
SoftwareX 26 (2024) 101691

Available online 28 March 2024
2352-7110/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Original Software Publication

CyberGIS-Compute: Middleware for democratizing
scalable geocomputation

Alexander C. Michels a, Anand Padmanabhan a, Zimo Xiao a,b, Mit Kotak a,c, Furqan Baig a,
Shaowen Wang a,*

a CyberGIS Center for Advanced Digital and Spatial Studies, University of Illinois Urbana-Champaign, 1301 W Green St, Urbana, IL, 61801, USA
b Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, 15213, USA
c Center for Computational Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

A R T I C L E I N F O

Keywords:
CyberGIS
High-performance computing
Middleware
Scientific workflow

A B S T R A C T

CyberGIS—geographic information science and systems (GIS) based on advanced cyberinfrastructure—is
becoming increasingly important to tackling a variety of socio-environmental problems like climate change,
disaster management, and water security. While recent advances in high-performance computing (HPC) have the
potential to help address these problems, the technical knowledge required to use HPC has posed challenges to
many domain experts. In this paper, we present CyberGIS-Compute: a geospatial middleware tool designed to
democratize HPC access for solving diverse socio-environmental problems. CyberGIS-Compute does this by
providing a simple user interface in Jupyter, streamlining the process of integrating domain-specific models with
HPC, and establishing a suite of APIs friendly to domain experts.

1. Motivation and significance

Work across many disciplines is increasingly dependent on
geographic information science and systems (GIS) based on advanced
cyberinfrastructure (CI), or cyberGIS [1]. While cyberGIS enables
computationally intensive problem solving through geospatial big data,
large-scale analysis and modeling, and artificial intelligence (AI) ap
proaches, many are unable to benefit from cutting-edge advances in
cyberGIS due to the high technical barriers that advanced CI imposes.
Domain experts utilizing GIS come from a wide range of disciplines
including for example agriculture, hydrology, and public health and
they cannot all be expected to have the technical expertise necessary to
interact directly with advanced CI. However, what they may lack in
technical skills, they more than make up for in domain expertise, so
empowering their workflows with advanced CI can yield tremendous
benefits to the diverse scientific community.

While there are a variety of tools designed for interacting with High-
Performance Computing (HPC) resources, none of them exactly meets
the needs of domain experts in geospatial science and related fields.
Tools like Docker [2] and Apptainer [3] address reproducibly interact
ing with HPC through the command line, but these present an insur
mountable technical barrier for a significant number of domain experts.

Tools like Apache Airflow [4] allow users to seamlessly run workflows,
but academic HPC resources do not allow general users to run code that
has not been vetted. We need a solution that provides reproducible ac
cess to HPC resources, has a low technical barrier, and is configurable
but not overly open.

Providing reproducible execution environments for scientific work
flows has been a priority in the scientific community for years to help
address the reproducibility crisis [5]. The geospatial community has
developed a number of science gateways to combat the crisis [6–10],
including our own CyberGIS-Jupyter approach [8,11-13], but these ca
pabilities are often not well-equipped to support reproducibility in
large-scale computational analysis. HPC resources are made available to
researchers and scientific communities through advanced CI such as
ACCESS [14], but applying for and utilizing these resources comes with
significant technical barriers. Our goal is to provide an accessible,
reproducible bridge between science gateways and HPC.

CyberGIS-Compute [15,16] is a generic middleware tool designed to
democratize access to scalable geospatial computing and HPC resources
for diverse domain experts. We have seen success by providing a simple
user interface built on Jupyter notebooks to reduce UI development
[17], streamlining the process of integrating domain-specific models
with HPC, and establishing a suite of APIs friendly to domain experts,

* Corresponding author.
E-mail address: shaowen@illinois.edu (S. Wang).

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

https://doi.org/10.1016/j.softx.2024.101691
Received 4 November 2023; Received in revised form 11 March 2024; Accepted 12 March 2024

mailto:shaowen@illinois.edu
www.sciencedirect.com/science/journal/23527110
https://www.elsevier.com/locate/softx
https://doi.org/10.1016/j.softx.2024.101691
https://doi.org/10.1016/j.softx.2024.101691
https://doi.org/10.1016/j.softx.2024.101691
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2024.101691&domain=pdf
http://creativecommons.org/licenses/by/4.0/

SoftwareX 26 (2024) 101691

2

which has enabled computation- and data-intensive work in a variety of
domains such as remote sensing of environment [17], spatial accessi
bility [17], and hydrology.

CyberGIS-Compute has two complementary uses: (1) providing a
simple interface for model developers and end-users to interact with CI
and (2) providing a framework for sharing computationally intensive
executable workflows. Domain experts are able to convert their work
flows into CyberGIS-Compute models without needing expertise in CI by
simply adding a JSON manifest to their Github repository giving meta
data about the code and how it can be run. End-users are then able to
execute and reproduce the workflows using our Jupyter-based graphical
user interface (GUI). This gives users the familiar Jupyter interface that
is used throughout the geosciences [6–10] with the ability to connect to
any HPC system that uses SLURM, allowing them to harness the
computational power of their local HPC resources or leading-edge HPC
resources provided by ACCESS [14] like ACES [18].

2. Software description

CyberGIS-Compute is a middleware tool that allows users to execute
models on HPC resources using Apptainer (formerly Singularity) [3] and
SLURM [19] from a GUI within Jupyter notebooks [17].
CyberGIS-Compute is made up of two fundamental components: the
Core which is a server that executes and manages jobs submitted by
users and the software development kit (SDK) which provides a user
interface. The Core server, discussed further in Section 2.1, is a REpre
sentational State Transfer (REST) Application Programming Interface
(API) server written in Typescript with Express [20]. The SDK, discussed
further in Section 2.2, is written in Python 3 and available on the Python
Package Index (PyPi).

2.1. CyberGIS-Compute Core

CyberGIS-Compute Core abstracts away the technical complexities of
HPC resources by providing Apptainer based job automation [3]. Its
architecture consists of three layers: Application Programming Interface
(API) Server, Maintainer Pool, and Connection Pool, which work
together sequentially to submit user applications to advanced CI re
sources. This architecture is illustrated in Fig. 1.

The API Server exposes a set of standardized RESTful APIs for basic
HPC operations such as job submission and data upload. To access the
API, users must have credentials for a JupyterHub [17] within our
allowlist and authentication is performed using JupyterHub’s tokens
and API, all of which is handled for users by the SDK transparently. Job
operation requests received by the API are pushed into the Job Queue
and consumed by a Maintainer Worker process in the Maintainer Pool.
The Maintainer Pool creates and manages multiple Maintainer Worker
processes that contain the automated logic behind each abstracted HPC
operation, including fetching contributed models from GitHub, setting
up HPC jobs, transferring data using Globus [21], submitting jobs, and
monitoring job status. Maintainers in our Maintainer Pool run asyn
chronously and can support dozens of jobs concurrently. Future work
will add another layer to support more complex load balancing, fairness,
and throttling mechanisms to the Maintainer and Connector pools. Each
Maintainer Worker process communicates with HPC resources using a
shared abstract SSH Connector process. Because a Connector process is
shared between many different Maintainer Workers, the SSH connection
is prone to race conditions and file contamination. In order to solve this
problem, a Connector Pool is implemented to communicate with HPC
resources, provide mutex locks, and file-level isolation.

CyberGIS-Compute leverages SLURM Workload Manager [19] and
Apptainer containerization [3] to simplify and standardize executing
models on advanced CI resources. This provides models developed for
CyberGIS-Compute a consistent environment across HPC resources. We
expose a standardized set of APIs for users to define a job’s computing
resources and virtualization environment. From the users’ inputs, the
Maintainer Worker is able to translate users’ requests into SLURM
scripts that request computing resources from HPC and sets up an
Apptainer containerized environment from a library of images with
built-in geospatial programming environments. Docker is not generally
supported on HPC due to security issues [3], but existing Docker images
can be easily converted to Apptainer images for usage in
CyberGIS-Compute and we can add support for Docker if HPC support
for Docker is available. A computing resource quota system is imple
mented to prevent potential exploitation of the resource.

Fig. 1. Architecture of the CyberGIS-Compute Core.

A.C. Michels et al.

SoftwareX 26 (2024) 101691

3

2.2. CyberGIS-Compute SDK

The CyberGIS-Compute SDK is a client-side tool for utilizing
CyberGIS-Compute. The SDK communicates with the Core using Python
3 http.client module in the standard library. A connection is
established to the Core server by instantiating a CyberGISCompute
object as shown in Cell 1 of Fig. 2. The Core server checks the Jupy
terHub against an allowlist and then authenticates the user’s token
against the JupyterHub to verify the request. Once instantiated, the
CyberGISCompute object offers a variety of functionalities to list
available models, download results and more, while most interactions
take place through the GUI.

The GUI of CyberGIS-Compute, shown in Fig. 2, allows users to

submit and monitor jobs. Job submission steps that would otherwise
require the use of a command line have been simplified into different
aspects of our GUI. For example, the “Job Configuration” tab is used to
specify information about a job before it is submitted. This can include
the computing resource to use, SLURM [19] configurations, and data to
upload. Once configured, jobs can be submitted by clicking the “Submit
Job“ button as seen in Fig. 2. Live updates on jobs are provided through
the “Your Job Status” tab, letting each user know when their job goes
through each step of the CyberGIS-Compute architecture: the job queue,
registered with the computing resource, started, and finished. The tab
also notifies the user when the job has completed and displays an excerpt
from the job’s logs.

After a job completes, users are able to fetch the results using the

Fig. 2. A screenshot of the CyberGIS-Compute SDK’s interface in a Jupyter notebook [17].

A.C. Michels et al.

SoftwareX 26 (2024) 101691

4

“Download Job Results” tab of the GUI. Users can download all of the
contents of the job result folder or just sub-folders like the full SLURM
logs. Once a user clicks the “Download” button, CyberGIS-Compute
initiates a Globus [21] file transfer from a HPC resource to the user’s
file system. When the download completes, the path to the downloaded
data is displayed on the GUI and provided to the user through the
‘recentDownloadPath‘ attribute of the CyberGIS-Compute object. This
allows users to develop notebooks that submit computationally inten
sive jobs through CyberGIS-Compute and then perform further analysis
on the results of the job locally.

The GUI has two tabs dedicated to interacting with jobs that have
previously been executed. The “Your Jobs” tab keeps a record of each
user’s previously submitted jobs, allowing users to review and download
older information. Jobs are listed along with metadata describing the
underlying model, parameters, and other information about the model.
Each job has a “Restore” button that allows users to populate the GUI
with that job’s information and re-download the results. The “Past Re
sults” tab lists all of the previous result folders available with a
“Download” button for convenience. These functionalities were devel
oped so that users could access the configuration and results of jobs in
the event of a browser refresh or kernel disconnection and is particularly
useful for long-running jobs because users can now close their browsers
and come back to check the results.

3. Illustrative example

In this section we illustrate how a model is contributed and used in
CyberGIS-Compute. At the beginning of the COVID-19 pandemic, Kang
et al. 2020 [16] implemented a model for calculating spatial accessi
bility to hospital ventilators in the state of Illinois, USA. Spatial acces
sibility is an interdisciplinary field of research that explores how access
to resources and services varies across space. This research is conducted
across fields including economics, geography, and public health to study
access to health care [22,23], food [24], electric vehicle charging sta
tions [25], and more. Spatial accessibility analyses depend on mobility
and travel-time information that is computationally intensive to
compute which has forced many researchers to limit their analysis to
small geographic areas such as a city or several counties. Being an
interdisciplinary field facing challenges due to limited computational
resources makes spatial accessibility an excellent candidate for
CyberGIS-Compute. Kang et al. wanted to share their workflow on
CyberGISX science gateway to ensure reproducibility, but because the
computational intensity of the workflow was too great for the science
gateway, were forced to make a simplified version of the model which
only considers the city of Chicago, IL, USA.

Using the Jupyter notebook shared on Github, we were able to create
a CyberGIS-Compute model for the workflow. First, we converted the
Jupyter notebook to a Python script using the Jupyter nbconvert tool
[17]. Second, we needed to make minor changes to the code so that the
outputs of the script were put into a results folder so that the data can be
retrieved. Third, we needed to specify a “manifest.json” file which
provides metadata and describes how to execute the model with
CyberGIS-Compute.

The manifest.json for the COVID-19 spatial accessibility model is
shown in Listing 1. The first three entries (name, description, estimated
runtime) are to inform end-users about the model. The middle section of
the manifest specifies how the model will be run. The “container” de
scribes the name of an Apptainer image, from a curated list of images, in
which the analysis will execute. The “execution_stage” is one of three
stages that can be specified in a CyberGIS-Compute model (pre-pro
cessing, execution, and post-processing) and describes commands to be
executed in each stage. In this case, the only stage is the execution of the
Python script “main.py”. Next, “slurm_input_rules” describe options
which are provided to end-users to specify the maximum amount of
time, CPUs, and memory that the model will be allocated. The
“require_upload_data” tells CyberGIS-Compute that users do not need to

upload any data to perform the analysis. Lastly, the “supported_hpc”
gives a list of HPC resources on which the model can be executed
(ROGER [26] at the University of Illinois Urbana-Champaign, Expanse
[27], and Anvil [28]) while the “default_hpc” tells CyberGIS-Compute to
use Expanse if no other HPC is given.

Once the model is entered into the database for a Core server, it is
available for end-users to run. Each model is entered into the Core
server’s database with a short name, in this case “covid-access”. When a
user connects to our CyberGIS-Compute server, launches the GUI, and
selects the “covid-access” model from the “Job Template” dropdown, the
GUI is populated with information from the manifest as shown in Fig. 1.
The description of the model and estimated runtime are filled in and the
appropriate sliders are made available under the “Slurm Computing
Configurations” section. However, an end-user is able to rely on the
default values provided by the model creator and simply click “Submit
Job” after the model is selected in the dropdown.

1 {
2 “name”: “COVID-19 spatial accessibility”,
3 “description”: “Calculates travel-time from hospitals and then calculates spatial

accessibility to hospital beds for the entire state of Illinois. We calculate travel-time and
aggregate spatial accessibility in parallel using 4 CPUs and about 64–80GB of memory.
Read about the paper here: https://doi.org/10.1186/s12942–020–00,229-x”,

4 “estimated_runtime”: “~20 min”,
5 “container”: "cybergisx-0.4″,
6 “execution_stage”: “MPLBACKEND=Agg python main.py”,
7 “slurm_input_rules”: {
8 “time”: {
9 “max”: 180,
10 “min”: 60,
11 “default_value”: 120,
12 “step”: 1,
13 “unit”: “Minutes”
14 },
15 “cpu_per_task”: {
16 “max”: 4,
17 “min”: 4,
18 “default_value”: 4,
19 “step”: 1
20 },
21 “memory_per_cpu”: {
22 “max”: 20,
23 “min”: 16,
24 “default_value”: 20,
25 “step”: 1,
26 “unit”: “GB”
27 }
28 },
29 “require_upload_data”: false,
30 “supported_hpc”: [“roger_community”, “expanse_community”,

“anvil_community“],
31 “default_hpc”: “expanse_community”
32 }

Listing 1. The manifest for the COVID-19 Spatial Accessibility model that
implements the workflow from Kang et al. 2022 [29].

Once a job is submitted, the GUI changes tabs to the “Your Job
Status” tab which provides live updates on the running job as seen in
Fig. 3. The information just below “Your Job is Here!” provides infor
mation on the parameters sent to the Core server including the SLURM
parameters from the GUI’s sliders. The “job events” section of the page
tracks the job as it reaches the Core server’s queue, the model’s code is
sent to the HPC, executes on the HPC, and ends. After the job ends, the
“job logs” portion of the page displays a short excerpt of the SLURM logs.
To obtain the full logs and any job outputs, the “Download Job Result”
tab provides a dropdown allowing users to choose between downloading
the whole folder or sub-directories and a “Download” button which
initiates a Globus transfer bringing the results from the HPC to the
Jupyter environment where the CyberGIS-Compute SDK is being
executed.

While running on the HPC center, the COVID-19 Spatial Accessibility
model calculates driving-time catchments around each hospital in the

A.C. Michels et al.

SoftwareX 26 (2024) 101691

5

dataset using OpenStreetMap [30] data and the Python OSMnx package
[31]. These calculations are performed in parallel thanks to the Python
multiprocessing library, a part of the standard library. Then, the model
uses the travel-time catchments to calculate spatial accessibility using
the Enhanced Two-Step Floating Catchment Area (E2SFCA) [32]
method. This results in a metric for each spatial unit (in this case a
hexagonal grid [29]) which can be interpreted as a ratio of hospital
ventilators to people. The pattern of spatial accessibility to hospital
ventilators calculated by the model is mapped in Fig. 4. The results from
this analysis can be downloaded by users using the “Download Job
Results” tab of the GUI. Additional use-cases of CyberGIS-Compute can
be viewed on our Model Gallery or the CyberGISX’s CyberGIS-Compute
Showcase community page.

4. Impact

CyberGIS-Compute has enabled domain experts to create and share
complex computational workflows. Lyu et al. 2022 utilized CyberGIS-
Compute to run a hybrid deep learning model on remote sensing data
using GPUs Bridges-2 HPC resource and retrieve results, all from a
notebook based on CyberGIS-Jupyter [33]. Lyu et al. noted that using
CyberGIS-Compute “makes the data fusion workflow scalable and
reproducible, and accessible by domain experts who may have limited
programming background and cyberinfrastructure knowledge” [33]. In
addition to enabling new research questions and directions,
CyberGIS-Compute has been used to make an already published
computationally intensive workflow available [29] and hydrological
models have been developed as a collaboration with HydroShare [6].

Beyond this work, there are a number ongoing projects utilizing
CyberGIS-Compute and we believe that the lowered technical barriers
will enable domain experts to analyze and model geospatial phenomena
at unprecedented spatio-temporal scales.

CyberGIS-Compute has been installed and used on the CyberGIS-
Jupyter for Water [34] and I-GUIDE Platform [35] science gateways.
These gateways support research and education in the geosciences and
beyond. Beyond these two gateways, we have been working to promote
our software and reach a broader audience. We have given a talk on the
work at the Gateways conference [12], hosted a demo at the SIGSPA
TIAL conference [16], gave two invited talks for the I-GUIDE Virtual
Consulting Office series [36,37], ran a workshop at the 2023 Annual
Meeting of the American Association of Geographers (AAG) [38], and
conducted a tutorial at the Accelerating Computing for Emerging Sci
ences (ACES) 2023 Workshop [39]. These various workshops and talks
have yielded multiple collaborations, growing our list of supported
models. Both the Core and SDK are available on Github and the SDK is
available to download on PyPi, so anyone with a JupyterHub is able to
deploy their own Core server, with their own set of models, and connect
it to any HPC resource that supports SLURM.

Our work has also inspired a similar project, CyberGIS-Cloud for
managing workflows on commercial cloud [40]. Whereas
CyberGIS-Compute is focused on providing a simple interface for
executing geospatial workflows on HPC resources, CyberGIS-Cloud is
working to provide users with access to cloud storage and clusters using
Hadoop [41], Spark [42], and Dask [43]. Together, these projects
continue to enable researchers and educators to harness both HPC and
cloud resources.

Fig. 3. The “Your Job Status” tab of the CyberGIS-Compute Graphical User Interface (GUI) after the “covid-access” (COVID-19 Spatial Accessibility) job has been
submitted and finished running.

A.C. Michels et al.

SoftwareX 26 (2024) 101691

6

5. Conclusions

In this paper, we describe CyberGIS-Compute, a middleware toolkit
for democratizing scalable geocomputation. The software comprises two
key components, a Typescript server which executes code on HPC re
sources and an SDK with graphical user interface written in Python.
CyberGIS-Compute lowers the barriers to utilizing HPC by providing a
streamlined model contribution mechanism and a simplified graphical
user interface for executing computation jobs while providing a frame
work for sharing reproducible scientific workflows. The software has a
growing user-base and library of models and has already inspired similar
work aimed at democratizing access to advanced CI.

CRediT authorship contribution statement

Alexander C. Michels: Writing – review & editing, Writing – orig
inal draft, Validation, Software, Methodology, Investigation, Concep
tualization. Anand Padmanabhan: Writing – review & editing,
Validation, Supervision, Project administration, Methodology, Investi
gation, Conceptualization. Zimo Xiao: Software, Methodology, Inves
tigation, Conceptualization. Mit Kotak: Software, Methodology,
Investigation, Conceptualization. Furqan Baig: Validation, Software,
Methodology, Investigation. Shaowen Wang: Writing – review & edit
ing, Validation, Supervision, Software, Resources, Project administra
tion, Methodology, Investigation, Funding acquisition,
Conceptualization.

Fig. 4. The map of spatial accessibility to hospital ventilators calculated by the COVID-19 Spatial Accessibility model using CyberGIS-Compute.

A.C. Michels et al.

SoftwareX 26 (2024) 101691

7

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

This research is based in part on work supported by the U.S. National
Science Foundation (NSF) under grant numbers 2118329, 2112356, and
2321070. The authors would like to thank the dedicated personnel at
several HPC centers and NSF ACCESS who support the HPC resources
utilized by CyberGIS-Compute. We would also like to thank the many
alpha and beta testers in the HydroShare and I-GUIDE communities who
helped us to refine and improve the software.

References

[1] Wang S. A CyberGIS framework for the synthesis of cyberinfrastructure, GIS, and
spatial analysis. Ann Assoc Am Geogr 2010;100(3):535–57. https://doi.org/
10.1080/00045601003791243. Jun.

[2] Merkel D. Docker: lightweight linux containers for consistent development and
deployment. Linux J 2014;2014(239):2.

[3] Kurtzer GM, Sochat V, Bauer MW. Singularity: scientific containers for mobility of
compute. PLoS ONE 2017;12(5):e0177459. https://doi.org/10.1371/journal.
pone.0177459. May.

[4] Apache Foundation (2024). Apache Airflow, v2.8.2 [Computer software]. Github.
Retrieved March 4, 2024, from https://github.com/apache/airflow.

[5] Baker M. 1,500 scientists lift the lid on reproducibility. Nature 2016;533(7604).
https://doi.org/10.1038/533452a. Art. no. 7604, May.

[6] Horsburgh JS, et al. HydroShare: sharing diverse environmental data types and
models as social objects with application to the hydrology domain. JAWRA J Am
Water Resour Assoc 2016;52(4):873–89. https://doi.org/10.1111/1752-
1688.12363.

[7] Shook E, Vento DD, Zonca A, Wang J. GISandbox: a science gateway for geospatial
computing. In: Proceedings of the Practice and Experience on Advanced Research
Computing, in PEARC ’18. New York, NY, USA: Association for Computing
Machinery; 2018. p. 1–7. https://doi.org/10.1145/3219104.3219150. Jul.

[8] Yin D, et al. CyberGIS-Jupyter for reproducible and scalable geospatial analytics.
Concurr Comput Pract Exp 2019;31(11):e5040. https://doi.org/10.1002/
cpe.5040.

[9] Calyam P, et al. Measuring success for a future vision: defining impact in science
gateways/virtual research environments. Concurr Comput Pract Exp 2021;33(19):
e6099. https://doi.org/10.1002/cpe.6099.

[10] Shook E, Bowlick F, Padmanabhan A, Kemp K. The hour of cyberinfrastructure
(hour of CI): early findings from pilot study to build cyber literacy for GIScience.
In: 2021 IEEE/ACM Ninth Workshop on Education for High Performance
Computing (EduHPC); 2021. p. 9–15. https://doi.org/10.1109/
EduHPC54835.2021.00007. Nov.

[11] Yin D, Liu Y, Padmanabhan A, Terstriep J, Rush J, Wang S. A CyberGIS-Jupyter
framework for geospatial analytics at scale. In: Proceedings of the Practice and
Experience in Advanced Research Computing 2017 on Sustainability, Success and
Impact. New York, NY, USA: Association for Computing Machinery; 2017. p. 1–8.
https://doi.org/10.1145/3093338.3093378. in PEARC17Jul.

[12] Michels A, Padmanabhan A, Li Z, Wang S. Towards reproducible research on
CyberGISX with Lmod and easybuild. Zenodo 2021. https://doi.org/10.5281/
zenodo.5569659. Oct. 14.

[13] Michels A, Padmanabhan A, Li Z, Wang S. EasyScienceGateway: a new framework
for providing reproducible user environments on science gateways. Concurr
Comput Pract Exper 2024;36(4):e7929. https://doi.org/10.1002/cpe.7929.

[14] Boerner T, Deems S, Furlani T, Knuth S, Towns J. ACCESS: advancing innovation:
NSF’s advanced cyberinfrastructure coordination ecosystem: services & support.
In: Proceedings of the Practice and Experience on Advanced Research Computing.
Association for Computing Machinery; July 2023. p. 173–6. https://doi.org/
10.1145/3569951.3597559. PEARC ’23.

[15] Padmanabhan A, Xiao Z, Vandewalle R, Michels A, Wang S. Enabling
computationally intensive geospatial research on CyberGIS-Jupyter with CyberGIS-
compute. Zenodo 2021;14. https://doi.org/10.5281/zenodo.5570056.

[16] Padmanabhan A, et al. CyberGIS-compute for enabling computationally intensive
geospatial research. In: Proceedings of the 3rd ACM SIGSPATIAL International
Workshop on APIs and Libraries for Geospatial Data Science. Association for
Computing Machinery; Nov. 2021. p. 1–2. https://doi.org/10.1145/
3486189.3490017. in SpatialAPI ’21.

[17] Kluyver T, et al. Jupyter notebooks – a publishing format for reproducible
computational workflows. In: Loizides F, Schmidt B, editors. Positioning and power
in academic publishing: players, agents and agendas; 2016. p. 87–90.

[18] Honggao L, Wang S, Perez L, Chakravorty D, Cockerill T. ACES - accelerating
computing for emerging sciences. Comput Syst 2023. https://hprc.tamu.edu/aces/.

[19] Yoo AB, Jette MA, Grondona M. SLURM: simple linux utility for resource
management. In: Feitelson D, Rudolph L, Schwiegelshohn U, editors. Job
scheduling strategies for parallel processing. Berlin, Heidelberg: Springer; 2003.
p. 44–60. https://doi.org/10.1007/10968987_3. Lecture Notes in Computer
Science.

[20] OpenJS Foundation (2024). Express, v4.18.2 [Computer software]. Github.
Retrieved March 4, 2024, from https://github.com/expressjs/express.

[21] Foster I, Kesselman C. Globus: a metacomputing infrastructure toolkit. Int J
Supercomput Appl High Perform Comput 1997;11(2):115–28. https://doi.org/
10.1177/109434209701100205. Jun.

[22] Kang J-Y, Farkhad BF, Chan MS, Michels A, Albarracin D, Wang S. Spatial
accessibility to HIV testing, treatment, and prevention services in Illinois and
Chicago, USA. PLoS ONE 2022;17(7):e0270404. https://doi.org/10.1371/journal.
pone.0270404. Jul.

[23] Park J, Michels A, Lyu F, Han SY, Wang S. Daily changes in spatial accessibility to
ICU beds and their relationship with the case-fatality ratio of COVID-19 in the state
of Texas, USA. Appl Geogr 2023:102929. https://doi.org/10.1016/j.
apgeog.2023.102929. Mar.

[24] Kang J-Y, Lee S. Exploring food deserts in Seoul, South Korea during the COVID-19
pandemic (from 2019 to 2021). Sustainability 2022;14(9). https://doi.org/
10.3390/su14095210. Art. no. 9, Jan.

[25] Park J, Kang J-Y, Goldberg DW, Hammond TA. Leveraging temporal changes of
spatial accessibility measurements for better policy implications: a case study of
electric vehicle (EV) charging stations in Seoul, South Korea. Int J Geogr Inf Sci
2021:1–20. https://doi.org/10.1080/13658816.2021.1978450. Sep.

[26] Wang S. CyberGIS and spatial data science. GeoJournal 2016;81(6):965–8.
[27] Strande S, et al. Expanse: computing without boundaries: architecture,

deployment, and early operations experiences of a supercomputer designed for the
rapid evolution in science and engineering. Practice and experience in advanced
research computing, in pearc ’21. New York, NY, USA: Association for Computing
Machinery; Jul. 2021. p. 1–4. https://doi.org/10.1145/3437359.3465588.

[28] Song C, et al. Anvil - system architecture and experiences from deployment and
early user operations. Practice and experience in advanced research computing, in
pearc ’22. New York, NY, USA: Association for Computing Machinery; Jul. 2022.
p. 1–9. https://doi.org/10.1145/3491418.3530766.

[29] Kang J-Y, et al. Rapidly measuring spatial accessibility of COVID-19 healthcare
resources: a case study of Illinois, USA. Int J Health Geogr 2020;19(1):1–17.

[30] Haklay M, Weber P. OpenStreetMap: user-generated street maps. IEEE Pervas
Comput Oct. 2008;7(4):12–8. https://doi.org/10.1109/MPRV.2008.80.

[31] Boeing G. OSMnx: new methods for acquiring, constructing, analyzing, and
visualizing complex street networks. Comput Environ Urban Syst 2017;65:126–39.
https://doi.org/10.1016/j.compenvurbsys.2017.05.004.

[32] Luo W, Qi Y. An enhanced two-step floating catchment area (E2SFCA) method for
measuring spatial accessibility to primary care physicians. Health Place 2009;15
(4):1100–7. https://doi.org/10.1016/j.healthplace.2009.06.002.

[33] Lyu F, Yang Z, Xiao Z, Diao C, Park J, Wang S. CyberGIS for scalable remote sensing
data fusion. In: Practice and Experience in Advanced Research Computing. New
York, NY, USA: Association for Computing Machinery; Jul. 2022. p. 1–4. https://
doi.org/10.1145/3491418.3535145. in PEARC ’22.

[34] Li Z, Michels A, Padmanabhan A, Nassar A, Tarboton DG, Wang S. CyberGIS-
Jupyter for water - an open geospatial computing platform for collaborative water
research. In: AGU Fall Meeting 2022, December; 2022. https://ui.adsabs.harvard.
edu/abs/2022AGUFMIN32A.05L.

[35] Institute for geospatial understanding through an integrative discovery
environment (I-GUIDE). I-GUIDE Platform 2024. https://iguide.illinois.edu/pl
atform/. 2023 [accessed 6 March].

[36] Institute for geospatial understanding through an integrative discovery
environment (I-GUIDE). I-GUIDE VCO: CyberGIS-Comput: Geospat Middlew
Simplify Access High-Perform Comput 2022. https://iguide.illinois.edu/i-guide-vc
o/virtual-consulting-office-cybergis-compute/ [accessed 6 March 2024].

[37] Institute for geospatial understanding through an integrative discovery
environment (I-GUIDE). I-GUIDE VCO: CyberGIS-Comput: Enabl Simplif Access
High Perform Comput Geospat Comput 2022. https://iguide.illinois.edu/i-guide
-vco/i-guide-vco-cybergis-compute-part-2/ [accessed 6 March 2024].

[38] Institute for Geospatial Understanding through an Integrative Discovery
Environment (I-GUIDE). In: AAG 2023 Symposium on Harnessing the Geospatial
Data Revolution for Sustainability Solutions; 2023. https://iguide.illinois.edu/aag-
2023-symposium-on-harnessing-the-geospatial-data-revolution-for-sustainabilit
y-solutions/ [accessed 6 March 2024].

[39] Texas A&M high performance research computing. In: ACES Workshop; 2023.
https://hprc.tamu.edu/aces/aces_workshop.html [accessed 6 March 2024].

[40] Baig F, et al. CyberGIS-cloud: a unified middleware framework for cloud-based
geospatial research and education. Practice and experience in advanced research
computing. New York, NY, USA: Association for Computing Machinery; 2022.
p. 1–4. https://doi.org/10.1145/3491418.3535148. in PEARC ’22Jul.

A.C. Michels et al.

https://doi.org/10.1080/00045601003791243
https://doi.org/10.1080/00045601003791243
http://refhub.elsevier.com/S2352-7110(24)00062-1/sbref0002
http://refhub.elsevier.com/S2352-7110(24)00062-1/sbref0002
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459
https://github.com/apache/airflow
https://doi.org/10.1038/533452a
https://doi.org/10.1111/1752-1688.12363
https://doi.org/10.1111/1752-1688.12363
https://doi.org/10.1145/3219104.3219150
https://doi.org/10.1002/cpe.5040
https://doi.org/10.1002/cpe.5040
https://doi.org/10.1002/cpe.6099
https://doi.org/10.1109/EduHPC54835.2021.00007
https://doi.org/10.1109/EduHPC54835.2021.00007
https://doi.org/10.1145/3093338.3093378
https://doi.org/10.5281/zenodo.5569659
https://doi.org/10.5281/zenodo.5569659
https://doi.org/10.1002/cpe.7929
https://doi.org/10.1145/3569951.3597559
https://doi.org/10.1145/3569951.3597559
https://doi.org/10.5281/zenodo.5570056
https://doi.org/10.1145/3486189.3490017
https://doi.org/10.1145/3486189.3490017
http://refhub.elsevier.com/S2352-7110(24)00062-1/sbref0017
http://refhub.elsevier.com/S2352-7110(24)00062-1/sbref0017
http://refhub.elsevier.com/S2352-7110(24)00062-1/sbref0017
https://hprc.tamu.edu/aces/
https://doi.org/10.1007/10968987_3
https://github.com/expressjs/express
https://doi.org/10.1177/109434209701100205
https://doi.org/10.1177/109434209701100205
https://doi.org/10.1371/journal.pone.0270404
https://doi.org/10.1371/journal.pone.0270404
https://doi.org/10.1016/j.apgeog.2023.102929
https://doi.org/10.1016/j.apgeog.2023.102929
https://doi.org/10.3390/su14095210
https://doi.org/10.3390/su14095210
https://doi.org/10.1080/13658816.2021.1978450
http://refhub.elsevier.com/S2352-7110(24)00062-1/optwBurU4nssz
https://doi.org/10.1145/3437359.3465588
https://doi.org/10.1145/3491418.3530766
http://refhub.elsevier.com/S2352-7110(24)00062-1/sbref0020
http://refhub.elsevier.com/S2352-7110(24)00062-1/sbref0020
https://doi.org/10.1109/MPRV.2008.80
https://doi.org/10.1016/j.compenvurbsys.2017.05.004
https://doi.org/10.1016/j.healthplace.2009.06.002
https://doi.org/10.1145/3491418.3535145
https://doi.org/10.1145/3491418.3535145
https://ui.adsabs.harvard.edu/abs/2022AGUFMIN32A.05L
https://ui.adsabs.harvard.edu/abs/2022AGUFMIN32A.05L
https://iguide.illinois.edu/platform/
https://iguide.illinois.edu/platform/
https://iguide.illinois.edu/i-guide-vco/virtual-consulting-office-cybergis-compute/
https://iguide.illinois.edu/i-guide-vco/virtual-consulting-office-cybergis-compute/
https://iguide.illinois.edu/i-guide-vco/i-guide-vco-cybergis-compute-part-2/
https://iguide.illinois.edu/i-guide-vco/i-guide-vco-cybergis-compute-part-2/
https://iguide.illinois.edu/aag-2023-symposium-on-harnessing-the-geospatial-data-revolution-for-sustainability-solutions/
https://iguide.illinois.edu/aag-2023-symposium-on-harnessing-the-geospatial-data-revolution-for-sustainability-solutions/
https://iguide.illinois.edu/aag-2023-symposium-on-harnessing-the-geospatial-data-revolution-for-sustainability-solutions/
https://hprc.tamu.edu/aces/aces_workshop.html
https://doi.org/10.1145/3491418.3535148

SoftwareX 26 (2024) 101691

8

[41] Borthakur D. The hadoop distributed file system: architecture and design. Hadoop
Proj Website 2007;11(2007):21.

[42] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, and I. Stoica, “Spark: cluster
computing with working sets,” in 2nd USENIX workshop on hot topics in cloud
computing (HotCloud 10), 2010.

[43] Rocklin M. Dask: parallel computation with blocked algorithms and task
scheduling. In: Proceedings of the 14th Python in Science Conference (SciPy 2015);
2015.

A.C. Michels et al.

http://refhub.elsevier.com/S2352-7110(24)00062-1/sbref0040
http://refhub.elsevier.com/S2352-7110(24)00062-1/sbref0040
http://refhub.elsevier.com/S2352-7110(24)00062-1/sbref0042
http://refhub.elsevier.com/S2352-7110(24)00062-1/sbref0042
http://refhub.elsevier.com/S2352-7110(24)00062-1/sbref0042

	CyberGIS-Compute: Middleware for democratizing scalable geocomputation
	1 Motivation and significance
	2 Software description
	2.1 CyberGIS-Compute Core
	2.2 CyberGIS-Compute SDK

	3 Illustrative example
	4 Impact
	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

