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ABSTRACT 
Understanding urban heat exposure dynamics is critical for public 
health, urban management, and climate change resilience. Near 
real-time analysis of urban heat enables quick decision-making 
and timely resource allocation, thereby enhancing the well-being 
of urban residents, especially during heatwaves or electricity 
shortages. To serve this purpose, we develop a cyberGIS frame
work to analyze and visualize human sentiments of heat exposure 
dynamically based on near real-time location-based social media 
(LBSM) data. Large volumes and low-cost LBSM data, together 
with a content analysis algorithm based on natural language 
processing are used effectively to generate near real-time heat 
exposure maps from human sentiments on social media at both 
city and national scales with km spatial resolution and census 
tract spatial unit. We conducted a case study to visualize and ana
lyze human sentiments of heat exposure in Chicago and the 
United States in September 2021. Enabled with high-performance 
computing, dynamic visualization of heat exposure is achieved 
with fine spatiotemporal scales while heat exposure detected 
from social media data can be used to understand heat exposure 
from a human perspective and allow timely responses to extreme 
heat.

HIGHLIGHTS

� Near real-time and high spatial resolution mapping of 
human sentiments of heat exposure with Twitter data

� An integrated cyberGIS and machine learning framework for 
visualizing heat exposure with Twitter data

� Human sentiment of heat exposure mapping in the City of 
Chicago and the United States

ARTICLE HISTORY 
Received 25 December 2022 
Accepted 10 April 2024 

KEYWORDS 
CyberGIS; heat exposure; 
location-based social media; 
urban heat   

CONTACT Shaowen Wang shaowen@illinois.edu 
Supplemental data for this article can be accessed online at https://doi.org/10.1080/13658816.2024.2343063. 

� 2024 Informa UK Limited, trading as Taylor & Francis Group

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 
2024, VOL. 38, NO. 7, 1291–1314 
https://doi.org/10.1080/13658816.2024.2343063

http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2024.2343063&domain=pdf&date_stamp=2024-06-11
http://orcid.org/0000-0001-5180-0380
http://orcid.org/0000-0001-5848-590X
https://doi.org/10.1080/13658816.2024.2343063
http://www.tandfonline.com
https://doi.org/10.1080/13658816.2024.2343063


1. Introduction

Heat-related illnesses, ranging from mild heat edema, heat syncope to severe heat
stroke, have become a major contributing factor to a significant increase in severe dis
eases and death (Goodman et al. 2001, Lugo-Amador et al. 2004, Thorsson et al. 2014, 
Shindell et al. 2020). These conditions are especially alarming in urban areas where 
temperature is typically higher than surrounding areas due to Urban Heat Island (UHI) 
effects. According to the United States Census Bureau, more than 80% of the country’s 
population resides in urban areas and thus is directly influenced by UHI effects. 
Evaluating and mapping extreme heat exposure is therefore vital for ensuring the 
health and well-being of urban populations.

The proliferation of ubiquitous low-cost location technologies has provided new 
opportunities for a variety of volunteered geographic information (VGI) research stud
ies to analyze spatial and spatial-temporal aspects of human populations (Goodchild 
2007). In particular, Location-Based Social Media (LBSM) data has become a versatile 
data source for solving urban problems (Sui and Goodchild 2011, Mart�ı et al. 2019, 
McKitrick et al. 2022, Niu and Silva 2023) due to its wide availability. Combined with 
advanced natural language processing (NLP) techniques, LBSM data can be analyzed 
to extract the extent of hotness expressed by its content. Different from the conven
tional metrics such as land surface temperature for the quantification of heat expos
ure, unique insights into the individual experience of heat can be gained by 
examining social media posts. This alternative approach offers a distinct perspective, 
emphasizing the human dimension of heat exposure. Moreover, the analysis of the 
‘human perspective’ regarding heat exposure, enabled by near real-time data, can 
facilitate the near real-time identification of heat-susceptible areas. However, despite 
its usefulness and value, LBSM exhibits unique characteristics and poses challenges 
associated with processing and managing a large volume and variety of data.

In this context, a key research question is ‘how to evaluate and map human senti
ments of heat exposure?’ To answer this question, this study aims to explore the pos
sibility of using LBSM data to map human sentiments of heat exposure by analyzing 
Twitter data. The study offers three major advantages. Firstly, by enabling real-time 
retrieval of LBSM data coupled with fast analysis enabled by high-performance com
puting, the study enables near real-time capabilities for the mapping and assessment 
of human sentiments of heat exposure. Such dynamic evaluation of urban heat can be 
critical for timely decision-making, especially in response to extreme heat events. 
Secondly, this approach addresses urban heat from a human-centric standpoint, recog
nizing the variability in individuals’ heat tolerance depending on their location. 
Despite attempts to integrate different factors, accurately evaluating people’s senti
ments of heat remains challenging. In this study, social media data offers a promising 
tool for effectively capturing human sentiments of heat exposure. Lastly, Twitter data, 
being both low-cost and widely available, allows for the extension of near real-time 
mapping of heat exposure from urban to national scales. Overall, we argue that near 
real-time heat exposure mapping from social media data can serve as an effective 
approach to understand heat exposure from a human perspective. Furthermore, ana
lysis of dynamic social media data can support timely responses to extreme heat and 
optimize resource allocations in areas with the most urgent needs.
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With the support by cyberGIS which is defined as cyber-based geographic informa
tion science and systems (cyberGIS) (Wang 2010, Wang et al. 2021), we have designed 
a framework to visualize and analyze human sentiments of heat exposure both in the 
City of Chicago and the United States with Twitter data collected in real-time. 
Dynamic visualization and analysis of city-level heat exposure were shown with differ
ent temporal granularity. Depending on the needs of users, this framework can be 
generalized for detecting human sentiments of heat exposure in different spatiotem
poral contexts, representing scales and granularity with different input parameters. To 
ensure reproducibility, this near real-time analysis is conducted with CyberGIS-Jupyter, 
which takes advantage of high-performance computing resources while providing a 
consistent scientific workflow environment (Wang 2010, Yin et al. 2019, Lyu et al. 
2021). The following Section 2 reviews related literature. Section 3 describes the pipe
line for Twitter data collection and explains the semantic analysis method we 
employed to understand the ‘heat index’ of the content for each Tweet message. We 
provide an example of mapping human sentiments of heat exposure in near real-time 
for both Chicago and the US at different spatial resolutions and evaluating heat expos
ure results compared with temperature and the Social Vulnerability Index in Section 4. 
Section 5 presents a discussion of the proposed human sentiments of heat exposure. 
Finally, the reproducibility of this work is enabled with the support of cyberGIS.

2. Related work

The measurement of heat exposure entails a multifaceted challenge that encompasses 
both human and environmental factors. From the environmental side, the mapping of 
urban heat distribution is straightforward with temperature data. The National Oceanic 
and Atmospheric Administration (NOAA) provides a graphical forecast of temperature 
across the United States every three hours (https://graphical.weather.gov/sectors/ 
southplains.php). However, the limited number of weather stations in urban environ
ments results in insufficient spatial granularity in the heat information derived from 
collected temperature data (Wang et al. 2021). From the human side, with a focus on 
the adverse health impacts of extreme heat and to provide decision support with 
resource allocation in preparation for and response to heat-related events, social vul
nerability is widely used to indicate the potential negative effects on communities 
caused by external stresses on human health, such as extreme heat (Lehnert et al. 
2020). The social vulnerability index (SVI) and heat vulnerability index (HVI) have been 
extensively studied to identify the socially vulnerable population exposed to extreme 
heat at the county level across the US (Reid et al. 2009, Cutter et al. 2003, Conlon 
et al. 2020, Niu et al. 2021). However, since both the SVI and HVI are derived from 
yearly releases of US census data, they do not offer real-time or near real-time infor
mation. In our study, we aim to generate high spatial resolution and near real-time 
heat exposure maps using people’s expressions about heat on social media.

With 221 million daily active users in the third quarter of 2021 (Twitter 2021), 
Twitter data have been widely used for scientific research for its low cost, large vol
ume, and wide availability (McKitrick et al. 2022). Human thoughts and emotions pre
sented in social media data like Twitter data are widely studied in the domain of NLP 
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as sentiment analysis, where social media posts are assigned a ‘sentiment value’ based 
on the interpreted meaning of the contents (Martin and Schuurman 2017, Karmegam 
and Mappillairaju 2020, Zivanovic et al. 2020, Camacho et al. 2021, Kov�acs et al. 2021, 
Omuya et al. 2023). However, Twitter data are often questioned in scientific research 
for its bias and representativeness in terms of (1) geographical distribution, where 
populous counties are overrepresented with Twitter users (Mislove et al. 2021); (2) age 
distribution, where only 17.1 percent of Twitter users are above the age of 50 
(Statistica 2021a); (3) gender, where 70.4 percent of the Twitter users are male 
(Statistica 2021b); and (4) race, such as under-sampling of Hispanic users in the south
west; under-sampling of African-American users in the south and Midwest; and the 
oversampling of Caucasian users in major cities (Mislove et al. 2021). It is estimated 
that up to 15% of Twitter users were automated bot accounts (Varol et al. 2017). 
Despite the limitations, Twitter data has been a vital resource for geographers and 
environmental scientists thanks to its extremely large volume and rich geospatial infor
mation. Given that about three percent of all tweets are geotagged with native loca
tion information available (Leetaru et al. 2013, Sloan and Morgan 2015, Twitter 2020), 
the data resource has been applied to understand heatwave (Cecinati et al. 2019, 
Wang et al. 2021, Zander et al. 2023), natural hazards (Bee et al. 2012, Slamet et al. 
2018, Vishwanath et al. 2023), snow depth (Muller 2013), flood (Fohringer et al. 2015, 
Li et al. 2018, Li et al. 2023), influenza (Gao et al. 2018), etc. In the urban context, pre
vious research demonstrated that the large-scale and near real-time observations are 
unique advantages of LBSM data and they are effective in better understanding urban 
sustainability in general (Ilieva and McPhearson 2018). Specifically, LBSM data was 
used to assess different urban dynamics (Mart�ı et al. 2019), such as human mobility 
(Luo et al. 2016), place of interest identification (Van Canneyt et al. 2012), crowd 
behavior (Lee et al. 2013), event detection (B�ejar et al. 2016), and decision support for 
city design (Dunkel 2015).

At the same time, real-time analysis of social media is made possible with GIS. Sui 
and Goodchild (2011) suggest that a more dynamic process of time-critical or real- 
time monitoring and dynamic decision-making is possible with the fusion of GIS and 
LBSM data. In the context of real-time detection and visualization using GIS, Xia et al. 
(2014) visualize and detect spatial trends for events from geotagged photos within 
New York City in a real-time fashion and Lyu et al. (2022) detect near real-time UHI 
with urban sensing networks in the City of Chicago.

A cyberGIS framework, which integrates advanced cyberinfrastructure, geographic 
information systems, and spatial analysis, is adopted in this study to achieve scalable, 
reproducible, and high spatial resolution and near real-time analysis of human senti
ments of heat (Wang 2010). CyberGIS has been widely adopted in data- and computa
tion-intensive geospatial problem-solving in domains such as digital twins (Shirowzhan 
et al. 2020), public health (Padmanabhan et al. 2013), hydrology (Liu et al. 2018, Lyu 
et al. 2019, 2021), and disaster management (Han et al. 2023). In this study, we employ 
CyberGIS-Jupyter, a platform that leverages the capabilities of ROGER, the first geospa
tial supercomputer, to facilitate data-intensive, reproducible, and scalable geospatial 
analytics within a Jupyter Notebook environment (Wang 2016, Yin et al. 2019). In par
ticular, by involving high-performance computing and a keyword-based natural 
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language processing approach, this study enables real-time collection and evaluation 
of extensive social media data for assessing heat exposure.

3. Data and method

There are four major categories for retrieving and understanding human sentiments in 
the domain of NLP: (1) keyword spotting classifies text based on the presence of 
unambiguous affect words; (2) lexical affinity involves a probable ‘affinity’ for each 
word; (3) statistical methods include Bayesian inference and support vector machines 
in semantic analysis; and (4) concept-based approaches use web ontologies or seman
tic networks to understand contents (Cambria et al. 2013). While the computational 
demands of these approaches limit their real-time implementation, keyword spotting 
stands out due to its accessibility and computational efficiency, particularly for real- 
time and near real-time analysis (Kumar and Subba 2020). Thus, a keyword-based 
approach is utilized in this study to understand Twitter posts with a heat dictionary 
generated with Word2vec, which is a well-known and extensively used tool in key
word-based sentimental analysis (Xue et al. 2014, Al-Saqqa and Awajan 2019).

The scientific workflow of this study is shown in Figure 1. First, the heat dictionary 
comprises a compilation of weather-related words and phrases paired with corre
sponding values ranging from −1 to 1, indicating their relevance to the notion of ‘hot 
weather’. The greater the value, the more it is relevant to ‘hot weather.’ Real-time 
LBSM data collection, heat dictionary, and mapping of human sentiments of heat 
exposure are incorporated within the framework to realize near real-time heat expos
ure visualization at both city and national scales.

3.1. Study area

This study focuses on the City of Chicago as the designated area for city-level analysis. 
The UHI phenomenon in the Chicago region has been extensively investigated in prior 
research. Chen et al. (2022) provide estimates of heat-related exposure and assess the 
impact of UHI during 2012 Chicago heatwave. Lyu et al. (2021) focus on predicting 

Figure 1. Scientific workflow.
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UHI in Chicago with a fine spatiotemporal resolution. Alfraihat et al. (2016) evaluate 
UHI in Chicago from an ecological perspective. Additionally, Johnson et al. (2012) util
ize a heat vulnerability index to identify vulnerable groups in Chicago with regard to 
extreme heat.

Despite the mitigating influence of the lake breeze from Lake Michigan, it is pre
dicted that the future heatwaves in Chicago during the latter half of the 21st century 
will be characterized by increased intensity, frequency, and duration (Meehl and 
Tebaldi 2004, Sharma et al. 2016). Furthermore, the analysis at the national level is 
conducted across the United States, employing counties as the spatial unit.

3.2. Data

Out of privacy concerns, a scientific workflow was built using CyberGIS-Jupyter to 
allow indirect usage of Twitter data. A data collection pipeline is set up on ROGER, the 
first geospatial supercomputer (Wang 2016), to collect and store large-scale Twitter 
data in real-time (See Supplemental Material A for technical details). In addition to 
Twitter data, the One Billion Words Benchmark for Language Modeling is used for the 
establishment of a dictionary with word2vec (Chelba and Mikolov 2014, Xue et al. 
2014). National-level shapefile for the US and census-tract level shapefile for the City 
of Chicago are collected from the Chicago Data Portal and United States Census 
Bureau respectively for analyzing and visualizing heat exposure. Temperature data 
from weather stations in Chicago are collected from the National Center for 
Environmental Information in the National Oceanic Atmospheric Administration 
(NOAA) and weather underground (https://www.wunderground.com/).

3.3. Establish heat dictionary

The first step in the process is to establish a heat dictionary for words relevant to heat 
exposure. The dictionary is then used to analyze the textual content of the Twitter 
data. We use the word2vec tool, which has been widely used in the domain of senti
mental analysis and urban functions region extraction (Xue et al. 2014, Zhai et al. 
2018). Using word2vec, we generated 300 dimensions of vector representation for 
about 3 million words and automatically derived phrases after 9 hours of training on 
ROGER (See Supplemental Material B for technical details).

In order to evaluate the heat index of Tweet content, we established a word dic
tionary for heat from vector representation (Xue et al. 2014). First, we defined a set of 
synonymic words for hot weather as hwords and another set of synonymic words for 
cold weather as cwords. Initially, we compiled a comprehensive list of synonyms for 
‘hot weather’ and ‘cold weather’ by referencing Dictionary.com, which is primarily 
based on the Random House Unabridged Dictionary. Subsequently, we consulted the 
Oxford dictionary to generate the sets of words pertaining to hot weather (hwords) 
and cold weather (cwords). Based on the dictionary result, hwords included warm, 
balmy, summery, tropical, boiling, blazing, baking, scorching, roasting, searing, flaming, 
parching, blistering, sweltering, torrid, sultry, humid, muggy, airless, oppressive, stifling 
while cwords, on the other hand, included chilly, cold, cool, crisp, fresh, brisk, bleak, 
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wintry, snowy, frosty, icy, glacial, polar, arctic, raw, sharp, bitter, biting, piercing, pene
trating, freezing, frigid. Furthermore, we also defined the similarity distance (d) 
between two words (w1 and w2) as their cosine value (Equation (3)).

hwords ¼ fA set of words for hot weatherg (1) 

cwords ¼ fA set of words for cold weatherg (2) 

d w1, w2ð Þ ¼ cos w1, w2ð Þ ¼

P300
i¼1w1iw2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP300
i¼1w2

1i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP300
i¼1w2

2i

q (3) 

Using the similarity, we distinguished the relatedness of the words in Twitter data 
to cold or hot weather by finding the summation of similarity distance (sd) from these 
words to words from cwords and words from hwords. More formally, the summation 
of similarity distance (sd) is defined as (Equation (4)):

sd wð Þ ¼
X

cw in cwords

dðcw, wÞ þ
X

hw in hwords

d hw, wð Þ (4) 

A given word is more weather-related if the value of the summation of its similarity 
distance is greater. We further calculate rw as the normalized summation of similarity 
distance for all words in the word bank by normalizing their value from 0 to 1 with 1 
being most related to weather and 0 being least related. And rw, which represents the 
word’s relatedness to weather, is defined as (Equation (5)):

rw ¼ normðsdÞ (5) 

As words like ‘the’ and ‘I’ do not describe weather, we further rule out words that 
are distantly away from weather by subsetting the largest 20,000 words/phrases out 
of the 300 million words/phrases in the entire word bank. In addition, for those 20,000 
words/phrases that are weather-related, we further distinguish their polarization, which 
is defined as Pol in the equation that follows, towards hot weather by subtracting the 
similarity distance to all cwords to hwords:

Pol wð Þ ¼
X

hw in hwords

dðhw, wÞ −
X

cw in cwords

d cw, wð Þ (6) 

Then, we define nPol as the normalized polarization representing the word’s polar
ization toward hot weather. nPol is a normalized value between -1 to 1 where -1 rep
resents polarization toward cold weather and 1 is polarization toward hot weather 
(Equation (7)):

nPol ¼ normðPolÞ (7) 

Finally, we define the heat dictionary (hd) as a normalized value between -1 and 1 
of the products of the relatedness of every word in the bank to weather (rw) and its 
polarization toward hot and cold weather (nPol). The greater the normalized value of 
a word in the dictionary, the more it is relevant to ‘heat’:

hd ¼ normðrw � nPolÞ (8) 
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3.4. Content analysis

The raw Twitter data, collected using the Twitter Application Programming Interface 
(API), is stored in JSON text format. Each Tweet post encompasses over a hundred 
fields, incorporating essential and nested attributes. These fields encompass details 
such as timestamp, content, location, number of likes, username, and more. 
Specifically, location information is delineated by either an exact point represented 
through a pair of coordinates or a multi-polygon comprising sets of coordinate pairs 
as nodes (Twitter n.d.). For the purpose of this study, when collecting data on ROGER, 
we filtered out tweets without geotags and used relevant fields including timestamp, 
geospatial location, and textual content only. We computed heat exposure (hd) for 
every tweet post by adding the heat index of all the words in the textual content 
using the heat dictionary described in the previous section:

he ¼
X

w in twitter content

hdðwÞ (9) 

3.5. Spatial mapping

Once we have heat exposure estimated for each Tweet post, we use the spatial and tem
poral information from tweets to map the near real-time data at the city as well as the 
national scale. In both national-level and city-level analyses, a filtering process is employed 
to select Twitter posts based on their geospatial location and temporal information. The 
heat exposure value is then calculated by aggregating the heat exposure values obtained 
from averaging all weather-related tweets within each spatial unit. For city-level analysis, 
the spatial units are defined as 1 km x 1 km grids and census tracts, while national-level 
analysis utilizes counties as the spatial unit.

For city-scale analysis, we were able to derive a high spatial resolution heat exposure 
map since cities generally tend to have larger populations and thus more geotagged 
tweets at different locations within a short period of time. Location information in Twitter 
data can be retrieved in two forms: (1) points, which consist of coordinates (i.e. longitude 
and latitude) representing the geographic location of a specific tweet as posted by a user, 
and (2) multi-polygons, which represent the associated place mentioned in a tweet. Multi- 
polygons are typically defined by four pairs of coordinates, delineating the geographical 
extent encompassing the location scope. In the latter case, it does not entail specific loca
tion information, so we ran Monte-Carlo simulations to distribute the location randomly 
within the bounding box of the multi-polygon to reduce the bias (Mooney 1997). The 
analysis could be potentially more accurate with more simulations. However, in this 
research, we choose 100 simulations to balance the accuracy and limitation of computa
tional power. For every simulation, as all the Twitter posts were pinpointed to a certain 
location, we used the inverse-distance weighting (IDW) method to transform discrete spa
tial heat exposure points from tweets into a spatial field. Finally, we mapped the near 
real-time human sentiments of heat exposure by averaging the values from all simula
tions. Depending on the number of simulations we conducted, this process could be 
computationally intensive. Powerful computational resources and advanced parallel 
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computing techniques are desirable as we want to generate high-accuracy maps without 
significant delay in time.

Contrary to city-scale analysis, we chose to have a coarser spatial resolution for 
national-scale mapping of human sentiments of heat exposure. With available data, 
even at this coarse spatial resolution there existed sparsely populated counties having 
limited social media data recorded for real-time analysis.

4. Results

4.1. City-scale heat exposure map

One city-scale analysis was conducted using data collected on September 27th, 2021, in 
the City of Chicago. Unexpected hot weather was detected in Chicago with the highest 
temperature being 88 degrees Fahrenheit based on data from NOAA. We performed this 
near real-time analysis at 12 p.m. Central Time (CT). There are in total 21,525 geo-refer
enced tweets collected during a 48-h span. Among these 21,525 geotagged tweets, 772 
of them are determined as weather-related, each of which has at least one word match
ing another word in the heat dictionary. 26 tweets among 772 are recorded with an exact 
location while the other 746 come with a multi-polygon as their georeferenced coordi
nates. To ensure a comprehensive representation of the study area using the LBSM data, 
there is a tradeoff between the quantity of available data and the selected spatial granu
larity in the proposed model. The proposed model can achieve finer spatial granularity 
with additional data collection within the proposed timeframe. In this case study, both 
census tracts and 1 km spatial resolution, with approximately 800 spatial units each for 
the Cook County, are selected to ensure comprehensive area representation with the 
amount of social media getting collected. Figure 2 maps the human sentiments of heat 
exposure with quantile classification generated using 1 km as spatial resolution and census 
tract as a spatial unit. As shown in Figure 2a, the center for heat exposure is located just 
north of downtown Chicago. The southern part of the city is generally reporting low-level 
heat exposure at that time. A high-resolution map can be generated as it provides valu
able information about the city to help avoid extreme heat especially in the summertime 
or during the heatwave.

Furthermore, we conducted a similar analysis at the census tract level. As we can 
see in Figure 2b, our study enables dynamic detection of heat exposure for each cen
sus tract area in the City of Chicago based on real-time collected georeferenced 
Twitter data. Out of 801 census tracts in Chicago, census tracts 3102 and 3103 located 
on the lower west side of Chicago and census tracts 5501 and 5502 located in the 
southeast corner of Chicago, are showing significant low heat exposure. Further demo
graphic investigation shows that the lower west side of Chicago has a large group of 
Hispanic population and there are many Mexican restaurants and bars on the side of 
South Halsted Street in that area. Similarly, more than half of the population living in 
the southeast corner of Chicago are Hispanic. Based on ACS data in 2020, in Census 
tracts 3102, 3103, 5501 and 5502, 43%, 66%, 55%, and 58% of the population are 
Hispanic while the average is 29% in Chicago. From the perspective of language, 26%, 
63%, 42%, and 36% of the adult population in those census tracts are Spanish-speak
ing respectively, while the average is 22% in the City of Chicago. Not limited to the 
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City of Chicago, such a heat exposure map can be efficiently generated given the spa
tial scope of another city. Analysis and visualization of heat exposure can potentially 
help better understand heat exposure from a human perspective while dynamic heat 
exposure analysis and visualization can help with timely resource allocation and deci
sion-making to mitigate losses caused by extreme heat.

4.2. Dynamic changes in heat exposure

Dynamic monitoring of human sentiments of heat exposure from Twitter data was 
conducted from September 21st to September 27th to detect how people responded 
on Twitter to temperature rises and falls as well as the spatial distribution of extreme 
hot and cold areas. We analyzed the Twitter contents at 12 p.m. (CT) on each day tak
ing into consideration all the Tweets posted within 24 h range. In particular, from 
September 22nd to Sept 27th, approximately 350 heat-related social media data points 
were consistently gathered within 24 h in the study area. After normalizing all the data 
collected on those days, we use Jenks nature breaks to generate Figure 3.

From a temporal perspective, the heat exposure was increasing as temperature 
gradually increased from September 23rd to September 27th. A significant heat cluster 
is spotted on September 25th. It was not the hottest day but there was a sudden 
increase in temperature happening during the afternoon of September 24th. On the 
other hand, on September 22nd, the heat exposure in Chicago was the lowest, which 
was caused by a temperature decrease from September 21st to September 22nd. As a 
result, not only the extreme hot and cold weather triggered the responses on Twitter 
data, but the sudden increase and decrease of temperature could be a deciding factor 

Figure 2. Heat exposure map for the City of Chicago on 2021.9.27: (a) 1 km�1km spatial resolution 
and (b) census tract as the spatial unit.
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as well. The dynamic monitoring of heat exposure from Twitter, compared with regu
lar temperature, is more sensitive than temperature changes.

From a spatial perspective, on September 24th, 25th, and 26th, there was a clear 
heat cluster located near the downtown area of Chicago. This is consistent with the 
findings by Lyu et al. (2021) indicating the UHI effect gets worse in and around down
town Chicago. We demonstrated that during heat waves or sudden temperature 
increases, the downtown area should get more attention.

Additionally, the Twitter-based heat exposure dynamics can be analyzed at a finer 
temporal resolution. In this study, we further looked at how heat exposure changes 
on September 26th, 2021. The reason we are particularly interested in this day is the 
significant temperature rises in Chicago where the highest temperature increased from 
70 degrees Fahrenheit to 84 degrees Fahrenheit from September 25th, 2021, to 
September 26th, 2021. We investigated the dynamics of heat exposure at a fine tem
poral resolution to gain insight into the changes in people’s exposure to dramatic 
temperature rises within a day. As shown in Figure 4, the human sentiments of heat 
exposure for these separate time periods are plotted using 1km�1km cell as spatial 

Figure 3. Normalized Heat Exposure from September 21, 2021 to September 27, 2021.
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units during daytime from 6:00 to 18:00 when the temperature was dramatically 
increasing and fell after 14:00. A 3-h time interval is selected to make sure enough 
data were collected to represent the entire Chicago area. From 6:00–9:00 (Figure 4a), 
the overall heat exposure was relatively low and the area with higher heat exposure 
was mostly located in the suburban area on the south side. From 9:00–12:00 (Figure 
4b), the temperature gradually increased, and there were areas reporting relatively 
high heat exposure near the downtown area of Chicago. From 12:00–15:00 (Figure 4c), 
the temperature reached a maximum of 81 degrees Fahrenheit. During this period, 
the heat exposure increased across the city and it was the hottest period during that 
day. Lastly, from 15:00–18:00 (Figure 4d), the heat exposure dropped with decreasing 
temperature while two clear heat clusters were spotted at the O’Hare International 
Airport and Midway International Airport.

Overall, dynamic, near real-time, and high spatiotemporal resolution monitoring of 
heat exposure in the city can be achieved to detect and analyze heat exposure based 
on Twitter data.

4.3. Comparison between human sentiments of heat, temperature and SVI

Human sentiments of heat exposure capture subjective perceptions of temperature 
and related environmental conditions derived from human-generated content within 

Figure 4. Normalized Twitter-based heat exposure on September 26th, 2021, in the City of Chicago 
from 9:00 to 18:00 with 1km�1km cell as the size of spatial units, (a) 6:00–9:00; (b) 9:00–12:00; 
(c) 12:00–15:00; (d) 15:00–18:00.
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social media data. As such, this value encompasses both environmental and human 
dimensions. In this section, a comparison is conducted between human sentiments of 
heat extracted from Twitter data and environmental factors (based on the spatial map
ping of heat exposure derived from temperature data) as well as human factors (based 
on SVI). The aim is to address the following questions: (1) Statistically, what are the 
similarities and differences between human sentiments of heat and SVI? (2) Does the 
distribution of heat exposure obtained from Twitter data align with the patterns 
observed from temperature and SVI data?

To answer these two questions, the minimum, maximum and average temperature 
of 9.26 and 9.27 for each census tract area is interpolated using an Inverse Distance 
Weighted method based on in total of 59 functional NOAA weather stations and 
underground weather stations and sensors within the City of Chicago. Among all func
tional weather stations, 8 of them are from NOAA and 51 of them are from the under
ground weather sensors network. Figure 5 shows the relationship between normalized 
heat exposure from LBSM data and the quantile map of minimum, maximum and 
average temperature on 9.26 and 9.27 in Chicago. For all 6 temperature indicators, 
there are positive correlation between the indicator and heat exposure showing the 
areas with high heat exposure reported from LBSM data are mostly places with rela
tively higher temperatures. The spatial distribution of temperature indicators is mostly 
consistent with the spatial distribution of normalized heat exposure from Twitter data, 
where the ‘heat’ area is centered around the north of downtown Chicago.

Table 1 shows the Pearson and Spearman correlation between normalized heat 
exposure and the minimum, maximum and average temperature on 9.26 and 9.27. All 
the temperature indicators show a strong positive correlation with normalized heat 
exposure as the coefficients are positive and the p-value is less than 0.005. It is evident 
that the temperature is highly consistent with the value of heat exposure. Considering 
the multitude of factors influencing the perceived ‘heat’ among urban populations 
and the non-linear nature of the relationship between temperature and heat exposure, 
our analysis reveals a strong spatial and statistical correlation between human senti
ments of heat exposure and temperature.

The correlation between the Social Vulnerability Index (SVI) and human sentiments 
of heat exposure during the period from September 22, 2021 to September 27, 2021 
is shown in Figure 6 and Table 2. The SVI data utilized is sourced from the Centers for 
Disease Control and Prevention (CDC) for the year 2020. Figure 6 illustrates a nearly 
horizontal line representing the correlation between SVI and human sentiments of 
heat exposure, indicating a weak correlation between the two variables. Table 2 shows 
that although the p-value for the correlation is significant, the Pearson and Spearman 
coefficients have small absolute values. Consequently, unlike temperature, there is no 
strong correlation between the SVI and human sentiments of heat exposure.

Despite the overall weak correlation, Figure 6 highlights an interesting observation 
on September 22, 2021. On this day, with a decrease in temperature and widespread 
complaints about cold weather in the city, a positive correlation is observed between 
the SVI and human sentiments of heat exposure. However, from September 23 to 
September 27, as temperatures was rising, the correlation between human sentiments 
of heat exposure and SVI is mostly negative, except for September 25. This 
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Figure 5. The relationships between normalized heat exposure and minimum, maximum and aver
age temperature measured with weather stations on 9.26 and 9.27: (a.1) minimum temperature on 
9.26, (a.2) the relation between minimum temperature on 9.26 and normalized heat exposure; (b.1) 
minimum temperature on 9.27, (b.2) the relation between minimum temperature on 9.27 and nor
malized heat exposure; (c.1) maximum temperature on 9.26, (c.2) the relation between maximum 
temperature on 9.26 and normalized heat exposure; (d.1) maximum temperature on 9.27, (d.2) the 
relation between maximum temperature on 9.27 and normalized heat exposure; (e.1) average tem
perature on 9.26, (e.2) the relation between average temperature on 9.26 and normalized heat 
exposure; (f.1) average temperature on 9.27, (f.2) the relation between average temperature on 
9.27 and normalized heat exposure.

Table 1. Correlation between normalized heat exposure and minimum, maximum and average 
temperature on 9.26 and 9.27.

Pearson coefficient Pearson p-value Spearman coefficient Spearman p-value

Minimum temperature on 9.26 0.1482 2.5496e-05 0.1885 7.6150e-08
Maximum temperature on 9.26 0.2948 1.6051e-17 0.3677 4.7670e-27
Average temperature on 9.26 0.3860 3.9708e-29 0.4506 2.6571e-41
Minimum temperature on 9.27 0.3814 4.6399e-13 0.3736 6.2276e-28
Maximum temperature on 9.27 0.2519 7.2599e-30 0.2802 6.4606e-16
Average temperature on 9.27 0.1844 1.4678e-07 0.1494 2.1895e-05
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Figure 6. The relationships between SVI and normalized heat exposure from 2021.09.22 to 
2021.09.27: (a.1) normalized human sentiments of heat exposure on 9.22, (a.2) the relation 
between normalized human sentiments of heat exposure on 9.22 and SVI; (b.1) normalized human 
sentiments of heat exposure on 9.23, (b.2) the relation between normalized human sentiments of 
heat exposure on 9.22 and SVI; (c.1) normalized human sentiments of heat exposure on 9.24, (c.2) 
the relation between normalized human sentiments of heat exposure on 9.24 and SVI; (d.1) nor
malized human sentiments of heat exposure on 9.25, (d.2) the relation between normalized human 
sentiments of heat exposure on 9.25 and SVI; (e.1) normalized human sentiments of heat exposure 
on 9.26, (e.2) the relation between normalized human sentiments of heat exposure on 9.26 and 
SVI; (f.1) normalized human sentiments of heat exposure on 9.27, (f.2) the relation between nor
malized human sentiments of heat exposure on 9.27 and SVI.

Table 2. Correlation between normalized heat exposure and SVI.
Pearson coefficient Pearson p-value Spearman coefficient Spearman p-value

2021.09.22 0.2796 1.6490e-15 0.2896 1.40234e-16
2021.09.23 −0.2263 1.5313e-10 −0.1113 1.829e-3
2021.09.24 −0.4336 3.9118e-37 −0.4400 2.551e-38
2021.09.25 0.1231 5.6345e-4 0.0915 1.050e-2
2021.09.26 −0.2826 8.0125e-16 −0.1356 1.4340e-4
2021.09.27 −0.0807 2.4027e-2 −0.0301 4.0012e-1
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observation indicates that regions with higher Social Vulnerability Index (SVI) scores 
demonstrate a comparatively delayed responsiveness on social media when compared 
to less vulnerable regions, both in response to temperature increase and decrease.

4.4. Mapping national-scale heat exposure

Mapping was also conducted on September 27th, 2021, for the conterminous United 
States together with Hawaii and Alaska. Twitter data collected within the time ranging 
from 12 p.m. September 26th to 12 p.m. September 27th is taken into consideration. 
The extensive heat-related LBSM data is utilized to evaluate heat exposure at a 
national scale (See Supplemental Materials C for the amount of data collected for 
national-level analysis). The national-level heat exposure, as shown in Figure 7, is cal
culated based on all the heat-related tweets collected within the 24-h period in each 
county. Based on our analysis, Franklin County in Maine is reported to have the lowest 
heat exposure, and Assumption Parish LA is reported to have the highest heat expos
ure. Counterintuitively, there is no clear trend that the southern part of the US, where 
temperature is generally higher, reported higher heat exposure than the northern part 
of the US. As people living in warm places are more used to hot weather, it is not 
likely for them to post on Twitter about hot weather if the high temperature is nor
mal. More likely, people will post hot-related tweets to complain about extreme heat 
exposure when unexpected hot weather hits or there are sudden heatwaves or electri
city shortages. Figure 7 presents a national-level map of heat exposure for the 
Contiguous United States (CONUS). It is useful in terms of finding the places for sud
den extreme heat fluctuation during a short period of time and those with signifi
cantly higher exposure compared with the surrounding regional areas. If we zoom in 
to examine a single state or counties that are adjacent to each other, where the 

Figure 7. A national-level heat exposure map in the United States on 2021.9.27.
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temperature is generally similar, we can find more detailed information about heat 
exposure in those localized areas. For example, Cook County where the City of 
Chicago is located, that day, has higher normalized heat exposure compared with the 
surrounding counties. That might be caused by the unexpected hot weather in 
Chicago that day with the highest temperature being 88 Degree Fahrenheit. More 
knowledge can be gained from long-term monitoring of heat exposure in a single 
county. Sudden dramatic unusual increase or decrease in heat exposure would require 
additional attention for heat-related problems. To address the spatial heterogeneity 
challenge, greater emphasis should be placed on studying human sentiments of heat 
exposure at the regional level.

5. Discussion

Heat exposure represents a multifaceted challenge encompassing various physical envir
onmental attributes, such as temperature, humidity (Zhao et al. 2014, Zhang et al. 2023), 
air quality (Li et al. 2018), land use (Li et al. 2021), vegetation index (Chow et al. 2012), 
and socioeconomic factors, including population density, poverty, ethnicity, and others 
(Harlan et al. 2013, Maier et al. 2014, Bao et al. 2015). In addition to these factors, we con
tend that human sentiments of heat exposure, extracted from LBSM data, provide valu
able insights into heat exposure from an individual human perspective. One major 
research motivation is to detect sudden changes in heat exposure in a near real-time 
fashion. Using human sentiments of heat exposure, we can quickly find the locations that 
are under the threat of extreme heat. Especially in cities like Chicago with a large popula
tion, dynamic monitoring of heat exposure can be achieved with fine spatiotemporal 
granularity using location-based social media data. Furthermore, our analysis compares 
human sentiments of heat exposure with temperature and the Social Vulnerability Index 
(SVI). The results indicate a strong correlation with temperature while showing a weaker 
correlation between SVI and the human sentiments. Despite the observed strong correl
ation between human sentiments of heat exposure and temperature, areas where high 
temperatures do not correspond to increased human sentiments of heat exposure, such 
as the southern part of the City of Chicago on September 27th, 2021, require further 
investigation. This aspect presents a particularly interesting opportunity for future systemic 
analytics. Regarding the limited correlation between SVI and human sentiments of heat 
exposure, it is noteworthy that regions with higher vulnerability exhibit a slower response 
to both temperature increases and decreases compared to less vulnerable regions.

It is worth noting that uncertainty exists in the analysis results mainly due to the 
usage of human-generated social media data. First, both the temporal scale and spa
tial scale matter. Even though our research framework can be applied in near real- 
time, fine temporal scale might result in inadequacy of data to cover a large area, 
especially when there is a need for fine spatial granularity. The dynamic changes of 
heat exposure could be biased if there are not enough heat-related Twitter data to 
cover the entire spatial domain given a fine temporal scale. As a result, the balance 
between spatial and temporal resolutions is a key to appropriately derive and interpret 
results. Second, the space-time context is another important factor. From the temporal 
perspective, when analyzing the daily/weekly changes in heat exposure, results would 
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be more useful if there is a sudden change in temperature because the framework is 
sensitive to significant temperature changes and frequent individual posts on social 
media during extreme weather such as heatwaves. When analyzing heat exposure 
within a day, the amount of Twitter data collected at a different time in a day could 
vary significantly depending on the time of collection. Based on our experiments, gen
erally more data are available during afternoon and evening times compared with 
morning and midnight within a day. As a shortage of data could introduce uncertainty 
to analytical results, the time of data summarization plays a significant role. From the 
spatial perspective, city-level analysis of heat exposure is likely more robust when it is 
carried out in a populous city due to the positive correlation between population size 
and the number of tweets posted within a short time span.

While the new policy changes by Twitter in November 2022 no longer allow users to 
share physical location information without authentication (Twitter 2022), which could help 
filter out some noisy data, a major limitation of the biased nature of Twitter data contrib
utes to potential uncertainty in content interpretation with the semantic analysis method 
and location information used. To resolve this bias, data from other sources including urban 
sensors and weather stations could be used to supplement the Twitter data for evaluating 
heat exposure in future research. A possible solution would be to put a location-aware 
weighted coefficient, which is calculated based on multiple socioeconomic and demo
graphic factors, to each tweet post to address the bias and representative issue of the tweet 
post. Furthermore, an additional significant constraint stems from the keyword-based algo
rithm employed to estimate human sentiments of heat exposure. This approach exhibits 
limitations in the following aspects: (1) its inability to identify affect-negated words, such as 
‘isn’t’ and ‘doesn’t’; (2) its potential failure to comprehend that affect, which could be con
veyed through underlying meanings within sentences; and (3) its incapacity to discern dif
ferent contextual meanings for polysemous words (Cambria et al. 2013). As a result, our 
ongoing research aims to use more sophisticated natural language processing algorithms to 
take into consideration the context of tweets. Computer vision algorithms can also be 
applied to images posted by social media users to better analyze their heat exposure given 
that images are increasingly posted on social media. In addition, further research can be 
conducted by long-time monitoring of heat exposure to discover causal effects of heat 
exposure and its relationships with other health, environmental, socioeconomic, and demo
graphic factors. Additionally, we plan to employ human expressions from LBSM data for 
evaluating attributes that are difficult to measure, such as disasters and pandemics. We also 
intend to investigate the time-sensitivity and uncertainty of different locations and various 
information categories using human expression.

6. Conclusion

This research uses location-based social media data collected from Twitter to map 
dynamic human sentiments of heat exposure both at city and national levels. A new 
cyberGIS framework is developed to analyze and visualize locations with extreme heat 
exposure based on Twitter data in different spatiotemporal contexts with various 
scales and granularities. First, Twitter data was collected in near real-time using a 
cyberGIS-based workflow. Second, we used word2vec to establish a dictionary for ‘heat 
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value’. Then, for all the geotagged Twitter data collected, we analyze their contents 
based on the heat dictionary to find the heat index for each tweet. At last, we map 
human sentiments of heat exposure based on the Twitter data at the city level as well 
as the US national level with the spatial unit of census tract and county respectively. A 
case study was conducted in September 2021. From the city-level case study on 
Chicago, we find that the area just north of downtown Chicago experienced high-level 
heat exposure while the Hispanic and Spanish-speaking population, especially those 
who live in the southwest side of Chicago and southeast corner of Chicago, are under
represented by the Twitter data. In evaluating the proposed heat index in relation to 
temperature and SVI, we found a strong correlation between human sentiments of 
heat exposure and temperature, while a weaker correlation with SVI. Dynamic moni
toring of heat exposure for a week and changes in heat exposure at different times 
within a day were analyzed to show that Twitter data can be used effectively to detect 
heat exposure variations at fine spatial and temporal scales. This framework can be 
generalized for other cities and regions across the globe where Twitter is being used.

Overall, our research represents the first attempt to analyze and visualize dynamic 
human sentiments of heat exposure based on location-based social media data col
lected in near real-time. Together with traditional temperature measurements, near 
real-time heat exposure information derived from social media data can be used to 
understand heat exposure from a human perspective and help with timely resource 
allocation to mitigate losses and negative impacts caused by extreme heat. 
Computational reproducibility and scalability are enabled by CyberGIS-Jupyter through 
integrating high-performance computing capabilities and an open-access scientific 
workflow environment.
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