INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE Tavior & F .
2024, VOL. 38, NO. 5, 803-824 e aylor & Francis

https://doi.org/10.1080/13658816.2024.2326445 Taylor & Francis Group

RESEARCH ARTICLE W) Check for updates

SPASTC: a Spatial Partitioning Algorithm for Scalable
Travel-time Computation

A. C. Michels*< @, J. Park®¢, J.-Y. Kang® and S. Wang®"<

CyberGIS Center for Advanced Digital and Spatial Studies, Urbana, IL, USA; PInformatics Program,
University of lllinois Urbana-Champaign, Urbana, IL, USA; “Department of Geography and Geographic
Information Science, University of lllinois Urbana-Champaign, Urbana, IL, USA; Department of
Geography, Kyung Hee University, Seoul, South Korea; *Department of Geography and Geographic
Information Science, University of North Dakota, Grand Forks, ND, USA

ABSTRACT ARTICLE HISTORY
Travel-time computation with large transportation networks is Received 15 June 2023
often computationally intensive for two main reasons: 1) large Accepted 28 February 2024
computer memory is required to handle large networks; and 2)
calculating shortest-distance paths over large networks is comput-
ing intensive. Therefore, previous research tends to limit their spa-
tial extent to reduce computational intensity or resolve
computational intensity with advanced cyberinfrastructure. In this
context, this article describes a new Spatial Partitioning Algorithm
for Scalable Travel-time Computation (SPASTC) that is designed
based on spatial domain decomposition with computer memory
limit explicitly considered. SPASTC preserves spatial relationships
required for travel-time computation and respects a user-specified
memory limit, which allows efficient and large-scale travel-time
computation within the given memory limit. We demonstrate
SPASTC by computing spatial accessibility to hospital beds across
the conterminous United States. Our case study shows that
SPASTC achieves significant efficiency and scalability making the
travel-time computation tens of times faster.

KEYWORDS

Accessibility; cyberGlS;
parallel computing; spatial
domain decomposition

1. Introduction

Travel-time computation is an important research topic in geographic information sci-
ence as it is foundational to addressing a variety of geospatial problems such as spa-
tial accessibility and transportation optimization. This research focuses on
demonstrating a new spatial partitioning approach to representing spatial context in
travel-time computation through enabling large-scale analysis of spatial accessibility
that aims to quantify access and availability of resources and services across space
(Guagliardo 2004). Work exploring spatial accessibility has received significant atten-
tion with researchers examining access to healthcare resources (Guagliardo 2004, Luo
2004, Luo and Qi 2009, Kang et al. 2020, Park et al. 2023), supermarkets (Zenk et al.
2005), playgrounds (Smoyer-Tomic et al. 2004), electric vehicle (EV) charging stations

CONTACT S. Wang @ shaowen@illinois.edu
© 2024 Informa UK Limited, trading as Taylor & Francis Group

http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2024.2326445&domain=pdf&date_stamp=2024-04-20
http://orcid.org/0000-0002-7357-5206
http://orcid.org/0000-0001-5848-590X
http://www.tandfonline.com
https://doi.org/10.1080/13658816.2024.2326445

804 A. C. MICHELS ET AL.

(Park et al. 2021) and green spaces (Zhang et al. 2011, Dai 2011). While there are a var-
iety of models for computing spatial accessibility, most modern approaches - gravity
models (Joseph and Kuby 2011), floating catchment methods (Luo and Wang 2003,
Luo 2004, Luo and Qi 2009, Luo and Whippo 2012) and Rational Agent Access Model
(RAAM) (Saxon and Snow 2020) - rely on some form of travel-time computation.

Travel-time calculations are computationally intensive because they rely on loading
large travel networks (memory intensive) and calculating shortest paths between
demand and supply locations on these networks (computing intensive). While com-
mercial APIs exist with temporally rich travel-time data, they are prohibitively expen-
sive and the results often cannot be shared (Saxon and Snow 2020). The
computational burden presented by travel-time calculations has resulted in studies
exploring spatial accessibility to focus on a single city (Smoyer-Tomic et al. 2004, Park
et al. 2021), a single county (Dony et al. 2015), a handful of counties (Luo and Qi 2009,
Dai 2011) or a single state (Kang et al. 2020). Studies addressing scalability have used
Euclidean distance measures instead of more accurate travel time-based distance
(Zhang et al. 2011), calculated travel-time in parallel using the network of the entire
spatial extent (Kang et al. 2020) or used commercial cloud computing to calculate
travel-time catchments for each county in parallel (Saxon and Snow 2020). While high-
performance computing can help to overcome the computational burden, it adds a
significant technical barrier and does not resolve the root problem.

Spatial partitioning methods have been used to tackle large-scale geospatial com-
puting problems, but existing methods may not be suitable for this problem. These
methods are employed for spatial domain decomposition (Wang and Armstrong 2009)
- partitioning data and work into computationally feasible chunks - which supports
distributed data storage and processing (Zhou et al. 2007, Aji et al. 2013, Eldawy et al.
2015, Yu et al. 2015) and enabling large-scale spatial modeling (Parker and Epstein
2011, Shook et al. 2013). For travel-time computation, the memory intensity is a func-
tion of road network rather than spatial objects, so partitioning spatial objects does
not necessarily resolve the computational challenge. There is considerable research on
network partitioning (Bulug et al. 2016) and spatial network partitioning (Ji and
Geroliminis 2012, Lopez et al. 2017), but graph partitioning is frequently an NP-hard
problem (Bulug et al. 2016) and may not guarantee that the road network required for
each spatial object will be in the same partition. Travel-time computation requires
clustering spatial objects (e.g. points in space) and spatial context (e.g. road network)
together.

In this article, we describe SPASTC, a Spatial Partitioning Algorithm for Scalable
Travel-time Computation (SPASTC) designed to calculate driving-time catchments for
spatial accessibility analysis. We describe how SPASTC clusters spatial objects and road
network together in Section 2. In Section 3, SPASTC is used to measure spatial accessi-
bility to hospital beds for the state of Illinois, the Midwest U.S., and the conterminous
United States. We evaluate the algorithm’s performance by deriving travel-time catch-
ments for these spatial extents, bench-marking performance with various memory lim-
its against an approach of loading each hospital’s local road network individually.
Section 4 discusses future work and other geospatial problems which may benefit
from the SPASTC approach.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE . 805

2. Methods

This section describes the SPASTC algorithm for clustering spatial objects and their
associated road network together, explicitly representing each object’s spatial context.
Partitioning spatial objects in space is well-studied (Eldawy et al. 2015), but for travel-
time computation partitioning objects without considering their spatial context can
produce partitions where the spatial context data required by partitions of objects are
infeasibly large. For example, a clustering algorithm may group together all the hospi-
tals in the greater New York City area, but the combined road network around all the
hospitals can become too data intensive to handle. Previous research on partitioning
spatial objects based on their spatial context generally focuses on the co-locality of
objects or administrative boundaries (Al Jawarneh et al. 2020), but many geospatial
problems have complex spatial contexts that should be explicitly represented in com-
putation. On the other hand, partitioning spatial context data (e.g. road network in
this study) can be computationally intensive (Bulug et al. 2016) and may produce parti-
tions of the spatial data such that the spatial context of one or more objects is split
between partitions.

SPASTC partitions a set of objects based on the memory intensity of their spatial
context data, yielding partitions that are computationally feasible and speeding up
spatial analysis by clustering objects with similar spatial contexts. SPASTC goes
through three main steps illustrated in Figure 1: identifying the spatial context of each
spatial object (i.e. point in this study) (Section 2.1), combining regions with shared spa-
tial contexts (Section 2.2) and clustering regions up to a memory limit (Section 2.3).
Section 2.4 provides computational complexity and intensity analysis of the algorithm.

H] q."]m

b
/ Legend
|:] County

m Hospital

v ‘\, Estimated Travel-Time Catchment

Figure 1. An example of how hospitals are partitioned across space using SPASTC: (1) for each
hospital we use a Euclidean buffer to determine which county’s road networks are required to cal-
culate the hospital’s driving-time catchment, (2) we combine these regions if one is a subset of
another and (3) we combine overlapping regions if their estimated combined size in memory is
less than a user-specified parameter.

806 A. C. MICHELS ET AL.

2.1. Identifying spatial context

The first step of SPASTC is to identify or estimate the spatial context around each spa-
tial object. This step is entirely dependent on a use case: for some applications this is
straightforward, but more difficult for others (Kwan 2012). For calculating travel-time
catchments, we can use an Euclidean buffer with an overestimated maximum distance
to achieve this step. For example, for a 30 min travel-time catchment in an area with a
maximum speed limit of 70 miles/h, we know that an Euclidean buffer of 36 miles
should suffice (greater than 70 miles/h x 0.5h). We refer to each object’s spatial con-
text as its primary region.

2.2. Clustering regions by spatial context

To cluster together primary regions based on shared spatial context, we employ the
disjoint-set data structure as described by Galler and Fisher (1964). The disjoint-set
data structure is designed to contain a collection of non-overlapping sets and specific-
ally for computing with equivalence classes (Galler and Fisher 1964). First, we add
each spatial object to the disjoint-set data structure (lines 1-4 in Algorithm 1). Then
we cluster sets of objects if they share the same spatial context by comparing the pri-
mary region of each object to the primary region of each other object (lines 5-15 in
Algorithm 1) If object A’s primary region is a subset of object B’s, we cluster object A
and B, keeping object B’s primary region to represent the new set. Algorithm 1 lines 1
through 15 detail how this clustering is accomplished with the disjoint-set data-struc-
ture. This step is illustrated in Figure 1 under Step 2 ‘Shared Context’ where we see
that the top two hospitals’ primary regions are subsets of the third hospital’'s primary
region and are thus clustered. Multiple objects being clustered into a single region
means that these objects have the same spatial context and can be processed
together without increasing their memory requirements.

Algorithm 1: Clustering Regions by Spatial Context

Input: objects, objectToSpatialContextMap
Output: regionToObject, regionToSpatialContexts
1 ds — disjointSet()

2 for object € objects do

3 ds.find(object) //Adds object to disjoint set datastructure
4 end

5 for object! € objects do

6 for object2 € objects do

7 primaryRegion1 «— objectToSpatialContextMap [object1]

8 primaryRegion2 — objectToSpatialContextMap [object2]

9 if primaryRegion1 == primaryRegion2 then

10 ds.union(object1, object2)

11 else if primaryRegion2 C primaryRegion1 then

12 ds.union(object1, object2)

/* only need to update this if the regions are not the same */

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE . 807

13 objectToSpatialContextMapl[object2] < primaryRegion1
14 end
15 end

16 regionToObject + new map(regionID — list of objects)

/* iterate over the roots and their classes in Disjoint Set */

17 for root, class € ds.itersets(with_canonical_elements = True) do
18 regionToObject[root] « []

19 for object € class do

20 regionToObject[root].append(object)
21 end

22 end

23 return regionToObject, objectToSpatialContextMap

The regions left over after this step are referred to as secondary regions. To keep
track of which objects correspond to a given secondary region, two maps are created:
(1) a map of region IDs to object IDs and (2) a map of region IDs to a list of geo-
graphic units/network files needed to calculate the travel-time catchment area for the
region’s objects. For our use case, this should be: (1) a map of region IDs to a list of
hospital IDs and (2) a map of region IDs to a list of counties that are needed to calcu-
late driving-time catchment areas for the hospitals in the region. The pseudocode for
this operation is provided in Algorithm 1 lines 16 through 23 where these maps are
created by looping over each region (the root) updating the list of objects within our
region (the class). This allows us to easily lookup the objects associated with each
region and the secondary region of any object. Lastly, the function returns the two
maps describing the region and spatial context of each spatial object.

2.3. Clustering regions by memory

SPASTC allows users to specify a memory limit MAX_MEM on the memory usage of
spatial context data, with the restriction that MAX_MEM should be greater or equal to
the maximum memory usage of the secondary regions. This restriction is put into
place because secondary regions are by design the smallest spatial extent required for
at least one object in the region. If MAX_MEM is less than the memory usage of some
secondary region then we could not load the data for the spatial extent required for
at least one object’s computation. To estimate the memory usage, SPASTC requires a
pre-processing step of obtaining an estimate for the memory usage of each spatial
unit. For our use case, we estimated the memory usage of each county’s road network
in memory by loading each county’s road network into memory individually and
recording the memory usage of the process.

Algorithm 2: Clustering Regions by Memory Usage

Input: regionToSpatialContexts, regionToObject, SpatialContextToMemory, MAX_MEM
Output: regionToObjectIDs, regionToSpatialContexts

1 stoplterating < False

2 while not stoplterating do

808 A. C. MICHELS ET AL.

3 to_merge «— list()

4 for region A in regions do

5 B « region s. t. (AN B # ()) and mem. usage of (A U B) is minimized

6 combined_mem «— memory usage of (A U B)

7 to_merge.append((combined_mem, A, B))

8 end

9 to_merge < sorted(to_merge) //sort by combined memory
ascending

10 if to_merge[0][0] > MAX_MEM then

11 stoplterating < True //lowest memory merge too big,

exit

12 end

13 seen «— set() //track regions merged this iteration

14 for (combined_mem, region A, region B) in to_merge do

15 if combined_mem < MAX_MEM and A, B¢ seen then

16 seen — seen U{A, B} //mark A, B as seen

17 merge(A, B) //updates data structures to combine

18 else if combined_mem > MAX_MEM then

19 break //rest of merges this iteration too big

20 end

21 end

Given this memory limit, we combine secondary regions using a greedy algorithm
outlined in Algorithm 2. During each step of the algorithm, for each region A, we
determine the non-disjoint region B such that the memory usage of the set difference
between B and A (mem(B — A)) is minimized. This step is not memory intensive and is
embarrassingly parallel. We only consider non-disjoint region A and B because if they
are disjoint, no computation is saved by loading the regions together. This gives us
the region B such that we minimize the memory usage of the union of A and B
(AUB). Depending on the data and use case, we may expect mem(AUB) <
mem(A) + mem(B — A), especially if the pieces of data have a buffer around them to
allow for composition, but this approach provides a reasonable upper-bound that is
not dependent on the data or use case and the alternative would be to load, com-
pose, and evaluate the memory usage of regions for each possible AU B which would
be extraordinarily slow.

Once an optimal region B is found for each region A, we return a tuple (mem(A U
B), A, B) for each region A in our list of secondary regions. These tuples represent sug-
gested merges: the memory usage of the merged network and the two regions to
merge. We sort the list of tuples in ascending order by the estimated combined mem-
ory usage (mem(A U B)), and for each tuple (mem(A U B),A,B), if neither A or B has
been merged with this iteration (tracked by seen) and mem(A U B) < MAX_MEM, we
merge regions A and B. The outer loop repeats once the list of tuples is fully iterated
through or once the next suggested merge has a combined memory usage greater
than MAX_MEM. The outer loop terminates once the first suggested merge in a step is
larger than MAX_MEM because this signals that no more merges can be made without

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE . 809

exceeding MAX_MEM. These merges are tracked by continually updating our maps of
region IDs to objects and region IDs to spatial units.

The resulting regions from this step are referred to as final regions. This algorithm is
designed such that the data on the spatial extent for the final regions have a few critical
characteristics that make computation feasible and efficient: (1) the size in memory is
less than MAX_MEM and (2) no two final regions A and B can be merged while keeping
memory usage under MAX_MEM. These partitions are ideal for distributed computation:
SPASTC has split the job into n pieces each with data that requires MAX_MEM to load.

2.4. Computational complexity and intensity analysis of SPASTC

SPASTC employs two partitioning steps detailed in Algorithms 1 and 2. Algorithm 1,
Merging Regions by Spatial Context, has complexity O(n?s), where n is the initial
number of spatial objects and s the number of partitions of spatial data, to complete
comparisons between regions. This is because each of the n primary regions is com-
pared to each of the other n — 1 primary regions with O(s) time for each comparison.
The second step of the algorithm, Merging Regions by Memory Usage, has the worst-
case performance of O(m3®s) where m is the number of secondary regions. The worst-
case performance arises in the case where at each step every region attempts to
merge with the same region, thus only one merge happens per iteration, taking at
most m - 1 iterations to terminate. However, typical performance is O(m?log (m)s)
because approximately half of the regions are merged each iterations, thus taking
log (m) iterations of the outer-loop. Relating the number of spatial objects n to the
number of primary regions m depends on the data, but clearly the number of second-
ary regions is less than or equal to the number of primary regions (m < n).

However, the Big-O complexity analysis does not reveal the practical benefits of the
approach. While these runtimes may seem large, it is important to note that for many
applications the spatial context data — in our case road networks - is often much larger
than the point data we are partitioning or the spatial unit data used for partitioning and
this discrepancy results in massive savings. This will be demonstrated in Section 3 where
the road networks are measured in tens of millions of nodes while the number of hospi-
tals and spatial units are only in the thousands. Using the theoretical analysis from Wang
and Armstrong (2009) we can gain insight into SPASTC's efficiency. Loading and compos-
ing networks requires some computation for network composition, but it is primarily
data-centric with the memory and I/O costs being limiting factors. Having identified
these costs as our bottleneck, SPASTC allows a user to specify a memory limit and then
seeks to minimize 1/O cost which is also the most time-consuming part of the computa-
tion. This analysis helps to explain the benchmarked performance in Section 3.4.
Additionally, the spatial domain decomposition performed by SPASTC enables travel-
time computation in parallel given adequate cyberinfrastructure support.

3. Use case: travel-time catchments and spatial accessibility

To illustrate the utility and scalability of SPASTC, we calculated spatial accessibility to
hospital beds across lllinois, the Midwest United States and the conterminous United
States with the E2SFCA method (Luo and Qi 2009).

810 A. C. MICHELS ET AL.

3.1. Spatial accessibility method (E2SFCA)

To calculate spatial accessibility, we employ a spatial interaction model of accessibility
called the Enhanced Two-Step Floating Catchment Area (E2SFCA) method (Luo and Qi
2009). This model is adapted from the Two-Step Floating Catchment Area (2SFCA)
method, a special case of the gravity model which was designed to be more intuitive
(Luo and Wang 2003). The 2SFCA method relies on two steps: (1) calculate a supply-
to-demand ratio for each supply location and (2) each demand location sums the sup-
ply-to-demand ratios for supply locations such that the demand location is within the
supply location’s catchment (Luo and Wang 2003). The result is a supply-to-demand
ratio for all demand points in space. For example, if demand is the general population
and supply is the number of physicians, the method would calculate a ratio of physi-
cians-to-people across the spatial extent.

E2SFCA extends the 2SFCA method by considering multiple travel-time catchments
and distance decay (Luo and Qi 2009). In 2SFCA, a population is either in the travel-
time catchment or not, but E2SFCA calculates multiple travel-time zones (0-10, 10-20
and 20-30min in Luo and Qi (2009)) and applies different weights to each zone to
account for distance decay. In E2SFCA’s first step, we calculate the supply-to-demand
ratio (R)) for each supply location j with a weighted sum of population:

5
Zke{dkjeD,} PW;

where §; is the supply at supply location j, P is the demand or population at demand
location k and W, is the weight for travel-time zone r (Luo and Qi 2009). Equation (1)
says that the supply-to-demand ratio for each supply point j (R)) is the supply at j (S))
divided by the weighted sum of demand (> PcW,) over demand locations k that are
within the rth travel-time catchment (D,) of the supply location (k € {dj; € D,}) (Luo
and Qi 2009).

Step 2 of the E2SFCA method is similar to Step 2 of the 2SFCA method, with each
demand location summing supply-to-demand ratios, but again applies the weights to
account for distance decay. The equation for Step 2 of the E2SFCA method is:

R = (1)

Af= > RW, 2)
je{dyeDr}

where Af is accessibility at demand location j, R; is the ratio from Equation (1), and W,
are the same weights used in Equation (1) (Luo and Qi 2009). Equation (2) means that
the accessibility at demand point i is the sum of the weighted supply-to-demand
ratios (RjW,) over supply points j such that the distance between i and j is within a
travel-time catchment of j (j € {dj € D}). The result is a ratio of supply-to-demand at
each population location. We employed E2SFCA to calculate accessibility to hospital
beds using travel-time catchments derived from SPASTC.

3.2. Data

Our supply dataset covers hospitals pulled from the Homeland Infrastructure
Foundation-Level Data (HIFLD) website'. The dataset represents 7596 hospitals in the

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE . 811

United States. Of these hospitals, 7437 hospitals were in the conterminous United
States and only 6822 hospitals were in the conterminous United States with a valid
‘BEDS'’ field. For the travel-time analysis, we included all of the hospitals in the conter-
minous United States, but for the spatial accessibility, we could only use the hospitals
with valid ‘BEDS’ fields. For demand, we used the American Community Survey’s
2014-2018 (5-year) population estimates at the census tract level.

The road network data was obtained from OpenStreetMap using the Python
OSMnx package (Boeing 2017). To achieve this, we used data on the cartographic
boundaries for each county in the United States obtained from the Census Bureau?.
We pulled the driving network for each county in the conterminous U.S. using the
OSMnx graph_from_polygon function. Each file was saved using the GEOID for
the county allowing us to programmatically access them. To obtain a memory esti-
mate for each county network, we loaded each county road network into memory
with OSMnx and recorded the memory usage of the Python script’'s memory usage. By
getting the memory usage before and after loading the network, we were able to esti-
mate the memory usage of each county road network loaded with OSMnx. While
OpenStreetMap data is not perfect (Kaur et al. 2017), the data quality is comparable to
propriety geospatial data (Sehra et al. 2014), provides near complete coverage in the
United States (Barrington-Leigh and Millard-Ball 2017), and is widely used throughout
the spatial accessibility (Kang et al. 2020, Saxon and Snow 2020) and geographic infor-
mation science (Yan et al. 2020) literature.

3.3. Results

SPASTC partitions the set of hospitals and determines the necessary road network for
each partition. For each final region, we load the required partition of the network,
compose them together via the networkx compose operator (Hagberg et al. 2008).
Next, we remove strongly and weakly connected components of fewer than 20 nodes
in an attempt to remove erroneous data and increase the accuracy of the routing cal-
culations. Weakly connected components are completely disconnected from the rest
of the road network whereas nodes in strongly connected components do not have
routes to and from the main graph (Boeing 2017). Then for each object in the final
region, we calculate an ego-centric network around the object for each driving time
required. Travel times on the network are determined using the osmnx add_edge_
travel_times method which calculates free-flow travel time along each edge of
the network using the length of the edge and the speed limit on the edge in kph
(Boeing 2017). This means that our routing also does not consider traffic congestion
and complications like rail crossings, but rather assumes that individuals are able to
drive consistently at the speed limit. Once we determine the egocentric graph for
each object, we calculate the convex hull around the nodes in the subgraph to obtain
a driving-time polygon. Given these driving-time catchments, spatial accessibility can
be calculated using any method that depends on driving-time catchments.

To perform the analysis, we utilized a SLURM (Yoo et al. 2003) cluster which allows
us to specify memory limits on each job. One job performs the partitioning of the hos-
pitals and then submits a job for each partition of hospitals to calculate the travel-

812 A. C. MICHELS ET AL.

Table 1. Memory requirements for each region for (1) the largest primary region, the minimum
amount of memory required to load each network, (2) the SPASTC algorithm, regions are com-
piled such that none exceeds this limit and (3) the SLURM cluster, the compute cluster will kill
any job that exceeds this memory limit.

Region Largest Primary Region SPASTC SLURM
lllinois 5.077 GB 5.1GB 12GB
Midwest 6.175GB 6.2GB 14GB
Conterminous U.S. 9.402GB 9.5GB 20GB

time catchments for all hospitals within the partition. Note that our MAX_MEM param-
eter in the SPASTC algorithm only describes the amount of memory required to load
each region’s road network and does not account for any other operations, so we
must allocate more than MAX_MEM to each job. Additional memory requirements arise
in our use case due to the networkx compose operator copying the network data
structures, Dijkstra’s algorithm (Dijkstra 1959), and storing results so to accommodate
this memory usage we gave SLURM a memory limit of 2 x [MAX_MEM]. The memory
for each analysis is given in Table 1. Because this analysis already required additional
memory, we utilized it to load batches of network partitions in parallel using 8
processes.

3.3.1. lllinois

Spatial accessibility of the general population to hospital beds in lllinois is given in
Figure 2. While the maximum number of hospital beds per thousand people was
around 37, we capped the color bar at 20 to better illustrate the variation in spatial
accessibility across space. For all maps, grey indicates no access meaning that the cor-
responding census tract’s centroid was not contained in any hospital’'s catchment.
Most of lllinois has less than 10 hospital beds per thousand people, but Greene
County in western central Illinois stands out with values in excess of 15 hospital beds
per thousand people.

3.3.2. Midwest U.S

Next, we demonstrate the method'’s scalability by calculating E2SFCA to hospital beds
for the Midwest U.S. The Midwest region used for this project is the U.S Census
Bureau’s Midwest Region (IA, IL, IN, KS, MI, MN, MO, ND, NE, OH, SD and WI) plus
Kentucky for a total of thirteen states. Kentucky is included in our ‘Midwest’ to include
all of the lllinois’ neighbors as we scale up. Figure 3 gives hospital beds per thousand
people for the Midwest using E2SFCA with grey indicating no access. We see max-
imum values in western Kansas, western central lllinois and south-west Ohio, with
pockets of relatively high access spread throughout the Midwest.

3.3.3. Conterminous U.S

Lastly, we applied SPASTC to the Conterminous United States. While they may be hard
to see at this scale, Figure 4 gives the 10-min driving-time catchments illustrated in
red, 20-min driving-time catchments are illustrated in green, and the 30-min driving-
time catchments are shown in blue. Using these catchments, we calculated spatial
accessibility as shown in Figure 5. We see that the western U.S. except the coast has

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE . 813

@ =20
" Kenosha]
{
Evanston
anon ‘ \l
“\
55" DGO"I
Jowa City ! | 1
w jiparaiso
Y \
a(meo o ‘
usc. \
/ g ‘: L5

¢
rnng(on‘ |
— 1

‘\ “‘
) |
: . I'- ‘ 10

aldoad puesnouyl Jad spaq |eaidsoy

Lo}
OFallon

) City 5 ,

Rolla

Figure 2. Enhanced Two-Step Floating Catchment Area (E2SFCA) of general population to hospital
beds in lllinois. Hospitals beds per 1000 people. Grey indicates no access.

very low levels of access with pockets of high access in places that have hospitals but
relatively low population density.

3.4. Performance of SPASTC

To illustrate the effectiveness of SPASTC, we compared it against loading each hospi-
tal's network separately without any spatial partitioning. Figure 6 gives the number of
times each county’s road network would have to be loaded to calculate the driving-
time catchments to hospitals in the conterminous United States without SPASTC
(a, log base 2 scale) and with SPASTC given a 16 GB limit (b, linear scale). We see that

814 . A. C. MICHELS ET AL.

ERvATT g

¥ i
AR AL

9|doad puesnoyj Jad spaq |eldsoy

contrbutors, Tiles style by
Umanitarian OpenStreetMap Team hosted by
Openstreetiap France |

Figure 3. Enhanced Two-Step Floating Catchment Area (E2SFCA) of general population to hospital
beds in the Midwest. Hospitals beds per 1000 people. Grey indicates no access.

Figure 4. The calculated travel-time catchments for the conterminous United States. 10-min driv-
ing-time catchments are illustrated in red, 20-min driving-time catchments are illustrated in green
and 30-min driving-time catchments are illustrated in blue.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE . 815

=20

10

a1doad puesnoul Jad spaa leudsou

Figure 5. Enhanced Two-Step Floating Catchment Area (E2SFCA) of general population to hospital
beds in the conterminous United States. Hospitals beds per 1000 people. Grey indicates no access.

without SPASTC, some road networks are loaded in excess of 28 = 256 times whereas
the SPASTC approach loads counties a maximum of 5 times even with a 16GB memory
limit. Figures demonstrating this analysis in more depth can be seen in Appendix A.

To demonstrate the computational performance gains that SPASTC achieves, we
benchmarked the performance of computing travel-time catchments for the conter-
minous United States using SPASTC against the same analysis without SPASTC. Both
approaches used the structure laid out in Section 3: a script to load the data, deter-
mine the spatial context of each hospital, apply SPASTC or not, and then submit a job
to the SLURM cluster to compute the travel-time catchments for each hospital/cluster.
For benchmarking the approach without SPASTC, we submitted Bash scripts that
would perform the analysis for 20 hospitals each to avoid overwhelming the job
scheduler and reduce the amount of time spent submitting jobs (7437 jobs with a 15
pause between submissions would be more than 2h alone), but only recorded time
spent in the Python script that calculates travel-time for each hospital.

In the results, we refer to this first script as ‘Partitioning & Job Submission’ and the
travel-time calculations are referred to as ‘Travel Analysis.” We had the script pause for
one second between each job submission to not overwhelm the job scheduler which
is included in the ‘Partitioning & Job Submission’ portion. We tested SPASTC with mul-
tiple memory limits shown in Table 1. Note that the memory limit given to the
SPASTC algorithm is half of the limit given to SLURM except 20 GB which has a thresh-
old of 9.5GB; more details on this are given in Section 3.3. For both options, we
allowed networks to be loaded in parallel using 8 processes. Each method was run 10
times each on the San Diego Supercomputer Center's Expanse high-performance
computer.

Summary statistics for the benchmarking can be viewed in Table 2. From the statis-
tics, we see that the mean SPASTC runtime is approximately 37-51x faster than

816 A. C. MICHELS ET AL.

28
=
5 W27
w2
(oW
5 (7120
o
7y |95
o 2
é
o L 24
2 123
[72]
(@]
=
2,

L. -

i padt ot ey

o A &
- .Yy

(9Te0S IEQUI]) PIsn SI BIEP sown
W

b) SPACTS Approach (linear scaie)

1

Figure 6. A diagram demonstrating the number of times each county must be loaded for (a) the
approach of loading networks for each hospital separately and (b) SPASTC.

performing the analysis without partitioning. Unsurprisingly, there is a large difference
in the runtimes for the travel-time analysis, with SPASTC taking a total of 11-15.5h
depending on the memory limit and the same analysis taking more than 23d on aver-
age without SPASTC. This speed-up is due to processing hospitals with shared spatial
context at the same time, savings us time in loading and composing networks while
still staying under a memory limit. Interestingly, SPASTC was faster in the Job
Submission portion across the board as well, meaning that time savings from submit-
ting fewer jobs outweighed the cost of executing the partitioning algorithm for our
use case. Therefore, not only does SPASTC speed up the analysis substantially, the
Spatial Partitioning Algorithm is fast enough that the time savings from submitting
fewer jobs outweighs the time performing the clustering.

When analyzing SPASTC performance as a function of memory - as visualized in
Figure 7 - we see a substantial speed-up when moving from 20 or 26 GB to 32 or
48 GB, but there are diminishing returns and analysis time even increased slightly past
48 GB. The diminishing returns are expected because SPASTC prioritizes grouping

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE . 817

Table 2. Runtimes for calculating travel-time catchments at the scale of the Conterminous United
States with and without applying SPASTC.

Mean Partit-ioning and

Method Job Submission Mean travel analysis Mean total Turn- around Speed up
20G 0:07:38 15:16:10 15:23:49 0:38:17 37.06x
26G 0:07:36 14:09:17 14:16:53 0:57:35 39.96x
32G 0:07:09 11:32:36 11:39:45 0:58:35 48.93x
40G 0:06:56 11:23:34 11:30:30 0:56:40 49.59x
48G 0:06:25 10:52:46 10:59:11 1:03:11 51.94x
56 G 0:06:39 11:32:41 11:39:20 1:13:56 48.96x
64 G 0:07:01 11:12:26 11:19:27 1:23:30 50.39x
72G 0:06:52 12:28:06 12:34:58 1:56:54 45.35x
No SPASTC 0:08:00 570:32:51 570:40:50 0:21:59 1.00x

‘Partitioning & Job Submission’ refers to determining the spatial context of each hospital, partitioning or not, and
submitting an analysis job for each hospital/cluster. ‘Travel Analysis’ refers to total runtime for the travel-time ana-
lysis jobs submitted by the ‘Partitioning & Job Submission’ part of the analysis. ‘Turnaround’ is the maximum
‘Partitioning & Job Submission’ plus the maximum ‘Travel Analysis’ telling us the maximum time we would need to
wait for results assuming infinite compute resources.

16

= = =
w » ul

Mean computing time (hours)
-
N

\

11

20 26 32 40 48 56 64 72
Memory Limit (GB)

Figure 7. Mean total computing time for calculating travel-time with SPASTC on Expanse. Error
bars represent standard deviation of runtime.

together tasks with high overlap for the largest potential to save time, thus there are
fewer opportunities to save time as the memory limit increases. The increase in total
computing time past 48 GB can be explained by the fact that the time to complete
many of the operations being performed (merging graphs, checking for weakly and
strongly connected components, shortest paths, etc.) scales with the size of the net-
work. Using a smaller number of partitions also helps us to minimize the turnaround
time, assuming a sufficient number of compute nodes to analyze all partitions simul-
taneously, if the results of the analysis are urgently needed. Using a limit of 20 GB, the

818 A. C. MICHELS ET AL.

turnaround was only about 38 min compared to almost two hours at 72 GB. However,
note that all these patterns are due in part to our chosen use case of calculating
travel-time catchments and might not hold across other applications of the SPASTC
algorithm.

4, Concluding discussion

This article describes the SPASTC. SPASTC is a novel algorithm for spatial partitioning
while preserving spatial context. The algorithm accomplishes this by clustering objects
in space (e.g. hospitals) and their spatial contexts (e.g. road networks) together, con-
sidering the costs (e.g. memory usage) of the spatial contexts. We applied SPASTC to
compute travel-time catchments and spatial accessibility to hospital beds for the state
of lllinois, the Midwest, and the conterminous United States. Lastly, we benchmarked
the performance of SPASTC vs. analyzing each hospital seperately and found that
SPASTC can perform more than fifty times faster even with the same memory limits.

SPASTC has made two interrelated contributions to advancing theoretical frontiers
in geographic information science. The first contribution addresses the question of
why spatial is special for evaluating computational intensity of geospatial analysis
(Wang and Armstrong 2009). The SPASTC approach demonstrates that spatial parti-
tioning based on computational constraints such as memory limits is critical to ena-
bling optimal computation of large- and multi-scale geospatial analysis. The second
contribution paves a way to represent shared spatial context by explicitly capturing
spatial relationships encoded in computational design for geospatial analysis. This rep-
resentation provides a computational foundation for addressing the Uncertain
Geographic Context Problem (UGCoP) (Kwan 2012) particularly for the purpose of con-
ducting data-intensive geospatial analysis.

Our research has gained three major aspects of insights for guiding the use of
SPASTC. The first is that SPASTC improves the performance of geospatial computing
workflows that have overlapping work, in our case data to load and process, but tasks
that have no overlapping data or processing may not benefit from the approach.
Second, if there are many tasks that are not computationally intensive, the time sav-
ings from SPASTC may not be enough to justify the time used for partitioning the
tasks. Lastly, if we had enough compute nodes to run all of our jobs and could submit
them all instantly, there is a trade-off between turnaround (the time between submit-
ting the job and getting results) and total computing time. For our use case, the
approach of computing without SPASTC took 37-51 times more total resources and it
could in theory give us our result in about half the time, but note that even Expanse
could not handle all the jobs at once® as we could not submit thousands of jobs
instantly®. It may not be worth using 37-51 times more resources to get results twice
as fast.

For computing travel time, the algorithm may have room for improvement and fur-
ther utility. For our use case, we only considered driving, but additional modes of
transportation like walking, biking and public transit could be considered. Our case
study utilized OpenStreetMap data which has limitations and its accuracy varies spa-
tially (Zhang and Malczewski 2017, Herfort et al. 2023). However, the SPASTC algorithm

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE . 819

is not specific to OSM data and could be used with higher quality governmental and
commercial road network datasets where they are available. While OpenStreetMap
and Dijkstra’s algorithm are used throughout the literature for travel-time analysis
(Saxon and Snow 2020, Kang et al. 2020), these methods are not perfect and further
work should explore how the accuracy of this approach compares to proprietary data-
sets like Google Maps APIl. The buffer estimate used to calculate primary regions can
also be fine-tuned and possibly even vary across space based on each area’s speed
limits and traffic congestion. In Algorithm 2, we estimate the memory usage of a com-
position of networks by summing the memory usage of the partitions of the network
giving us an upper-bound on memory usage, but there may be room for improve-
ment in this process. Further research could explore how best to determine memory
limits, as this likely varies by the objective (minimizing computing vs. turnaround
time), the hardware configuration, the data, and the operations performed on the
data. Lastly, while we utilized SPASTC to derive driving-time catchments around hospi-
tals, the algorithm could find use in other travel-time calculations like deriving travel-
time matrices or analyzing mobility data.

While SPASTC was demonstrated in this research for scalable spatial accessibility
computation, it could be applied to other use cases. Models and analyses that require
partitioning objects in space which depend on a memory-intensive spatial context
may benefit from SPASTC, such as spatially explicit agent-based models. While certain
steps like estimating an object’s spatial context may depend on each specific applica-
tion, the framework of partitioning objects based on shared spatial context and then
memory usage of the spatial context data is generalizable to work in a variety of geo-
spatial analysis and modeling settings. The algorithm may also find use for partitioning
data for distributed workflows, such as database sharding (Bagui and Nguyen 2015) or
spatial resilient distributed datasets (SRDD) in GeoSpark (Yu et al. 2015).

Notes

1. https://hifld-geoplatform.opendata.arcgis.com/datasets/hospitals/explore

2. https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.ntml

3. Expanse currently allows up to 4096 queued and running jobs per user: https://www.sdsc.
edu/support/user_guides/expanse.html#running

4. SLURM supports up to 500 per second: https://slurm.schedmd.com/high_throughput.html

Acknowledgments

This work used the Expanse high-performance computer at the San Diego Supercomputer
Center through allocation CIS230031 from the Advanced Cyberinfrastructure Coordination
Ecosystem: Services & Support (ACCESS) program, which is supported by NSF grants #2138259,
#2138286, #2138307, #2137603 and #2138296.

Disclosure statement

No potential conflict of interest was reported by the author(s).

820 A. C. MICHELS ET AL.

Authors’ contributions

The contributions of Alexander Michels to this article include conceptualization, methodology,
software, visualization and writing. Jinwoo Park’s contributions include conceptualization, valid-
ation and writing. Jeon-Young Kang’s contributions include conceptualization, data curation and
writing. Shaowen Wang's contributions include conceptualization, methodology, writing, super-
vision, project administration and funding acquisition.

Funding

This work was supported by the Institute for Geospatial Understanding through an Integrative
Discovery Environment (-GUIDE) funded by the National Science Foundation (NSF) under grant
number 2118329 and the Advanced Cyberinfrastructure Coordination Ecosystem: Services &
Support (ACCESS) program, which is supported by NSF grants #2138259, #2138286, #2138307,
#2137603, and #2138296.

Notes on contributors

Alexander Michels is a Ph.D. student advised by Dr. Shaowen Wang at the University of Illinois
Urbana-Champaign. His research focuses on cyberGIS and spatial accessibility. Twitter:
@alexcmichels, Mastodon: @alexmichels@mastodon.online

Jinwoo Park is an Assistant Professor in the Department of Geography and Geographic
Information Science at the University of North Dakota. By harnessing the power of data-rich
environments and advanced cyberinfrastructure, his research delves into intricate relationships
between urban environments and the availability of essential resources, shedding light on how
the dynamic nature of accessibility impacts various aspects of society.

Jeon-Young Kang is an Assistant Professor in the Department of Geography at Kyung Hee
University, South Korea. His research interests lie broadly in GlScience, Geospatial Data Analytics,
and Geospatial Artificial Intelligence, and his work to date has been centered on geospatial
simulation and modeling.

Shaowen Wang is a Professor of the Department of Geography and Geographic Information
Science; and an Affiliate Professor of the Department of Computer Science, Department of
Urban and Regional Planning, and School of Information Sciences at the University of lllinois
Urbana-Champaign (UIUC). He has served as the founding director of the CyberGIS Center for
Advanced Digital and Spatial Studies at UIUC since 2013. His research focuses on advancing
cyberGIS and geospatial data science for scalable solutions to complex geospatial problems and
sustainability challenges. Twitter: @swuiuc

ORCID

A. C. Michels http://orcid.org/0000-0002-7357-5206
S. Wang http://orcid.org/0000-0001-5848-590X

Data and codes availability statement

The data and codes that support the findings of this study are available with the identifier(s) at
this link https://doi.org/10.6084/m9.figshare.23519190.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE . 821

References

Aji, A, et al., 2013. Demonstration of Hadoop-GIS: a spatial data warehousing system over
MapReduce. Proceedings of the 21st ACM SIGSPATIAL international conference on advances in
geographic information systems, November. New York, NY: Association for Computing
Machinery, 528-31. SIGSPATIAL'13; Available from: https://doi.org/10.1145/2525314.2525320.

Al Jawarneh, ILM,, et al., 2020. Locality-preserving spatial partitioning for geo big data analytics
in main memory frameworks. GLOBECOM 2020 - 2020 IEEE Global Communications Conference,
7-11 December 2020 Taipei, Taiwan. IEEE, 1-6.

Bagui, S. and Nguyen, L.T., 2015. Database sharding: to provide fault tolerance and scalability of
big data on the cloud. International Journal of Cloud Applications and Computing, 5 (2), 36-52.

Barrington-Leigh, C. and Millard-Ball, A, 2017. The world’s user-generated road map is more
than 80% complete. PLoS One, 12 (8), e0180698.

Boeing, G, 2017. Osmnx: new methods for acquiring, constructing, analyzing, and visualizing
complex street networks. Computers, Environment and Urban Systems, 65, 126-139. Available
from: https://www.sciencedirect.com/science/article/pii/S0198971516303970.

Bulug, A, et al., 2016. Recent advances in graph partitioning. Berlin, Germany: Springer.

Dai, D., 2011. Racial/ethnic and socioeconomic disparities in urban green space accessibility:
where to intervene? Landscape and Urban Planning, 102 (4), 234-244. Available from: https://
www.sciencedirect.com/science/article/pii/S0169204611001952.

Dijkstra, E.W., 1959. A note on two problems in connexion with graphs. Numerische Mathematik,
1 (1), 269-271. Available from: https://doi.org/10.1007/BF01386390.

Dony, C.C.,, Delmelle, E.M., and Delmelle, E.C., 2015. Re-conceptualizing accessibility to parks in
multi-modal cities: a variable-width floating catchment area (vfca) method. Landscape and
Urban Planning, 143, 90-99. Available from: https://www.sciencedirect.com/science/article/pii/
S016920461500136X.

Eldawy, A., Alarabi, L., and Mokbel, M.F., 2015. Spatial partitioning techniques in SpatialHadoop.
Proceedings of the VLDB Endowment, 8 (12), 1602-1605. Available from: https://doi.org/10.
14778/2824032.2824057.

Galler, B.A. and Fisher, M.J,, 1964. An improved equivalence algorithm. Communications of the
ACM, 7 (5), 301-303. Available from: https://doi.org/10.1145/364099.364331.

Guagliardo, M.F., 2004. Spatial accessibility of primary care: concepts, methods and challenges.
International Journal of Health Geographics, 3 (1), 3. Available from: https://doi.org/10.1186/
1476-072X-3-3.

Hagberg, A.A., Schult, D.A., and Swart, P.J., 2008. Exploring network structure, dynamics, and
function using networkx. In: G. Varoquaux, T. Vaught, and J. Millman, eds. Proceedings of the
7th python in science conference. Pasadena, CA: OSTI, 11-15.

Herfort, B., et al., 2023. A spatio-temporal analysis investigating completeness and inequalities of
global urban building data in OpenStreetMap. Nature Communications, 14 (1), 3985.

Ji, Y. and Geroliminis, N., 2012. On the spatial partitioning of urban transportation networks.
Transportation Research Part B: Methodological, 46 (10), 1639-1656. Available from: https://
www.sciencedirect.com/science/article/pii/S0191261512001099.

Joseph, L. and Kuby, M. 2011. Gravity modeling and its impacts on location analysis.
Foundations of location analysis. Berlin, Germany: Springer, 423-443,

Kang, J.Y., et al., 2020. Rapidly measuring spatial accessibility of covid-19 healthcare resources: a
case study of lllinois, USA. International Journal of Health Geographics, 19 (1), 36.

Kaur, J., et al., 2017. Systematic literature review of data quality within OpenStreetMap. 2017
International conference on next generation computing and information systems (ICNGCIS),
December 2017Jammu, India. IEEE, 177-182.

Kwan, M.P., 2012. The uncertain geographic context problem. Annals of the Association of
American Geographers, 102 (5), 958-968.

Lopez, C, et al., 2017. Spatiotemporal partitioning of transportation network using travel time
data. Transportation Research Record: Journal of the Transportation Research Board, 2623 (1),
98-107. Available from:

822 A. C. MICHELS ET AL.

Luo, W., 2004. Using a GIS-based floating catchment method to assess areas with shortage of
physicians. Health & Place, 10 (1), 1-11. Available from: https://www.sciencedirect.com/sci-
ence/article/pii/S1353829202000679.

Luo, W. and Qi, Y., 2009. An enhanced two-step floating catchment area (e2sfca) method for
measuring spatial accessibility to primary care physicians. Health & Place, 15 (4), 1100-1107.
Available from: https://www.sciencedirect.com/science/article/pii/S1353829209000574.

Luo, W. and Wang, F., 2003. Measures of spatial accessibility to health care in a gis environment:
synthesis and a case study in the Chicago region. Environment and Planning B, Planning &
Design, 30 (6), 865-884. Available from: https://doi.org/10.1068/b29120.

Luo, W. and Whippo, T., 2012. Variable catchment sizes for the two-step floating catchment area
(2SFCA) method. Health & Place, 18 (4), 789-795. Available from: https://www.sciencedirect.
com/science/article/pii/S1353829212000640.

Park, J., et al.,, 2021. Leveraging temporal changes of spatial accessibility measurements for bet-
ter policy implications: a case study of electric vehicle (EV) charging stations in Seoul, South
Korea. International Journal of Geographical Information Science, 36 (6), 1185-1204.

Park, J., et al., 2023. Daily changes in spatial accessibility to ICU beds and their relationship with
the case-fatality ratio of COVID-19 in the state of Texas, USA. Applied Geography (Sevenoaks,
England), 154, 102929.

Parker, J. and Epstein, J.M., 2011. A distributed platform for global-scale agent-based models of
disease transmission. ACM Transactions on Modeling and Computer Simulation: a Publication of
the Association for Computing Machinery, 22 (1), 2-25. Available from: https://doi.org/10.1145/
2043635.2043637.

Saxon, J. and Snow, D., 2020. A rational agent model for the spatial accessibility of primary
health care. Annals of the American Association of Geographers, 110 (1), 205-222. Available
from: https://doi.org/10.1080/24694452.2019.1629870.

Sehra, S.S., Singh, J, and Rai, H.S., 2014. A systematic study of OpenStreetMap data quality
assessment. 20714 11th International conference on information technology: new generations,
December 2017 Las Vegas, NV, USA. |IEEE, 377-381.

Shook, E., Wang, S., and Tang, W., 2013. A communication-aware framework for parallel spatially
explicit agent-based models. International Journal of Geographical Information Science, 27 (11),
2160-2181.; Available from: https://doi.org/10.1080/13658816.2013.771740.

Smoyer-Tomic, KE., Hewko, J.N., and Hodgson, M.J., 2004. Spatial accessibility and equity of
playgrounds in Edmonton, Canada. Canadian Geographies / Géographies Canadiennes, 48 (3),
287-302. Available from: https://doi.org/10.1111/j.0008-3658.2004.00061 ..

Wang, S., and Armstrong, M.P., 2009. A theoretical approach to the use of cyberinfrastructure in
geographical analysis. International Journal of Geographical Information Science, 23 (2), 169-
193. Available from: https://doi.org/10.1080/13658810801918509.

Yan, Y., et al., 2020. Volunteered geographic information research in the first decade: A narrative
review of selected journal articles in GlScience. International Journal of Geographical
Information Science, 34 (9), 1765-1791.

Yoo, A.B., Jette, M.A., and Grondona, M., 2003. SLURM: simple Linux utility for resource manage-
ment. /n: D. Feitelson, L. Rudolph, and U. Schwiegelshohn, eds. Job Scheduling Strategies for
Parallel Processing. Berlin, Heidelberg, Germany. Springer, 44-60. Lecture Notes in Computer
Science.

Yu, J, Wy, J, and Sarwat, M., 2015. GeoSpark: a cluster computing framework for processing
large-scale spatial data. Proceedings of the 23rd SIGSPATIAL international conference on advan-
ces in geographic information systems, November. New York, NY: Association for Computing
Machinery, 1-4. SIGSPATIAL 15; Available from: https://doi.org/10.1145/2820783.2820860.

Zenk, S.N., et al., 2005. Neighborhood racial composition, neighborhood poverty, and the spatial
accessibility of supermarkets in metropolitan Detroit. American Journal of Public Health, 95 (4),
660-667. Available from: https://doi.org/10.2105/AJPH.2004.042150.

Zhang, H., and Malczewski, J., 2017. Accuracy evaluation of the Canadian OpenStreetMap road
networks. International Journal of Geospatial and Environmental Research, 5 (2), 1-14. Available
from: https://ir.lib.uwo.ca/geographypub/347.

https://doi.org/10.1145/2043635.2043637
https://doi.org/10.1145/2043635.2043637
https://doi.org/10.1080/24694452.2019.1629870
https://doi.org/10.1080/13658816.2013.771740
https://doi.org/10.1111/j.0008-3658.2004.00061.x
https://doi.org/10.1080/13658810801918509
https://doi.org/10.1145/2820783.2820860
https://doi.org/10.2105/AJPH.2004.042150
https://ir.lib.uwo.ca/geographypub/347

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE . 823

Zhang, X, Lu, H, and Holt, J.B., 2011. Modeling spatial accessibility to parks: a national study.
International Journal of Health Geographics, 10 (1), 31. Available from: https://doi.org/10.1186/
1476-072X-10-31.

Zhou, Y., Zhuy, Q., and Zhang, Y., 2007. GIS spatial data partitioning method for distributed data
processing. MIPPR 2007: remote sensing and GIS data processing and applications; and innova-
tive multispectral technology and applications. Vol. 6790, November. SPIE, 78-84. Available
from: https://doi.org/10.1117/12.739790full.

Appendix A. Plots of clustering results

a) Primary (log scale) b) Secondary (log scale)

26

25
- o)
g s
©» 7]
—
[[+
g Q
= [24 g
g =
, =
=t [& 2
< :) : o =
= c) Final (log scale) d) Final (linear scale) @
& >
B
& 3 g
[=N 2 =)
= (]
&) <
Q
P s
2 3
& g
22 =

21

20 1

Figure A1. A diagram demonstrating the number of clusters each county is in for each stage of
the SPASTC algorithm for lllinois with 8 GB memory limit. The Primary regions (a), Secondary
regions (b) and Final regions (c) are given in log base 2 scale (left colorbar) while the Final regions
in (d) are given in linear scale (right colorbar).

https://doi.org/10.1186/1476-072X-10-31
https://doi.org/10.1186/1476-072X-10-31
https://doi.org/10.1117/12.739790.full

824 A. C. MICHELS ET AL.

2 4
s s
26 7 F/
25
“ 3
24
a) Primary (log scale) b) Secondary (log scale)

23

22

(oreos So[) pasn ST AJUNOd Yora sown
times each county is used (linear scale)

21

5 c) Final (log scale) d) Final (linear scale)

2

Figure A2. A diagram demonstrating the number of clusters each county is in for each stage of
the SPASTC algorithm for the Midwest with 12GB memory limit. The Primary regions (a),
Secondary regions (b) and Final regions (c) are given in log base 2 scale (left colorbar) while the
Final regions in the (d) are given in linear scale (right colorbar).

&

w
times each county is used (linear scale)

25

a) Primary (log scale)

24

23

[\

22

(oreos Sof) pesn ST AJUNOJ Yora sown)

21

¢) Final (log scale) d) Final (linear scale)

20 1
Figure A3. A diagram demonstrating the number of clusters each county is in for each stage of
the SPASTC algorithm for the Conterminous United States with 16 GB memory limit. The Primary

regions (a), Secondary regions (b) and Final regions (c) are given in log base 2 scale (left colorbar)
while the Final regions in the (d) is given in linear scale (right colorbar).

	SPASTC: a Spatial Partitioning Algorithm for Scalable Travel-time Computation
	Abstract
	Introduction
	Methods
	Identifying spatial context
	Clustering regions by spatial context
	Clustering regions by memory
	Computational complexity and intensity analysis of SPASTC

	Use case: travel-time catchments and spatial accessibility
	Spatial accessibility method (E2SFCA)
	Data
	Results
	Illinois
	Midwest U.S
	Conterminous U.S

	Performance of SPASTC

	Concluding discussion
	Acknowledgments
	Disclosure statement
	Authors’ contributions
	Funding
	Orcid
	References
	References

