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ABSTRACT 
Travel-time computation with large transportation networks is 
often computationally intensive for two main reasons: 1) large 
computer memory is required to handle large networks; and 2) 
calculating shortest-distance paths over large networks is comput
ing intensive. Therefore, previous research tends to limit their spa
tial extent to reduce computational intensity or resolve 
computational intensity with advanced cyberinfrastructure. In this 
context, this article describes a new Spatial Partitioning Algorithm 
for Scalable Travel-time Computation (SPASTC) that is designed 
based on spatial domain decomposition with computer memory 
limit explicitly considered. SPASTC preserves spatial relationships 
required for travel-time computation and respects a user-specified 
memory limit, which allows efficient and large-scale travel-time 
computation within the given memory limit. We demonstrate 
SPASTC by computing spatial accessibility to hospital beds across 
the conterminous United States. Our case study shows that 
SPASTC achieves significant efficiency and scalability making the 
travel-time computation tens of times faster.
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1. Introduction

Travel-time computation is an important research topic in geographic information sci
ence as it is foundational to addressing a variety of geospatial problems such as spa
tial accessibility and transportation optimization. This research focuses on 
demonstrating a new spatial partitioning approach to representing spatial context in 
travel-time computation through enabling large-scale analysis of spatial accessibility 
that aims to quantify access and availability of resources and services across space 
(Guagliardo 2004). Work exploring spatial accessibility has received significant atten
tion with researchers examining access to healthcare resources (Guagliardo 2004, Luo 
2004, Luo and Qi 2009, Kang et al. 2020, Park et al. 2023), supermarkets (Zenk et al. 
2005), playgrounds (Smoyer-Tomic et al. 2004), electric vehicle (EV) charging stations 
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(Park et al. 2021) and green spaces (Zhang et al. 2011, Dai 2011). While there are a var
iety of models for computing spatial accessibility, most modern approaches – gravity 
models (Joseph and Kuby 2011), floating catchment methods (Luo and Wang 2003, 
Luo 2004, Luo and Qi 2009, Luo and Whippo 2012) and Rational Agent Access Model 
(RAAM) (Saxon and Snow 2020) – rely on some form of travel-time computation.

Travel-time calculations are computationally intensive because they rely on loading 
large travel networks (memory intensive) and calculating shortest paths between 
demand and supply locations on these networks (computing intensive). While com
mercial APIs exist with temporally rich travel-time data, they are prohibitively expen
sive and the results often cannot be shared (Saxon and Snow 2020). The 
computational burden presented by travel-time calculations has resulted in studies 
exploring spatial accessibility to focus on a single city (Smoyer-Tomic et al. 2004, Park 
et al. 2021), a single county (Dony et al. 2015), a handful of counties (Luo and Qi 2009, 
Dai 2011) or a single state (Kang et al. 2020). Studies addressing scalability have used 
Euclidean distance measures instead of more accurate travel time-based distance 
(Zhang et al. 2011), calculated travel-time in parallel using the network of the entire 
spatial extent (Kang et al. 2020) or used commercial cloud computing to calculate 
travel-time catchments for each county in parallel (Saxon and Snow 2020). While high- 
performance computing can help to overcome the computational burden, it adds a 
significant technical barrier and does not resolve the root problem.

Spatial partitioning methods have been used to tackle large-scale geospatial com
puting problems, but existing methods may not be suitable for this problem. These 
methods are employed for spatial domain decomposition (Wang and Armstrong 2009) 
– partitioning data and work into computationally feasible chunks – which supports 
distributed data storage and processing (Zhou et al. 2007, Aji et al. 2013, Eldawy et al. 
2015, Yu et al. 2015) and enabling large-scale spatial modeling (Parker and Epstein 
2011, Shook et al. 2013). For travel-time computation, the memory intensity is a func
tion of road network rather than spatial objects, so partitioning spatial objects does 
not necessarily resolve the computational challenge. There is considerable research on 
network partitioning (Buluç et al. 2016) and spatial network partitioning (Ji and 
Geroliminis 2012, Lopez et al. 2017), but graph partitioning is frequently an NP-hard 
problem (Buluç et al. 2016) and may not guarantee that the road network required for 
each spatial object will be in the same partition. Travel-time computation requires 
clustering spatial objects (e.g. points in space) and spatial context (e.g. road network) 
together.

In this article, we describe SPASTC, a Spatial Partitioning Algorithm for Scalable 
Travel-time Computation (SPASTC) designed to calculate driving-time catchments for 
spatial accessibility analysis. We describe how SPASTC clusters spatial objects and road 
network together in Section 2. In Section 3, SPASTC is used to measure spatial accessi
bility to hospital beds for the state of Illinois, the Midwest U.S., and the conterminous 
United States. We evaluate the algorithm’s performance by deriving travel-time catch
ments for these spatial extents, bench-marking performance with various memory lim
its against an approach of loading each hospital’s local road network individually. 
Section 4 discusses future work and other geospatial problems which may benefit 
from the SPASTC approach.
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2. Methods

This section describes the SPASTC algorithm for clustering spatial objects and their 
associated road network together, explicitly representing each object’s spatial context. 
Partitioning spatial objects in space is well-studied (Eldawy et al. 2015), but for travel- 
time computation partitioning objects without considering their spatial context can 
produce partitions where the spatial context data required by partitions of objects are 
infeasibly large. For example, a clustering algorithm may group together all the hospi
tals in the greater New York City area, but the combined road network around all the 
hospitals can become too data intensive to handle. Previous research on partitioning 
spatial objects based on their spatial context generally focuses on the co-locality of 
objects or administrative boundaries (Al Jawarneh et al. 2020), but many geospatial 
problems have complex spatial contexts that should be explicitly represented in com
putation. On the other hand, partitioning spatial context data (e.g. road network in 
this study) can be computationally intensive (Buluç et al. 2016) and may produce parti
tions of the spatial data such that the spatial context of one or more objects is split 
between partitions.

SPASTC partitions a set of objects based on the memory intensity of their spatial 
context data, yielding partitions that are computationally feasible and speeding up 
spatial analysis by clustering objects with similar spatial contexts. SPASTC goes 
through three main steps illustrated in Figure 1: identifying the spatial context of each 
spatial object (i.e. point in this study) (Section 2.1), combining regions with shared spa
tial contexts (Section 2.2) and clustering regions up to a memory limit (Section 2.3). 
Section 2.4 provides computational complexity and intensity analysis of the algorithm.

Figure 1. An example of how hospitals are partitioned across space using SPASTC: (1) for each 
hospital we use a Euclidean buffer to determine which county’s road networks are required to cal
culate the hospital’s driving-time catchment, (2) we combine these regions if one is a subset of 
another and (3) we combine overlapping regions if their estimated combined size in memory is 
less than a user-specified parameter.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 805



2.1. Identifying spatial context

The first step of SPASTC is to identify or estimate the spatial context around each spa
tial object. This step is entirely dependent on a use case: for some applications this is 
straightforward, but more difficult for others (Kwan 2012). For calculating travel-time 
catchments, we can use an Euclidean buffer with an overestimated maximum distance 
to achieve this step. For example, for a 30 min travel-time catchment in an area with a 
maximum speed limit of 70 miles/h, we know that an Euclidean buffer of 36 miles 
should suffice (greater than 70 miles/h � 0.5 h). We refer to each object’s spatial con
text as its primary region.

2.2. Clustering regions by spatial context

To cluster together primary regions based on shared spatial context, we employ the 
disjoint-set data structure as described by Galler and Fisher (1964). The disjoint-set 
data structure is designed to contain a collection of non-overlapping sets and specific
ally for computing with equivalence classes (Galler and Fisher 1964). First, we add 
each spatial object to the disjoint-set data structure (lines 1–4 in Algorithm 1). Then 
we cluster sets of objects if they share the same spatial context by comparing the pri
mary region of each object to the primary region of each other object (lines 5–15 in 
Algorithm 1) If object A’s primary region is a subset of object B’s, we cluster object A 
and B, keeping object B’s primary region to represent the new set. Algorithm 1 lines 1 
through 15 detail how this clustering is accomplished with the disjoint-set data-struc
ture. This step is illustrated in Figure 1 under Step 2 ‘Shared Context’ where we see 
that the top two hospitals’ primary regions are subsets of the third hospital’s primary 
region and are thus clustered. Multiple objects being clustered into a single region 
means that these objects have the same spatial context and can be processed 
together without increasing their memory requirements. 

Algorithm 1: Clustering Regions by Spatial Context 

Input: objects, objectToSpatialContextMap 
Output: regionToObject, regionToSpatialContexts 
1 ds disjointSetðÞ
2  for object 2 objects do 
3   ds:findðobjectÞ //Adds object to disjoint set datastructure 
4  end 
5  for object1 2 objects do 
6   for object2 2 objects do 
7    primaryRegion1  objectToSpatialContextMap ½object1�
8    primaryRegion2  objectToSpatialContextMap ½object2�
9    if primaryRegion1 =¼ primaryRegion2 then 
10     ds.union(object1, object2) 
11    else if primaryRegion2 � primaryRegion1 then 
12     ds.union(object1, object2)     

/� only need to update this if the regions are not the same �/ 
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13     objectToSpatialContextMap[object2]  primaryRegion1 
14   end 
15  end 
16 regionToObject  new map(regionID ! list of objects) 
/� iterate over the roots and their classes in Disjoint Set �/ 
17  for root, class 2 ds.itersets(with_canonical_elements¼ True) do 
18   regionToObject[root]  [] 
19   for object 2 class do 
20    regionToObject[root].append(object) 
21   end 
22  end 
23 return regionToObject, objectToSpatialContextMap  

The regions left over after this step are referred to as secondary regions. To keep 
track of which objects correspond to a given secondary region, two maps are created: 
(1) a map of region IDs to object IDs and (2) a map of region IDs to a list of geo-
graphic units/network files needed to calculate the travel-time catchment area for the 
region’s objects. For our use case, this should be: (1) a map of region IDs to a list of 
hospital IDs and (2) a map of region IDs to a list of counties that are needed to calcu-
late driving-time catchment areas for the hospitals in the region. The pseudocode for 
this operation is provided in Algorithm 1 lines 16 through 23 where these maps are 
created by looping over each region (the root) updating the list of objects within our 
region (the class). This allows us to easily lookup the objects associated with each 
region and the secondary region of any object. Lastly, the function returns the two 
maps describing the region and spatial context of each spatial object. 

2.3. Clustering regions by memory 

SPASTC allows users to specify a memory limit MAX_MEM on the memory usage of 
spatial context data, with the restriction that MAX_MEM should be greater or equal to 
the maximum memory usage of the secondary regions. This restriction is put into 
place because secondary regions are by design the smallest spatial extent required for 
at least one object in the region. If MAX_MEM is less than the memory usage of some 
secondary region then we could not load the data for the spatial extent required for 
at least one object’s computation. To estimate the memory usage, SPASTC requires a 
pre-processing step of obtaining an estimate for the memory usage of each spatial 
unit. For our use case, we estimated the memory usage of each county’s road network 
in memory by loading each county’s road network into memory individually and 
recording the memory usage of the process.  

Algorithm 2: Clustering Regions by Memory Usage 

Input: regionToSpatialContexts, regionToObject, SpatialContextToMemory, MAX_MEM 
Output: regionToObjectIDs, regionToSpatialContexts 
1 stopIterating  False 
2 while not stopIterating do 
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3   to_merge  list() 
4   for region A in regions do 
5    B  region s. t. (A \ B 6¼ ;) and mem. usage of (A [ B) is minimized 
6    combined_mem  memory usage of (A [ B) 
7    to_merge.append((combined_mem, A, B)) 
8   end 
9   to_merge  sorted(to_merge)      //sort by combined memory 

ascending 

10   if to_merge[0][0] > MAX_MEM then 
11    stopIterating  True     //lowest memory merge too big, 

exit 

12   end 
13   seen  set()     //track regions merged this iteration 
14   for (combined_mem, region A, region B) in to_merge do 
15    if combined_mem � MAX_MEM and A, B=2 seen then 
16     seen  seen [fA, Bg //mark A, B as seen 
17     merge(A, B)      //updates data structures to combine 
18    else if combined_mem > MAX_MEM then 
19     break     //rest of merges this iteration too big 
20   end 
21  end  

Given this memory limit, we combine secondary regions using a greedy algorithm 
outlined in Algorithm 2. During each step of the algorithm, for each region A, we 
determine the non-disjoint region B such that the memory usage of the set difference 
between B and A (memðB − AÞ) is minimized. This step is not memory intensive and is 
embarrassingly parallel. We only consider non-disjoint region A and B because if they 
are disjoint, no computation is saved by loading the regions together. This gives us 
the region B such that we minimize the memory usage of the union of A and B 
(A [ B). Depending on the data and use case, we may expect memðA [ BÞ <

memðAÞ þmemðB − AÞ, especially if the pieces of data have a buffer around them to 
allow for composition, but this approach provides a reasonable upper-bound that is 
not dependent on the data or use case and the alternative would be to load, com-
pose, and evaluate the memory usage of regions for each possible A [ B which would 
be extraordinarily slow. 

Once an optimal region B is found for each region A, we return a tuple ðmemðA [
BÞ, A, BÞ for each region A in our list of secondary regions. These tuples represent sug-
gested merges: the memory usage of the merged network and the two regions to 
merge. We sort the list of tuples in ascending order by the estimated combined mem-
ory usage (memðA [ BÞ), and for each tuple ðmemðA [ BÞ, A, BÞ, if neither A or B has 
been merged with this iteration (tracked by seen) and memðA [ BÞ < MAX MEM, we 
merge regions A and B. The outer loop repeats once the list of tuples is fully iterated 
through or once the next suggested merge has a combined memory usage greater 
than MAX_MEM. The outer loop terminates once the first suggested merge in a step is 
larger than MAX_MEM because this signals that no more merges can be made without 
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exceeding MAX_MEM. These merges are tracked by continually updating our maps of 
region IDs to objects and region IDs to spatial units. 

The resulting regions from this step are referred to as final regions. This algorithm is 
designed such that the data on the spatial extent for the final regions have a few critical 
characteristics that make computation feasible and efficient: (1) the size in memory is 
less than MAX_MEM and (2) no two final regions A and B can be merged while keeping 
memory usage under MAX_MEM. These partitions are ideal for distributed computation: 
SPASTC has split the job into n pieces each with data that requires MAX_MEM to load. 

2.4. Computational complexity and intensity analysis of SPASTC 

SPASTC employs two partitioning steps detailed in Algorithms 1 and 2. Algorithm 1, 
Merging Regions by Spatial Context, has complexity Oðn2sÞ, where n is the initial 
number of spatial objects and s the number of partitions of spatial data, to complete 
comparisons between regions. This is because each of the n primary regions is com-
pared to each of the other n – 1 primary regions with O(s) time for each comparison. 
The second step of the algorithm, Merging Regions by Memory Usage, has the worst- 
case performance of Oðm3sÞ where m is the number of secondary regions. The worst- 
case performance arises in the case where at each step every region attempts to 
merge with the same region, thus only one merge happens per iteration, taking at 
most m – 1 iterations to terminate. However, typical performance is Oðm2 log ðmÞsÞ
because approximately half of the regions are merged each iterations, thus taking 
log ðmÞ iterations of the outer-loop. Relating the number of spatial objects n to the 
number of primary regions m depends on the data, but clearly the number of second-
ary regions is less than or equal to the number of primary regions (m � n). 

However, the Big-O complexity analysis does not reveal the practical benefits of the 
approach. While these runtimes may seem large, it is important to note that for many 
applications the spatial context data – in our case road networks – is often much larger 
than the point data we are partitioning or the spatial unit data used for partitioning and 
this discrepancy results in massive savings. This will be demonstrated in Section 3 where 
the road networks are measured in tens of millions of nodes while the number of hospi-
tals and spatial units are only in the thousands. Using the theoretical analysis from Wang 
and Armstrong (2009) we can gain insight into SPASTC’s efficiency. Loading and compos-
ing networks requires some computation for network composition, but it is primarily 
data-centric with the memory and I/O costs being limiting factors. Having identified 
these costs as our bottleneck, SPASTC allows a user to specify a memory limit and then 
seeks to minimize I/O cost which is also the most time-consuming part of the computa-
tion. This analysis helps to explain the benchmarked performance in Section 3.4. 
Additionally, the spatial domain decomposition performed by SPASTC enables travel- 
time computation in parallel given adequate cyberinfrastructure support. 

3. Use case: travel-time catchments and spatial accessibility 

To illustrate the utility and scalability of SPASTC, we calculated spatial accessibility to 
hospital beds across Illinois, the Midwest United States and the conterminous United 
States with the E2SFCA method (Luo and Qi 2009). 
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3.1. Spatial accessibility method (E2SFCA) 

To calculate spatial accessibility, we employ a spatial interaction model of accessibility 
called the Enhanced Two-Step Floating Catchment Area (E2SFCA) method (Luo and Qi 
2009). This model is adapted from the Two-Step Floating Catchment Area (2SFCA) 
method, a special case of the gravity model which was designed to be more intuitive 
(Luo and Wang 2003). The 2SFCA method relies on two steps: (1) calculate a supply- 
to-demand ratio for each supply location and (2) each demand location sums the sup-
ply-to-demand ratios for supply locations such that the demand location is within the 
supply location’s catchment (Luo and Wang 2003). The result is a supply-to-demand 
ratio for all demand points in space. For example, if demand is the general population 
and supply is the number of physicians, the method would calculate a ratio of physi-
cians-to-people across the spatial extent. 

E2SFCA extends the 2SFCA method by considering multiple travel-time catchments 
and distance decay (Luo and Qi 2009). In 2SFCA, a population is either in the travel- 
time catchment or not, but E2SFCA calculates multiple travel-time zones (0–10, 10–20 
and 20–30 min in Luo and Qi (2009)) and applies different weights to each zone to 
account for distance decay. In E2SFCA’s first step, we calculate the supply-to-demand 
ratio (Rj) for each supply location j with a weighted sum of population:

Rj ¼
Sj

P
k2fdkj2Drg

PkWr
(1) 

where Sj is the supply at supply location j, Pk is the demand or population at demand 
location k and Wr is the weight for travel-time zone r (Luo and Qi 2009). Equation (1)
says that the supply-to-demand ratio for each supply point j (Rj) is the supply at j (Sj) 
divided by the weighted sum of demand (

P
PkWr) over demand locations k that are 

within the rth travel-time catchment (Dr) of the supply location (k 2 fdkj 2 Drg) (Luo 
and Qi 2009).

Step 2 of the E2SFCA method is similar to Step 2 of the 2SFCA method, with each 
demand location summing supply-to-demand ratios, but again applies the weights to 
account for distance decay. The equation for Step 2 of the E2SFCA method is:

AF
i ¼

X

j2fdij2Drg

RjWr (2) 

where AF
i is accessibility at demand location i, Rj is the ratio from Equation (1), and Wr 

are the same weights used in Equation (1) (Luo and Qi 2009). Equation (2) means that 
the accessibility at demand point i is the sum of the weighted supply-to-demand 
ratios (RjWr) over supply points j such that the distance between i and j is within a 
travel-time catchment of j (j 2 fdij 2 Drg). The result is a ratio of supply-to-demand at 
each population location. We employed E2SFCA to calculate accessibility to hospital 
beds using travel-time catchments derived from SPASTC.

3.2. Data

Our supply dataset covers hospitals pulled from the Homeland Infrastructure 
Foundation-Level Data (HIFLD) website1. The dataset represents 7596 hospitals in the 
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United States. Of these hospitals, 7437 hospitals were in the conterminous United 
States and only 6822 hospitals were in the conterminous United States with a valid 
‘BEDS’ field. For the travel-time analysis, we included all of the hospitals in the conter-
minous United States, but for the spatial accessibility, we could only use the hospitals 
with valid ‘BEDS’ fields. For demand, we used the American Community Survey’s 
2014–2018 (5-year) population estimates at the census tract level.

The road network data was obtained from OpenStreetMap using the Python 
OSMnx package (Boeing 2017). To achieve this, we used data on the cartographic 
boundaries for each county in the United States obtained from the Census Bureau2. 
We pulled the driving network for each county in the conterminous U.S. using the 
OSMnx graph_from_polygon function. Each file was saved using the GEOID for 
the county allowing us to programmatically access them. To obtain a memory esti-
mate for each county network, we loaded each county road network into memory 
with OSMnx and recorded the memory usage of the Python script’s memory usage. By 
getting the memory usage before and after loading the network, we were able to esti-
mate the memory usage of each county road network loaded with OSMnx. While 
OpenStreetMap data is not perfect (Kaur et al. 2017), the data quality is comparable to 
propriety geospatial data (Sehra et al. 2014), provides near complete coverage in the 
United States (Barrington-Leigh and Millard-Ball 2017), and is widely used throughout 
the spatial accessibility (Kang et al. 2020, Saxon and Snow 2020) and geographic infor-
mation science (Yan et al. 2020) literature.

3.3. Results

SPASTC partitions the set of hospitals and determines the necessary road network for 
each partition. For each final region, we load the required partition of the network, 
compose them together via the networkx compose operator (Hagberg et al. 2008). 
Next, we remove strongly and weakly connected components of fewer than 20 nodes 
in an attempt to remove erroneous data and increase the accuracy of the routing cal-
culations. Weakly connected components are completely disconnected from the rest 
of the road network whereas nodes in strongly connected components do not have 
routes to and from the main graph (Boeing 2017). Then for each object in the final 
region, we calculate an ego-centric network around the object for each driving time 
required. Travel times on the network are determined using the osmnx add_edge_ 
travel_times method which calculates free-flow travel time along each edge of 
the network using the length of the edge and the speed limit on the edge in kph 
(Boeing 2017). This means that our routing also does not consider traffic congestion 
and complications like rail crossings, but rather assumes that individuals are able to 
drive consistently at the speed limit. Once we determine the egocentric graph for 
each object, we calculate the convex hull around the nodes in the subgraph to obtain 
a driving-time polygon. Given these driving-time catchments, spatial accessibility can 
be calculated using any method that depends on driving-time catchments.

To perform the analysis, we utilized a SLURM (Yoo et al. 2003) cluster which allows 
us to specify memory limits on each job. One job performs the partitioning of the hos-
pitals and then submits a job for each partition of hospitals to calculate the travel- 
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time catchments for all hospitals within the partition. Note that our MAX_MEM param-
eter in the SPASTC algorithm only describes the amount of memory required to load 
each region’s road network and does not account for any other operations, so we 
must allocate more than MAX_MEM to each job. Additional memory requirements arise 
in our use case due to the networkx compose operator copying the network data 
structures, Dijkstra’s algorithm (Dijkstra 1959), and storing results so to accommodate 
this memory usage we gave SLURM a memory limit of 2� dMAX MEMe: The memory 
for each analysis is given in Table 1. Because this analysis already required additional 
memory, we utilized it to load batches of network partitions in parallel using 8 
processes.

3.3.1. Illinois
Spatial accessibility of the general population to hospital beds in Illinois is given in 
Figure 2. While the maximum number of hospital beds per thousand people was 
around 37, we capped the color bar at 20 to better illustrate the variation in spatial 
accessibility across space. For all maps, grey indicates no access meaning that the cor-
responding census tract’s centroid was not contained in any hospital’s catchment. 
Most of Illinois has less than 10 hospital beds per thousand people, but Greene 
County in western central Illinois stands out with values in excess of 15 hospital beds 
per thousand people.

3.3.2. Midwest U.S
Next, we demonstrate the method’s scalability by calculating E2SFCA to hospital beds 
for the Midwest U.S. The Midwest region used for this project is the U.S Census 
Bureau’s Midwest Region (IA, IL, IN, KS, MI, MN, MO, ND, NE, OH, SD and WI) plus 
Kentucky for a total of thirteen states. Kentucky is included in our ‘Midwest’ to include 
all of the Illinois’ neighbors as we scale up. Figure 3 gives hospital beds per thousand 
people for the Midwest using E2SFCA with grey indicating no access. We see max-
imum values in western Kansas, western central Illinois and south-west Ohio, with 
pockets of relatively high access spread throughout the Midwest.

3.3.3. Conterminous U.S
Lastly, we applied SPASTC to the Conterminous United States. While they may be hard 
to see at this scale, Figure 4 gives the 10-min driving-time catchments illustrated in 
red, 20-min driving-time catchments are illustrated in green, and the 30-min driving- 
time catchments are shown in blue. Using these catchments, we calculated spatial 
accessibility as shown in Figure 5. We see that the western U.S. except the coast has 

Table 1. Memory requirements for each region for (1) the largest primary region, the minimum 
amount of memory required to load each network, (2) the SPASTC algorithm, regions are com
piled such that none exceeds this limit and (3) the SLURM cluster, the compute cluster will kill 
any job that exceeds this memory limit.
Region Largest Primary Region SPASTC SLURM

Illinois 5.077 GB 5.1 GB 12 GB
Midwest 6.175 GB 6.2 GB 14 GB
Conterminous U.S. 9.402 GB 9.5 GB 20 GB
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very low levels of access with pockets of high access in places that have hospitals but 
relatively low population density.

3.4. Performance of SPASTC

To illustrate the effectiveness of SPASTC, we compared it against loading each hospi-
tal’s network separately without any spatial partitioning. Figure 6 gives the number of 
times each county’s road network would have to be loaded to calculate the driving- 
time catchments to hospitals in the conterminous United States without SPASTC 
(a, log base 2 scale) and with SPASTC given a 16 GB limit (b, linear scale). We see that 

Figure 2. Enhanced Two-Step Floating Catchment Area (E2SFCA) of general population to hospital 
beds in Illinois. Hospitals beds per 1000 people. Grey indicates no access.
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Figure 3. Enhanced Two-Step Floating Catchment Area (E2SFCA) of general population to hospital 
beds in the Midwest. Hospitals beds per 1000 people. Grey indicates no access.

Figure 4. The calculated travel-time catchments for the conterminous United States. 10-min driv
ing-time catchments are illustrated in red, 20-min driving-time catchments are illustrated in green 
and 30-min driving-time catchments are illustrated in blue.

814 A. C. MICHELS ET AL.



without SPASTC, some road networks are loaded in excess of 28 ¼ 256 times whereas 
the SPASTC approach loads counties a maximum of 5 times even with a 16GB memory 
limit. Figures demonstrating this analysis in more depth can be seen in Appendix A.

To demonstrate the computational performance gains that SPASTC achieves, we 
benchmarked the performance of computing travel-time catchments for the conter-
minous United States using SPASTC against the same analysis without SPASTC. Both 
approaches used the structure laid out in Section 3: a script to load the data, deter-
mine the spatial context of each hospital, apply SPASTC or not, and then submit a job 
to the SLURM cluster to compute the travel-time catchments for each hospital/cluster. 
For benchmarking the approach without SPASTC, we submitted Bash scripts that 
would perform the analysis for 20 hospitals each to avoid overwhelming the job 
scheduler and reduce the amount of time spent submitting jobs (7437 jobs with a 1 s 
pause between submissions would be more than 2 h alone), but only recorded time 
spent in the Python script that calculates travel-time for each hospital.

In the results, we refer to this first script as ‘Partitioning & Job Submission’ and the 
travel-time calculations are referred to as ‘Travel Analysis.’ We had the script pause for 
one second between each job submission to not overwhelm the job scheduler which 
is included in the ‘Partitioning & Job Submission’ portion. We tested SPASTC with mul-
tiple memory limits shown in Table 1. Note that the memory limit given to the 
SPASTC algorithm is half of the limit given to SLURM except 20 GB which has a thresh-
old of 9.5 GB; more details on this are given in Section 3.3. For both options, we 
allowed networks to be loaded in parallel using 8 processes. Each method was run 10 
times each on the San Diego Supercomputer Center’s Expanse high-performance 
computer.

Summary statistics for the benchmarking can be viewed in Table 2. From the statis-
tics, we see that the mean SPASTC runtime is approximately 37–51x faster than 

Figure 5. Enhanced Two-Step Floating Catchment Area (E2SFCA) of general population to hospital 
beds in the conterminous United States. Hospitals beds per 1000 people. Grey indicates no access.
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performing the analysis without partitioning. Unsurprisingly, there is a large difference 
in the runtimes for the travel-time analysis, with SPASTC taking a total of 11–15.5 h 
depending on the memory limit and the same analysis taking more than 23 d on aver-
age without SPASTC. This speed-up is due to processing hospitals with shared spatial 
context at the same time, savings us time in loading and composing networks while 
still staying under a memory limit. Interestingly, SPASTC was faster in the Job 
Submission portion across the board as well, meaning that time savings from submit-
ting fewer jobs outweighed the cost of executing the partitioning algorithm for our 
use case. Therefore, not only does SPASTC speed up the analysis substantially, the 
Spatial Partitioning Algorithm is fast enough that the time savings from submitting 
fewer jobs outweighs the time performing the clustering.

When analyzing SPASTC performance as a function of memory – as visualized in 
Figure 7 – we see a substantial speed-up when moving from 20 or 26 GB to 32 or 
48 GB, but there are diminishing returns and analysis time even increased slightly past 
48 GB. The diminishing returns are expected because SPASTC prioritizes grouping 

Figure 6. A diagram demonstrating the number of times each county must be loaded for (a) the 
approach of loading networks for each hospital separately and (b) SPASTC.
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together tasks with high overlap for the largest potential to save time, thus there are 
fewer opportunities to save time as the memory limit increases. The increase in total 
computing time past 48 GB can be explained by the fact that the time to complete 
many of the operations being performed (merging graphs, checking for weakly and 
strongly connected components, shortest paths, etc.) scales with the size of the net-
work. Using a smaller number of partitions also helps us to minimize the turnaround 
time, assuming a sufficient number of compute nodes to analyze all partitions simul-
taneously, if the results of the analysis are urgently needed. Using a limit of 20 GB, the 

Table 2. Runtimes for calculating travel-time catchments at the scale of the Conterminous United 
States with and without applying SPASTC.

Method
Mean Partit-ioning and  

Job Submission Mean travel analysis Mean total Turn- around Speed up

20 G 0:07:38 15:16:10 15:23:49 0:38:17 37.06x
26 G 0:07:36 14:09:17 14:16:53 0:57:35 39.96x
32 G 0:07:09 11:32:36 11:39:45 0:58:35 48.93x
40 G 0:06:56 11:23:34 11:30:30 0:56:40 49.59x
48 G 0:06:25 10:52:46 10:59:11 1:03:11 51.94x
56 G 0:06:39 11:32:41 11:39:20 1:13:56 48.96x
64 G 0:07:01 11:12:26 11:19:27 1:23:30 50.39x
72 G 0:06:52 12:28:06 12:34:58 1:56:54 45.35x
No SPASTC 0:08:00 570:32:51 570:40:50 0:21:59 1.00x

‘Partitioning & Job Submission’ refers to determining the spatial context of each hospital, partitioning or not, and 
submitting an analysis job for each hospital/cluster. ‘Travel Analysis’ refers to total runtime for the travel-time ana
lysis jobs submitted by the ‘Partitioning & Job Submission’ part of the analysis. ‘Turnaround’ is the maximum 
‘Partitioning & Job Submission’ plus the maximum ‘Travel Analysis’ telling us the maximum time we would need to 
wait for results assuming infinite compute resources.

Figure 7. Mean total computing time for calculating travel-time with SPASTC on Expanse. Error 
bars represent standard deviation of runtime.
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turnaround was only about 38 min compared to almost two hours at 72 GB. However, 
note that all these patterns are due in part to our chosen use case of calculating 
travel-time catchments and might not hold across other applications of the SPASTC 
algorithm.

4. Concluding discussion

This article describes the SPASTC. SPASTC is a novel algorithm for spatial partitioning 
while preserving spatial context. The algorithm accomplishes this by clustering objects 
in space (e.g. hospitals) and their spatial contexts (e.g. road networks) together, con-
sidering the costs (e.g. memory usage) of the spatial contexts. We applied SPASTC to 
compute travel-time catchments and spatial accessibility to hospital beds for the state 
of Illinois, the Midwest, and the conterminous United States. Lastly, we benchmarked 
the performance of SPASTC vs. analyzing each hospital seperately and found that 
SPASTC can perform more than fifty times faster even with the same memory limits.

SPASTC has made two interrelated contributions to advancing theoretical frontiers 
in geographic information science. The first contribution addresses the question of 
why spatial is special for evaluating computational intensity of geospatial analysis 
(Wang and Armstrong 2009). The SPASTC approach demonstrates that spatial parti-
tioning based on computational constraints such as memory limits is critical to ena-
bling optimal computation of large- and multi-scale geospatial analysis. The second 
contribution paves a way to represent shared spatial context by explicitly capturing 
spatial relationships encoded in computational design for geospatial analysis. This rep-
resentation provides a computational foundation for addressing the Uncertain 
Geographic Context Problem (UGCoP) (Kwan 2012) particularly for the purpose of con-
ducting data-intensive geospatial analysis.

Our research has gained three major aspects of insights for guiding the use of 
SPASTC. The first is that SPASTC improves the performance of geospatial computing 
workflows that have overlapping work, in our case data to load and process, but tasks 
that have no overlapping data or processing may not benefit from the approach. 
Second, if there are many tasks that are not computationally intensive, the time sav-
ings from SPASTC may not be enough to justify the time used for partitioning the 
tasks. Lastly, if we had enough compute nodes to run all of our jobs and could submit 
them all instantly, there is a trade-off between turnaround (the time between submit-
ting the job and getting results) and total computing time. For our use case, the 
approach of computing without SPASTC took 37–51 times more total resources and it 
could in theory give us our result in about half the time, but note that even Expanse 
could not handle all the jobs at once3, as we could not submit thousands of jobs 
instantly4. It may not be worth using 37–51 times more resources to get results twice 
as fast.

For computing travel time, the algorithm may have room for improvement and fur-
ther utility. For our use case, we only considered driving, but additional modes of 
transportation like walking, biking and public transit could be considered. Our case 
study utilized OpenStreetMap data which has limitations and its accuracy varies spa-
tially (Zhang and Malczewski 2017, Herfort et al. 2023). However, the SPASTC algorithm 
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is not specific to OSM data and could be used with higher quality governmental and 
commercial road network datasets where they are available. While OpenStreetMap 
and Dijkstra’s algorithm are used throughout the literature for travel-time analysis 
(Saxon and Snow 2020, Kang et al. 2020), these methods are not perfect and further 
work should explore how the accuracy of this approach compares to proprietary data-
sets like Google Maps API. The buffer estimate used to calculate primary regions can 
also be fine-tuned and possibly even vary across space based on each area’s speed 
limits and traffic congestion. In Algorithm 2, we estimate the memory usage of a com-
position of networks by summing the memory usage of the partitions of the network 
giving us an upper-bound on memory usage, but there may be room for improve-
ment in this process. Further research could explore how best to determine memory 
limits, as this likely varies by the objective (minimizing computing vs. turnaround 
time), the hardware configuration, the data, and the operations performed on the 
data. Lastly, while we utilized SPASTC to derive driving-time catchments around hospi-
tals, the algorithm could find use in other travel-time calculations like deriving travel- 
time matrices or analyzing mobility data.

While SPASTC was demonstrated in this research for scalable spatial accessibility 
computation, it could be applied to other use cases. Models and analyses that require 
partitioning objects in space which depend on a memory-intensive spatial context 
may benefit from SPASTC, such as spatially explicit agent-based models. While certain 
steps like estimating an object’s spatial context may depend on each specific applica-
tion, the framework of partitioning objects based on shared spatial context and then 
memory usage of the spatial context data is generalizable to work in a variety of geo-
spatial analysis and modeling settings. The algorithm may also find use for partitioning 
data for distributed workflows, such as database sharding (Bagui and Nguyen 2015) or 
spatial resilient distributed datasets (SRDD) in GeoSpark (Yu et al. 2015).

Notes

1. https://hifld-geoplatform.opendata.arcgis.com/datasets/hospitals/explore
2. https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html
3. Expanse currently allows up to 4096 queued and running jobs per user: https://www.sdsc. 

edu/support/user_guides/expanse.html#running
4. SLURM supports up to 500 per second: https://slurm.schedmd.com/high_throughput.html
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Appendix A. Plots of clustering results

Figure A1. A diagram demonstrating the number of clusters each county is in for each stage of 
the SPASTC algorithm for Illinois with 8 GB memory limit. The Primary regions (a), Secondary 
regions (b) and Final regions (c) are given in log base 2 scale (left colorbar) while the Final regions 
in (d) are given in linear scale (right colorbar).
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Figure A2. A diagram demonstrating the number of clusters each county is in for each stage of 
the SPASTC algorithm for the Midwest with 12 GB memory limit. The Primary regions (a), 
Secondary regions (b) and Final regions (c) are given in log base 2 scale (left colorbar) while the 
Final regions in the (d) are given in linear scale (right colorbar).

Figure A3. A diagram demonstrating the number of clusters each county is in for each stage of 
the SPASTC algorithm for the Conterminous United States with 16 GB memory limit. The Primary 
regions (a), Secondary regions (b) and Final regions (c) are given in log base 2 scale (left colorbar) 
while the Final regions in the (d) is given in linear scale (right colorbar).
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