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ARTICLE INFO ABSTRACT
Keywords: As a decisive part in the success of Mobility-as-a-Service (MaaS), spatio-temporal dynamics
Open-world event modeling on mobility networks is a challenging task particularly considering scenarios where

Spatio-temporal dynamics
Human mobility network
Graph neural networks

open-world events drive mobility behavior deviated from the routines. While tremendous progress
has been made to model high-level spatio-temporal regularities with deep learning, most, if not all
of the existing methods are neither aware of the dynamic interactions among multiple transport
modes on mobility networks, nor adaptive to unprecedented volatility brought by potential open-
world events. In this paper, we are therefore motivated to improve the canonical spatio-temporal
network (ST-Net) from two perspectives: (1) design a heterogeneous mobility information
network (HMIN) to explicitly represent intermodality in multimodal mobility; (2) propose a
memory-augmented dynamic filter generator (MDFG) to generate sequence-specific parameters in
an on-the-fly fashion for various scenarios. The enhanced event-aware spatio-temporal network,
namely EAST-Net, is evaluated on several real-world datasets with a wide variety and coverage of
open-world events. Both quantitative and qualitative experimental results verify the superiority
of our approach compared with the state-of-the-art baselines. What is more, experiments show
generalization ability of EAST-Net to perform zero-shot inference over different open-world events
that have not been seen.

1. Introduction

Mobility-as-a-Service (MaaS), as an emerging paradigm of transport service, seamlessly integrates multimodal mobility services
(e.g. public transport, ride-hailing, bike-sharing), which streamlines trip planning, ticketing (for users), operating optimization,
emergency response (for providers), and traffic management (for city managers). For a smooth operation of MaaS, spatio-temporal
dynamics modeling on multimodal mobility networks is indispensable. However, the existing methods either implicitly handle the
interactions between different modes of transportation or assume it to be time-invariant [1]. This task is even more challenging
in scenarios where open-world events (e.g., holiday, severe weather, epidemic) take place and deviate collective human mobility
significantly from routine behaviors (e.g., daily, weekday patterns). Moreover, as illustrated in Fig. 1, the impacts of different events
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Fig. 1. Time series histograms of citywide taxi and share bike demands in Washington DC from 24 Dec. 2015 to 31 Jan. 2016, during which Christmas, New Year, and
a major blizzard “Jonas” took place.

differ, e.g. taxi demand spiked on New Year’s eve but vanished at Christmas and during the blizzard, and the volatility brought to
each transport mode varied, e.g. recovery of share bike demand takes longer than the one of taxi after the blizzard.

To model such complex spatio-temporal dynamics, deep learning has been recently utilized to handle potential non-linearity
underlying the data [2-6], which is beyond the classical autoregressive moving average (ARMA) based time series models. While the
stationarity is not a prior assumption, most, if not all, of the deep learning-based spatio-temporal models are trained to fit general
patterns, such as sequential or periodic orders (e.g., daily, weekly). In the real-world context, these patterns could easily fail whenever
an open-world event takes place and causes sudden changes. By far, the volatility brought by open-world events is downplayed and
usually handled by simple rectifications, such as incorporating temporal covariates (e.g. time-of-day, day-of-week, whether-holiday)
as auxiliary input [7,8], adding a memory bank to reuse similar patterns in history [9,10]. These manipulations to a certain degree
bring time and holiday awareness, but they mainly help with the periodic and precedent parts and would still fail under more
extreme scenarios like unprecedented events (e.g. historic blizzard, COVID-19 pandemic). There is another line of research [11-13]
attempting to capture anomalous mobility tendency under events in an online fashion based on low-order Markov assumption and
fine-grained time slot setting. These practices are arguably circumventing the inherent difficulty, namely non-stationarity, of the task
instead of truly tackling it.

In this paper, we are motivated to tackle the identified twofold unawareness of the existing spatio-temporal networks, namely
intermodality-unaware and event-unaware, correspondingly via: (1) explicitly representing the dynamic interactions among multiple
modes on mobility networks; (2) intrinsically enhancing awareness and adaptivity of spatio-temporal models to various open-world
events, even including unprecedented ones. Specifically, we design a heterogeneous information network to build the intermodal
interactions into the widely adopted spatio-temporal modeling strategy; then leverage techniques of memory-augmented and dynamic
filter networks that encourage the model to learn to distinguish and generalize to diverse open-world event scenarios without relying
on external features. Based on the above two motivations, we propose an Event-Aware Spatio-Temporal Network (EAST-Net). Our
contributions are summarized as follows:

» We design a new heterogeneous mobility information network (HMIN) to explicitly represent intermodal interactions (or inter-
modality) for spatio-temporal dynamics modeling on mobility networks.

« We propose a novel memory-augmented dynamic filter generator (MDFG) to produce sequence-specific parameters on-the-fly,
intrinsically improving both event-awareness and adaptivity of spatio-temporal predictive models.

« We conduct a series of experiments on five real-world mobility datasets with impactful open-world events, and the results
quantitatively and qualitatively validate the adaptation and generalization capabilities of EAST-Net.

The remainder of this paper is organized as follows. Section 2 reviews related work within the scope of network-based spatio-
temporal forecasting and adaptation. Section 3 describes the necessary definitions and problem formulation of this work. Section 4
presents the details of each main component as well as our proposed model, followed by Section 5 with a series of research questions
for evaluating our method in open-world events. In Section 6, we discuss the implications, limitations and future directions of this
research.

2. Related work
2.1. Network-based spatio-temporal forecasting

The first line of related studies stems from the recent advancement of Graph Neural Networks (GNNs) [14,15]. Leveraging the
natural graph structure of spatial networks (e.g., road networks, mobility networks), network-based traffic forecasting was among the

first major applications using GNNs [16,4]. Upon development, researchers adopted the intuitive measurement of physical distance
between sensors to construct graph for GNN input. Then, it was found out that the pre-defined graph, based on empirical law (e.g., the
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First Law of Geography), was not necessarily the optimal topology structure to facilitate forecasting. Thus, the idea to parameterize
graph structure and jointly optimize with GNN was introduced into traffic forecasting [5,17,18]. This technique is known as graph
structure learning (GSL).

A similar trend, namely transitioning from empirical network definition to GSL, can be observed in other spatio-temporal fore-
casting applications. For example, for transportation demand forecasting, region-wise connectivity or functional similarity [19] was
substituted by learnable graph [20]; in infectious disease modeling, use of human mobility networks (e.g., origin-destination matrix)
[21] evolved to causal graph learning [22]. In some cases, there is even not grounded understanding about the underlying graph
structure in observations, such as pure time series [23,24], and spatio-temporal events [25], in which GSL plays an indispensable role.
Similarly, there is little prior knowledge that can be utilized to guide modeling of multimodal dynamics on mobility networks. In this
work, we take advantage of GSL to jointly represent intermodal and spatio-temporal dependencies on the proposed heterogeneous
mobility information network (HMIN).

2.2. Spatio-temporal adaptation

2.2.1. Spatial adaptation

While facilitating end-to-end GNN optimization to a certain task (i.e., forecasting), GSL brings the potential challenge of general-
ization. To be specific, the optimized graph structure is only suitable for forecasting tasks on the trained location. For this problem,
there is a recent line of research that aims to learn an adaptable graph structure from one or multiple source domains to a target
domain [26-28]. This problem is known as spatial adaptation, namely the generalization of GSL to unseen spatial domains. While the
work focus of this work is on the temporal adaptation, we also show the applicability of the proposed memory-augmented module
to this task.

2.2.2. Temporal adaptation

From the temporal perspective, forecasting is by nature an extrapolation problem. In contrast to interpolation [29], in which
the underlying data distribution is basically known, forecasting comes with more uncertainty that an unseen open-world event can
cause sudden and unannounced changes in the environment. In order to regain acceptable performance, the prediction model must
be able to detect, characterize, and adapt to such event with limited time and experience. This problem is well known as concept
drift adaptation [30,31]. Here we briefly summarize the existing solutions by employed techniques:

(1) Normalization: Non-stationary Transformer [32] is a good example in this category by transforming input time series into a
normal distribution.

(2) Re-training: DDG-DA [33] utilizes a drift detector to determine the time to retrain a new model with the most recent observations.

(3) Ensemble: some methods [34,35] pre-train a set of predictors or patterns and use a classifier to find the right match for prediction
under drift.

(4) Online/incremental learning [36]. Similarly to MemDA [37], our proposed method is built upon the last two categories by learn-
ing multiple prototypical spatio-temporal dynamics on mobility networks with memory bank and further generating dynamic
filter parameters on-the-fly to detect and adapt to open-world events respectively.

3. Preliminaries

In this section, we firstly formulate multimodal mobility nowcasting problem, then briefly revisit a standard solution, namely
spatio-temporal network (ST-Net), for this task.

It is noteworthy that throughout this paper we use the term set {modal, multimodal, intermodal, intermodality} particularly as
derivatives of mode of mobility, or of transportation, rather than modality of data as in common usage.

3.1. Problem definition

Given a specified spatio-temporal granularity, the time and space can be discretized into a set of equal-length time slots and
regions (not necessarily equal-area), respectively, denoted by 7 = {r,|t € (1,---,T)} and £ = {,|[n € (1,- - -, N)}. Considering there
are in total M modes of mobility, we can build a multimodal mobility tensor M € RT*NXC where C =2 - M if modeling the supply
and demand of multiple transport modes; C = M if modeling the visit volume of multiple travel purposes. Accordingly, multimodal
mobility nowcasting problem can be formulated as follows:

Given a-step consecutive observations in M, denoted by (X,_,, - - *,X;), where X € R¥*C, return the immediate expectations for
the next f-step, i.e. X,y,- - - X, +p)- Note that auxiliary temporal covariates can be available from time slot 7,_,,; to 7,4, denoted
by T,,, € R@*+HXV where v is total number of the covariates. Formally written as:

Xiprr o Xp=

1
argmax logP (X1, - XpyglX—gyro X T M
Xip1 Xt p

L‘OU)
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Fig. 2. Comparison of Abstract Structure between the Existing ST-Net with Rectifications (a) (b) and Proposed EAST-Net (c).

3.2. Spatio-temporal network

To solve the above problem, recent studies commonly exploit high-level spatio-temporal dependency in observations [3,4,1,23].
Particularly, convolutional and recurrent neural networks (e.g. CNN, GCN, TCN, RNN) are two typical submodules utilized to handle
the underlying dependencies over the space £ and time 7, respectively. This class of models arguably share a similar spatio-temporal
view, which prioritizes the first and second dimensions in (X,_,, .- - *,X;) € R®™N*C_ We term this modeling strategy Spatio-Temporal
Graph (STG), as demonstrated in Fig. 3, in which the third dimension of the observations is treated as features evolving on STG. We
further term models built on top of STG Spatio-Temporal Network (ST-Net). Without loss of generality, we combine GCN and RNN to
denote a ST-Net, which handles spatial dependency by a graph and temporal dependency in a recurrent form:

K
H=0(X % 0)=0() P*XW)) @
k=0
— ciomoidx® HO
u, = sigmoid([X;”, H_, 1 %50, +by)
r, = sigmoid (X", HY 1%, ©, +b,)
) )
C, =tanh(X", (r; 0H" )] % O + bc)
H'=u,0H" +(1-u)oC,

3

Equation (2) defines the basic graph convolution operation *¢, which takes input X € RN*P and returns H € RN*9 given a graph
topology matrix ? € RV*N (P is its normalized form), approximation order K, and trainable parameters ® € R(K+DxrX¢_ Equation
(3) defines an extended version of GRU (a form of RNN), namely GCRU, with matrix multiplications replaced by graph convolutions
(Equation (2)). It is noteworthy that DCGRU [4] can be seen as a special form of GCRU by restricting P to be random walk normalized
transition matrix and performing bidimensional graph diffusion. Then, stacking multiple layers (denoted by /) of GCRU forms encoder
and decoder of a ST-Net, abbreviated as ST-Enc/ST-Dec in Fig. 2.

Besides, as illustrated in Fig. 2a, temporal covariates can be used as auxiliary input [7,8] to equip ST-Net with time and holiday
awareness. In this case, XEO) = [X,,T:], where [,] denotes a concatenation operation and T; is the linear projected representation of
T,,, at 7,. Another rectification for ST-Net (demonstrated in Fig. 2b) attaches an external memory bank [9,10] to the decoder such
that some typical spatio-temporal patterns can be stored for reuse. This memory is implemented by a parameter matrix M € R"*D,
where m and d denote the total number of memory records and dimension of each one. Before making the final output, decoder
makes a query to M for find similar representations, which is implemented by attention mechanism [38,39]. Formally,

=)
Q,=H, Wy + bQ
¢ th*MU]
J 2;'”:1 e@r+MLj] 4)

m

V=) ¢; - MIDWy + by
j=1
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Fig. 3. Comparison between Spatio-Temporal Graph (STG) and Heterogeneous Mobility Information Network (HMIN) for Multimodal Mobility Modeling.
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+

The obtained vector V can be reshaped back and concatenated with H;” for output, H;om) = [Hil),V].

where Q, € R” denotes the query vector projected from flattened H,"; ¢ ; is the attention score corresponding to j-th memory record.

4. Methodology

In this section, we elaborate the motivations and techniques for improving ST-Net, and present Event-Aware Spatio-Temporal
Network (EAST-Net) as a more adaptive framework for multimodal mobility nowcasting.

4.1. Heterogeneous mobility information network

As presented in Fig. 3, STG, the fundamental of ST-Net, prioritizes spatio-temporal modeling while restricting all features (i.e.
mobility modes) to evolve together on the fixed STG. We argue that this spatio-temporal view restricts the modeling of dynamic
interactions among different modes of mobility, which is in fact the operating mechanism of MaaS. As demonstrated in Fig. 1, an
open-world event may impact different transport modes variously, which confirms the necessity for intermodality modeling. Thus,
we are motivated to design a new underlying structure, i.e. Heterogeneous Mobility Information Network (HMIN), to jointly represent
intermodal interaction and spatio-temporal dependency.

As illustrated in Fig. 3, HMIN is defined as G = (V5, U V,5, E5p U Epp U Egpno U Ergy U o), where Vo, = {ny,- - -y} and
Vo = {H1,- - -, iy } denote node set of regions and mobility modes, respectively; &, €,.5 Epmos Ergps Er-mo denote five edge sets
for the relations in region-to-region, mode-to-mode, region-to-mode, time-to-region, time-to-mode. By this definition, the intermodal
relationship and its dynamicity can be represented by £,,, and &,,,,; and the task of multimodal mobility nowcasting is reformulated
as a link prediction task for edge set &, (|€p. ol = N - C) from 7, to 7,5

Here we propose a simple yet generic framework to encode-decode HMIN by applying handy GCRU in a similar fashion to ST-Net.
Denoting the framework of ST-Enc/ST-Dec (GCRU in multi-layer) as H,, - - -, H,, 3 = GCRUgyc.pec(X/—q+1- * * *» X/), processing of HMIN

can be decomposed into two views (i.e. spatial and intermodal) followed by a stepwise fusion layer, formally denoted by:

HOP ... g9 = gcru“? Kigr1r X))

t+1’ >TNt+p Enc-Dec
(mo) (mo) _ (mo) T T
Hr+1 " .’Ht+ﬁ - GCRUEnc-Dec(Xt—a+1" X)) (5

KXo = o(HPW,, HT)

t+e " T outTTt4g

where € € (1, - - -, ) denotes the step index within horizon f; Hgi’g € RN%4 and Hfﬂ? € R“*4 denote spatial and modal embeddings
on V, and V,, at time slot 7, respectively; W,,, € R denotes a parameter matrix to fuse the node embeddings for link
generation. For simplicity, we denote this framework by HMINet (Equation (5)) and consider it to be a general case of ST-Net, which
only takes the spatial view and let W,,, € R9C, HEZ’;’) =I,. Essentially, edge sets £, and £,,, representing spatial and intermodal
dependencies, are handled by graph convolution in each domain; unidirectional temporal edges &, ;, and &,,,, are encoded by the
recurrent structure; HMINet learns the mapping from a-step to f-step in edge set &, ,,,-

4.2. Memory-augmented dynamic filter generator

Although enhancing ST-Net in an intermodality-aware way, HMINet introduces extra parameters by approximately same amount
that ST-Net has. To control the model size and, more importantly, empower it to be aware of and adaptive to various scenarios, we
propose a novel Memory-augmented Dynamic Filter Generator (MDFG).
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Fig. 4. Framework of EAST-Net: (1) Input Multimodal Mobility Tensor and Temporal Covariates; (2) Encode with Heterogeneous Mobility Information Network in
Two Pyramidal GCRU Branches; (3) Query Memory-augmented Dynamic Filter Generator to Produce Sequence-specific Graph Convolution Kernels; (4) Decode with
GCRU and Generate Links.

MDFG is motivated by a line of research on dynamic filter networks (DFN) [40-42], which have been mainly studied on con-
volutional kernels for image and video-related tasks. The core idea behind DFN is instead of sharing a same trainable filter for all
samples in a dataset, dynamically generating filters conditioned on an input sample, which by nature increases the flexibility and
adaptivity of model. In light of DFN, we argue that the indistinguishability between normal and event scenarios roots in the way that
a same set of parameters (e.g. ' =[0,,0,,0] in Equation (3)) is shared for all observational sequences (X,_,, +1-" - X,) by vanilla
ST-Net. In other words, parameters in ST-Net are sequence-agnostic. We thereby utilize the idea of DFN and further put parameters
conditioned on a plugin memory bank M,,,, € R™?P to encourage discovery of high-level mobility prototypes, which are repre-
sentations incorporating spatial, temporal, and multimodal knowledge. To be specific, M,,,, takes concatenated node embeddings
[HSS” ),Hgm")] € RW+C)X4 a5 a query and returns a reconstructed prototype vector V,,,, € R, which further passes through a DFN to

produce momentary filters [G)fs" ), (95'"0)] for GCRUY? _and GCRU™ . This interaction between HMINet and MDFG occurs in an

Enc-Dec Enc-Dec’
on-the-fly manner, which generates sequence-specific parameters (denoted by ©,). Formally,

—(sp) —(mo)
Q =[H, H "Wy+by
th*MmubUJ
¢j - Z;'n—] eQr*MmabUJ
i m ©
Vinob = Z ¢j “M,,050/]
=1

@t = [G)ESP)’QEMO)] = /((p(/(vmob)))

where f denotes a dynamic filter generation (DFG) layer, which can be implemented in various ways. Without loss of generality, we
utilize a linear projection in this case. ¢ denotes a filter normalization (FN) layer [42], used to normalize the generated parameters
and avoid gradient vanishing and exploding.

4.3. Open-world spatio-temporal network

Based on HMINet and MDFG, we further make three refinements to the framework of Event-Aware Spatio-Temporal Network (EAST-
Net), as illustrated in Fig. 4, which can be trained in an end-to-end fashion by minimizing a specified loss function using the standard
backpropagation.

+ Temporal covariates are fused stepwise for basic time and holiday awareness for both spatial and intermodal views, following the
common practice [9].

@

1+e

X0 _ X1e- T, ] ifee(l—a,---,0)
[X;+5’T:+E] B le € (1, o >ﬂ)
Then, XE?S is fed into HMINet (Equation (5)) as input.
* Pyramidal structure [8] is leveraged in GCRU encoders to help accelerate the training of HMINet and discover multi-level temporal
pattern for mobility prototype extraction. In a case by a factor of 2:
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Algorithm 1 EAST-Net.
Input: (X,_,, .- - X,) € M, T, € R@+/xv

> Lol

Parameter: M, € R, [ eRPXOlLwW,  eR>
Output: (X, * ‘,X1+p)

(5p0) py(mo-0)
4 1

, with zeros

Initialize M,,,,, fp . randomly; initialize H

1:
roj
2: Query MDFG for filter ©] and graphs PLr ), P,(m”) of Pyra—GCRUg“" ), Pyra-GCRUﬁm”) # Equation (6)
3: Embed and project T,,, to TP, T/ (")
4 X0 = (X, TP, X" = X _ T\ fore€(a—1,---,0)
5: for/=1,---,L do
6. fori=t—a+1,---,tdo
7 HO?D = Pyra-GCRU'” (HI, @] 7, POP)
ol mo) pgy(mo-l) gy (mo) (o

8 H""" = Pyra-GCRU" (H"", 0] ", P{"*)
9:  end for
10: end for
11: Update [Hﬁ’\‘” "),Hi'""'”] for MDFG query
12: Initialize a zero tensor X,_; € RVX¢
13: fori=t+1,---,t+f do

. (sp0) _ 1(sp)7 5 (mo0) _ 1 (mo)
4 X0 =x_, T, XY = 1X] T )
15:  for/=1,---,L do

16: wa)'([“) - GCRU:SP)(HfSP'”, @lf(sp)! pl(sm)
17: H"*) = gcRU H"", 0!, P
18:  end for
19 X =o®H"W,H"T)
20: end for
1+1 D (D)
Hﬁ )= [H(2r Hy ] ®

* Adaptive edge sets &, £,,, are learnt in HMINet without making any prior assumptions on either intermodal or spatial relationship
[4,5]. Essentially, a pair of parameterized node embeddings are initialized for both GCRUE‘TC)_Dec and GCRUEE'I"IQDec to derive
corresponding topology for graph convolutions:

{ é(sp) = softmax(relu(E(sp)F;';p)))

i T ©
Emoy = softmax(relu(E(mo)F(mo)))

where embeddings E, ), F,, € RN>Hsp and E(n0)> Fono) € RC#mo are trained to learn the underlying region-to-region and mode-
to-mode dependencies within node sets V,, and V,,,; the derived topology is normalized to [0, 1] by softmax to simulate signal

diffusion in each domain (replacing P in Equation (2)).

5. Experiment
5.1. Datasets

To evaluate the proposed method, we collect five real-world datasets with different spatio-temporal scales/coverage and represent
multimodal mobility with transport modes on three city-level datasets (for New York City, Washington DC, Chicago in Table 1), and
with travel purpose on one state and one country-level dataset (for Florida and the United States in Table 2). Fig. 5 illustrates the
spatial granularity and temporal coverage of these datasets. Essentially, three city-level datasets (JONAS-{NYC, DC}, COVID-CHI)
are grid-based, while the other two (DORIAN-FL, COVID-US) is graph-structured by treating each county/state as a node and the

Blizzard Jonas Hurricane Dorian COVID 15t, 214, 31d wavyes

\' oo O
2019 2020 2021

FL US

Fig. 5. Spatio-Temporal Coverage of Five Collected Mobility Datasets with Open-World Events.
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Table 1

Summary of Three Open-World Datasets of Transport Mode.
Dataset JONAS-NYC JONAS-DC COVID-CHI
Span 2015/10/24 ~2016/1/31 2015/10/24 ~2016/1/31 2019/7/1 ~2020/12/31
Temporal 100 days by 30-minute 100 days by 1-hour 550 days by 2-hour
Spatial 16x8grid in05x05km | 9x12grid in0.5%0.5km 14x8grid in15x1.2km
Mobility {Demand, Supply} of {Taxi, Share Bike, Scooter*}
Event Thanksgiving, Christmas, New Year, M.L.K. Day, Holidays,

Blizzard Jonas (2016/1/22 ~ 24) COVID-19 Pandemic*

* Scooter trip data is only available in COVID-CHI set.

Table 2
Summary of Two Open-World Datasets of Travel Purpose.
Dataset DORIAN-FL COVID-US
Span 2019/6/11 ~2019/9/18 2019/11/14 ~2020/5/31
Temporal 100 days by 1-hour 200 days by 1-hour
Spatial 67 counties of Florida 50 states + DC
. Point-of-Interest visits of 10 types: {grocery store, retailer, transportation,
Mobility . . s a1
office, school, healthcare, entertainment, hotel, restaurant, service}
Event Independence & Labor Day, Holidays,
Hurricane Dorian (2019/9/1 ~ 3) COVID-19 Pandemic*

* COVID-19 pandemic outbroke in late March 2020; COVID-US set depicts the early stage
(first wave in April), and COVID-CHI set depicts the progression (first to third waves till
end of 2020) of the pandemic.

pairwise relationships within as edges. Similarly to the previous studies [3,1,13], trip records (e.g taxi, share bike) or POI visits are
processed as in/outflow (supply/demand) or visit volume to be further aggregated onto a given spatio-temporal granularity.

Particularly, each dataset is designed to cover a set of holidays and a historic event with big social impact, i.e. the winter storm
Jonas, hurricane Dorian, and COVID-19 pandemic. Following the common practice [8,7], we encode temporal covariates of each
time slot (i.e. time-of-day, day-of-week, month-of-year, whether-holiday) in an one-hot manner as temporal covariates input.

5.2. Settings

We chronologically split each dataset for training, validation, testing with a ratio of 7 : 1 : 2, such that the lengths of test sets
are roughly last 20 days for JONAS-{NYC, DC} and DORIAN-FL, 110 days for COVID-CHI, and 40 days for COVID-US. Lengths of
observational and nowcasting sequences are set to « = 8 and f = 8, respectively; number of GCRU layers L =2 with approximation
order K =3 and hidden dimension ¢ = 32; embedding dimensions for T, v’ =2, g, =20 and p,, = 3; mobility prototype
memory m =8 and D = 16. We provide a justification for the choices of some important hyper-parameters with Fig. 11.

For model training, batch size = 32; learning rate = 5 x 10~#; maximum epoch = 100 with an early stopper with a patience of 10;
MAE is chosen to be optimized using Adam. We implement EAST-Net with PyTorch and carry out experiments on a GPU server with
NVIDIA GeForce GTX 3080 Ti graphic cards. For evaluation, we adopt three commonly used metrics, namely Root Mean Square Error
(RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE).

5.3. Evaluations

In this section, to understand the performance of our approach, we develop a group of research questions and design a series of
experiments correspondingly:

(1) How does EAST-Net perform compared with the existing methods?

(2) How does EAST-Net perform compared with its model variants?

(8) How does EAST-Net behave in different scenarios of open-world events?

(4) How does EAST-Net generalize over different scenarios of open-world events?

5.3.1. Quantitative evaluation 1
To quantitatively evaluate the overall prediction accuracy of EAST-Net on the multimodal mobility nowcasting problem, we
implement eight baselines on mobility/traffic-related spatio-temporal prediction for comparison, including:

+ Historical Average (HA): Average the values of same time slot in the training set for prediction.

+ Naive Forecast (NF): Naively repeat the latest sequence observation for the next § time slots. This practice is proven to be
rather effective under events [13].

1 According to the NAICS industry codes (https://www.naics.com/search-naics-codes-by-industry/)
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Vector AutoRegression (VAR): A classic multivariate time series (MTS) model that handles linear dependency between vari-
ables. In practice, we firstly apply PCA (Principal Component Analysis) to reduce the tensor dimension of mobility networks for
VAR, i.e., M € RTXN:C  RTX100,

It is an advance time-series prediction model designed for high dimensional data

Transformer’ [39]: The enhanced version [43] with convolutional self-attention is implemented to capture local temporal
pattern for univariate time series forecasting.

CoST-Net [1]: A two-stage co-predictive model for multimodal transport demands. It models each mode individually with
convolutional auto-encoder and uses a heterogeneous LSTM for collaborative modeling.

DCRNN [4]: A special form of GCRU that requires a pre-defined transition matrix as auxiliary input to perform bidimensional
graph diffusion convolutions.

Graph WaveNet (GW-Net) [5]: The spatiotemporal forecasting model that firstly introduces parameterized node embedding for
graph structure learning. GW-Net builds upon a fully convolutional structure, using graph and temporal convolutions to handle
spatial and sequence dependencies.

MTGNN [23]: A recent MTS forecasting model that features an efficient unidirectional graph constructor and multi-kernel
temporal convolutions.

StemGNN [44]: Another recent MTS forecasting model that jointly models spatial and temporal dependencies in the spectral
domain.

MegaCRN [18]: The state-of-the-art traffic forecasting model built upon GCRU, with a unique memory-augmented graph struc-
ture learning mechanism.

We present the performance comparison of EAST-Net and baselines in Table 3. It is noticeable that the error range on five
datasets varies in magnitude: among three city-level sets, DC and CHI have relatively smaller transport volume than NYC; COVID-US
is apparently the most tricky set which is state-level, of ten modes for travel purpose, and being tested at the very early stage (first
wave) of the pandemic. Besides, acceptable results obtained by HA on JONAS-DC and DORIAN-FL, NF on JONAS-NYC and COVID-
CHI indicate a rather strong short-term temporal dependency in JONAS-NYC and COVID-CHI, and a daily periodicity in JONAS-DC
and DORIAN-FL. By treating the problem simply as time series, Transformer does not acquire satisfactory accuracy. Taking spatial
locality into consideration, CoST-Net performs better than Transformer on JONAS-{NYC, DC}, but the pre-trained convolutional
structure not only fails it on COVID-CHI but limits it from handling graph-based data like DORIAN-FL and COVID-US. Then, among
four graph-based models, GW-Net prevails in terms of most metrics on all datasets. Lastly, speaking of EAST-Net, we can observe a
consistent and dramatic improvement throughout JONAS-{NYC, DC}, DORIAN-FL and COVID-US, which undoubtedly confirms the
efficacy of EAST-Net. The exception on COVID-CHI, we think, can be explained by: (1) A coarse time slot (2-hour) setting “smoothes”
sudden changes, making the task easier for other models; (2) Along with the progression (first to third waves) of COVID-19 pandemic,
other models gradually learn the pandemic pattern as a new normality.

Table 3
Performance of EAST-Net and Baselines on Five Open-World Mobility Datasets.
Model JONAS-NYC JONAS-DC COVID-CHI
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

HA 48.95 39.22 75.3% 6.32 311 38.9% 3716 9.94 190.5%
NF 29.93 28.37 59.3% 7.75 3.59 69.0% 12,91 5.66 79.2%
VAR 42.75 30.62 59.2% 5.97 3.22 41.2% 10.95 3.79 50.71%
Transformer' 35.05 23.43 47.1% 6.54 2.96 65.7% 12.67  5.11 80.5%
CoST-Net 33.72 22.49 41.0% 6.27 2.97 52.1% 1526  6.88 83.7%
DCRNN 28.72 18.72 39.0% 5.47 3.07 50.4% 10.57 6.48 51.2%
GW-Net 28.58 19.37 37.0% 5.09 2.33 51.0% 8.37 3.72 45.4%
MTGNN 28.87 19.12 36.4% 5.16 2.69 48.0% 8.82 4.35 51.6%
StemGNN 30.71 21.49 40.8% 5.32 3.07 50.4% 8.40 4.50 50.3%
MegaCRN 29.09 19.80 44.84% | 4.82 2.29 48.4% 8.00 3.03 52.1%
EAST-Net 23.63 15.79 33.3% 4.10 2.00 35.0% 9.38 3.38 61.5%
-A% -17.3%  -15.7%  -8.5% -14.9%  -12.7%  -10.0% | - - -

Model DORIAN-FL COVID-US

RMSE MAE MAPE RMSE MAE MAPE

HA 132.44 45.38 49.5% 2822.12 1218.61 159.7%

NF 293.32 109.43  130.7% | 2385.28  1258.12  185.1%

VAR 174.96 51.14 89.4% 1813.53  898.27 326.7%

Transformer™ 195.58 68.49 69.4% 1767.71 862.82 180.1%

CoST-Net - - - - - -

DCRNN 144.94 47.85 53.3% 1194.38  722.34 155.9%

GW-Net 147.75 45.94 47.8% 1022.82 490.97 77.6%

MTGNN 142.76 42.66 46.2% 1083.00  535.61 75.9%

StemGNN 165.45 51.17 53.0% 1279.04  709.16 146.7%

MegaCRN 123.72 57.39 61.3% 1269.08  562.69 125.0%

EAST-Net 107.12 38.13 50.6% 799.51 371.78 51.8%

-A% -13.4%  -13.0% - -21.8% -24.3% -31.8%
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Table 4
Performance of EAST-Net and Its Variants on Five Open-World Mobility Datasets.
Variant JONAS-NYC JONAS-DC COVID-CHI
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE
ST-Net 31.38 20.22 44.0% 5.44 2.37 56.0% 1217 5.06 80.0%
ST-Net+T,,, 2535 16.96 34.0% | 445  2.04 43.1% | 867  2.82  59.0%

ST-Net+Mem. 30.73 20.16 40.4% 5.08 2.60 44.0% 9.92 3.02 57.0%
ST-Net+MDFG 28.00 18.38 38.0% 4.67 2.11 43.2% 9.21 3.83 61.8%

HMINet 28.71 18.21 38.0% 4.57 2.07 48.3% 11.44 4.48 78.5%
EAST-Net 23.63 15.79 33.3% | 4.10 2.00 35.0% | 9.38 3.38 61.5%
. DORIAN-FL COVID-US
Variant
RMSE MAE MAPE RMSE MAE MAPE
ST-Net 144.21 47.58 59.3% 1123.91 519.07 62.2%
ST-Net+T,,, 128.59 43.88 55.8% 1434.33 720.08 82.4%

ST-Net+Mem. 136.91 46.02 58.6% 1058.52 528.29 63.4%
ST-Net+MDFG 127.22 39.21 52.5% 874.11 398.02 54.1%
HMINet 132.00 41.89 46.5% 906.85 399.35 43.5%
EAST-Net 107.12 38.13 50.6% 799.51 371.78 51.8%

5.3.2. Quantitative evaluation 2

To understand how EAST-Net improves from the canonical ST-Net, we implement ST-Net (in Equation (3)), ST-Net with two
rectified forms (adding temporal covariates in Fig. 2a and memory bank 2b) and with Memory-augmented Dynamic Filter Generator
(MDFG), as well as HMINet (in Equation (5)) for comparison. As presented in Table 4, within the ST-Net family, a regular memory
bank improves ST-Net in most cases, but not as significantly as temporal covariates do. However, adding T,,, deteriorates the
performance on COVID-US, which is actually reasonable because the reinforced awareness of periodicity backfires especially at
the early stage of a historic epidemic when human mobility began to deviate (because of quarantine measures). In comparison,
adopting MDFG or HMINet drops all metrics compared with regular ST-Net especially on COVID-US, which validates our motivation
for explicit intermodality modeling and event-awareness design. Besides, adopting HMIN on COVID-CHI seems not as helpful as on
other datasets. This issue, we think, may be caused by including the scooter data, which is in fact a pilot program in Chicago and thus
has some months without any data. Lastly, comparing HMINet and EAST-Net side by side, we can observe a consistent performance
improvement, which verifies the effectiveness of MDFG in various scenarios.

5.3.3. Qualitative evaluation
To understand how EAST-Net behaves in diverse scenarios including open-world events, we conduct two case studies on JONAS-
NYC and COVID-US.

800
600

400

Jan-2'2. Jan-zé jén-24 Jan-25 Jan-26 o Jan-27
(a) Ground Truth

Jan-22 Jan-23 Jan-é4 ' Jan-25 Jan-26 Jan-27
(b) Prediction by GW-Net

.

Jén-24 Jan-25 ] Jan-26ﬁ_
(c) Prediction by EAST-Net

Fig. 6. Time Series Histograms of Ground Truth and (2-hour ahead) Predictions of Citywide Taxi Demand in NYC from 22 Jan. 2016 to 27 Jan. 2016 (6 days).
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Fig. 7. City-averaged Prediction Accuracy (2-hour ahead) of Three Selected Models in NYC from 22 Jan. 2016 to 27 Jan. 2016 (6 days).
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Fig. 8. On-the-fly Attention Score (¢;) in MDFG at JONAS-NYC Test Set (from 12 Jan. to 31 Jan. 2016).

In Fig. 6a, a clear no-mobility period is expected under the impact of the historic blizzard “Jonas”. GW-Net, a state-of-the-art model
according to Table 3, simply makes native forecasting (repeating the latest observation) during this anomalous period (in Fig. 6b).
In contrast, EAST-Net can quickly adapt to a declining-to-zero tendency (although causing under-estimations afterwards in Fig. 6¢).
In addition, as illustrated in Fig. 8, the composition of mobility prototypes in memory records for generating momentary filters is
clearly differentiated between (1) normal workdays and weekend with a holiday; (2) a long weekend and the “Jonas” period. These
observations demonstrate the event-awareness and adaptivity of EAST-Net under a short-term event causing sudden volatility.

Fig. 9a presents stream graphs [45] for state averaged POI visits in 10 categories during the first wave of COVID pandemic. Stream
graph is a variation of stacked area graph by positioning layers to minimize weighted wiggle (sum of the squared slopes). In our
case, an overall negative “tendency” is expected according to the ground truth. While an opposite positive “tendency” is produced
by GW-Net, EAST-Net can capture the overall shape correctly (in Fig. 9b and 9c). In detail, EAST-Net also better catches a smaller
volume of POI visits than GW-Net on the Memorial Day (25 May 2020). Besides, based on Fig. 10, EAST-Net becomes aware of a

B Grocery Store EEm Transportation B School mmm Entertainment . Restaurant
B Retailer mm Office BN Healthcare W Hotel B Service
i Memorial Day
0 3
-20k Adddai
' ]
-40k
o il
(a) Ground Truth
O TTTYYYIYYYLL T T preveey
ARTYYYCTT UL L AN '
Apr 25 May 5 10 15 20 25 .
(b) Prediction by GW-Net
0 RadAAraaaada YYYY Y
o] TYVRHEHHRHH
-40k

Apr 25 May 5 10 15

(c) Prediction by EAST-Net

Fig. 9. Stream Graphs of Ground Truth and (4-hour ahead) Predictions of State-averaged POI Visits in 10 Categories from 22 Apr. 2020 to 29 May. 2020 (38 days).
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Fig. 10. On-the-fly Attention Score (¢;) in MDFG at COVID-US Set (from 15 Nov. 2019 to 25 May. 2020).
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Table 5

Spatial Knowledge Transfer: {NYC, DC} under JONAS and

{CHI, US} under COVID.
Transfer RMSE MAE MAPE
DC only 4.103 2.004 35.03%
NYC—DC zero-shot | 4.813 2.263 40.29%
NYC—DC fine-tune 3.936 1.841 32.40%
NYC only 23.632 15.790 33.33%
DC—NYC zero-shot | 36.372 25.537 48.96%
DC—NYC fine-tune 24.062 16.150 34.59%

CHI only 9.381 3.380 61.50%
US—CHI zero-shot 9.125 3.274 62.45%
US—CHI fine-tune 11.687 4.691 78.98%

Table 6
Spatio-Temporal Knowledge Transfer: JONAS-{NYC, DC} to COVID-CHI and
JONAS-{NYC, DC} to COVID-US.

Transfer RMSE MAE MAPE
COVID-CHI only 9.381 3.380 61.50%
JONAS-NYC—COVID-CHI zero-shot 10.145 3.368 65.43%
JONAS-NYC—COVID-CHI fine-tune 8.863 3.125 61.28%
JONAS-DC—COVID-CHI zero-shot 9.229 3.560 60.51%
JONAS-DC—COVID-CHI fine-tune 10.922 3.795 79.75%
COVID-US only 799.51 371.78 51.84%
JONAS-NYC—COVID-US zero-shot 3418.61 1476.85 461.48%
JONAS-NYC—COVID-US fine-tune 1049.54  482.44 60.83%
JONAS-DC—COVID-US zero-shot 2145.44 1046.92 319.29%
JONAS-DC—COVID-US fine-tune 1003.05 456.91 60.77%

new mobility pattern as early as March, the very beginning of the epidemic in US. These observations reconfirm the event-awareness
and adaptivity of EAST-Net, particularly under a long-term event imposing lasting impact.

5.3.4. Additional evaluation

To understand how EAST-Net generalizes over different scenarios of open-world events, we conduct a group of knowledge transfer
studies on the learnt representations in mobility prototype memory M, ,, including spatial transfer across regions (under a same event),
spatio-temporal transfer across events. In Table 5 and 6, zero-shot denotes the memory bank is loaded directly for testing; fine-tune
denotes the memory values are loaded for initializing the model training.

In Table 5, it can be observed that learnt knowledge from a source city needs to be further adapted to the target city, under
the blizzard case. However, the COVID case is interestingly the opposite, despite that US and CHI have different spatio-temporal
scales and measure different nature of mobility (transport mode v.s. travel purpose). This phenomenon may be caused a shared low
mobility status under the pandemic, so that the learnt patterns can be directly applied.

In Table 6, it can be observed that the nature of mobility matters when we are transferring over both spatial and temporal
domains. Specifically, reusing historical lessons learnt from the blizzard Jonas can to some extent helps training or forecasting the
multimodal transport demands under COVID pandemic, though the knowledge of DC is not as effective as the one of NYC for CHI.
Not surprisingly, the knowledge learnt from different region and event for different nature of mobility is less mutually shareable,
based on the results at COVID-US.

6. Concluding discussion

In this paper, we tackle the multimodal mobility nowcasting problem in response to various open-world event scenarios. By de-
signing a heterogeneous mobility information network for explicitly representing intermodality and a memory-augmented dynamic
filter generator for producing sequence-specific parameters on-the-fly, we propose an event-aware spatio-temporal network. Experi-
ments on five real-world datasets verify the event-awareness and adaptivity of EAST-Net, which is even applicable to unprecedented
events.

6.1. Implications

We discuss two major implications of our proposed model. (1) According to our experiments, demonstrated in Table 3 and 4,
ST-Net+MDFG can already outperform the baseline models and consistently improve performance of the backbone. This observation
indicates a promising applicability of MDFG as a plugin module to improve the model adaptivity to open-world events in the general
multivariate time series forecasting task. It is also broadly related to out-of-distribution generalization towards self-adaptive AL (2)
We illustrate the promising generalizing capability of the core memory module in Table 5 and 6, and thereby envision it will play an
essential role in a future spatio-temporal foundation model, which is pre-trained on unlabeled data and adaptable to unseen scenarios
no matter over space (i.e., spatial adaptation) and time, against open-world events.
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Fig. 11. Sensitivity Analysis to Hyper-parameters.

6.2. Limitations

Here we identify two limitations of the proposed methods. (1) The proposed MDFG (i.e., memory-augmented dynamic filter
generator) generates graph kernel parameters currently in fully parameter updating schema [31], which is a parameter-heavy solution
[46] and leads to low efficiency in both training and inference stages. As a future direction, we would further improve the parameter
generation efficiency (e.g., partially parameter updating) and find a balance with prediction accuracy. (2) According to Fig. 7, after
an open-world event have just occurred or passed (i.e., January 24 and 25 in Blizzard JONAS case), a more-than-usual error level
can be observed, which indicates our model still needs some time to adapt to and recover from the impacts of open-world events. In
the future, we plan to investigate and enhance the speed of model adaptation.

CRediT authorship contribution statement

Zhaonan Wang: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Validation, Visualiza-
tion, Writing — original draft, Writing — review & editing. Renhe Jiang: Funding acquisition, Investigation, Methodology, Project
administration, Resources. Hao Xue: Investigation, Project administration, Resources, Visualization, Writing — original draft, Writ-
ing - review & editing. Flora D. Salim: Conceptualization, Project administration, Supervision, Writing — original draft. Xuan
Song: Funding acquisition, Supervision. Ryosuke Shibasaki: Funding acquisition, Supervision. Wei Hu: Writing — review & editing.
Shaowen Wang: Funding acquisition, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

I shall make data/code open upon acceptance.
Acknowledgements

This work was partially supported by JSPS KAKENHI (JP20K19859), JST Strategic International Collaborative Research Program
(SICORP) (JPMJSC2104), Australian Research Council (ARC) Discovery Project (DP190101485), and the Institute for Geospatial

Understanding through an Integrative Discovery Environment (I-GUIDE) funded by the National Science Foundation (NSF) under
award No. 2118329.

13



Z. Wang, R. Jiang, H. Xue et al. Artificial Intelligence 335 (2024) 104120

References

[1] J. Ye, L. Sun, B. Dy, Y. Fu, X. Tong, H. Xiong, Co-prediction of multiple transportation demands based on deep spatio-temporal neural network, in: Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery &, Data Mining, 2019, pp. 305-313.
[2] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, W.-c. Woo, Convolutional Istm network: a machine learning approach for precipitation nowcasting, in:
Advances in Neural Information Processing Systems, 2015, pp. 802-810.
[3] J. Zhang, Y. Zheng, D. Qi, Deep spatio-temporal residual networks for citywide crowd flows prediction, in: Thirty-First AAAI Conference on Artificial Intelligence,
2017, pp. 1655-1661.
[4] Y. Li, R. Yu, C. Shahabi, Y. Liu, Diffusion convolutional recurrent neural network: data-driven traffic forecasting, in: International Conference on Learning
Representations (ICLR’18), 2018.
[5] Z. Wu, S. Pan, G. Long, J. Jiang, C. Zhang, Graph wavenet for deep spatial-temporal graph modeling, in: Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI-19, 2019, pp. 1907-1913.
[6] C. Zheng, X. Fan, C. Wang, J. Qi, Gman: a graph multi-attention network for traffic prediction, in: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, 2020, pp. 1234-1241.
[7] H. Yao, F. Wu, J. Ke, X. Tang, Y. Jia, S. Lu, P. Gong, J. Ye, Z. Li, Deep multi-view spatial-temporal network for taxi demand prediction, in: Proceedings of the
AAAI Conference on Artificial Intelligence, 2018, pp. 2588-2595.
[8] A. Zonoozi, J.-j. Kim, X.-L. Li, G. Cong, Periodic-crn: a convolutional recurrent model for crowd density prediction with recurring periodic patterns, in: Proceed-
ings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-18, 2018, pp. 3732-3738.
[9] H. Yao, Y. Liu, Y. Wei, X. Tang, Z. Li, Learning from multiple cities: a meta-learning approach for spatial-temporal prediction, in: The World Wide Web
Conference, 2019, pp. 2181-2191.
[10] X. Tang, H. Yao, Y. Sun, C. Aggarwal, P. Mitra, S. Wang, Joint modeling of local and global temporal dynamics for multivariate time series forecasting with
missing values, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2020, pp. 5956-5963.
[11] Z. Fan, X. Song, R. Shibasaki, R. Adachi, Citymomentum: an online approach for crowd behavior prediction at a citywide level, in: Proceedings of the 2015 ACM
International Joint Conference on Pervasive and Ubiquitous Computing, 2015, pp. 559-569.
[12] R. Jiang, X. Song, Z. Fan, T. Xia, Q. Chen, S. Miyazawa, R. Shibasaki, Deepurbanmomentum: an online deep-learning system for short-term urban mobility
prediction, in: Thirty-Second AAAI Conference on Artificial Intelligence, 2018, pp. 784-791.
[13] R. Jiang, X. Song, D. Huang, X. Song, T. Xia, Z. Cai, Z. Wang, K.-S. Kim, R. Shibasaki, Deepurbanevent: a system for predicting citywide crowd dynamics at big
events, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &, Data Mining, 2019, pp. 2114-2122.
[14] M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural networks on graphs with fast localized spectral filtering, Adv. Neural Inf. Process. Syst. 29
(2016).
[15] T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, arXiv preprint, arXiv:1609.02907, 2016.
[16] B. Yu, H. Yin, Z. Zhu, Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting, arXiv preprint, arXiv:1709.04875, 2017.
[17] L. Bai, L. Yao, C. Li, X. Wang, C. Wang, Adaptive graph convolutional recurrent network for traffic forecasting, Adv. Neural Inf. Process. Syst. 33 (2020)
17804-17815.
[18] R. Jiang, Z. Wang, J. Yong, P. Jeph, Q. Chen, Y. Kobayashi, X. Song, S. Fukushima, T. Suzumura, Spatio-temporal meta-graph learning for traffic forecasting, in:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, 2023, pp. 8078-8086.
[19] X. Geng, Y. Li, L. Wang, L. Zhang, Q. Yang, J. Ye, Y. Liu, Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting, in: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 3656-3663.
[20] J. Ye, L. Sun, B. Du, Y. Fu, H. Xiong, Coupled layer-wise graph convolution for transportation demand prediction, in: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 35, 2021, pp. 4617-4625.
[21] R. Jiang, Z. Wang, Z. Cai, C. Yang, Z. Fan, T. Xia, G. Matsubara, H. Mizuseki, X. Song, R. Shibasaki, Countrywide origin-destination matrix prediction and its
application for covid-19, in: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer, 2021, pp. 319-334.
[22] L. Wang, A. Adiga, J. Chen, A. Sadilek, S. Venkatramanan, M. Marathe, Causalgnn: Causal-based graph neural networks for spatio-temporal epidemic forecasting,
in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, 2022, pp. 12191-12199.
[23] Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, C. Zhang, Connecting the dots: multivariate time series forecasting with graph neural networks, in: Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery &, Data Mining, 2020, pp. 753-763.
[24] C. Shang, J. Chen, J. Bi, Discrete graph structure learning for forecasting multiple time series, arXiv preprint, arXiv:2101.06861, 2021.
[25] Z. Wang, R. Jiang, Z. Cai, Z. Fan, X. Liu, K.-S. Kim, X. Song, R. Shibasaki, Spatio-temporal-categorical graph neural networks for fine-grained multi-incident
co-prediction, in: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021, pp. 2060-2069.
[26] B. Lu, X. Gan, W. Zhang, H. Yao, L. Fu, X. Wang, Spatio-temporal graph few-shot learning with cross-city knowledge transfer, in: Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, 2022, pp. 1162-1172.
[27] Y. Tang, A. Qu, A.H. Chow, W.H. Lam, S. Wong, W. Ma, Domain adversarial spatial-temporal network: a transferable framework for short-term traffic forecasting
across cities, in: Proceedings of the 31st ACM International Conference on Information &, Knowledge Management, 2022, pp. 1905-1915.
[28] Y. Jin, K. Chen, Q. Yang, Transferable graph structure learning for graph-based traffic forecasting across cities, in: Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, 2023, pp. 1032-1043.
[29] Y. Wu, D. Zhuang, A. Labbe, L. Sun, Inductive graph neural networks for spatiotemporal Kriging, in: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, 2021, pp. 4478-4485.
[30] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, G. Zhang, Learning under concept drift: a review, IEEE Trans. Knowl. Data Eng. 31 (12) (2018) 2346-2363.
[31] L. Yuan, H. Li, B. Xia, C. Gao, M. Liu, W. Yuan, X. You, Recent advances in concept drift adaptation methods for deep learning, in: IJCAI, 2022, pp. 5654-5661.
[32] Y. Liu, H. Wu, J. Wang, M. Long, Non-stationary transformers: exploring the stationarity in time series forecasting, Adv. Neural Inf. Process. Syst. 35 (2022)
9881-9893.
[33] W. Li, X. Yang, W. Liu, Y. Xia, J. Bian, Ddg-da: data distribution generation for predictable concept drift adaptation, in: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 36, 2022, pp. 4092-4100.
[34] Y. Du, J. Wang, W. Feng, S. Pan, T. Qin, R. Xu, C. Wang, Adarnn: adaptive learning and forecasting of time series, in: Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, 2021, pp. 402-411.
[35] X. You, M. Zhang, D. Ding, F. Feng, Y. Huang, Learning to learn the future: modeling concept drifts in time series prediction, in: Proceedings of the 30th ACM
International Conference on Information &, Knowledge Management, 2021, pp. 2434-2443.
[36] H. Yu, X. Xu, T. Zhong, F. Zhou, Overcoming forgetting in fine-grained urban flow inference via adaptive knowledge replay, in: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 37, 2023, pp. 5393-5401.
[37] Z. Cai, R. Jiang, X. Yang, Z. Wang, D. Guo, H. Kobayashi, X. Song, R. Shibasaki, Memda: forecasting urban time series with memory-based drift adaptation, arXiv
preprint, arXiv:2309.14216, 2023.
[38] D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate, arXiv preprint, arXiv:1409.0473, 2014.
[39] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin, Attention is all you need, in: Advances in Neural Information
Processing Systems, 2017, pp. 5998-6008.

14


http://refhub.elsevier.com/S0004-3702(24)00056-0/bib16F2DD596896088899DD2BD439BA3381s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib16F2DD596896088899DD2BD439BA3381s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibD06A825CC31FD35DD8C1201C38A64C17s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibD06A825CC31FD35DD8C1201C38A64C17s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibD23E3C0AFA9B1C929645E0479C209441s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibD23E3C0AFA9B1C929645E0479C209441s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib2F799D7ADC290EF7210C0C0C1EBD8D72s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib2F799D7ADC290EF7210C0C0C1EBD8D72s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib3CAA48321321F1D56689599CC2FD2336s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib3CAA48321321F1D56689599CC2FD2336s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibE48B08E680FF311B18507937ACB9C83Es1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibE48B08E680FF311B18507937ACB9C83Es1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib2482373099874468416A514C3B47A814s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib2482373099874468416A514C3B47A814s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib059EB35E40A95898296E696D2B41A0D8s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib059EB35E40A95898296E696D2B41A0D8s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib8CD6D9DFE53B556DA398AFCD349CCA90s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib8CD6D9DFE53B556DA398AFCD349CCA90s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibA2F4F9C780A203B1800612E2FE27403Fs1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibA2F4F9C780A203B1800612E2FE27403Fs1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib6BA50CB092A6241413944A6570E49E84s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib6BA50CB092A6241413944A6570E49E84s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib5889F1E8CD36C52562F3B1AA7861A708s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib5889F1E8CD36C52562F3B1AA7861A708s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib791C289085E65CEB626F2371191F485Ds1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib791C289085E65CEB626F2371191F485Ds1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib553813A743B001B0C67573947664212As1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib553813A743B001B0C67573947664212As1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib4EFBCCF638B63E6C3FFAC5F3E8B26EB3s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibF6CD690BF23E7CB01C193E01794F8A1Ds1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib65BBA81608F058CD1489EFF2417C51D7s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib65BBA81608F058CD1489EFF2417C51D7s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib256212550514EEF36C86D65D8CFE6A3Cs1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib256212550514EEF36C86D65D8CFE6A3Cs1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib98F4BD925AE5BB5D5F19D6E369E578FDs1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib98F4BD925AE5BB5D5F19D6E369E578FDs1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib82E152C4FF7653F26F04AADA6DCF50D5s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib82E152C4FF7653F26F04AADA6DCF50D5s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib5D0F6F66B89FE22ABADDEB1477AE1308s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib5D0F6F66B89FE22ABADDEB1477AE1308s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib6ECEB59EDCD49D75B6A6277F42A17C08s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib6ECEB59EDCD49D75B6A6277F42A17C08s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibA9F89A76B83F98FAFE15E78C5656C9B4s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibA9F89A76B83F98FAFE15E78C5656C9B4s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib4760E2704AA688BE5D25E5B69C0F32A5s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibF523A92D98D37B1B78E145C22574A655s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibF523A92D98D37B1B78E145C22574A655s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib6B6050BDF97EFE35753613C30F2DF6D2s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib6B6050BDF97EFE35753613C30F2DF6D2s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibA08A76B99E75CA6678A460B1D287BFBBs1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibA08A76B99E75CA6678A460B1D287BFBBs1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib7EA4BFFA6C232F2C4EB10836850C4E65s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib7EA4BFFA6C232F2C4EB10836850C4E65s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib8C103F76A5CC02D51599571D4FF67E59s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib8C103F76A5CC02D51599571D4FF67E59s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibBDA43591465315F35C65C08FDB0D28E0s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib58ED04D7606EA3E70557CBA28E559109s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibA16BFC68DF12089414EFD95708EA177Bs1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibA16BFC68DF12089414EFD95708EA177Bs1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibB4DD3BFC833544C1859D6CAA5EAF04F1s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibB4DD3BFC833544C1859D6CAA5EAF04F1s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibB97FED91C296C2B6752028F69BDFAFCBs1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibB97FED91C296C2B6752028F69BDFAFCBs1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibE45AB8B52876F977A6424464A5390AD7s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibE45AB8B52876F977A6424464A5390AD7s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibC86239AAB5C9C7040E45A762403B6D99s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibC86239AAB5C9C7040E45A762403B6D99s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib8DF5AE423B7A0D8E70E39390D0CF287Cs1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib8DF5AE423B7A0D8E70E39390D0CF287Cs1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib545A4EF656F7C6BCD5B0ACC777BF5B74s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib31E3B0E4211047EF95DE0BAD45123C1As1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib31E3B0E4211047EF95DE0BAD45123C1As1

Z. Wang, R. Jiang, H. Xue et al. Artificial Intelligence 335 (2024) 104120

[40] X. Jia, B. De Brabandere, T. Tuytelaars, L.V. Gool, Dynamic filter networks, Adv. Neural Inf. Process. Syst. (2016) 667-675.

[41] B. Yang, G. Bender, Q.V. Le, J. Ngiam, Condconv: conditionally parameterized convolutions for efficient inference, Adv. Neural Inf. Process. Syst. (2019)
1307-1318.

[42] J. Zhou, V. Jampani, Z. Pi, Q. Liu, M.-H. Yang, Decoupled dynamic filter networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 6647-6656.

[43] S.Li, X. Jin, Y. Xuan, X. Zhou, W. Chen, Y.-X. Wang, X. Yan, Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting,
Adv. Neural Inf. Process. Syst. 32 (2019) 5243-5253.

[44] D. Cao, Y. Wang, J. Duan, C. Zhang, X. Zhu, C. Huang, Y. Tong, B. Xu, J. Bai, J. Tong, Q. Zhang, Spectral temporal graph neural network for multivariate
time-series forecasting, in: Advances in Neural Information Processing Systems, 2020, pp. 17766-17778.

[45] L. Byron, M. Wattenberg, Stacked graphs-geometry & aesthetics, IEEE Trans. Vis. Comput. Graph. 14 (6) (2008) 1245-1252.

[46] D. Ha, A. Dai, Q.V. Le, Hypernetworks, arXiv preprint, arXiv:1609.09106, 2016.

15


http://refhub.elsevier.com/S0004-3702(24)00056-0/bib50CFB82566AA32FAF42633D03705D40Es1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibC8786547D207CDDB1F7EA007AE9617E8s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibC8786547D207CDDB1F7EA007AE9617E8s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibCFEE455FD1321D1DE9A3FB02E6DA1B29s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibCFEE455FD1321D1DE9A3FB02E6DA1B29s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib48E6DAF21DBD4585347EE592C5B2B64Ds1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib48E6DAF21DBD4585347EE592C5B2B64Ds1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibF04874FCE5DDB78094328B3681532C53s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bibF04874FCE5DDB78094328B3681532C53s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib6C90E665716A2DBE06D8B497A7730AE4s1
http://refhub.elsevier.com/S0004-3702(24)00056-0/bib40BC9817514D1F5FD7FE87A32E5E5E01s1

	Learning spatio-temporal dynamics on mobility networks for adaptation to open-world events
	1 Introduction
	2 Related work
	2.1 Network-based spatio-temporal forecasting
	2.2 Spatio-temporal adaptation
	2.2.1 Spatial adaptation
	2.2.2 Temporal adaptation


	3 Preliminaries
	3.1 Problem definition
	3.2 Spatio-temporal network

	4 Methodology
	4.1 Heterogeneous mobility information network
	4.2 Memory-augmented dynamic filter generator
	4.3 Open-world spatio-temporal network

	5 Experiment
	5.1 Datasets
	5.2 Settings
	5.3 Evaluations
	5.3.1 Quantitative evaluation 1
	5.3.2 Quantitative evaluation 2
	5.3.3 Qualitative evaluation
	5.3.4 Additional evaluation


	6 Concluding discussion
	6.1 Implications
	6.2 Limitations

	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


