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A B S T R A C T

Hydrological streamline delineation is critical for effective environmental management, influencing agriculture
sustainability, river dynamics, watershed planning, and more. This study develops a novel approach to
combining transfer learning with convolutional neural networks that capitalize on image-based pre-trained
models to improve the accuracy and transferability of streamline delineation. We evaluate the performance of
eleven image-based pre-trained models and a baseline model using datasets from Rowan County, North Carolina,
and Covington River, Virginia in the USA. Our results demonstrate that when models are adapted to a new area,
the fine-tuned ImageNet pre-trained model exhibits superior predictive accuracy, markedly higher than the
models trained from scratch or those only fine-tuned on the same area. Moreover, the pre-trained model achieves
better smoothness and connectivity between classified streamline channels. These findings underline the effec-
tiveness of transfer learning in enhancing the delineation of hydrological streamlines across varied geographies,
offering a scalable solution for accurate and efficient environmental modelling.

1. Introduction

The National Hydrography Dataset (NHD) is a digital database of
surface water features for the United States developed and managed by
the U.S. Geological Survey (USGS) and partner organizations (Simley
and Carswell, 2009). The NHD High Resolution (NHD HR) is the most
current version of the NHD and is mapped at a scale of 1:24,000 or
larger, except in Alaska where a scale of 1:63,360 or larger is available.
However, because of the long-term data collection and compilation
history of the NHD, some NHD data is from early twentieth-century
topographic maps, and hence is of relatively lower quality with
outdated content that compromised the usefulness of the data. The
disagreement between the NHD and contemporary hydrologic and
geomorphic conditions leads to erroneous reference data which can
compound errors and/or result in inaccurate forecasting and interpre-
tation of surface water processes (Jiang et al., 2022). In 2017, Sta-
nislawski et al. (2017) leveraged parallel computing with various
open-source geospatial analytical tools to automate the delineation of

elevation-derived streamlines for the conterminous United States.
Despite this significant progress, extracted streamlines often need
further manual editing, which is a labour-intensive and time-consuming
process. Moreover, elevation-derived streamlines may be broken or
obstructed by abrupt changes in elevation caused by roads, bridges, and
valleys, which affect the performance of flow accumulation algorithms
(Poppenga et al., 2013).

A variety of approaches have been developed and tested over time to
obtain accurate and fine-scale digital hydrographic streamlines. Historic
methods involve digitizing stream channels that are visible in aerial
pictures and comparing them to the actual stream network (Guptill,
1983; Marks et al., 1984; Usery, 2011). With increasing computing
power, digital methods for creating mapped hydrography can be
employed using digital elevation models (DEMs). The basis of modelling
stream networks using a DEM is that water flows in response to gradients
in gravitational potential energy, accumulating to form channelized
streams. This basis provides an alternate, more automated method of
delineating flow channel networks that can be accomplished using
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GIS-based flow accumulation algorithms.
Hydrologic modelling using flow routing methods based on gridded

DEMs is the prevailing approach for large-scale drainage network
extraction due to its simplicity, computational efficiency, and continuity
in hydrological representation (O’Callaghan and Mark, 1984; Tarboton,
1997; Zhang et al., 2021). These methods typically involve steps such as
pit filling, flow direction computation, and calculating the contributing
area draining to each grid cell, along with defining a minimum threshold
for contributing area to form linear drainage features (Stanislawski
et al., 2017), as used broadly in USGS NHDPlusHR hydrologic data
generation. Widely used software tools like Esri ArcGIS® Spatial Analyst
Tools and the System for Automated Geoscientific Analysis (SAGA)
facilitate the extraction of surface water drainage networks from DEMs
using various flow routing methods such as D8 and D-infinity (Tarboton,
1997). Despite their widespread application, these methods have several
limitations. In low-relief areas, flow direction models are less effective
because they often restrict water flow to one or more adjacent pixels,
leading to potential inaccuracies in flow path prediction. Moreover, the
delineation process requires a unique threshold that often fails to
accurately reproduce the actual network (Li et al., 2020; Passalacqua
et al., 2010). Classic flow routing approaches also exhibit variable reli-
ability across different drainage basins and grid cell sizes and shapes (Li
et al., 2022), generally tending to overestimate the network and failing
to predict channel heads reliably (Orlandini et al., 2011). As a result,
manual edits are frequently needed to refine the flowlines produced by
these methods (Lang et al., 2012).

There have been several studies on the use of a DEM to model stream
networks (Ehlschlaeger, 1989; Metz et al., 2011; Tarboton and Ames,
2001; Wilson et al., 2008), as well as various enhancements to multiple
techniques. Broadly, two methods exist to improve drainage system
extraction using DEMs: 1) using high-resolution DEM; 2) improving the
flow accumulation techniques. High-resolution DEMs derived from
Lidar (Light Detection and Ranging) can provide details to detect and
locate microtopographic features at the sub-meter scale. Hopkinson
et al. (2009) found that when using three different data sources (Lidar,
photogrammetry, and publicly available digital contour data) at two
different resolutions (5 m and 25 m), a watershed area derived from
digital contour data was overestimated by 15 percent when compared to
the Lidar DEM. A similar result can be found in the study by Cao et al.
(2021), which showed that a stream network modelled from Lidar DEMs
is the most accurate among all types of DEMs due to the high point
density, accuracy, and resolution. Lyu et al. (2021) proposed a method
that extracts the vector of a drainage network directly from Lidar point
clouds without limiting the number of water flow directions. This
method helps to eliminate the limitation of imprecise DEMs. On the
other hand, there are studies that attempt to improve stream network
extraction by improving flow accumulation techniques. In a study by
Zhang et al. (2021), a flow accumulation threshold (FAT) estimation
method was developed using a statistical method to calculate the FAT
from 47 other variables. A significant step in flow accumulation is
depression filling, which helps correct DEMs to avoid pits and allows the
simulated flow to move across the surface represented by DEMs. This
filling or breaching algorithm has been improved by Barnes et al.’s
(2021) study which runs 90–2600 times faster than the commonly used
Jacobi iteration and produces more accurate output. Yet, it has been
indicated that pit filling and breaching processes degrade the accuracy
of modelled flow discharge (Rajib et al., 2020) and thus can negatively
impact related flow-accumulation networks. Wang et al. (2021) pro-
posed a fully automated drainage network extraction using Sentinel-2
satellite imagery. Yet, this strategy is ineffectual where surface water
is occluded by vegetation or built structures. Even though modelling
stream networks using DEMs has been significantly improved, it still
entails several challenges that require expert knowledge and
labour-intensive techniques in several steps, such as parameterizing
extraction thresholds, eliminating flow obstructions, identifying head-
water and sink locations, interpreting image data for validation, and

interactive editing of channels.
Recent advancements in deep learning have been widely acknowl-

edged and adopted for various challenging feature recognition and
detection tasks (LeCun et al., 2015; Schmidhuber, 2015; Kampffmeyer
et al., 2016; Maggiori et al., 2017; Zhu et al., 2017; Xu et al., 2018).
Convolutional Neural Networks (CNNs) and other deep learning algo-
rithms have demonstrated remarkable performance in automatic object
detection and recognition using close-range images for numerous com-
puter vision applications. Their ability to learn directly from input data
and eliminate human-involved processes has shown promising results
for hydrography feature extraction applications. For instance, Li et al.
(2021) utilized a U-net model, PA-UNet, to construct a robust waterbody
extraction network from Sentinel-1 and Sentinel-2 imagery, achieving
more than 95% extraction accuracy (based on mapped waterbodies).
Similarly, Liu et al. (2020) proposed LaeNET to automatically extract
lake areas and shorelines from Landsat-8 imagery, achieving an F1-score
of 99.41%. Studies by Chen et al. (2020, 2018) also demonstrated the
superiority of deep learning methods over traditional methods for
extracting bodies of water from high-resolution remote sensing imagery.

However, while these CNN and deep learning models provide auto-
mated hydrography extraction for waterbodies, their application for
precise, efficient, and fine-scale delineation of stream networks has been
limited. Xu et al. (2021) were among the first to address this problem
using a CNN for hydrographic streamline extraction, proposing an
attention U-net model that achieved F1-scores averaging 11.2% better
than baseline machine learning approaches and provided improved
smoothness and connectivity across identified streamline channels. Lin
et al. (2021) also used a machine learning approach to estimate river
network drainage density based on global watershed-level climatic,
topographic, hydrologic, and geologic conditions, showing better
agreement with Landsat-derived river center lines than methods pro-
posed by Verdin (2017) and Grill et al. (2019). Additionally, Sta-
nislawski et al. (2021) tested the extensibility of Xu et al.’s (2021) model
by training it on a minimal portion of a study area and using the pre-
diction results to constrain the D8 flow accumulation method for
streamline extraction across a larger region.

Despite these advancements, CNN and deep learning approaches for
DEM-based hydrography feature extraction face significant challenges.
These methods require large datasets to train effectively and leverage
their ability to encode fine details, which entails substantial training
time and computational power dependent on the model architecture and
the number of trainable parameters (Stanislawski et al., 2021).
Furthermore, as emphasized by Shen et al. (2021), most models are
trained locally with samples from the site of interest, resulting in poor
performance outside the training region and insufficient testing of po-
tential prediction failures. These challenges underscore the need for
adaptation of transfer learning strategies, which can leverage knowledge
from one domain to another, potentially reducing the time and data
required for training and enhancing model performance in a variety of
geographic areas.

Transfer learning is a branch of machine learning that leverages
knowledge from one domain to another domain. It serves as an alter-
native to building models from scratch as in traditional machine
learning (Gao et al., 2008). Transfer learning is based on the premise
that knowledge gained from training a neural network on one task can
be used to improve the training process of a network on a new but
related task. Transfer learning has become an active topic in the context
of deep learning. Transfer learning, when done properly, can reduce the
time and quantity of data required for training, resulting in a shorter,
less computationally intensive, and hence less costly training process.
Yosinski et al. (2014) have found that initialization using transferred
information improves generalization performance. However, it is
important to recognize its limitations. One such limitation is negative
transfer (Wang et al., 2019), which occurs when the knowledge acquired
from the source task negatively impacts performance on the target task.
To better avoid negative transfer, one can carefully select the source task
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and to ensure that it is sufficiently different from the target task. Addi-
tionally, appropiate fine-tuning techniques can help mitigate the effects
of negative transfer.

The U-Net architecture was originally proposed by Ronneberger
et al. (2015) for medical applications and is widely used for image
segmentation tasks (Xiao et al., 2023; Aggarwal et al., 2022; Colaco
et al., 2022; Gowroju et al., 2022). The architecture is comprised of two
parts: i) the encoder, and ii) decoder. The encoder decomposes an image
into numerous low-level feature map layers. The corresponding decoder
layers use up-sampling layers to process the features back to the input
size. The encoder CNNs in this study are constructed utilizing the net-
works pre-trained on an image classification task using the ImageNet
dataset (Deng et al., 2009) Previous studies have shown that utilizing
CNNs pre-trained on ImageNet as the encoder instead of retraining the
entire network from scratch results in improved performance for many
tasks (Mukhlif et al., 2023; Ünal and Aktaş, 2023; Li et al., 2022; Wang
et al., 2022). In this paper, we explore whether this approach can be
applied to the streamline delineation task and yield similar benefits.

We describe and test a transfer learning approach based on fine-
tuning deep convolutional neural networks to overcome challenges of
streamline delineation across spatially heterogeneous geographic areas.
We evaluate and compare the recently proposed, attention U-net model
developed by Xu et al. (2021), with neural networks pre-trained on the
ImageNet dataset using three accuracy metrics: F1 score, recall, and
precision, with the focus on F1 score. We also determine the degree to
which such an approach can be scaled to large geographic areas.

Thus, we contribute to this growing body of knowledge in two ways
via this paper: (1) comparing the effectiveness of knowledge transfer for
U-net models with encoders trained on general data and the attention U-
net model (Xu et al., 2021) built specifically for the streamline delin-
eation task, and (2) demonstrating the models’ effectiveness when
transferred to different geographies.

2. Methods

In this section, we first describe the study areas and data preparation.
Then, we give detailed descriptions of the training methods used in the
experiments. Finally, we explain the model evaluation methods.

2.1. Study areas and data preparation

We used two locations to investigate the transferability of the
models: i) a small watershed in Rowan County in North Carolina, and ii)
a Covington River watershed area in Virginia.

2.1.1. Rowan County, North Carolina
The data for a small watershed in Rowan County, North Carolina

(Fig. 1) are retrieved from the study by Xu et al. (2021). This area is 6.3
square kilometers (km2) in a mountainous rural section of west-central
North Carolina that is dominated by forested land cover type. The
area encompasses a set of tributaries that are partially covered by tree
canopy and that flow into Second Creek, which is a primary stream
network feature of the 12-digit NHD Hydrologic Unit (HU12)
030401020504 watershed. The Rowan area is in the Central Interior and
Appalachian Ecological Division (Comer et al., 2003). The dataset con-
tains 1400 training samples and 30 validation samples extracted from
the northern of the area. The test data is the entire southern of the area.
A set of intermittent stream head data, verified in the field and gathered
between 2013 and 2014, was enhanced with on-screen editing to pro-
duce reference information (Shavers and Stanislawski, 2018). A 3-m
buffer was created around the reference streamline to mimic the
breadth of stream channels.

Eight raster layers are stacked together to create the dataset. These
raster layers are derived from Quality Level 1 (QL1) (Heidemann, 2012)
Geiger-mode Lidar point cloud data. The eight 1 meter spatial resolution
layers include: (1) a DEM derived from the lidar ground return points;
(2) geometric curvature determined from the DEM; (3) a topographic
position index (TPI) derived from the DEM using a 3-cell by 3-cell
window; (4) a TPI derived from the DEM using a 21-cell by 21-cell
window; (5) zenith angle positive openness derived from the DEM
using a 10-cell radius with 32 directions (Doneus, 2013); (6) return in-
tensity determined from the lidar ground points averaged with inverse
distance weighting using 10 nearest points; (7) point density for return
points between zero and 1 foot above ground; and (8) point density for
return points between 0 and 3 feet above ground. The statistics of each
raster layer are presented in Table 1.

2.1.2. Covington River watershed, Virginia
The other study area for this research is the 12-digit USGS NHD

Fig. 1. Rowan County area (left: location of study area within North Carolina; middle: a 1-m resolution image of the study area from the National Agriculture
Imagery Program (NAIP); right: reference stream features). Adapted from Xu et al. (2021).
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Hydrologic Unit (HU12) 020801030302 watershed that includes pri-
mary tributaries of the Covington and Rush Rivers. This watershed is in
Rappahannock County, northern Virginia (Fig. 2) and the study area is
108 km2. The Blue Ridge Mountain range influences the climate in the
area to the west and the Atlantic Ocean and the Chesapeake Bay to the
east. The temperature ranges from 26 ◦F (−3 ◦C) to 90 ◦F (32 ◦C). The
two dominant land cover types are forest and agricultural land. The
stream channels are occluded by the canopy in the forested areas and
exposed in the agricultural areas. The elevation ranges from 125 to
1040 m (m) above sea level. The watershed is in the Central Interior and
Appalachian Ecological Division (Comer et al., 2003).

The NHD flowline and the NHD waterbody feature datasets are used

for reference data. The reference NHD features were collected through a
USGS contract in 2017 and were compiled to meet 1:24,000 or larger
scale representations. Contractors used best available methods to extract
hydrographic features from Lidar point cloud and derived elevation
models. Lidar point cloud data were collected during leaf-off season in
2014–2015 to meet USGS Quality Level 2 (QL2) (Heidemann, 2012).
Extracted hydrographic features were manually edited and verified as
needed based on an interpretation of high-resolution National Agricul-
ture Image Program (NAIP) orthoimage data. The collected NHD flow-
lines, polygonal lakes, reservoirs, and streams were rasterized to 1 meter
resolution, with the flowlines buffered 3-m on each side, which simu-
lates a 6-m minimum channel width for all flow network features. Wider
raster streams are represented where polygonal streams are included in
the reference data.

Eight co-registered 1 meter resolution Lidar and elevation-derived
raster data layers were used for training, validation, and testing in the
research. The 1 meter raster layers include: (1) DEM; (2) geometric
curvature determined from the DEM (Sangireddy et al., 2016); (3) slope
derived from the DEM; (4) mean nadir angle positive openness derived
from the DEM using a 10-cell radius with 32 directions (Doneus, 2013);
(5) topographic position index (TPI) derived from the DEM using a
21-cell by 21-cell window; (6) return intensity determined from the
Lidar ground points averaged with inverse distance weighting using 10
nearest points; (7) Geomorphons type estimated as one of ten common
landforms derived from the DEM using a 10-cell radius (Jasiewicz and
Stepinski, 2013); and (8) TPI derived from the DEM using a 3-cell by
3-cell window.

The eight raster layers are presented in Fig. 3 with the summary
statistics presented in Table 2. To create training, validation, and test
datasets, the raster layers (1) to (8) pixel values are normalized to the
scale from 0 to 255 using equation (1).

Xnormalized =
X − Xmin

Xmax − Xmin
*255 (1)

Normalization helps avoid numerical instability caused by differ-
ences in the range (presented in Table 2) by changing the values to use a
common scale, which can improve convergence speed and reliability for
neural network training. Then, all sample patches are extracted with the
size of 244 pixels by 244 pixels, and contain the eight raster layers (1) to
(8) at 1 meter resolution (Fig. 4).

To construct the training dataset for the Covington watershed, an
initial 200 sample patches are extracted. Then, we used image
augmentation to randomly rotate each sample patch by 30◦–150◦ and
210◦–330◦, randomly rescaled each sample by the factor of 0.5–0.8 and

Table 1
Summary statistics raster images generated for the study area in Rowan County,
North Carolina.

Raster image
name

Minimum Maximum Mean Standard
Deviation

Range

Digital
elevation
model
(meters)

194.11 256.19 229.07 12.96 62.07

Geometric
curvature

−97.25 97.93 0.01 3.05 195.18

Topographic
position
index (3 × 3
window)

−8.59 5.58 6.38 0.18 14.167

Topographic
position
index (21 ×

21 window)

−13.62 13.29 0 0.93 26.91

Openness (R10,
D32) degrees

21.52 118.8 83.41 7.35 97.28

Return
intensity

0 55185.39 29047.18 10624.11 55185.39

Return point
density 1 ft
above
ground
(points per
m2)

0 0.94 0.02 0.04 0.94

Return point
density 3 ft
above
ground
(points per
m2)

0 2.89 0.12 0.23 2.89

Note. Adapted from Xu et al. (2021).

Fig. 2. Covington area (left: Virginia, USA, showing the location of the study area as a red circle; middle: a 1 meter resolution image of the study area from National
Agriculture Imagery Program (NAIP); right: reference stream feature shown in red pixels on light green background).
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1.5–2.0, sheared each sample randomly between −30◦ and 30◦, and
mirror each sample horizontally, resulting in six augmented samples per
patch for a total of 1400 samples for the training dataset. For the vali-
dation dataset, 200 unaugmented sample patches are extracted. The
training and validation dataset patches were extracted from the north-
ern region of the study area. The entire southern region of the study area
was used as the test dataset to evaluate the prediction accuracy and the
generalizability of the models. Fig. 5 depicts the northern and southern
regions used for the Covington datasets (i.e., training + validation and
testing dataset respectively).

2.2. Model creation and training

The baseline model used for this study is the attention U-net as
modelled by Xu et al. (2021), which were trained on the data layers
described in section 3.1.1 and Table 1. All other models were created
using a GitHub library called Segmentation Models (Yakubovskiy,
2019), a Python package based on Keras (Chollet and others, 2015) and
TensorFlow (Martín and others, 2015); this library includes four popular
segmentation architectures and ImageNet pre-trained backbones that
can be merged into the segmentation model architecture of choice. The
library supports the following architectures: (i) U-net (Ronneberger
et al., 2015), (ii) FPN (Kirillov et al., 2017), (iii) LinkNet (Chaurasia and
Culurciello, 2017), and (iv) Pyramid Scene Parsing Network (PSPNet)
(Zhao et al., 2016). In this study, we chose U-net as the model archi-
tecture because it has been found to be effective for creating segmen-
tation masks (Siddique et al., 2021), it achieves high accuracy for
solving image segmentation problems (Ronneberger et al., 2015), and it
was successfully used previously by Xu et al. (2021) on our baseline
model dataset.

The U-net architecture is created in an encoder-decoder form using
skip connections, allowing the use of a variety of ImageNet pre-trained
backbones as the encoder (i.e., VGG16 as shown in Fig. 6) to evaluate
their capability for streamline delineation. The pre-trained backbones
include the following: ResNet34 (He et al., 2015), ResNet50 (He et al.,
2015), ResNet101 (He et al., 2015), ResNet152 (He et al., 2015), Den-
seNet121 (Huang et al., 2016), DenseNet169 (Huang et al., 2016),
DenseNet201 (Huang et al., 2016), VGG16 (Simonyan and Zisserman,
2014), VGG19 (Simonyan and Zisserman, 2014), InceptionResNetV2
(Szegedy et al., 2016), and Inceptionv3 (Szegedy et al., 2015). These
backbones demonstrate significant gains over previous state-of-the-art
methods and are well recognized in the literature. In accordance with
the documentation of the Segmentation Models (Yakubovskiy, 2022), an
extra convolutional layer was added to map the eight input channels of
the input to the three input channels of the ImageNet pre-trained
backbones (refer to the left most layer in Fig. 6 as an example).

The models created with ’Segmentation Models’ were compiled
using the “Adam” (Zhang, 2018) optimization algorithm while a custom
“dice_coef_loss” loss function and a custom defined “dice_coef” function
were generated for evaluation. The dice coefficient loss function is
specifically designed to address the imbalanced nature of the streamline
delineation task. In this context, the dice coefficient, also known as the
Sørensen–Dice index, is a measure of overlap between two samples. It
ranges from 0 to 1, where 1 indicates perfect and hence complete
overlap. The dice loss is defined as 1 minus the dice coefficient, making
it a suitable choice for optimizing models in segmentation tasks where
the positive class (stream pixels) is significantly outnumbered by the
negative class (non-stream pixels). This custom loss function helps the
model to focus more on the underrepresented class, thereby improving
the accuracy of stream detection and overall model performance. By

Fig. 3. 1 meter resolution raster images: (a) Digital Elevation Model (DEM); (b) Geometric curvature derived from DEM; (c) Slope; (d) Positive openness; (e) TPI with
moving window size 21; (f) Lidar reflectance intensity; (g) geomorphon 10 most common landform types; (h) TPI with moving window size 3.

Table 2
Summary statistics for 1 meter resolution raster images generated for the Covington River watershed, VA.

Raster image name Minimum Maximum Mean Standard Deviation Range

Digital elevation model (DEM) (m) 125.4523 1039.1520 365.8976 190.9829 913.6997
Geometric curvature −1.9900 1.9974 0.0001 0.0941 3.9957
TPI with moving window size 3 −5.7020 5.7213 0.00000235 0.0661 11.4232
TPI with moving window size 21 −14.6981 12.8009 0.0001 0.2873 27.4990
Positive openness 45.3490 162.6082 88.8340 2.4694 117.2592
Lidar reflectance intensity 0.0000 255.0000 39.3197 12.6086 255.0000
Slope data (degree) 0.0000 14.2646 0.2323 0.1711 14.2646

Note. Geomorphons is an integer-coded discrete class therefore we do not include the statistics in this table.
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minimizing the dice coefficient loss, the model can better capture fine
details and maintain the continuity of stream networks, which is critical
for high-resolution hydrological applications.

Training was initiated with the Keras fit function. In addition to
controlling the training process, we used callback objects. We applied
the following modules in the callbacks: “ReduceLROnPlateau”, “Ear-
lyStopping”, and “ModelCheckpoint”. The “ReduceLROnPlateau” is
used to decrease the learning rate when the monitored metric has
stopped improving. In our implementation, the callback monitors the
validation loss value (“val_loss”). The learning rate will decrease by the
factor of 0.7 if no decreasing of the “val_loss” is seen for ten epochs. The
minimum learning rate was set to 10−9. “EarlyStopping” callback is used
to stop the training process if the monitored metric stops improving for
some number of epochs. In our case, the validation loss value was
monitored by the callback, and the training process was set to stop after
ten epochs of no improvement. Finally, “ModelCheckpoint” was used to
save the current best model in terms of loss value on the validation set.

2.3. Model training and evaluation

We used two approaches to train the models in this study: training
from scratch and fine-tuning for transfer learning. In the training from
scratch strategy (TS), we randomly initialized the weights of the models

and trained the models from scratch. The F1-scores of the attention U-
net model are used as the baseline to evaluate and compare the per-
formance of the other U-net models. For the fine-tuning strategies, there
were two levels of the fine-tuning process: (i) transfer to different task
(TL1) and (ii) transfer to different geography (TL2).

For TL1, we use the weights of ImageNet backbones and fine-tune it
to the streamline delineation task on the Rowan County dataset. Our
goal was to investigate whether fine-tuning a pre-trained ImageNet
model could achieve better performance than directly training an
attention U-Net from scratch. The training process of TL1 was done in
two steps. In the initial step of the training process, the encoder part of a
network was initialized with the ImageNet pre-trained weights and then
frozen. Then, the network was trained with the initial value of 10−3 for
the learning rate, which is the default value of the optimizer function. In
the second step of the training, the whole network was unfrozen and
trained with a significantly smaller learning rate, 10−5. The lower
learning rate in the second phase was used to preserve the knowledge
learned in the first phase and fine-tune the network to the input dataset.
In the fine-tuning process of TL2, our goal was to compare the perfor-
mance of different models when being transferred to a new geographic
area. Specifically, we initialized a model with the weights trained on
Rowan County dataset (e.g., those models from TL1), then, fine-tuned
the model with the Covington area dataset. The network was trained

Fig. 4. An example of sample patches: (a) Digital Elevation Model (DEM); (b) Geometric curvature; (c) Slope; (d) Positive openness; (e) TPI with window size 21; (f)
Lidar reflectance; (g) Geomorphons; and (h) TPI with window size 3; (i) Reference label where yellow represents water and purple represents non-water. Axes values
are distance in meters. The color bar values are the normalized raster values.
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in two steps similar to the TL1.
The three metric functions precision (3), recall (4), and F1 score (5)

were used to evaluate the performance of the models with test datasets.
The three matrices are defined as follows:

Precision=
TP

TP + FP
(3)

Recall=
TP

TP + FN
(4)

F1 Score= 2*
Precision*Recall
Precision + Recall

(5)

where TP is the number of true positive (correctly predicted water)
pixels,

FP is the number of false positive (incorrectly predicted water)
pixels, and.

FN is the number of false negative (incorrectly predicted non-water)
pixels.

2.4. Hardware and software

All experiments were performed using NVIDIA GeForce RTX 2080
SUPER and Tesla T4 on Google Colab (Bisong, 2019). We used Python
3.7.9 and Keras Python Library (Chollet and others, 2015) version 2.3.1
with the backend of TensorFlow (Martín and others, 2015) version 2.1.0
for model construction. We also used Python libraries including
scikit-image 0.18.1, scikit-learn 0.24.0, Rtree, 0.9.4, GDAL 3.0.2, and
NumPy 1.19.4. The software environment is supported by Anaconda
4.10.0.

3. Results and discussion

We designed two experiments. In the first experiment, we compared
the performance of the U-net architecture with different ImageNet pre-
trained backbones (TL1) with the baseline attention U-net model (TS)
using the data collected from the Rowan County study area (Xu et al.,
2021). The test dataset from the same area were used to calculate pre-
cision, recall and F1-score to compare the performance of the models. In
the second experiment, we examined the transferability of the
fine-tuning models across different geographic areas (TL2). The top
three ImageNet pre-trained models from the first experiment and the
attention U-net model were fine-tuned with the data collected from the
Covington study area described in section 3.1.

In the first experiment, we compared the performance of models pre-
trained on a generic image dataset with the U-net model trained from

Fig. 5. Visualization of the northern and southern regions of Covington, which
are used to generate the training dataset and testing dataset, respectively.

Fig. 6. The U-net architecture with the VGG16 backbones, one of the ImageNet pre-trained used in the study.
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scratch on the dataset specific to the task. For this purpose, we used
eleven models with different ImageNet pre-trained backbones and
applied the TL1 strategy with the training dataset from the Rowan
County area. In comparison, we applied the TS strategy to the eleven
models. Additionally, we examined the attention U-net model using the
same dataset. It is worth noting that the performance of the attention U-
net model reproduces scenario 1 from Xu’s (2021) study. In Xu’s (2021)
study, the top part of the study area was utilized as training samples,
while the bottom part served as the testing dataset (Xu et al., 2021). The
performance of each model is presented in the order of F1-score of
stream class in Table 3. From the data, it is evident that models
initialized with the ImageNet pre-trained weights outperform those
initialized with random weights. On average, there are an increase of
4.67% in F1-score, with the InceptionResNetV2 model showing the
highest improvement at 6.97% and DenseNet121 at the lower end with
an improvement of 1.88%. These results underscore the benefits of
transfer learning for image classification tasks. In particular, the
knowledge derived from ImageNet offers significant advantages to
streamline delineation tasks. Further, our data analysis suggests that this
enhanced performance is chiefly attributed to the use of
ImageNet-initialized weights and not necessarily due to differences in
the model architectures themselves.

When we examined the results among the models initialized with
ImageNet pre-trained weights in the second column of Table 3, we found
that the best model has an F1-score that is 6.15% higher than the worst
models, DenseNet169 and VGG19, respectively. It was observed that
there was slightly better performance by smaller models with fewer
parameters, compared to the larger models with more parameters. The
top three models averaged 21,434,778 parameters, whereas the bottom
three models averaged 40,378,348 parameters. The baseline model
performed slightly better than all variants of VGG and Inception back-
bones, with 2.32% improvement compared to the worst model, VGG19.
All variants of DenseNet and ResNet backbones outperformed the
baseline model by as much as 4%, compared to DenseNet169. The
unique features and strengths of these architectures, such as ResNet’s
residual connections and DenseNet’s dense connectivity, may have
contributed to their superior performance in capturing the complex
patterns and details required for accurate streamline delineation.

It is worth noting that not only did the fine-tuned models outperform
the baseline model, but the decreasing time to convergence and the
decreasing training time was also significant. The baseline model took
130 epochs, whereas the fine-tuned models took 40 to 70 epochs, and
the training time per epoch was decreased by 38% on average between
the baseline U-net model and the fine-tuned models. From the results of

this experiment, it is evident that transfer learning applied to the sec-
ondary task (streamline delineation), as opposed to the primary task
(ImageNet classification), performs better than training the models with
randomly initialized weights. This can be attributed to the hierarchical
feature learning and the transferability of the learned features across
different domains.

A crucial factor to consider regarding the study area’s heterogeneity
is the substantial disparity between the data derived from Rowan County
and the Covington area, as evidenced by the t-SNE (t-distributed Sto-
chastic Neighbour Embedding) and PCA (Principal Component Anal-
ysis) plots presented in Fig. 7. These plots illustrate a clear demarcation
between the two regions, indicative of hydromorphic differences in the
two study areas. Particularly in the PCA plot, not only are the data points
from each area noticeably segregated, but the distribution of stream and
non-stream pixels also exhibit discernible dissimilarities. The data
points associated with the Covington area are more widely dispersed,
indicating a greater diversity in both stream and non-stream pixels than
the Rowan County data. It is important to note that the dissimilarity in
data distributions is not solely due to geographical disparities but is also
influenced by variations in input data layers between the Covington and
Rowan County datasets. These differing input layers contribute to the
observed segregation in the PCA plot, reflecting variations in environ-
mental, hydrologic, geomorphic and geological factors between the two
regions, further underscoring the complexity of factors influencing pixel
distribution in our study areas.

In the following experiment, we investigated the generalizability of
the models across diverse geographical contexts. Specifically, we
assessed the effectiveness of the top-performing models in terms of F-1
score from the previous experiment, namely DenseNet169, ResNet50,
DenseNet121, and the attention U-net model, in the context of the
Covington study area. To accomplish this, we employed the transfer
learning strategy TL2, wherein the models are fine-tuned using knowl-
edge acquired from the Rowan County area while adapting to the spe-
cific characteristics of the Covington area. Hence, the Rowan County
area serves as the source location, and the Covington area serves as the
target location, allowing the preservation of acquired knowledge while
fine-tuning for optimal performance in the Covington area.

To establish a performance benchmark for these chosen models, we
applied the TL1 strategy to the three selected ImageNet pre-trained
models, and the TS strategy to the attention U-net, using the Coving-
ton area training dataset. All models were then assessed using the
Covington test dataset. As indicated in Table 4, the findings mirror those
from the initial experiment outlined in Table 3. All three ImageNet pre-
trained models surpassed the performance of the attention U-net model,
with the highest performance gain seen in ResNet50 at 13.14%.
Remarkably, despite fine-tuning the models or training them from
scratch using the Covington dataset, and then assessing them with the
same area’s test dataset, the models demonstrate a significant reduction
in effectiveness, with an average decrease of 30% across all models. This
could be attributed to the quality of the reference hydrographic data in
Covington and the superior quality (QL1) of Lidar data in Rowan
County. However, the regional and landcover differences likely also
have had an influence on these results.

We subsequently fine-tuned all four models utilizing the TL2 strat-
egy. Models were initialized with the weights from the Rowan County
models in the first experiment and fine-tuned using the Covington
training dataset. The performance of all models was evaluated with the
Covington test dataset. Results are presented in Table 5. In comparing
the performance obtained from direct training on the Covington dataset,
the fine-tuning of Rowan County models to accommodate the Covington
dataset resulted in significant enhancements across all models. On
average, there was a performance enhancement of 2.25%, and ResNet50
noted a maximum improvement of 3.99%. Moreover, this strategy
yielded the highest performance for the Covington area, achieving an
F1-score of 65.58% with ResNet50.

Observations indicated that the attention U-net model consistently

Table 3
Performance of the models trained or fine-tuned and evaluated on the Rowan
County test dataset, ordered by the F1-score of models initialized with ImageNet
pre-trained weights. Precision and recalls of these models are provided in
Appendix A.

Models F1-Score for Stream Class #Parameters

Initialized with
ImageNet pre-trained
weights

Initialized with
random weights

DenseNet 169 85.11% 81.80% 19,545,964
ResNet 50 83.77% 78.00% 32,587,253
DenseNet 121 83.73% 81.85% 12,171,116
DenseNet 201 82.95% 80.37% 26,404,716
ResNet 34 82.51% 76.68% 24,482,293
ResNet 101 81.78% 75.85% 51,631,605
ResNet 152 81.65% 78.40% 67,321,333
Attention U-net 81.28% 53,508,217
VGG16 80.98% 74.23% 23,778,412
InceptionResNet

V2
80.76% 73.79% 62,087,692

Inceptionv3 80.42% 75.45% 29,959,244
VGG19 78.96% 74.79% 29,088,108
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held the lowest rank across all training strategies, whether trained from
scratch (TS) using the Covington area dataset or through the transfer
from Rowan County to Covington area (TL2). The relatively under-
whelming performance of the attention U-net model, compared to other
ImageNet models, can potentially be attributed to the intricacies
inherent in the ImageNet datasets. The datasets employed for training
the attention U-net model comprise a total of 2800 samples, with the
Rowan County and Covington area contributing 1400 samples each. In
contrast, the models pre-trained on ImageNet utilized over 14 million
images, characterised by their complexity and richness, attributable to
the variations both within a single class and across different classes.

In the final stage of the study, we assessed the performance of a
variety of deep learning models as well as traditional machine learning
methods pertaining to the extraction of hydrographic features and
streamline delineation within the Covington area. The results, presented
in Table 6, reinforce the outstanding performance of the ResNet50

model, which was trained utilizing the TL2 strategy. Other deep learning
models, including DenseNet169 and DenseNet121, also demonstrated
robust performance, thereby underlining the merits of transfer learning
and fine-tuning strategies. This is in contrast to the attention U-net
model, which trailed behind all other deep learning models in achieving
an F1-score of only 48.95%. In a general context, traditional methods
such as Random Forest, Support Vector Machine, and Gradient Boosting
Classifier displayed substandard performance, reflecting their restricted
effectiveness in the task of streamline delineation. These findings
accentuate the superiority of deep learning models, specifically those
fine-tuned with data sourced from the target area, over traditional
methods for the tasks of hydrographic feature extraction and streamline
delineation. This emphasizes the critical role of transfer learning and
fine-tuning strategies in accomplishing superior performance and
adaptability across varied geographical contexts.

We visualized the prediction results of transfer learning models
(ResNet50, DenseNet121, DenseNet169, and Attention U-net) alongside
traditional machine learning methods (Random Forest, SVM, and GBC).
In Fig. 8, the large-extent visualization shows that transfer learning
models generate smoother, more connected streamlines compared to the
fragmented channels produced by traditional methods, which also pre-
dominantly identify major channels with significant overestimation of
stream pixels by GBC while failing to delineate smaller channels accu-
rately. Further examination in Fig. 9 focuses on zoomed-in contexts,
where ResNet50 is particularly noteworthy for producing cleaner and
more well-connected channels, highlighting its superior performance in
capturing detailed hydrographic features. These visualizations collec-
tively underscore the enhanced capability of transfer learning models in
accurately and efficiently delineating streamlines compared to tradi-
tional machine learning methods.

Fig. 7. t-SNE (left) and PCA (right) plots illustrating the substantial disparity between data derived from Rowan County and the Covington area. The PCA plot shows
clear segregation of data points from each area, with Covington data points more widely dispersed, indicating greater diversity in stream and non-stream pixels
compared to Rowan County. This segregation is influenced by both geographical disparities and variations in input data layers, reflecting different environmental and
geological factors between the regions.

Table 4
Performance of the models when fine-tuned or trained from scratch on the
Covington area and the Rowan County study area (Note that the Rowan County
results are the same as Table 3). Precision and recalls are provided in
Appendix B.

Models F1-Score for Stream Class #Parameters

Covington Rowan County

ResNet50 61.59% 83.77% 32,587,253
DenseNet121 55.67% 83.73% 12,171,116
DenseNet169 51.25% 85.11% 19,545,964
Attention U-net 48.45% 81.28% 53,508,217

Table 5
Performance of models when initialized with the weights from the Rowan
County area and fine-tuned further with the data from the Covington area.
Precision and recalls are provided in Appendix C.

Models F1-score

Rowan County Fine-tuned to Covington
(TL2)

Baseline in
Covington

ResNet50 65.58% 61.59%
DenseNet121 56.66% 55.67%
DenseNet169 54.77% 51.25%
Attention U-

net
48.95% 48.45%

Table 6
Comparison of the F1 scores between deep learning models and the tradi-
tional methods. Precision and recalls are provided in Appendix D.

Models/methods F1-score in Covington

ResNet50 65.58%
DenseNet121 56.66%
DenseNet169 54.77%
Attention U-net 48.95%
Random Forest 46.14%
Support Vector Machine 39.81%
Gradient Boosting Classifier 30.09%
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4. Conclusions

This study advances hydrographic streamline delineation through
two key contributions. Firstly, it has demonstrated the effectiveness of
transfer learning using the U-net architecture with ImageNet pre-trained
backbones, addressing challenges by leveraging extensive, generic
ImageNet data for hydrographic tasks. The first experiment validated
that transferring learning from image classification to streamline
delineation outperformed models with randomly initialized weights,
despite differences between tasks and datasets. It also highlights the
enhanced transferability of the U-net model across geographically
diverse areas. The second experiment showed that ImageNet-based
transfer learning improved model adaptability from Rowan County to
Covington, outperforming models trained from scratch. The research
also evaluates various CNN architectures, finding (i) ResNet excels in
capturing intricate details, (ii) DenseNet effectively captures fine and
coarse features, (iii) Inception discerns features at multiple scales, and
(iv) VGG networks capture low-level features but struggle with higher-
order features. Furthermore, using ImageNet pre-trained backbones re-
duces training time and computational resources, highlighting transfer
learning’s efficiency and cost-effectiveness. Overall, fine-tuning U-net
with ImageNet pre-trained weights proved more effective than training
models from scratch, with recommendations to start with smaller
models and evaluate larger ones as needed. Future research could

explore broader geographic transfers, additional CNN architectures,
varied pre-training datasets, fine-tuning strategies, multi-task learning,
meta-learning methods, and domain adaptation techniques to enhance
model generalization and accuracy across diverse geograhic areas.
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Appendix A. Precision and Recall for Evaluation Metrics Corresponding to Table 3

Initialized with ImageNet pre-trained weights Initialized with random weights

Precision Recall F1-Score Precision Recall F1-Score

DenseNet 169 87.91% 82.48% 85.11% 81.50% 82.10% 81.80%
ResNet 50 84.44% 83.11% 83.77% 77.60% 78.40% 78.00%
DenseNet 121 85.22% 82.28% 83.73% 82.00% 81.70% 81.85%
DenseNet 201 81.26% 84.73% 82.95% 80.10% 80.64% 80.37%
ResNet 34 85.54% 79.70% 82.51% 76.90% 76.46% 76.68%
ResNet 101 82.72% 80.86% 81.78% 75.60% 76.10% 75.85%
ResNet 152 80.07% 83.28% 81.65% 77.80% 79.00% 78.40%
Attention U-net - - – 80.42% 82.17% 81.28%
VGG16 80.59% 81.37% 80.98% 73.70% 74.76% 74.23%
InceptionResNet V2 80.35% 81.18% 80.76% 73.50% 74.08% 73.79%
Inceptionv3 82.01% 78.89% 80.42% 75.30% 75.60% 75.45%
VGG19 79.98% 77.97% 78.96% 74.20% 75.38% 74.79%

Appendix B. Precision and Recall for Evaluation Metrics Corresponding to Table 4

Covington Rowan County

Precision Recall F1-Score Precision Recall F1-Score

ResNet50 67.33% 56.76% 61.59% 84.44% 83.11% 83.77%
DenseNet121 68.92% 46.70% 55.67% 85.22% 82.28% 83.73%
DenseNet169 74.36% 39.10% 51.25% 87.91% 82.48% 85.11%
Attention U-net 55.43% 43.02% 48.45% 80.42% 82.17% 81.28%

Appendix C. Precision and Recall for Evaluation Metrics Corresponding to Table 5

Rowan County Fine-tuned to Covington (TL2) Baseline in Covington

Precision Recall F1-Score Precision Recall F1-Score

ResNet50 66.32% 64.86% 65.58% 67.33% 56.76% 61.59%
DenseNet121 75.66% 45.29% 56.66% 68.92% 46.70% 55.67%
DenseNet169 75.73% 42.90% 54.77% 74.36% 39.10% 51.25%
Attention U-net 63.70% 39.75% 48.95% 55.43% 43.02% 48.45%

Appendix D. Precision and Recall for Evaluation Metrics Corresponding to Table 6

Models/methods Precision Recall F1-score in Covington

ResNet50 63.22% 68.02% 65.58%
DenseNet121 54.35% 59.08% 56.66%
DenseNet169 53.45% 56.14% 54.77%
Attention U-net 47.82% 50.12% 48.95%
Random Forest 44.27% 48.06% 46.14%
Support Vector Machine 38.33% 41.34% 39.81%
Gradient Boosting Classifier 28.15% 32.19% 30.09%
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