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A B S T R A C T   

CyberGIS—geographic information science and systems (GIS) based on advanced cyberinfrastructure—is 
becoming increasingly important to tackling a variety of socio-environmental problems like climate change, 
disaster management, and water security. While recent advances in high-performance computing (HPC) have the 
potential to help address these problems, the technical knowledge required to use HPC has posed challenges to 
many domain experts. In this paper, we present CyberGIS-Compute: a geospatial middleware tool designed to 
democratize HPC access for solving diverse socio-environmental problems. CyberGIS-Compute does this by 
providing a simple user interface in Jupyter, streamlining the process of integrating domain-specific models with 
HPC, and establishing a suite of APIs friendly to domain experts.   

1. Motivation and significance 

Work across many disciplines is increasingly dependent on 
geographic information science and systems (GIS) based on advanced 
cyberinfrastructure (CI), or cyberGIS [1]. While cyberGIS enables 
computationally intensive problem solving through geospatial big data, 
large-scale analysis and modeling, and artificial intelligence (AI) ap
proaches, many are unable to benefit from cutting-edge advances in 
cyberGIS due to the high technical barriers that advanced CI imposes. 
Domain experts utilizing GIS come from a wide range of disciplines 
including for example agriculture, hydrology, and public health and 
they cannot all be expected to have the technical expertise necessary to 
interact directly with advanced CI. However, what they may lack in 
technical skills, they more than make up for in domain expertise, so 
empowering their workflows with advanced CI can yield tremendous 
benefits to the diverse scientific community. 

While there are a variety of tools designed for interacting with High- 
Performance Computing (HPC) resources, none of them exactly meets 
the needs of domain experts in geospatial science and related fields. 
Tools like Docker [2] and Apptainer [3] address reproducibly interact
ing with HPC through the command line, but these present an insur
mountable technical barrier for a significant number of domain experts. 

Tools like Apache Airflow [4] allow users to seamlessly run workflows, 
but academic HPC resources do not allow general users to run code that 
has not been vetted. We need a solution that provides reproducible ac
cess to HPC resources, has a low technical barrier, and is configurable 
but not overly open. 

Providing reproducible execution environments for scientific work
flows has been a priority in the scientific community for years to help 
address the reproducibility crisis [5]. The geospatial community has 
developed a number of science gateways to combat the crisis [6–10], 
including our own CyberGIS-Jupyter approach [8,11-13], but these ca
pabilities are often not well-equipped to support reproducibility in 
large-scale computational analysis. HPC resources are made available to 
researchers and scientific communities through advanced CI such as 
ACCESS [14], but applying for and utilizing these resources comes with 
significant technical barriers. Our goal is to provide an accessible, 
reproducible bridge between science gateways and HPC. 

CyberGIS-Compute [15,16] is a generic middleware tool designed to 
democratize access to scalable geospatial computing and HPC resources 
for diverse domain experts. We have seen success by providing a simple 
user interface built on Jupyter notebooks to reduce UI development 
[17], streamlining the process of integrating domain-specific models 
with HPC, and establishing a suite of APIs friendly to domain experts, 
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which has enabled computation- and data-intensive work in a variety of 
domains such as remote sensing of environment [17], spatial accessi
bility [17], and hydrology. 

CyberGIS-Compute has two complementary uses: (1) providing a 
simple interface for model developers and end-users to interact with CI 
and (2) providing a framework for sharing computationally intensive 
executable workflows. Domain experts are able to convert their work
flows into CyberGIS-Compute models without needing expertise in CI by 
simply adding a JSON manifest to their Github repository giving meta
data about the code and how it can be run. End-users are then able to 
execute and reproduce the workflows using our Jupyter-based graphical 
user interface (GUI). This gives users the familiar Jupyter interface that 
is used throughout the geosciences [6–10] with the ability to connect to 
any HPC system that uses SLURM, allowing them to harness the 
computational power of their local HPC resources or leading-edge HPC 
resources provided by ACCESS [14] like ACES [18]. 

2. Software description 

CyberGIS-Compute is a middleware tool that allows users to execute 
models on HPC resources using Apptainer (formerly Singularity) [3] and 
SLURM [19] from a GUI within Jupyter notebooks [17]. 
CyberGIS-Compute is made up of two fundamental components: the 
Core which is a server that executes and manages jobs submitted by 
users and the software development kit (SDK) which provides a user 
interface. The Core server, discussed further in Section 2.1, is a REpre
sentational State Transfer (REST) Application Programming Interface 
(API) server written in Typescript with Express [20]. The SDK, discussed 
further in Section 2.2, is written in Python 3 and available on the Python 
Package Index (PyPi). 

2.1. CyberGIS-Compute Core 

CyberGIS-Compute Core abstracts away the technical complexities of 
HPC resources by providing Apptainer based job automation [3]. Its 
architecture consists of three layers: Application Programming Interface 
(API) Server, Maintainer Pool, and Connection Pool, which work 
together sequentially to submit user applications to advanced CI re
sources. This architecture is illustrated in Fig. 1. 

The API Server exposes a set of standardized RESTful APIs for basic 
HPC operations such as job submission and data upload. To access the 
API, users must have credentials for a JupyterHub [17] within our 
allowlist and authentication is performed using JupyterHub’s tokens 
and API, all of which is handled for users by the SDK transparently. Job 
operation requests received by the API are pushed into the Job Queue 
and consumed by a Maintainer Worker process in the Maintainer Pool. 
The Maintainer Pool creates and manages multiple Maintainer Worker 
processes that contain the automated logic behind each abstracted HPC 
operation, including fetching contributed models from GitHub, setting 
up HPC jobs, transferring data using Globus [21], submitting jobs, and 
monitoring job status. Maintainers in our Maintainer Pool run asyn
chronously and can support dozens of jobs concurrently. Future work 
will add another layer to support more complex load balancing, fairness, 
and throttling mechanisms to the Maintainer and Connector pools. Each 
Maintainer Worker process communicates with HPC resources using a 
shared abstract SSH Connector process. Because a Connector process is 
shared between many different Maintainer Workers, the SSH connection 
is prone to race conditions and file contamination. In order to solve this 
problem, a Connector Pool is implemented to communicate with HPC 
resources, provide mutex locks, and file-level isolation. 

CyberGIS-Compute leverages SLURM Workload Manager [19] and 
Apptainer containerization [3] to simplify and standardize executing 
models on advanced CI resources. This provides models developed for 
CyberGIS-Compute a consistent environment across HPC resources. We 
expose a standardized set of APIs for users to define a job’s computing 
resources and virtualization environment. From the users’ inputs, the 
Maintainer Worker is able to translate users’ requests into SLURM 
scripts that request computing resources from HPC and sets up an 
Apptainer containerized environment from a library of images with 
built-in geospatial programming environments. Docker is not generally 
supported on HPC due to security issues [3], but existing Docker images 
can be easily converted to Apptainer images for usage in 
CyberGIS-Compute and we can add support for Docker if HPC support 
for Docker is available. A computing resource quota system is imple
mented to prevent potential exploitation of the resource. 

Fig. 1. Architecture of the CyberGIS-Compute Core.  
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2.2. CyberGIS-Compute SDK 

The CyberGIS-Compute SDK is a client-side tool for utilizing 
CyberGIS-Compute. The SDK communicates with the Core using Python 
3 http.client module in the standard library. A connection is 
established to the Core server by instantiating a CyberGISCompute 
object as shown in Cell 1 of Fig. 2. The Core server checks the Jupy
terHub against an allowlist and then authenticates the user’s token 
against the JupyterHub to verify the request. Once instantiated, the 
CyberGISCompute object offers a variety of functionalities to list 
available models, download results and more, while most interactions 
take place through the GUI. 

The GUI of CyberGIS-Compute, shown in Fig. 2, allows users to 

submit and monitor jobs. Job submission steps that would otherwise 
require the use of a command line have been simplified into different 
aspects of our GUI. For example, the “Job Configuration” tab is used to 
specify information about a job before it is submitted. This can include 
the computing resource to use, SLURM [19] configurations, and data to 
upload. Once configured, jobs can be submitted by clicking the “Submit 
Job“ button as seen in Fig. 2. Live updates on jobs are provided through 
the “Your Job Status” tab, letting each user know when their job goes 
through each step of the CyberGIS-Compute architecture: the job queue, 
registered with the computing resource, started, and finished. The tab 
also notifies the user when the job has completed and displays an excerpt 
from the job’s logs. 

After a job completes, users are able to fetch the results using the 

Fig. 2. A screenshot of the CyberGIS-Compute SDK’s interface in a Jupyter notebook [17].  
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“Download Job Results” tab of the GUI. Users can download all of the 
contents of the job result folder or just sub-folders like the full SLURM 
logs. Once a user clicks the “Download” button, CyberGIS-Compute 
initiates a Globus [21] file transfer from a HPC resource to the user’s 
file system. When the download completes, the path to the downloaded 
data is displayed on the GUI and provided to the user through the 
‘recentDownloadPath‘ attribute of the CyberGIS-Compute object. This 
allows users to develop notebooks that submit computationally inten
sive jobs through CyberGIS-Compute and then perform further analysis 
on the results of the job locally. 

The GUI has two tabs dedicated to interacting with jobs that have 
previously been executed. The “Your Jobs” tab keeps a record of each 
user’s previously submitted jobs, allowing users to review and download 
older information. Jobs are listed along with metadata describing the 
underlying model, parameters, and other information about the model. 
Each job has a “Restore” button that allows users to populate the GUI 
with that job’s information and re-download the results. The “Past Re
sults” tab lists all of the previous result folders available with a 
“Download” button for convenience. These functionalities were devel
oped so that users could access the configuration and results of jobs in 
the event of a browser refresh or kernel disconnection and is particularly 
useful for long-running jobs because users can now close their browsers 
and come back to check the results. 

3. Illustrative example 

In this section we illustrate how a model is contributed and used in 
CyberGIS-Compute. At the beginning of the COVID-19 pandemic, Kang 
et al. 2020 [16] implemented a model for calculating spatial accessi
bility to hospital ventilators in the state of Illinois, USA. Spatial acces
sibility is an interdisciplinary field of research that explores how access 
to resources and services varies across space. This research is conducted 
across fields including economics, geography, and public health to study 
access to health care [22,23], food [24], electric vehicle charging sta
tions [25], and more. Spatial accessibility analyses depend on mobility 
and travel-time information that is computationally intensive to 
compute which has forced many researchers to limit their analysis to 
small geographic areas such as a city or several counties. Being an 
interdisciplinary field facing challenges due to limited computational 
resources makes spatial accessibility an excellent candidate for 
CyberGIS-Compute. Kang et al. wanted to share their workflow on 
CyberGISX science gateway to ensure reproducibility, but because the 
computational intensity of the workflow was too great for the science 
gateway, were forced to make a simplified version of the model which 
only considers the city of Chicago, IL, USA. 

Using the Jupyter notebook shared on Github, we were able to create 
a CyberGIS-Compute model for the workflow. First, we converted the 
Jupyter notebook to a Python script using the Jupyter nbconvert tool 
[17]. Second, we needed to make minor changes to the code so that the 
outputs of the script were put into a results folder so that the data can be 
retrieved. Third, we needed to specify a “manifest.json” file which 
provides metadata and describes how to execute the model with 
CyberGIS-Compute. 

The manifest.json for the COVID-19 spatial accessibility model is 
shown in Listing 1. The first three entries (name, description, estimated 
runtime) are to inform end-users about the model. The middle section of 
the manifest specifies how the model will be run. The “container” de
scribes the name of an Apptainer image, from a curated list of images, in 
which the analysis will execute. The “execution_stage” is one of three 
stages that can be specified in a CyberGIS-Compute model (pre-pro
cessing, execution, and post-processing) and describes commands to be 
executed in each stage. In this case, the only stage is the execution of the 
Python script “main.py”. Next, “slurm_input_rules” describe options 
which are provided to end-users to specify the maximum amount of 
time, CPUs, and memory that the model will be allocated. The 
“require_upload_data” tells CyberGIS-Compute that users do not need to 

upload any data to perform the analysis. Lastly, the “supported_hpc” 
gives a list of HPC resources on which the model can be executed 
(ROGER [26] at the University of Illinois Urbana-Champaign, Expanse 
[27], and Anvil [28]) while the “default_hpc” tells CyberGIS-Compute to 
use Expanse if no other HPC is given. 

Once the model is entered into the database for a Core server, it is 
available for end-users to run. Each model is entered into the Core 
server’s database with a short name, in this case “covid-access”. When a 
user connects to our CyberGIS-Compute server, launches the GUI, and 
selects the “covid-access” model from the “Job Template” dropdown, the 
GUI is populated with information from the manifest as shown in Fig. 1. 
The description of the model and estimated runtime are filled in and the 
appropriate sliders are made available under the “Slurm Computing 
Configurations” section. However, an end-user is able to rely on the 
default values provided by the model creator and simply click “Submit 
Job” after the model is selected in the dropdown.  

1 { 
2 “name”: “COVID-19 spatial accessibility”, 
3 “description”: “Calculates travel-time from hospitals and then calculates spatial 

accessibility to hospital beds for the entire state of Illinois. We calculate travel-time and 
aggregate spatial accessibility in parallel using 4 CPUs and about 64–80GB of memory. 
Read about the paper here: https://doi.org/10.1186/s12942–020–00,229-x”, 

4 “estimated_runtime”: “~20 min”, 
5 “container”: "cybergisx-0.4″, 
6 “execution_stage”: “MPLBACKEND=Agg python main.py”, 
7 “slurm_input_rules”: { 
8 “time”: { 
9 “max”: 180, 
10 “min”: 60, 
11 “default_value”: 120, 
12 “step”: 1, 
13 “unit”: “Minutes” 
14 }, 
15 “cpu_per_task”: { 
16 “max”: 4, 
17 “min”: 4, 
18 “default_value”: 4, 
19 “step”: 1 
20 }, 
21 “memory_per_cpu”: { 
22 “max”: 20, 
23 “min”: 16, 
24 “default_value”: 20, 
25 “step”: 1, 
26 “unit”: “GB” 
27 } 
28 }, 
29 “require_upload_data”: false, 
30 “supported_hpc”: [“roger_community”, “expanse_community”, 

“anvil_community“], 
31 “default_hpc”: “expanse_community” 
32 }  

Listing 1. The manifest for the COVID-19 Spatial Accessibility model that 
implements the workflow from Kang et al. 2022 [29]. 

Once a job is submitted, the GUI changes tabs to the “Your Job 
Status” tab which provides live updates on the running job as seen in 
Fig. 3. The information just below “Your Job is Here!” provides infor
mation on the parameters sent to the Core server including the SLURM 
parameters from the GUI’s sliders. The “job events” section of the page 
tracks the job as it reaches the Core server’s queue, the model’s code is 
sent to the HPC, executes on the HPC, and ends. After the job ends, the 
“job logs” portion of the page displays a short excerpt of the SLURM logs. 
To obtain the full logs and any job outputs, the “Download Job Result” 
tab provides a dropdown allowing users to choose between downloading 
the whole folder or sub-directories and a “Download” button which 
initiates a Globus transfer bringing the results from the HPC to the 
Jupyter environment where the CyberGIS-Compute SDK is being 
executed. 

While running on the HPC center, the COVID-19 Spatial Accessibility 
model calculates driving-time catchments around each hospital in the 
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dataset using OpenStreetMap [30] data and the Python OSMnx package 
[31]. These calculations are performed in parallel thanks to the Python 
multiprocessing library, a part of the standard library. Then, the model 
uses the travel-time catchments to calculate spatial accessibility using 
the Enhanced Two-Step Floating Catchment Area (E2SFCA) [32] 
method. This results in a metric for each spatial unit (in this case a 
hexagonal grid [29]) which can be interpreted as a ratio of hospital 
ventilators to people. The pattern of spatial accessibility to hospital 
ventilators calculated by the model is mapped in Fig. 4. The results from 
this analysis can be downloaded by users using the “Download Job 
Results” tab of the GUI. Additional use-cases of CyberGIS-Compute can 
be viewed on our Model Gallery or the CyberGISX’s CyberGIS-Compute 
Showcase community page. 

4. Impact 

CyberGIS-Compute has enabled domain experts to create and share 
complex computational workflows. Lyu et al. 2022 utilized CyberGIS- 
Compute to run a hybrid deep learning model on remote sensing data 
using GPUs Bridges-2 HPC resource and retrieve results, all from a 
notebook based on CyberGIS-Jupyter [33]. Lyu et al. noted that using 
CyberGIS-Compute “makes the data fusion workflow scalable and 
reproducible, and accessible by domain experts who may have limited 
programming background and cyberinfrastructure knowledge” [33]. In 
addition to enabling new research questions and directions, 
CyberGIS-Compute has been used to make an already published 
computationally intensive workflow available [29] and hydrological 
models have been developed as a collaboration with HydroShare [6]. 

Beyond this work, there are a number ongoing projects utilizing 
CyberGIS-Compute and we believe that the lowered technical barriers 
will enable domain experts to analyze and model geospatial phenomena 
at unprecedented spatio-temporal scales. 

CyberGIS-Compute has been installed and used on the CyberGIS- 
Jupyter for Water [34] and I-GUIDE Platform [35] science gateways. 
These gateways support research and education in the geosciences and 
beyond. Beyond these two gateways, we have been working to promote 
our software and reach a broader audience. We have given a talk on the 
work at the Gateways conference [12], hosted a demo at the SIGSPA
TIAL conference [16], gave two invited talks for the I-GUIDE Virtual 
Consulting Office series [36,37], ran a workshop at the 2023 Annual 
Meeting of the American Association of Geographers (AAG) [38], and 
conducted a tutorial at the Accelerating Computing for Emerging Sci
ences (ACES) 2023 Workshop [39]. These various workshops and talks 
have yielded multiple collaborations, growing our list of supported 
models. Both the Core and SDK are available on Github and the SDK is 
available to download on PyPi, so anyone with a JupyterHub is able to 
deploy their own Core server, with their own set of models, and connect 
it to any HPC resource that supports SLURM. 

Our work has also inspired a similar project, CyberGIS-Cloud for 
managing workflows on commercial cloud [40]. Whereas 
CyberGIS-Compute is focused on providing a simple interface for 
executing geospatial workflows on HPC resources, CyberGIS-Cloud is 
working to provide users with access to cloud storage and clusters using 
Hadoop [41], Spark [42], and Dask [43]. Together, these projects 
continue to enable researchers and educators to harness both HPC and 
cloud resources. 

Fig. 3. The “Your Job Status” tab of the CyberGIS-Compute Graphical User Interface (GUI) after the “covid-access” (COVID-19 Spatial Accessibility) job has been 
submitted and finished running. 
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5. Conclusions 

In this paper, we describe CyberGIS-Compute, a middleware toolkit 
for democratizing scalable geocomputation. The software comprises two 
key components, a Typescript server which executes code on HPC re
sources and an SDK with graphical user interface written in Python. 
CyberGIS-Compute lowers the barriers to utilizing HPC by providing a 
streamlined model contribution mechanism and a simplified graphical 
user interface for executing computation jobs while providing a frame
work for sharing reproducible scientific workflows. The software has a 
growing user-base and library of models and has already inspired similar 
work aimed at democratizing access to advanced CI. 
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