on
handcrafted prompts or pre-defined relevant facts.
As shown in Figure 2, we automatically create ap-
propriate prompts and search relevant support in-
formation, which are further utilized as templates
to explore implicit knowledge from PLMs.

3.1 Problem Formulation

Knowledge graph completion is to add new
triples (facts) to the existing triple set of a KG.
There are two tasks to achieve this goal. The first
is triple classification, which is a binary classifica-
tion task to predict whether a triple (h, r, t) belongs
to the KG, where h, r, t denote head entity, relation
and tail entity respectively. The second task is link
prediction, which targets on predicting either the
tail entity ¢ with a query (h,r, ?) or the head entity
h with a query (?,r,t).

3.2 Prompt Generation

Previous studies (e.g., Jiang et al. (2020)) demon-
strate that the accuracy of relational knowledge
extracted from PLMs heavily relies on the qual-
ity of prompts used for querying. To this end, we
develop a comprehensive approach for automatic
quality prompt generation given triples in KG as
the only input, as shown in Figure 3. We use textual
pattern mining methods to mine quality patterns
from large corpora as the prompts used for PLM
knowledge probing. As far as we know, we are
pioneers in using textual pattern mining methods
for LM prompt mining. We believe in the appli-
cability of this approach for the following reasons.

* Similar data sources. We apply pattern mining on
large corpora (e.g., Wikipedia) which are the data
sources where most of PLMs are pre-trained.

» Similar objectives. Textual pattern mining is to
mine patterns to extract new information from
large corpora; prompt mining is to mine prompts
to probe implicit knowledge from PLMs.

* Similar performance criteria. The reliability of
a pattern or a prompt is indicated by how many
accurate facts it can extract from corpora/PLMs.

Sub-corpora mining is the first step that creates
the data source for the pattern mining. Specifically,
given a KG with a relation set R = (71,72, ..., %),
we first extract tuples 7., paired by head entities
and tail entities for each relation r; € R from the
KG. For example, for the relation r1: /busi-
ness/company/founder, we extract all tu-
ples like <microsoft, bill_gates> in this
relation from the KG. For each tuple ¢;, we then
search sentences St; containing both head and tail
from a large corpus (e.g., Wikipedia) and other
reliable sources, which is added to compose the
sub-corpus C.,. We limit the size of each set to ¢
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Figure 3: Prompt generation process. The solid lines connect the intermediate processes, and the arrows point to

the intermediate/final results. Input and output are highlighted in red and

head and tail entities respectively.

for each tuple to mine more generic patterns for
future applications.

Phrase segmentation and frequent pattern
mining are applied to mine patterns from sub-
corpora as prompt candidates. We use AutoPhrase
(Shang et al., 2018) to segment corpora to more nat-
ural and unambiguous semantic phrases, and use
FP-Growth algorithm (Han et al., 2000) to mine
frequent appeared patterns to compose a candidate
set P, = (py,Pgs .., D). The size of the set is
large, as there are plenty of messy textual patterns.

Prompt selection. To select quality patterns
from the candidate set, we apply two textual min-
ing approaches: MetaPAD (Jiang et al., 2017) and
TruePIE (Li et al., 2018). MetaPAD applies pat-
tern quality function introducing several criteria
of contextual features to estimate the reliability
of a pattern. We explain why those features can
also be adapted for LM prompt estimation: (1) Fre-
quency and concordance: Since a PLM learns more
contextual relations between frequent patterns and
entities during the pre-training stage, a pattern oc-
curs more frequently in the background corpus can
probe more facts from the PLM. Similarly, if a pat-
tern composed of highly associated sub-patterns
appears frequently, it should be considered as a
good one as the PLM would be familiar with the
contextual relations among the sub-patterns. (2)
Informativeness: A pattern with low informative-
ness (e.g., p/1 in Figure 3) has the weak ability of
PLM knowledge probing, as the relation between
the subject or object entities cannot be well inter-
preted by it. (3) Completeness: The completeness

respectively. [X] and [Y] denote

of a pattern affects a lot to the PLM knowledge
probing especially when any of the placeholders is
missing (e.g., p;%z in Figure 3) so that PLM can-
not even give an answer. (4) Coverage: A quality
pattern should be able to probe accurate facts from
PLM as many as possible. Therefore, patterns like
p; which only suit a few or only one case should
have a low quality score. We then apply TruePIE
on the prompts (patterns) selected by MetaPAD.
TruePIE filters the prompts that have low cosine
similarity with the positive samples (e.g., pg and
p;nfl are filtered), which matters to the creation of
prompt ensemble since we want the prompts in the
ensemble to be semantically close to each other so
that some poor-quality prompts would not signifi-
cantly impact the prediction result by PLM. As a
result, we create a more reliable prompt ensemble
Pr, = {pin,pi2, ..., Pin} based on the averaged
probabilities given by the prompts:

1 n
P(y|x,n) = E ZPLM(ybjypz,])» (1)
j=1

where r; is the i-th relation and p; ; is the j-th
prompt in P,,. Beyond prompt selection, a prompt
optimization process is also employed. Pointed
out by Jiang et al. 2020, some prompts in the en-
semble are more reliable and ought to be weighted
more. Thus, we change Equation 1 to:

n
P(ylz,ri) = wiiPou(yle,piy), ()
j=1

where w; ; is the weight of j-th prompt for i-th
relation. In our setting, all weights {w1 1, .., wgn}
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Query gq7: < microsoft, /business/company/founder, ?>

BM25
Support Information S;r

“however, microsoft is planning a significant marketing
push into the field with a keynote speech by bill gates,
the company 's co-founder and chairman.”

Prompt ensemble P J

p1:  [Y], founder of [X]
p2:  [Y], co-founder of [X]

pn:  [Y], chairman of [X]

Query instances §; : I

“[CLS] however, microsoft is planning a significant
marketing push into the field with a keynote speech by
bill_gates, the company 's co-founder and chairman.
[SEP] [MASK], founder of microsoft”

Figure 4: Support information retrieval.

are learned through PLM to optimize P(y|z,r;)
for r; € R ahead of the training process.

3.3 Support Information Retrieval

In addition to the prompt mining, we also attach
some query-wise and triple-wise support text infor-
mation to the prompt to help the PLMs understand
the knowledge we want to probe as well as to aid
in training triple classification ability. As seen in
Figure 4, for the i-th query ¢; in relation r, we use
BM25 (Robertson et al., 1995) to retrieve highly
ranked support texts with score greater than ¢ and
length shorter than ¢ from the reliable corpus and
randomly select one of them as the support informa-
tion. To compose the input cloze g; to the PLM, we
concatenate the support text to each prompt in the
optimized ensemble we obtained through previous
steps, with the subject filled and the object masked.
[CLS] and [SEP] are the tokens for sequence
classification and support information-prompt sep-
aration accordingly.

In the training stage, we search texts using triples
rather than queries, and the [MASK] would be
filled by the object entities. It is worth noting that
support text is optional in TAGREAL, and we leave
it blank if no matching data is found.

3.4 Training

To train our model, we create negative triples in
addition to the given positive triples following
the idea introduced by PKGC (Lv et al., 2022),
to handle the triple classification task. We cre-
ate negative triples by replacing the head and tail
in each positive triple with the "incorrect" en-
tity that achieves high probability by the KGE
model. We also create random negative sam-
ples by randomly replacing the heads and tails

to enlarge the set of negative training/validation
triples. The labeled training triples are assembled
as T =T U(Tar Y Tpanp) Where T is the
positive set, T and T 4y p are two negative
sets we created by embedding model-based and ran-
dom approaches respectively. Then, we transform
all training triples of each relation 7 into sentences
with the prompt ensemble P, and the triple-wise
support information retrieved by BM25 (if there is
any). At the training stage, the [MASK] is replaced
by the object entity in each positive/negative triple.
The query instances ¢; are then used to fine-tune
the PLM by updating its parameters. Cross-entropy
loss (Lv et al., 2022) is applied for optimization:

log(c2
L= Y losteh) + (1—5) 2D )
TET
where 2, ¢l € [0,1] are the softmax classifica-

T T

tion scores of the token [CLS] for the triple 7,
y is the ground truth label (1/0) of the triple, and
M = (|T|/|T ) is the ratio between the number
of positive and negative triples. After the PLM is
fine-tuned with positive/negative triples in training
set, it should have a better performance on classi-
fying the triples in the dataset compared to a raw
PLM. This capability would enable it to perform
KG completion as well.

3.5 Inference

Given a query (h,r,7), we apply the query-wise
support information that is relevant to the head
entity h and relation r, as we presume that we
are unaware of the tail entity (our prediction goal).
Then, we make the corresponding query instances
containing [MASK], with both support informa-
tion and prompt ensemble, as shown in Figure 4.
To leverage the triple classification capability of
the PLM on link prediction, we replace [MASK]

in a query instance with each entity in the known
entity set and rank their classification scores in
descending order to create a 1-d vector as the pre-
diction result for each query. This indicates that
the lower-indexed entities in the vector are more
likely to compose a positive triple with the input
query. For prompt ensemble, we sum up the scores
by entity index before ranking them. The detailed
illustration is placed in Appendix E.
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Model

20%

50%

100%

Hits@5 Hits@10 MRR Hits@5 Hits@10 MRR Hits@5 Hits@10 MRR

TransE (Bordes et al., 2013) 29.13 32.67 1580 41.54 4574 2582 4253 46.77  29.86

DisMult (Yang et al., 2014) 3.44 4.31 2.64 1598 18.85 13.14 3794 41.62  30.56

KGE-based ComplEx (Trouillon et al., 2016a)  4.32 5.48 316  15.00 1773 1221 3542 38.85 28.59
ConvE (Dettmers et al., 2018) 29.49 3330 2431 40.10 44.03 3297 50.18 54.06  40.39

TuckER (Balazevi¢ et al., 2019) 29.50 3248 2444 41.73 4558 33.84 51.09 54.80  40.47

RotatE (Sun et al., 2019) 1591 18.32  12.65 3548 39.42 2892 51.73 5527  42.64

RC-Net (Xu et al., 2014) 13.48 15.37 1326 14.87 16.54 14.63 14.69 16.34 1441

Text& KGE-based TransE+Line (Fu et al., 2019) 12.17 15.16 488 21.70 25.75 8.81  26.76 31.65 1097
JointNRE (Han et al., 2018) 16.93 20.74 1139  26.96 31.54  21.24  42.02 47.33  32.68

RL-based MINERVA (Das et al., 2017) 11.64 14.16 893 25.16 31.54 2224 43.80 4470  34.62
CPL (Fuetal., 2019) 15.19 18.00 10.87 26.81 3170  23.80 4325 4950  33.52

PLM-based PKGC (Lv et al., 2022) 35.77 43.82 28.62 41.93 46.70  31.81 41.98 5256 32.11
TagReal (our method) 45.59 51.34 3541 48.98 55.64 38.03 50.85 60.64 38.86

Table 1: Performance comparison of KG completion on FB60K-NYT10 dataset. Results are averaged values of
ten independent runs of head/tail entity predictions. The highest score is highlighted in bold.

4 Experiment

4.1 Datasets and Compared Methods

Datasets. We use the datasets FB60K-NYT10
and UMLS-PubMed provided by Fu et al., where
FB60K and UMLS are knowledge graphs and
NYT10 and PubMed are corpora. FB60K-NYT10
contains more general relations (e.g., “national-
ity of perso”’) whereas UMLS-PubMed focuses on
biomedical domain-specific relations (e.g., “gene
mapped to diseas”). We apply the pre-processed
dataset 3 (with training/validation/testing data size
8:1:1) to align the evaluation of our method with
the baselines. Due to the imbalanced distribution
and noise present in FB60K-NYT10 and UMLS-
PubMed, 16 and 8 relations are selected for the
performance evaluation, respectively. We place
more details of the datasets in Appendix A.
Compared Methods. We compare our model
TAGREAL with four categories of methods. For (1)
traditional KG embedding-based methods, we eval-
uate TransE (Bordes et al., 2013), DisMult (Yang
et al., 2014), ComplEx (Trouillon et al., 2016a),
ConvE (Dettmers et al., 2018), TuckER (Balazevi¢
et al., 2019) and RotatE (Sun et al., 2019) where
TuckER is a newly added model. For (2) joint text
and graph embedding methods, we evaluate RC-
Net (Xu et al., 2014), TransE+LINE (Fu et al.,
2019) and JointNRE (Han et al., 2018). For (3) re-
inforcement learning (RL) based path-finding meth-
ods, we evaluate MINERVA (Das et al., 2017) and
CPL (Fu et al., 2019). For (4) PLM-based meth-
ods, we evaluate PKGC (Lv et al., 2022) and our
method TAGREAL. We keep the reported data of
(2) and (3) by Fu et al.2019 while re-evaluating all

Shttps://github.com/INK-USC/CPL#
datasets

models in (1) in different settings for more rigorous
comparison (see Appendix I for details). PKGC
in our setting can be viewed as TAGREAL with
manual prompts and without support information.

4.2 Experimental Setup

For FB60K-NYT10, we use LUKE (Yamada et al.,
2020), a PLM pre-trained on more Wikipedia data
with RoBERTa (Liu et al., 2019b). For UMLS-
PubMed, we use SapBert (Liu et al., 2021) that pre-
trained on both UMLS and PubMed with BERT
(Devlin et al., 2019). For sub-corpora mining, we
use Wikipedia with 6,458,670 document examples
as the general corpus and NYT10/PubMed as the
reliable sources, and we mine 500 sentences at max-
imum (6 = 500) for each tuple. For the prompt
selection, we apply MetaPAD with its default set-
ting, and apply TruePIE with the infrequent pattern
penalty, and thresholds for positive patterns and
negative patterns reset to {0.5, 0.7, 0.3} respec-
tively. For support information retrieval, we use
BM25 to search relevant texts with § = 0.9 and
¢ = 100 in the corpora NYT10/PubMed. We fol-
low the same fine-tuning process as PKGC. We
use TuckER as the KGE model to create negative
triples, and we set M = 30 as the ratio of posi-
tive/negative triples. To compare with baselines,
we test our model on training sets in the ratios of
[20%, 50%, 100%] for FB60K-NYT10 and [20%,
40%, 70%, 100%] for UMLS-PubMed. The evalu-
ation metrics are described in Appendix F.

5 Results

5.1 Performance Comparison

We show the performance comparison with the
state-of-the-art methods in Tables 1 and 2. As one
can observe, TAGREAL outperforms the existing
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Model

20%

40%
Hits@5 Hits@10 Hits@5 Hits@10 Hits@5 Hits@10 Hits@5 Hits@10

70%

100%

TransE (Bordes et al., 2013) 19.70 30.47 27.72 41.99 34.62 49.29 40.83 53.62

DisMult (Yang et al., 2014) 19.02 28.35 28.28 40.48 32.66 47.01 39.53 53.82

KGE-based ComplEx (Trouillon et al., 2016a)  11.28 17.17 24.64 35.15 25.89 38.19 34.54 49.30

ConvE (Dettmers et al., 2018) 20.45 30.72 27.90 42.49 30.67 45.91 29.85 45.68

TuckER (BalaZevi¢ et al., 2019) 19.94 30.82 25.79 41.00 26.48 42.48 30.22 45.33

RotatE (Sun et al., 2019) 17.95 27.55 27.35 40.68 34.81 48.81 40.15 53.82

RC-Net (Xu et al., 2014) 7.94 10.77 7.56 11.43 8.31 11.81 9.26 12.00

Text&KGE-based TransE+Line (Fu et al., 2019) 23.63 31.85 24.86 38.58 25.43 34.88 2231 33.65
JointNRE (Han et al., 2018) 21.05 31.37 27.96 40.10 30.87 44.47 - -

RL-based MINERVA (Das et al., 2017) 11.55 19.87 24.65 35.71 35.80 46.26 57.63 63.83

CPL (Fu et al., 2019) 15.32 24.22 26.96 38.03 37.23 47.60 58.10 65.16

PLM-based PKGC (Lv et al., 2022) 31.08 43.49 41.34 52.44 47.39 55.52 55.05 59.43

TagReal (our method) 35.83 46.45 46.26 55.99 53.46 60.40 60.68 62.88

Table 2: Performance comparison of KG completion on UMLS-PubMed dataset. Results are averaged values

of ten independent runs of head/tail entity predictions. The highest score is highlighted in bold.

Condition FB60K-NYT10 UMLS-PubMed

20% 50% 100% 20% 40% 70% 100%
man (35.77,43.82) (41.93,46.70) (41.98,52.56) (31.08,43.49) (41.34,52.44) (47.39,56.52) (55.05,59.43)
mantsupp  (43.23,47.74) (47.10,52.02) (48.66,57.46) (32.95,44.42) (44.37,54.96) (51.98,59.09) (59.99,61.23)
mine+supp  (44.54,49.53) (47.43,53.87) (49.03,58.82) (35.56,45.33) (45.35,55.44) (53.12,59.65) (60.27,61.70)
optim+supp (45.59, 51.34) (48.98,55.64) (50.85,60.64) (35.83,46.45) (46.26,55.99) (53.46,60.40) (60.68,62.88)

Table 3: Ablation study on prompt and support information. Data in brackets denotes Hits@5 (left) and Hits@ 10
(right). "man", "mine" and "optim" denote TAGREAL with manual prompts, mined prompt ensemble without
optimization and optimized prompt ensemble, respectively. "supp" denotes application of support information.

works in most cases. Given dense training data,
KGE-based methods (e.g., RotatE) and RL-based
methods (e.g., CPL) can still achieve relatively
high performance. However, when the training
data is limited, these approaches suffer, whereas
PLM-based methods (PKGC and TAGREAL) are
not greatly impacted. Our approach performs no-
ticeably better in such cases than the current non-
PLM-based ones. This is because the KGE models
cannot be trained effectively with inadequate data,
and the RL-based path-finding models cannot rec-
ognize the underlying patterns given insufficient
evidential and general paths in KG. On the other
hand, PLMs already possess implicit information
that can be used directly, and the negative effects
of insufficient data in fine-tuning would be less
harsh than in training from scratch. TAGREAL out-
performs PKGC due to its ability to automatically
mine quality prompts and retrieve support infor-
mation in contrast to manual annotations which
are often limited. Next, we analyze the impacts of
support information and prompt generation on the
performance of TAGREAL.

5.2 Model Analysis

We conduct an ablation study to verify the effec-
tiveness of both automatically generated prompts
and retrieved support information. The results are

presented in Table 3, Figure 5 and 6.
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Figure 5: Performance (F1-Score) variation of triple
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means TAGREAL with manual prompts or optimized
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the x-axis are the abbreviations of relations.

Support Information. As shown in Table 3,
for FB60K-NYT10, support information helps im-
prove Hits@5 and Hits@10 in ranges of [5.2%,

11167



Query: (?, /location/location/contains, alba)

Manual Prompt

[Y] is located in [X].

Optimized Prompt Ensemble weights
[YI], [X] . 0.10490836
home in [Y], [X] . 0.23949857
[Y]isin [X] . 0.24573646
0.32810964
0.34946583

Support Information (retrieved by BM25)

“in alba [italy 's truffle capital , in the northwestern province of piedmont , demand for the fungi has spawned a cottage industry of

package tours , food festivals and a strip mall of truffle-themed shops . ”

Predictions (Top10 in descending order of classification scores)

Man : united states of america, pennsylvania, france, lombardy, abruzzo, jamaica, piedmont, ivrea, massachusetts, iraq

Optim :
Man + Supp :
Optim + Supp :

cuneo, piedmont, italy, sicily, lazio, texas, campania, northern_italy, scotland, calabria
sicily, italy, massachusetts, lazio, piedmont, united_states of america, abruzzo, tuscany, iraq, milan

piedmont, cuneo, italy, northern_italy, canale, tuscany, campania, sicily, lazio, calabria

Figure 7: Example of the link prediction with TAGREAL on FB60K-NYT10. Man denotes manual prompt.
Optim denotes optimized prompt ensemble. Supp denotes support information. The ground truth tail entity ,

helpful information and foptimized prompts (darker for higher weights) are highlighted.

7.5%]) and [3.8%, 5.3%], respectively. For UMLS-
PubMed, it helps improve Hits@5 and Hits10 in
ranges of [1.9%, 4.94%] and [0.9%, 3.6%], respec-
tively. Although the overlap between UMLS and
PubMed is higher than that between FB60K and
NYTI10 (Fu et al., 2019), the textual information in
PubMed could not help as much as NYT10 since
that: (1) SapBert already possesses adequate im-
plicit knowledge on both UMLS and PubMed so
that a large portion of additional support texts might
be useless. The lines "u2", "u3", "u4" and "u5" in
Figure 5 show that support information helps more
when using LUKE as the PLM as it contains less
domain-specific knowledge. It also infers that the
support information could be generalized to any
application, especially when fine-tuning a PLM is
difficult in low-resource scenarios (Arase and Tsu-
jii, 2019; mahabadi et al., 2021). (2) UMLS con-
tains more queries with multiple correct answers
than FB60K (see Appendix A), which means some
queries are likely "misled" to another answer and
thus not counted into the Hits@N metric.

Prompt Generation. Almost all of the relations,
as shown in Figure 6, could be converted into better
prompts by our prompt mining and optimization, al-
beit some of them might be marginally worse than
manually created prompts due to the following fact.
A few of the mined prompts, which are of lower
quality than the manually created prompts, may
significantly negatively affect the prediction score
for the ensemble with equal weighting. Weight-
ing based on PLM reduces such negative effects
of the poor prompts for the optimized ensembles
and enables them to outperform most handcrafted

prompts. In addition, Table 3 shows the overall im-
provement for these three types of prompts, demon-
strating that for both datasets, optimized ensembles
outperform equally weighted ensembles, which in
turn outperform manually created prompts. More-
over, by comparing line "f1" with line "{2", or line
"ul" with line "u3" in Figure 5, we find a perfor-
mance gap between PLM with manual prompts and
with the optimized ensemble for triple classifica-
tion, highlighting the effectiveness of our method.

5.3 Case Study

Figure 7 shows an example of using TAGREAL for
link prediction with a query (?, /location/location/
contains, alba) where “piedmont” is the ground
truth. By comparing the prediction results in differ-
ent pairs, we find that both prompt generation and
support information could enhance the KG com-
pletion performance. With the handcrafted prompt,
the PLM simply lists out the terms that have some
connections to the subject entity “alba” without
being aware that we are trying to find the place it is
located in. Differently, with the optimized prompt
ensemble, the PLM lists entities that are highly rel-
evant to our target, where “cuneo”, “italy”, “north-
ern_italy” are correct real-world answers, indicat-
ing that our intention is well conveyed to the PLM.
With the support information, the PLM increases
the score of entities that are related to the keywords
(“italy”, “piedmont”) in the text. Moreover, the op-
timized ensemble removes “texas” and “scotland”
from the list and leaves only Italy-related locations.
More examples are placed in Appendix H.
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6 Conclusion and Future Works

In this study, we proposed a novel framework to
exploit the implicit knowledge in PLM for open
KG completion. Experimental results show that
our method outperforms existing methods espe-
cially when the training data is limited. We showed
that the optimized prompts with our approach out-
perform the handcrafted ones in PLM knowledge
probing. The effectiveness of the support informa-
tion retrieval to aid the prompting is also demon-
strated. In the future, we may leverage QA model’s
power to retrieve more reliable support information.
Another potential extension is to make our model
more explainable by exploring path-finding tasks.

7 Limitations

Due to the nature of deep learning, our method is
less explainable than path-finding-based KG com-
pletion methods (e.g., CPL), which provide a con-
crete reasoning path to the target entity. Composing
the path with multiple queries might be an appli-
cable strategy that is worthwhile to investigate in
order to extend our work on the KG reasoning task.

For the link prediction task, we adapt the “recall
and re-ranking” strategy from PKGC (Lv et al.,
2022), which brings a trade-off between prediction
efficiency and accuracy. We alleviate the issue by
applying different hyper-parameters given different
sizes of training data, which is discussed in detail
in Appendix C.

As a common issue of existing KG completion
models, the performance of our model also de-
grades when the input KG contains noisy data. The
advantage of our approach in addressing this issue
is that it can use both corpus-based textual informa-
tion and implicit PLM knowledge to reduce noise.

8 Ethical Statements

In this study, we use two datasets FB60OK-NYT10
and UMLS-PubMed, which include the knowledge
graphs FB60K and UMLS as well as the text cor-
pora NYT10 and PubMed. The data is all publicly
available. Our task is knowledge graph completion,
which is performed by finding missing facts given
existing knowledge. This work is only relevant to
NLP research and will not be put to improper use
by ordinary people.
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A Dataset Overview

We use the datasets FB60K-NYT10 and UMLS-
PubMed provided by (Fu et al., 2019). * They
take the following steps to split the data: (1) split
the data of each KG (FB60K or UMLYS) in the ratio
of 8:1:1 for training/validation/testing data. (2) For
training data, they keep all triples in any relations.
(3) For validation/testing data, they only keep the
triples in 16/8 relations they concern (see relations
in Table 5). The processed data has {train: 268280,
valid: 8765, test: 8918} for FB60K and {train:
2030841, valid: 8756, test: 8689} for UMLS. As
for the corpora, there are 742536 and 5645558
documents in NYT10 and PubMed respectively.

FB60K-NYT10 UMLS-PubMed

#query_tail 57279 12956
#query_head 23319 12956
#triples/#queries 222 6.81

Table 4: The number of queries and the ratio of
triples/queries for FB60K-NYT10 and UMLS-PubMed

Sub-training-set splitting. To split the training
data in the ratio of 20%/50% for FB60K-NYT10
or 20%/40%/70% for UMLS-PubMed, we use the
same random seeds (55, 83, 5583) as Fu et al. used,
and report the results in average.

Query-triple ratio. Within the relations that we
focus on, we calculate the ratio of the triples by
the queries (including both (h,r,?) and (7, 7,t))
to indicate the number of correct answers a query
may have in average. The result is given in Table
4. For UMLS-PubMed, as the relations are sym-
metric in pairs, the number of queries for head and
tail predictions are the same. Table 5 presents the
counting in a more detailed setting. Both tables
show that there are more multi-answer queries in
UMLS-PubMed than in FB60K-NYT10, which ex-
plains why the support information may not be as
helpful in the former as it is in the latter, as revealed
by Table 3 and discussed in Section 5.2.

B Textual Pattern Mining

The purpose of pattern mining is to find rules that
describe particular patterns in the data. Information
extraction is a common goal for pattern mining
and prompt mining, where the former focuses on
extracting facts from massive text corpora and the

*https://github.com/INK-USC/CPL#
datasets

latter on extracting facts from PLMs. In this sec-
tion, we use another example (Figure 8) to explain
in detail how the textual pattern mining approaches
like MetaPAD (Jiang et al., 2017) and TruePIE
(Li et al., 2018) are implemented to mine quality
prompts. In the example, given the relation 1oca-
tion/neighborhood/neighborhood_of

as the input, we first extract tuples (e.g., <east

new york, brooklyn>) in the relation from
the KG (i.e., FB60K). Then, we construct a
sub-corpus by searching the sentences in a large
corpus (e.g., Wikipedia) and the KG-related corpus
(i.e. NYT10 for FB60). After the creation of sub-
corpus, we apply phrase segmentation and frequent
pattern mining to mine raw prompt candidates.
Since the candidate set is noisy as some prompts

with low completeness (e.g., in lower [Y]),
low informativeness (e.g., the [Y], [X])and
low coverage (e.g., [X], manhattan, [Y])

are present, we use MetaPAD to handle the prompt
filtering with its quality function introducing
those contextual features. After the prompts have
been processed by MetaPAD, we choose one of
them to serve as a seed prompt (for example,
[X] neighborhood of [Y]) so that other
prompts can be compared to it by computing their
cosine similarity. As the positive seed prompt is
selected manually, we can tell that there is still
room for future improvement.

C Re-ranking Recalls from KGE Model

Re-ranking framework. According to the
inference process we present in Figure 9, we
fill the placeholder ([MASK]) with each entity
(e1,e2,...,e,) in the entity set E. However, as
mentioned by Lv et al.2022, the inference speed
of PLM-based models is much slower than that of
KGE models, which is a disadvantage of using
PLM for KG completion. To address this issue,
they use the recalls from KGE models, that is,
using KGE models to run KG completion and
select X top-ranked entities for each query as
the entity set E/. Then, they shuffle the set and
re-rank those entities using the PLM-based model.
In our work, we adapt this re-ranking framework
to accelerate the inference and evaluation as our
time complexity is Z times as large as PKGC (Lv
et al., 2018) for each case where Z is the size of
prompt ensemble. We use the recalls from TuckER
(Balazevi¢ et al., 2019) for both datasets.
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Relation 7" : location/neighborhood/neighborhood_of (in FB60OK-NYT10)

Extract tuples in relation of 7 in FB60K
Head-tail tuples in relation 7

<east new york, brooklyn>, <koreatown, manhattan>, <samos, tucson>, <prospect park, minneapolis>,
<grand, riverside>, <love field, dallas>, <bayway, elizabeth>, <germantown, philadelphia>,
<alphabet city, manhattan>, <upper west side, manhattan>, <cascade, seattle>, <fishtown,
philadelphia>, <broad channel, queens>, <herald square, manhattan>, <canal street, buffalo>,
<jackson heights, edmonton>, <hegewisch, chicago>, <pearl district, portland>, <tottenville,
staten>, <brooklyn heights, brooklyn>, <south harrison, tucson>, <coal harbour, vancouver>,
<britannia, ottawa>, <south norwalk, fairfield> -.veeeeee

Search in large corpora + @

Sub-corpus for relation 7 , (Wikipedia) ~ (NYT10)

“poiret was born on 20 april 1879 to a cloth merchant in the poor neighborhood of [X], [Y].”

“[X] is one of a few neighborhoods in [Y] that is completely privately owned.”

“one of [Y]’s most exclusive neighborhoods, [X] is home to two of the three prestigious ‘hill schools’”
“the family then moved to the [X] neighborhood of [Y].”

“she eventually settled in [X], [Y], where she lived until 1982.”

“it is also represented within the city of [Y] by the [X] neighborhood council”

Phrase segmentation & frequent pattern mining

Patterns mined with FP-Growth v

[X] hospital in [Y] , school in [Y], [X] , manhattan, [Y] , the [Y] , [X] , to [X] , [Y] ,
the [X] district of [Y] , at [Y] ‘s [X]I , [Y] ’s [X] neighborhood , [X] ballpark in [Y] ,
of [X] , [Y]l , [X] in [Y] and , district in [Y], avenue in the [X] neighborhood of [Y] ,
born in [X] , [Y] , [X] is close to [Y] , located in the [X] neighborhood of [Y] ,

in the [X] district of [Y] , [Y] 's [X] neighborhood , the [X] area of [Y] , in lower [Y],
[Y] division, [X] , born in the [X] neighborhood of [Y] , club in [X] , [Y], «eeeenren

MetaPAD

Patterns selected by MetaPAD’s contexual segmentatio

[X] district of [Y], [X] neighbors [Y] , [XI , in [Y] , [

X] section of [Y] , home in [X] , [YI ,
avenue in the [X] neighborhood of [Y] , neighborhood of [X

Y

3

1
1, [yl , [X] is adjacent to [Y] ,
1 , [X] neighboring city [Y] ,
treet in [X] , [Y] , -

[X] neighborhood in [Y] , [X], close to [Y] , [X] is in [
in the [X] neighborhood of [Y] , people from [X] , [Y] ,

TruePIE
Reliable patterns (for relation 7°) output by TruePIE

[X] neighborhood of [Y] , [X] neighbors [Y] , neighborhood of [X] , [Y] , [X] is adjacent to [Y],
[X] is a neighborhood in [Y] , [X], close to [Y] , [X] neighboring city [Y] , [X], near [Y] ,
[X] , in [Y] , in the [X] neighborhood of [Y] , [Y] ‘s [X] neighborhood, , --

Figure 8: Example of textual pattern mining
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relations

#triples(all) #queries(all) ratio(all) #triples(test) #queries(test) ratio(test)

FB60K-NYT10

/people/person/nationality 44186 20215 2.19 4438 2282 1.94
/location/location/contains 42306 11971 3.53 4244 2373 1.79
/people/person/place_lived 29160 12760 2.29 3094 2066 1.50
/people/person/place_of _birth 28108 16341 1.72 2882 2063 1.40
/people/deceased_person/place_of _death 6882 4349 1.58 678 518 1.31
/people/person/ethnicity 5956 2944 2.02 574 305 1.88
/people/ethnicity/people 5956 2944 2.02 592 318 1.86
/business/person/company 4334 2370 1.83 450 379 1.19
/people/person/religion 3580 1688 2.12 300 175 1.71
/location/neighborhood/neighborhood_of 1275 547 2.33 130 91 1.43
/business/company/founders 904 709 1.28 94 87 1.08
/people/person/children 821 711 1.15 56 56 1.00
/location/administrative_division/country 829 498 1.66 88 72 1.22
/location/country/administrative_divisions 829 498 1.66 102 79 1.29
/business/company/place_founded 754 548 1.38 80 73 1.10
/location/us_county/county_seat 264 262 1.01 32 32 1.00
UMLS-PubMed

may_be_treated_by 71424 7703 9.27 7020 3118 2.25
may_treat 71424 7703 9.27 6956 3091 2.25
may_be_prevented_by 10052 3232 3.11 1014 584 1.74
may_prevent 10052 3232 3.11 1034 586 1.76
gene_mapped_to_disease 6164 1732 3.56 596 331 1.80
disease_mapped_to_gene 6164 1732 3.56 652 357 1.82
gene_associated_with_disease 536 289 1.85 58 49 1.18
disease_has_associated_gene 536 289 1.85 48 41 1.17

Table 5: Number of triples (#triples) and queries (#queries) in relations for FB60K-NYT10 and UMLS-PubMed.
Triples/queries for both head prediction and tail prediction are counted. "all" and "test" denote the whole dataset

and testing data respectively.

Limitations. Nonetheless, implementing the
re-ranking framework has a trade-off between effi-
ciency and Hits@N performance. When the train-
ing data is large (e.g., 100%), the KGE model could
be well trained so that the ground truth entity ey
is more likely to be contained in the top X ranked
ones. However, when the training data is limited
(e.g., 20%), the trained KGE model could not per-
form well on link prediction, as shown in Table 1
and 2. In such a case, there is a probability that ey
is not among the top X entities if we keep using
the same X regardless of the size of the training
data. To alleviate this side effect, we test and select
different values of the hyper-parameter X for dif-
ferent sizes of training data, as presented in Table
6.

Daatset 20% 40% 50% T70% 100%
FB60K-NYT10 70 - 40 - 20
UMLS-PubMed 50 50 - 30 30

Table 6: Best X for different training sizes

To check how much space there is for improvement,
we manually add the ground truth entity into the
recalls (we should not do this for the evaluation
of TAGREAL as we suppose the object entity is
unknown) and test the performance of TAGREAL

on UMLS-PubMed. The result is shown in Table
7. By comparing this data with Table 3 for UMLS-
PubMed, we find that changing the values of X
could not perfectly address the issue. We leave the
improvement as one of our major future works.

20% 40% 70% 100%

(44.83,60.99) (50.81, 67.69) (52.98,69.21) (60.19, 72.58)
(44.98,61.56) (52.81,68.66) (56.30,70.20) (61.29,74.76)
(45.71,63.61) (54.22,69.03) (58.18,71.05) (63.67,75.55)

Condition

man
mine
optim

Table 7: Link prediction of TAGREAL on UMLS-
PubMed with ground truth added to the KGE recalls.
Data in brackets are Hits@5 (left) and Hits@ 10 (right).

D Computing Infrastructure & Budget

We trained and evaluated TAGREAL on 7 NVIDIA
RTX A6000 running in parallel as we support multi-
GPU computing. Training TAGREAL to a good
performance took about 22 and 14 hours on the
entire FB60K-NYT10 dataset (with LUKE (Ya-
mada et al., 2020)) and the entire UMLS-PubMed
dataset (with SapBert (Liu et al., 2021)) respec-
tively. The training time is proportional to the size
(ratio) of the training data. The evaluation took
about 12 minutes for FB60K-NYT10 with LUKE
when hyper-parameter X = 20, and 16 minutes
for UMLS-PubMed with SapBert when X = 30.
The evaluation time is proportional to X, which
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explains why we applied the re-ranking framework
(Appendix C) to improve the prediction efficiency.

E Link Prediction with Ensemble

Equally Weighted Ensemble Optimized ensemble

/ e; ey ez ... eh

e, e leg | ...l e,
P | 062 018 040 - 053 X212 007 002 005 | -o- | 006
+ |+ |+ + |+ + |+ |+ [+ |+
Dy | 044 031 069 ... 016 HX03% 17 012 027 ... 006
+ ]+ |+
£ P S 0 027 sl db [ |[ 4
Dm| 015 020 077 -+ 028 0.04 0,05 |0.21 | -+ | 0.08

- sum <L sum
score\ 496 288 587 ... 379 k 0.76 | 0.58 | 2.66 | +-- o.y

—
argsort </ argsort

rank e ess ez o+ ez rank €3 | €ss | €gy | - €43

Figure 9: Prediction with ensemble. eq,es, ..., e, de-
note the indices of entities. pi,ps, ..., pm denote the
prompts in the ensemble.

For the link prediction with equally-weighted or
optimized ensembles, we apply the method shown
in Figure 9. Specifically, for each sentence with

[MASK] filled with an entity e;, we calculate its
classification score with the fine-tuned PLM. For
each query, we get an m X n matrix where m is
the number of prompts in the ensemble, n is the
number of entities in the entity set (which is X
if the re-ranking framework is applied). For an
ensemble that is equally weighted, we simply sum
the scores of each entity obtained from the different
prompts, whereas for an optimized ensemble, we
multiply the weighting of the prompts by the scores
before the addition. After sorting the vector in size
of 1 X n in descending order, we can get the ranking
of entities as the result of the link prediction.

F Evaluation Metrics

Following previous KG completion works (Fu
et al., 2019; Lv et al., 2022), we use Hits@N and
Mean Reciprocal Rank (MRR) as our evaluation
metrics. As mentioned in Section 3.5, the predic-
tion of each query (h,r,?) is a 1-d vector of in-
dices of entities in descending order regarding their
scores. Specifically, for a query ¢;, We record the
rank of the object entity ¢ as R;, then we have:

Q
R; 0,R; > N
HitsQN =Y =" and Rjjp = '
Q
1
MRR =" OR, ®)
i=1

where () is the number of queries in evaluation.

G Code Interpretation

1.0
0.9
0.8

0 071
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2 0.6

¢
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code (UMLS-PubMed)

0.4 word (UMLS-PubMed)

0.3 code (FB60K-NYT10)
’ word (FB60K-NYT10)

0.2 T T T T T T T T
0 1 2 3 4 5 6 7
Training Progress

Figure 10: Performance variation of triple classifica-
tion w.r.t training time. "code" and "word" denote the
representation of KG entities.

To exploit the power of PLM, we need to map
the code (entity_id) in KG/corpus into the words
(Figure 10 shows the performance difference of
PLM between using word and using code). For
FB60K-NYT10, we use the mapping provided by
JointNRE (Han et al., 2018) 3, which covers the
translation for all entities. For UMLS-PubMed,
we jointly use three mappings ®7-® which cover
97.22% of all entities.

H Case Study

In addition to Figure 7, we show more examples
applying TAGREAL on link prediction in Figure
11. We can see that the predictions with optimized
prompt ensemble outperform those with manual
prompts in all the cases, and even outperforms pre-
dictions with manual prompts and support infor-
mation in some cases. In all these examples, the
support information aids the PLM knowledge prob-
ing in different ways. For the first example, we
believe that the PLM captures the words “brother
Jjames_murray” and “his wife jenny”, and realize
that we are talking about the Scottish lexicographer
“james_murray” but not the American comedian
with the same name, based on our survey. For
the second example, the PLM probably captures
“glycemic control” which is highly relevant to the
disease “hyperglycemia”. For the third example,
the term “antiemetic” (the drug against vomiting) is
likely captured so that the answer “vomiting” could
be correctly predicted. Hence, it is not necessary
for the support information to include the object

Shttps://github.com/thunlp/JointNRE

6https://evs.nci.nih.gov/ftpl/NCI_
Thesaurus/

"https://www.ncbi.nlm.nih.gov/books/
NBK9685/

$https://bioportal.biocontology.org/
ontologies/VANDF
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Example 1: Query: (james_murray, /people/person/nationality, ?) Dataset: FB60K-NYT10

Manual Prompt Optimized Prompt Ensemble weights
) ) ] [X]'s nationality is [Y] . 0.17283396
The nationality of [X] is [Y] . [X] was born in [Y] . 0.28863361
[X] is from [Y] . 0.31687216
0.33789972
0.35120992

Support Information (retrieved by BM25)

“survived by brother james_murray and his wife jenny of sidney , australia , fourteen nieces and nephews and thirteen great nieces and nephews
in usa, scotland , england and australia .”

Predictions (Top10 in descending order of classification scores )

Man : united states of america, united kingdom, republic of ireland, england, south_africa, sweden, wales, scotland, pakistan, canada
Optim : united_states_of america, scotland, england, republic_of_ireland, united_kingdom, pakistan, wales, germany, switzerland, sweden
Man + Supp : australia, england, scotland, germany, united states of america, south_africa, canada, sweden, wales, belgium

Optim + Supp :  scotland, australia, england, united_states_of america, great_britain, wales, germany, belgium, republic_of ireland, south_africa

Example 2: Query: (insulin_degludec, may be treated by, ?) Dataset: UMLS-PubMed

Manual Prompt Optimized Prompt Ensemble weights
[X] is a therapy for [Y] . 0.10776438

[Y] may be treated by [X]. a cure for [Y] is [X] . 0.11534966
[X], treatment to [Y] . 0.13597418
[Y] treated by [X] . 0.28779642

0.49708182

Support Information (retrieved by BM25)

“this reportedly allows for less pharmacodynamic variability and within-subject variability than currently available insulin analogs , and a duration
of action that is over 24 hours . the lack of proof of carcinogenicity with insulin_degludec is yet another factor that would be taken into
consideration when choosing the optimal basal insulin for a diabetic individual . a formulation of insulin insulin_degludec with insulin aspart ,
insulin_degludec 70% / aspart 30% , may permit improved flexibly of dosing without compromising glycemie control or safety .”

Predictions (Top10 in descending order of classification scores )

Man : type 2 diabetes mellitus, diabetic_ketoacidosis, type 1 diabetes mellitus, hyperglycemia, hyperkalemia, abnorm_drug_ind,
inj_myocardial reperfusion, obesity, defic_dis, hiv_infect

Optim : type 2 diabetes mellitus, hyperglycemia, type 1 diabetes_mellitus, hyperkalemia, abnorm_drug_ind, defic_dis, obesity,
diabetic_ketoacidosis, pain_postop, atrial_fibrillation

Man + Supp : type_2_diabetes_mellitus, type_1_diabetes_mellitus, hyperglycemia, abnorm_drug_ind, aids, diabetic_ketoacidosis,
hyperkalemia, defic_dis, obesity, blood_pois

Optim + Supp :  hyperglycemia, aids, hyperkalemia, abnorm_drug_ind, type 2 diabetes mellitus, type 1 diabetes mellitus, blood pois,
diabetic_ketoacidosis, delirium, leg_dermatoses

Example 3: Query: (aprepitant, may_prevent, ?) Dataset: UMLS-PubMed
Manual Prompt Optimized Prompt Ensemble weights
[X] that prevents [Y] 0.09786690
[Y] may be prevented by [X] . [X] in prevention of [Y] . 0.23915859
0.32334973
0.38601556

Support Information (retrieved by BM25)

“the prophylactic and therapeutic efficacy of antiemetic used for rinv may be enhanced by adding aprepitant before starting radiotherapy in high
risk cases as in ours .”

Predictions (Top10 in descending order of classification scores )

Man : perennial allergic rhinitis, hiccups, motion_sickness, vomiting, nasal polyp, nausea, Iv_dysfunction, status_epilepticus, pain,
postop_compl
Optim : nasal_polyp, vomiting, status_epilepticus, motion_sickness, perennial_allergic_rhinitis, nausea, hiccups, asthma,

Iv_dysfunction, pain

Man + Supp : vomiting, nausea, postop compl, motion_sickness, withdrawal syndrome, status_epilepticus, pain, anxiety disorder, hiccups,
reye_s_syndrome

Optim + Supp :  vomiting, motion_sickness, nausea, status_epilepticus, withdrawal _syndrome, reye_s_syndrome, pain, postop_compl, hiccups,
psychotic_disorder

Figure 11: Examples of the link prediction with TAGREAL. Man denotes manual prompt. Optim denotes opti-
mized prompt ensemble. Supp denotes support information. The ground truth tail entity , helpful information

and  optimized prompts (darker for higher weights) are highlighted.
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entity itself, and including only some text relevant
to it could also be helpful.

I Re-evaluation of Knowledge Graph
Embedding Models

We find that the performance of some KGE mod-
els was underestimated by Fu et al.2019 due to
the low embedding dimension set for entity and
relation. According to our re-evaluation (Table 8),
many of these models could perform much better
with higher dimension, and we report their best
performance in Table 1 and 2 based on our exper-
iments. For the previously evaluated models, we
use the same code %1% as Fu et al. used to ensure
the fairness of the comparison. For TuckER (Bal-
azevic et al., 2019), we use the code provided by
the author. 2 Same as Fu et al., to make the com-
parison more rigorous, we do not apply the filtered
setting (Bordes et al., 2013; Sun et al., 2019) of
the Hits@N evaluation to all the models including
TAGREAL.

’https://github.com/thunlp/OpenKE
Yhttps://github.com/DeepGraphLearning/
KnowledgeGraphEmbedding
Uhttps://github.com/TimDettmers/ConvE
Pnttps://github.com/ibalazevic/TuckER
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FB60K-NYT10

(edim, rdim, filter)

Fu et al.’s setting

Ratio: (Hits@5, Hits@ 10, MRR)

(edim, rdim, filter)

Our setting
Ratio: (Hits@5, Hits@ 10, MRR)

TransE (Bordes et al., 2013) (100, 100, n/a) 20%: (15.12, 18.83, 12.57) (600, 600, n/a) 20%: (29.13, 32.67, 15.80)
50%: (19.38, 23.20, 13.36) 50%: (41.54, 45.74. 25.82)
100%: (38.53, 43.38, 29.90) 100%: (42.53, 46.77, 29.86)

DisMult (Yang et al., 2014) (100, 100, n/a) 20%: (1.42,2.55, 1.05) (600, 600, n/a) 20%: (3.44,4.31,2.64)
50%: (15.23, 19.05, 12.36) 50%: (15.98, 18.85, 13.14)
100%: (32.11, 35.88, 24.95) 100%: (37.94, 41.62, 30.56)

ComplEx (Trouillon et al., 2016a) (100, 100, n/a) 20%: (4.22, 5.97, 3.44) (600, 600, n/a) 20%: (4.32, 5.48, 3.16)

50%: (19.10, 23.08, 12.99)
100%: (32.91, 34.62, 24.67)

50%: (15.00, 17.73, 12.21)
100%: (35.42, 38.85, 28.59)

ConvE (Dettmers et al., 2018)

(200, 200, n/a)

20%: (20.60, 26.90, 11.96)
50%: (24.39, 30.59, 18.51)
100%: (33.02, 39.78, 24.45)

(100, 100, n/a)

20%: (22.91, 26.29, 19.48)
50%: (26.52,29.84, 22.67)
100%: (31.71, 35.66, 25.58)

(600, 600, n/a)

20%: (29.49, 33.30, 24.31)
50%: (40.10, 44.03, 32.97)
100%: (50.18, 54.06, 40.39)

TuckER (Balazevic et al., 2019)

(100, 100, n/a)

20%: (20.04, 23.02, 16.27)
50%: (24.04,27.88, 20.21)
100%: (34.54, 38.77, 28.19)

(600, 600, n/a) 20%: (29.50, 32.48, 24.44)
50%: (41.73, 45.58, 33.84)
100%: (51.09, 54.80, 40.47)
RotatE (Sun et al., 2019) (200, 100, ) 20%: (9.25, 11.83, 8.04) (100, 50, n/a) 20%: (1.34,2.13, 1.08)

50%: (25.96, 31.63, 23.34)
100%: (58.32, 60.66, 51.85)

50%: (2.54,4.03, 1.91)
100%: (5.42,7.87, 2.09)

(200, 100, n/a)

20%: (7.47,9.14, 5.81)
50%: (21.68, 25.45, 17.35)
100%: (47.96, 52.02, 39.17)

(600, 300, n/a)

20%: (15.91, 18.32, 12.65)
50%: (35.48, 39.42, 28.92)
100%: (51.73, 55.27, 42.64)

UMLS-PubMed

(edim, rdim, filter)

Fu et al.’s setting

Ratio: (Hits@5, Hits@10)

(edim, rdim, filter)

Our setting
Ratio: (Hits@5, Hits@10)

TransE (Bordes et al., 2013) (100, 100, n/a) 20%: (7.12, 11.17) (600, 600, n/a) 20%: (19.70, 30.47)
40%: (26.86, 38.08) 40%: (27.72, 41.99)
70%: (31.32, 43.58) 70%: (34.62, 49.29)
100%: (32.28, 45.52) 100%: (40.83, 53.62)
DisMult (Yang et al., 2014) (100, 100, n/a) 20%: (14.66, 21.16) (600, 600, n/a) 20%: (19.02, 28.35)
40%: (26.90, 38.35) 40%: (28.28, 40.48)
70%: (31.65, 44.98) 70%: (32.66, 47.01)
100%: (32.80, 47.50) 100%: (39.53, 53.82)
ComplEx (Trouillon et al., 2016a) (100, 100, n/a) 20%: (18.18, 19.58) (600, 600, n/a) 20%: (11.28,17.17)
40%: (23.77, 34.15) 40%: (24.64, 35.15)
70%: (30.04, 43.60) 70%: (25.89, 38.19)
100%: (31.84, 46.57) 100%: (34.54, 49.30)
ConvE (Dettmers et al., 2018) (200, 200, n/a) 20%: (20.51, 30.11) (200, 200, n/a) 20%: (20.45, 30.72)

40%: (28.01, 42.04)
70%: (31.01, 45.81)
100%: (30.35, 45.35)

40%: (27.90, 42.49)
70%: (30.67, 45.91)
100%: (29.85, 45.68)

(600, 600, n/a)

20%: (20.26, 30.29)
40%: (26.85, 41.57)
70%: (26.97, 42.44)
100%: (25.43, 41.58)

TuckER (Balazevi¢ et al., 2019)

(100, 100, n/a)

20%: (5.13, 8.06)
40%: (20.48, 31.20)
70%: (29.66, 42.89)
100%: (31.56, 44.72)

(256, 256, n/a)

20%: (19.94, 30.82)
40%: (25.79, 41.00)
70%: (26.48, 42.48)
100%: (30.22, 45.33)

(600, 600, n/a)

20%: (18.84, 27.94)
40%: (24.57,37.79)
70%: (25.50, 41.32)
100%: (24.41, 40.56)

RotatE (Sun et al., 2019)

(200, 100, n/a)

20%: (4.03, 6.50)
40%: (8.65, 13.21)
70%: (14.90, 21.67)
100%: (20.75, 27.82)

(600, 300, n/a)

20%: (17.95, 27.55)
40%: (27.35, 40.68)
70%: (34.81, 48.81)
100%: (40.15, 53.82)

Table 8: Performance of knowledge graph embedding models on FB60K-NYT10 and UMLS-PubMed. "edim"
and "rdim" denotes the embedding size of entity and relation respectively. "filter" denotes the application of the
filtered setting. Best setting for each model is highlighltelxi i7%bold.
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