
RESEARCH ARTICLE BIOPHYSICS AND COMPUTATIONAL BIOLOGY
PLANT BIOLOGY

On the mechanical origins of waving, coiling and skewing in
Arabidopsis thaliana roots
Amir Porata,b ID , Arman Tekinalpc, Yashraj Bhosalec ID , Mattia Gazzolac,1 ID , and Yasmine Merozb,d,1 ID

Edited by Daniel Goldman, Georgia Institute of Technology, Atlanta, GA; received July 25, 2023; accepted December 7, 2023 by Editorial Board Member
Dominique C. Bergmann

By masterfully balancing directed growth and passive mechanics, plant roots are
remarkably capable of navigating complex heterogeneous environments to find
resources. Here, we present a theoretical and numerical framework which allows us to
interrogate and simulate themechanical impact of solid interfaces on the growth pattern
of plant organs. We focus on the well-known waving, coiling, and skewing patterns
exhibited by roots of Arabidopsis thaliana when grown on inclined surfaces, serving as
a minimal model of the intricate interplay with solid substrates. By modeling growing
slender organs as Cosserat rods that mechanically interact with the environment, our
simulations verify hypotheses of waving and coiling arising from the combination of
active gravitropism and passive root-plane responses. Skewing is instead related to
intrinsic twist due to cell file rotation. Numerical investigations are outfitted with an
analytical framework that consistently relates transitions between straight, waving,
coiling, and skewing patterns with substrate tilt angle. Simulations are found to
corroborate theory and recapitulate a host of reported experimental observations, thus
providing a systematic approach for studying in silico plant organs behavior in relation
to their environment.

plants | tropism | morpho-elasticity | pattern formation | mechanics

The ability of roots to grow in soil is critical for plant health and crop yield, enabling the
uptake of water and nutrients, providing anchorage and stability of eroding soil (1–4).
This is no small feat. Indeed, soil is a highly heterogeneous environment, characterized by
nonuniform concentrations of resources as well as obstacles such as rocks and compacted
soil. In negotiating with the environment, plant roots combine passive physics and active
growth-driven mechanisms, termed tropisms, whereby dedicated organs sense stimuli
such as water (hydrotropism) or gravity (gravitropism), and redirect growth appropriately.
While dynamics of tropisms are generally understood (5, 6), and aspects of rootmechanics
and their effect on growth have been described (7–11), a consistent framework to dissect
the interplay between passive and active responses, heterogeneous environments and
ensuing growth patterns, is still missing (12–14). The essence of this complex interaction
is on display in controlled experiments of roots growing on inclined agar gel substrates,
whereby remarkably different behaviors are observed to emerge: roots grow straight
on vertical planes, grow in waving patterns as tilt increases, skew in some cases, and
eventually coil when tilt approaches the horizontal plane (Fig. 1A). These growth patterns
are well-documented in genetically driven phenotypes of Arabidopsis thaliana (15–21).
Although insightful, such genetic approaches are limited to given species, and do not
formally address the fundamental role of root and environmental mechanics. Thus, while
gravitropic responses and root-substrate mechanics clearly play a role (17, 22), underlying
mechanisms remain subject of debate. For instance, both circumnutation (16, 23–25),
the intrinsic circular movements of root tips, and thigmotropism (15, 22, 26), the active
response to touch, have been suggested to be at the basis of waving and skewing patterns.
Here, we combine advances in the modeling of growing rod-like organs (25, 27–36) and
3D numerical simulations (37) to gain broader insight.

Results
Modeling of Root Mechanics and Growth. In modeling the waving and coiling
experiments of Arabidopsis thaliana, we begin by assuming separation of timescales
between slow growth-driven root responses and fast mechanical relaxation (Fig. 1D),
allowing us to decouple the two processes in a quasi-static manner (28, 29).

Slender roots are represented as Cosserat rods (37), which are 1D elastic continuous
elements able to undergo all modes of deformations—bending, twisting, stretching,
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Fig. 1. (A) Growth patterns of Arabidopsis thaliana roots grown on inclined agar plates. Arabidopsis thaliana roots are grown on inclined agar plates. While
roots grow straight when the plane is vertical, at low inclinations roots tend to grow in waving patterns (17, 19, 23), and at some critical angle they coil (16, 19, 20).
A number of mutants also skew at an angle h✓i (19, 38, 39). On the Left, the growth patterns are shown on the scale of the whole plant (19). Green squares
highlight the morphologies of interest, magnified in the Middle panels, and schematically illustrated on the Right. Model definitions. (B) Cosserat rod. Shape
is defined in space with r(s, t) along the center-line s at time t, and a local orthonormal material frame {d1(s, t),d2(s, t),d3(s, t)} (orange and pink lines mark
±d1(s, t)). Densities of external forces f(s, t) and couples c(s, t) cause the rod to deform elastically. The curvature vector (s, t) describes how thematerial frame
bends and twists along the center-line, and the local vector �(s, t) describes how the rod shears and stretches. The light blue region near the tip represents
the growth zone. (C) Cross-section plane. d1 and d2 are the material frame directors, and d3 points to the reader. m̂1 and m̂2 represent an arbitrary normal
development of the center-line, or the Bishop frame (40). N̂ and B̂ are the normal and bi-normal directors of the Frenet-Serret frame. The angle � between
m̂1 and N̂ is related to the torsion of the center-line (SI Appendix, 2). Twist is described by the arc-length variations in the angle ⇠ = �+ ', between m̂1 and
d1. (D) Integration scheme. (Left) Initial geometry of our simulations, where a root of length L0 is placed on a surface inclined at an angle ↵ from the vertical,
parameterized by an initial arc-length S0 2 [0, L0]. The di�erential growth vector related to gravitropism is parallel to the direction of gravity (see main text), and
can be decomposed into normal and parallel components with respect to the plane (SI Appendix, 6). The Center and Right panels describe the two-step numerical
integration scheme detailed in the Methods. (Center) Growth-driven changes implemented to the reference configuration, following Eqs. 3 and 4, lead to an
intermediate virtual configuration disregarding elastic responses. The arc-length is parameterized by S 2 [0, L(t)], related to the initial configuration through the
growth stretch �g(S0 , t) = @S/@S0. (Right) Relaxation to mechanical equilibrium following Eqs. 1 and 2. The actual configuration of the rod is parameterized by
s 2 [0, l(t)], related to the virtual configuration through the elastic stretch �e(S, t) = @s/@S. (E) Roots axial growth profile. Micrograph of an Arabidopsis thaliana
root. Cells divide at the tip, and elongate within the growth zone, until they stop elongating, reaching the mature zone. Image courtesy of Eilon Shani.

shearing—and reconfigure in 3D space (Fig. 1B). We mathe-
matically describe a slender rod by a centerline r(s, t) 2 R3 and
a rotation matrix Q(s, t) = {d1, d2, d3}�1, providing a local
material frame. When the rod is at rest, its length is L and the
corresponding material coordinate is S 2 [0, L], while l and
s 2 [0, l ] denote the length and arc-length of the deformed
(stretched) filament, and t is time. If the rod is unsheared, d3
points along the centerline tangent @r

@ s , while d1 and d2 span
the normal–binormal plane, i.e., the cross-section. Shearing and
stretching shift d3 away from @r

@ s , quantified by the shear vector
� =

�
�e @r

@ s � d3
�
, where �e ⌘ @ s/@S is the local elastic stretch.

The curvature vector  = 1d1 + 2d2 + 3d3 encodes the
rotation rate of the local frame along the material coordinate so
that @

@ sdj =  ⇥ dj. We define the bending stiffness matrix B
and shearing stiffness matrix S in the rest configuration. Then,
the mechanical equilibrium of a rod-like root is described by

@n
@ s

+ f = 0, [1]

@m
@ s

+
@r
@ s

⇥ n+ c = 0, [2]

where n = S(� � �0) represents internal forces, related to shear
and elastic stretch of the centerline, m = B

�
 � 0� represents

internal torques, related to bending and twisting, and �0 and
0 are intrinsic strains. As detailed in ref. 37, incompressibility
is incorporated by rescaling B, S and  through �e such that
B ! B/�2e , S ! S/�e and  ! /�e. Last, external forces
f and torques c (per unit length) capture overall environmental
effects.

Next, we outfit this model with active gravitropic dynamics
driven by differential growth (30, 41, 42). Axial growth is
implemented via the additional stretch factor �g , defined with
respect to an initial material coordinate S0 2 [0, L0], such that L0
is the initial length and �g ⌘ @S/@S0 (Fig. 1D). By denoting time
derivatives as dx

dt = ẋ, we introduce the average relative growth
rate as "̇g ⌘ �̇g/�g . Root growth is restricted to a finite growth
zone of length Lgz extending from the tip (Fig. 1E), reflecting
experimental evidence (8, 43, 44).

Tropic movements are directed by environmental cues, which
are generally perceived via dedicated sensory systems. Gravity
in particular is sensed via specialized cells close to the tip (45),
and translated into a redistribution of growth hormones across
the root cross-section. This results in axial differential growth,
which in turn leads to a change in the root’s curvature,
redirecting the organ toward the stimulus. This machinery is
mathematically captured via the local differential growth vector
�(s, t) (30, 41, 42)
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�(s, t) = � ĝ � �R(s, t)N̂(s, t), [3]

where the first term represents the gravity stimulus, with ĝ the
direction of gravity and � the gravitropic gain or sensitivity (41).
The second term represents the proprioceptive response. This
can be thought of as a counter-curving response that balances
the gravitropic one, based on the sensing of the organ’s own
shape (41). Here � is the proprioceptive gain,  ⌘

q
21 + 22 is

the norm of the bending curvature, and N̂ is the normal director
of the center-line’s Frenet-Serret frame (Fig. 1C ). Given the aver-
age growth rate "̇g and the organ radius R, we connect the change
in local intrinsic curvature 0(s, t) within Lgz, to the differential
growth �(s, t) projected on the cross-section (30, 41, 42)

̇0 =
"̇g
R

(d3 ⇥ �) [4]

as detailed in SI Appendix, 2. For simplicity, here we drop the
explicit dependence on (s, t). Thus, Eqs. 3 and 4 capture gravit-
ropic dynamics, relating sensing (� ĝ) to differential growth (�),

which in turn feeds into the root shape (0). As described in the
Materials and Methods, � can be rewritten to include different
types of internal and external cues, such as phototropism or
circumnutations, as well as different sensing profiles (apical and
local). Finally, to distill the essential mechanisms underlying
the range of observed growth patterns, we neglect the effect of
substrate deformations (17, 46), and the coupling between root
growth, static friction, and stick-slip dynamics (44, 47, 48).
These elements nonetheless deserve future attention.

Some Arabidopsis mutants (49–51) exhibit a cell profile which
twists during growth (Fig. 4B). We model this additional effect
by allowing the material frame in the growth zone Lgz to twist
around the centerline of the organ. This twist is described by an
increasing register angle ⇠, characterized by the angular velocity
at the apex

! =
@⇠
@t

= ⌧"̇gLgz, [5]

where ⌧ is a constant intrinsic twist line density (Fig. 4C ).
Finally, contact forces that prevent the root from penetrating

the substrate, and adhesion forces thatmaintain themature region
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Fig. 2. Simulations reproduce waving and coiling. (A) Final configurations. Top view of final configurations of simulations for tilt angles 00  ↵  900, with
� = � = 0.1. Pink and orange lines represent the direction of the vectors ±d1 describing the material frame along the organ. The local planar angle ✓(s, t) is the
angle between the projection of the organ tangent on the tilted plane, and the projection of the direction of gravity ĝk. (B) Snapshots of waving dynamics. Five
snapshots during the developing waving pattern for a root at ↵ = 40o, with local gravisensing, � = 0.2, and � = 0.1. Stages (i) and (ii) depict the first symmetry
breaking due to an elastic instability that reduces bending energy by twisting sideways. Between stages (iii) and (v) left-handed twist is being accumulated in the
mature zone as the root turns clock-wise (evident by following d1), in line with observed twisting cell files (26). (C–E): Properties of the growth zone during the
development of a waving pattern, corresponding to the root in (B). Dashed lines represent the snapshots in (B), and time is shown in number of time-steps. (C)
Planar tip angle ✓tip(t) (blue). For comparison, we show the behavior of a corresponding free organ (pink line), that is of a root growing without substrate but
characterized by the same initial angle (with respect to gravity) of the waving root (blue line). Both profiles present oscillations with a similar period; however,
in the absence of interactions with the plane, the oscillations decay in time. (D) Average elastic bending energy Eb and twisting energy Et in the growth zone. (E)
Total writhe Wr and twist Tw in the growth zone.
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Fig. 3. Comparison of model predictions with simulations and experiments. (A) Curvature of waving patterns originate from the gravitropic response of a
free organ. The maximal curvature max  of the projected shape of simulated waving patterns on the plane approximately scales like the predicted maximal
curvature of a free organ max 0f (Eq. 8), tilted at the same angle ↵, as suggested by Eq. 6. Simulations were run with Lgz/R = 10, � = 0.1, and 0.05  �  1.0
(Table 1), and for a range of inclinations ↵. Results for larger values of � and apical gravisensing are brought in SI Appendix, 5. The dashed line represents identity,
for reference. (B) Wavelength vs. amplitude. Following our proposed scaling laws for the wavelength � and amplitude A of waving patterns (Eqs. 9, 10, and 11),
� is plotted against 4A cot(↵) for values measured in simulations and experiments (16, 46, 63), exhibiting a linear dependence as predicted. The dashed line
represents identity, for a reference. The wavelength and amplitude of each simulation are quantified by averaging the distances between neighboring peaks of
the waving pattern parallel and normal to the downhill direction. Data points for ↵  10 deg from ref. 46 are not shown as they diverge. (C) Geometric relation
between wavelength and amplitude. The angle on the plane is the integral over curvature, and following (A) is dictated by the tip angle of a free organ, which
can be approximated by the inclination angle ↵ (see virtual configuration in Fig. 1E). (D) Configuration space. Shapes of simulated organs (with Lgz/R = 10 and
� = 0.1) for di�erent values of the e�ective gravitropic gain �Lgz/R and tilt angle ↵. Symbols represent the final configuration shape of simulations ( ⌅ symbols
for straight, ⌥ for waving, • for coiling). Simulations agree with model predictions, represented by background color: transitions from straight to waving occur
at critical angle ↵s!w (Eq. 12), and transitions to coiling occur at ↵w!c (Eq. 13), estimated in SI Appendix, 7. The second column represents the configurations
shown in Fig. 2A. Equivalent configuration spaces for high � and apical sensing in SI Appendix, 7. (E) Observed coiling transition. Experimental observations of
coiling probability (46) agree with model prediction (represented by background colors as in (E) for �Lgz/R = 0.5). We note that (46) reports probabilities only
for the emergence of coiling behavior, with the white portion of the plot encompassing the combined probability of observing straight or waving patterns.

fixed in place (mimicking the effect of root hair attachments
and lignification, Fig. 1A) are encapsulated in f, as detailed in
Materials and Methods and SI Appendix.

Overall, Eqs. 1–5 define our model, which we numerically
discretize and solve using the open-source software Elastica (54),
demonstrated across a range of biophysical problems (55–60)
entailing fiber-like structures (Materials and Methods and
SI Appendix 3).

Simulations Recapitulate Waving and Coiling Patterns. Based
on waving and coiling experiments (15–21), we simulate
Arabidopsis thaliana roots growing on a tilted plane for a range
of angles ↵ (from vertical to horizontal), as well as gravitropic
and proprioceptive gains � and � . We use parameters and
mechanical properties typical of Arabidopsis (Table 1 inMaterials
andMethods). For simplicity, we assume frictionless growth while
fixing the sessile (mature) zone to the substrate (17, 46), as
discussed above. At this stage, we neglect root twisting during
growth, although we will revisit it in later sections.

As illustrated in Fig. 2A and Movies S1 and S2, simulations
capture observed root behavior. Indeed, simulated roots grow
straight on a vertical plane (↵ = 0), and transition to waving
as the substrate tilt angle reaches ↵ ⇡ 150, consistent with
experimental measurements (Fig. 1A). A further increase in tilt
angle initiates a second phase transition, around ↵ ⇡ 500,
and roots begin to coil, again consistent with experiments

(Fig. 1A). Transition angles are also consistent with experimental
values (46) (Fig. 3E), as we shall elaborate later.

To gain intuition about the waving and coiling process, as
well as their transitions, we analyze the system from an energetic
and topological perspective. Tip dynamics are tracked via the
planar angle ✓tip. This is the angle between the projections
of gravity and the tangent of the apex on the tilted plane
(Fig. 2 A and C ). The evolution of the stored energy in the
growth zone is described through the approximate elastic bending
energy Eb =

R
Lgz m · (�1d1 + �2d2) ds and elastic twist

energy Et =
R
Lgz m · �3d3ds, where � = /�e � 0 and

m = B�/�2e (Fig. 2D). Additionally, in order to concisely
capture root morphology and its reconfigurations, we consider
the topological quantities writhe (Wr) and twist (Tw) in the
growth zone (Fig. 2E).Writhe is computed by treating the growth
zone as an open loop (61), and is used here as a measure of out-
of-plane bending of the growth zone’s centerline. If Wr = 0,
then the centerline is in-plane, while positive or negative values
of Wr correspond approximately to right- or left-handed out-of-
plane bending, respectively (SI Appendix, Fig. S2). Twist instead
determines the rotation of the local frame around its centerline.
Positive and negative values correspond to right-handed and
left-handed rotations accordingly (SI Appendix, Fig. S2). In a
closed or infinitely long rod, the geometric integral quantities
Wr and Tw are related topologically, and their sum is constant
and constrained by the number of formed loops (62). In our
case, their sum is not conserved; however, their topological
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Fig. 4. Simulations and model reproduce skewing patterns. (A) Simulation configurations. Top view of simulated organs for di�erent twisting frequencies !
and a constant turning time T0 (with ↵ = 30o, � = 0.1, and � = 0.2). (B) Observed cell file rotation of an Arabidopsis mutant exhibiting skewing, manifesting
intrinsic twist (50). (C) Model for intrinsic twist. The angle between the cell files and the root axis increases from the apex to the mature zone, captured by
the angular velocity !, as described by Eq. 5. (D–F ) Properties of the growth zone during the development of a skewed pattern. Similar to Fig. 2 (C–E), for
!T0 = 1. Symmetry is broken by twist, without an elastic instability. A comparison between various values of !T0 appears in SI Appendix, Fig. S10. (G) Relation
between skewing angles h✓i and intrinsic twist. Following the limiting relations in Eqs. 14 and 15 we plot sin h✓i/ tan ↵ vs. !T0 · R/Lgz , for both simulations and
experiments (26, 38, 52, 53). Simulations were run with Lgz/R = 10, � = 0.1, 0.1  �  0.25, 10o  ↵  40o, and 0  R⌧  0.8, which give 0  !T0  9.3 (Table 1).
Experimental data (26, 38, 52, 53) are plotted assuming Lgz�/R = 0.5, and ! is estimated from experimental values of cell file rotation (CFR) via Eqs. 27 and
5. Predicted asymptotic relations in the limits !T0 ⌧ 1 and !T0 � 1, as detailed in Eqs. 14 and 15, are represented by solid lines. Experiments agree with
simulations and asymptotic predictions, except for MBD-GFP mutants (26). In SI Appendix, Fig. S9, we plot the correlation between intrinsic twist ⌧ and skewing
angle h✓i for the experimental data.

connection is useful to qualitatively understand the system
dynamics.

As can be seen in Fig. 2A, the onset of waving and coiling
follows a first turning event. Fig. 2B shows snapshots at different
stages of a waving organ, animated in Movie S1 and marked
for reference in Fig. 2 C–E. Snapshot (i) occurs just before the
first turning event, where the root grows in a plane defined by
its initial tangent and the direction of gravity, as represented by
the constant values of ✓tip (Fig. 2C ), Wr and Tw (Fig. 2E).
Due to gravitropism, the root tends to grow into the substrate
(Fig. 1D), which in turn resists growth, leading to an increase in
bending energy Eb (Fig. 2D). This energy is eventually released,
breaking symmetry, in the form of an elastic instability—
snapshot (ii)—whereby the root tip slips or tilts to one side,
bending and twisting. This process is reflected by a sharp drop
in Eb accompanied by a jump in all other parameters (Fig. 2
C–E). We note that while in simulations this initial symmetry
breaking is purely caused by an elastic instability, in experiments a
number of factors may further contribute to it, from geometrical
or material imperfections to small intrinsic root twists.

We continue to follow the growth of the root during a
subsequent turning event. Snapshot (iii) occurs right after the
second turn where the tip angle ✓tip is at a maximum, and the
bending energyEb is at aminimum. For further insight, it is useful
to decompose � into components parallel and perpendicular to
the substrate. The parallel component causes the root to reorient
along the projection of gravity on the plane, leading to a decrease
in the planar tip angle ✓tip. The perpendicular component pushes
the apex into the plane, leading again to an increase in Eb, similar
to the initial symmetry breaking and in line with observations
of substrate deformations (17). As new cells are produced at
the tip, older cells stop growing and become part of the mature
zone. Thus, accumulated twist leaves the growth zone, so that, at
snapshot (iv), Et reaches a minimum while Eb reaches a maximal
value. Then, as for the first bending event, the organ releases

bending energy by twisting, and Eb is converted into Et . This
elastic relaxation is accompanied by a conversion of Wr into Tw,
since these quantities are topologically related (61). Both Et and
Tw reach a maximum value at snapshot (v). At this point Tw is
convected out of the growth zone faster than it is generated, and
Tw and Et decrease. The organ is now back to stage (iii), and the
process repeats itself. Since the gravitropic correction of curvature
is slower than the elastic relaxation, ✓tip repeatedly overshoots in
the direction of gravity, producing the observed waving patterns.

We note that our simulations show that neither thigmotropism
nor circumnutation is strictly required in order to producewaving
and coiling, unlike previously argued (15, 16, 23, 24, 26).

Scaling Analysis.We now perform a scaling analysis of the
growth dynamics described in Eqs. 3 and 4, and relate model
parameters to experimentally measurable variables: wavelength �
and amplitude A of root waving patterns, as defined in Fig. 3C.
Comparing predicted values to experimental measurements will
allow to quantitatively corroborate our model. In order to derive
relations for amplitude andwavelength, we focus on the curvature
of the waving pattern. Simulations (Fig. 2) show that the elastic
stresses associatedwith bending, due to the organ pushing into the
substrate, are accumulated until they relax by twisting sideways,
which rotates the curvature vector. This suggests that themaximal
value of the in-plane curvature of the waving pattern , obtained
right after twisting, may be comparable to the maximal curvature
0f induced by the gravitropic response in a free organ tilted at
the same angle ↵ of the substrate. Thus, we hypothesize that

max  ⇡ max 0f . [6]

In SI Appendix, 6 we provide a detailed analysis supporting this
assumption, decomposing the dynamics of a tilted organ into
components parallel and perpendicular to the tilted plane. This
assumption is also supported by Fig. 2C, which compares the
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oscillating tip angle of a root waving on a substrate (blue) with
the gravitropic bending of a corresponding free organ (pink).
This comparison further suggests that the wavelength � of the
waving pattern is dictated by the damped oscillations inherent to
the free organ’s gravitropic dynamics (64), while the amplitude
A is modulated by the mechanical interaction with the substrate.

Therefore, in order to find �, we first evaluate the characteristic
gravitropic turning period T0, corresponding to the time a tilted
free root takes to turn toward the direction of gravity (27, 41).
We rewrite Eq. 4 in nondimensional form, assuming � = 0
for simplicity, and rescaling length and curvature by Lgz,
yielding d

dt (Lgz
0
f ) = "̇g

Lgz
R � (d3 ⇥ ĝ). Values in parentheses

are dimensionless, as well as the coefficient Lgz
R �. Since d3 and ĝ

are unit vectors, we expect the turning time T0, related to the rate
of change of the normalized curvature d

dt (Lgz
0
f ), to scale as a

function of Lgz
R �, with 1/"̇g the overall timescale of the problem.

Based on free organ’s simulations (SI Appendix, 5) we find

T0 ⇠
⇡
2
1
"̇g

✓Lgz
R

�
◆�3/5

. [7]

Here Lgz/R is the geometric slenderness ratio of the growth zone,
and we interpret Lgz

R � as an effective gravitropic sensitivity (64).
We approximate max 0f ⇠ T0 max d0f /dt and substitute
d0f /dt from Eq. 4 (with � = 0) to obtain

max 0f ⇠ T0
"̇g
R
� sin ↵. [8]

This equation provides an estimate for max 0f , which together
with Eq. 6 relates the waving curvature to the gravitropic
curvature. In Fig. 3A, we validate Eq. 6 for a range of tilt
angles by plotting max , the maximal curvature measured
from simulated waving patterns, against max 0f , the analytically
predicted maximal curvature for a free tilted organ in Eq. 8,
finding good quantitative agreement.

Having verified that the timescale of the waving pattern is
related to the gravitropic bending, we can approximate the length
�/2 grown during a turning event (Fig. 3C ) as

�
2

⇡ T0vtipg , [9]

where vtipg is the tip growth speed. Then, following simple geo-
metric arguments, we relate the amplitude A to the wavelength.
After a turn event, 2A and �/2 form an orthogonal triangle
(Fig. 3C ). Based on Eq. 6, and since in the gravitropic response
of a free organ the angle between the base and the tip is equal to
the tilt angle ↵ (Fig. 1D), we can infer

2A ⇡ T0vtipg tan (↵). [10]

By combining Eqs. 9 and 10, we then obtain

� ⇡ 4A cot(↵) [11]

directly relating wavelength � and amplitude A through the
incline ↵. We compare Eq. 11 with simulations and experi-
ments (16, 46, 63) in Fig. 3B, noting consistent trends. The
individual scaling relations (Eqs. 9 and 10) are also tested
in SI Appendix, 5. Throughout, we assume local sensing. We
additionally report results for apical sensing in SI Appendix, 5
(Materials and Methods), observing no qualitative differences.

Transitions between Straight, Waving and Coiling.Here, we
provide an intuitive rationale for the two critical tilt angles at
which the root transitions from straight to waving (↵s!w) and
from waving to coiling (↵w!c), with the full derivation reported
in SI Appendix, 7.

Simulations of Fig. 2 suggest that waving patterns are initiated
by an elastic instability, which occurs when it becomes ener-
getically convenient to twist rather than to bend, i.e. Et < Eb.
Again assuming that the intrinsic curvature is captured by the
gravitropic response of the free organ max 0f (Eq. 8), before the
turn we can approximate Eb / (max 0f )

2. The accumulated
angle during the gravitropic response is roughly equal to the tilt
angle Lgz max 0f ⇡ ↵, meaning that Eb increases with the tilt
angle. However, Et is constant, and at a critical angle ↵s!w the
two energies intersect Et = Eb(↵s!w) and waving occurs. The
critical angle (detailed in SI Appendix, 7) follows

sin(↵s!w) =
r
2
3
2�⇠
⇡

✓�Lgz
R

◆�
2
5
, [12]

where �⇠ is a fitting parameter representing the change in the
register angle ⇠ created by the integrated elastic twist (Fig. 1C ).

The transition between waving and coiling is instead related to
the ratio between i) the time to turn toward gravity after a twist-
induced relaxation and ii) passive orientation drift (27)—the rate
at which the tip angle of a curved organ increases due to growth,
maintaining the same curvature, thus reorienting growth uphill
in this case. The former is proportional to the amplitude of the
waving pattern T0 tan (↵) in Eq. 10, and the latter follows Tdr ⇡

1/("̇gLgz max ) (27). At at a critical angle ↵w!c orientation
drift occurs faster than turning, Tdr < CT0 tan (↵), and coiling
ensues. The coiling critical angle (detailed in SI Appendix, 7) then
follows

sin2(↵w!c)
cos(↵w!c)

=
4

C⇡2

✓�Lgz
R

◆ 1
5
, [13]

where C is a fitting parameter.
We corroborate the predicted critical angles both numerically

and experimentally. Fig. 3D shows the configuration space of
simulated organs over a range of ↵ and effective gravitropic
bending �Lgz/R (where for Arabidopsis roots we use 0.5,
see Table 1). For each set of parameters, we compare the
conformation observed in simulations ( ⌅ symbols for straight,
⌥ for waving, • for coiling) to the predicted one (represented
by background colors, separated by the critical angles), with
�⇠ = ⇡/8 andC = 0.5, finding good agreement. Configuration
spaces for cases with � = 1, and apical sensing, can be found in SI
Appendix, 7, where we note no qualitative difference. In Fig. 3E
we also compare our results to the coiling probability measured
in vivo by Zhang et al. (46), again finding good quantitative
agreement.

Intrinsic Twist Yields Skewing Patterns. Last, we focus on the
skewed waving patterns observed in some Arabidopsis mu-
tants (26, 38, 52, 53) (Fig. 1A). Observations suggest that the
skewing angle is related to the twisting of root cell files (Fig. 4B),
which may be represented as an intrinsic twist of the material
frame around the centerline of the growth zone, as described
in Eq. 5 and detailed in the Materials and Methods (Fig. 4C ).
When accounting for such rotations (! in Eq. 5), simulations
recover observations of skewing (Fig. 4A and Movies S3–S5).
We see how increasing the ratio between the bending time and
the twisting velocity, !T0, results in larger skewing angles and
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washes out the waving pattern. This is reflected in the evolution
of energetic and topological variables: !T0 = 1 (Fig. 4 D–F )
exhibits oscillatory behavior similar to that of regular waving
patterns, while!T0 = 8.3 (SI Appendix, Fig. S10) transitions to a
moremonotonic behavior.Here, the initial breaking of symmetry
manifests as a smooth, twist-induced rotation, facilitated by the
intrinsic cell file rotation (26).We also note that circumnutations
are not required; however, they could have a secondary role,
as we find that with no intrinsic twist circumnutations lead to
disordered patterns and low skewing angles (SI Appendix, 8),
explaining observed coiling in agravitropic roots (16).

Next, we relate the average skewing angle h✓i (defined in
Fig. 2A) to !, for two limiting cases. When !T0 ⌧ 1, the apical
rotation due to intrinsic twist acts as a small perturbation to
the waving mechanism, accelerating turns in the same direction,
while slowing down opposite turns (Fig. 4 D–F ). Thus, the
amplitude of the turn increases in one direction, A+ ⇡ A(1 +
!T0), and decreases in the other, A� ⇡ A(1 � !T0). From
trigonometric arguments sinh✓i is the horizontal displacement
due to the difference in amplitude over two turns, divided by the
wavelength sinh✓i ⇡ �A/�, with �A = 2A+ �2A� = 4A!T0.
Substituting the expressions for � and A in Eqs. 9–10 yields

lim
!T0⌧1

sin h✓i ⇡ !T0 tan ↵. [14]

In the opposite limit!0T0 � 1, the twist-induced rotation dom-
inates, and the waving pattern disappears altogether. Following
simple geometric arguments (Fig. 1D), the skewing angle h✓i
reduces the in-plane gravitropic component �k = � cos ↵ sin h✓i;
however, it does not affect the perpendicular component directed
into the plane, �? = � sin ↵, which causes the apex to drift uphill
when twisted into the plane. The constant skewing angle suggests
that these two competing processes balance each other, �? = �k,
yielding

lim
!T0�1

sin h✓i ⇡ tan ↵. [15]

We corroborate our skewing model (limiting relations Eqs. 14
and 15 and simulations) against experimental observations (26,
38, 52, 53) in Fig. 4G. As can be seen, theory and simulations
are found to be consistent among themselves as well as able to
capture general trends across a variety of Arabidopsis mutants.
Only a particular strain, expressing MBD-GFP (26), is found
to significantly depart from our predictions (Top/Left corner of
Fig. 4G). While we cannot comment on the effect of this specific
mutation on growth behavior, we note that these outliers are
themselves a subset of the specimens investigated in ref. 26,
which are otherwise in agreement with all data of Fig. 4G.

Conclusions
We developed a numerical framework for simulating the
interaction of plant roots with solid interfaces, integrating
passive mechanics and active growth-driven mechanics. Our
methods are shown to reproduce the range of growth patterns
exhibited by Arabidopsis roots grown on a tilted plane, a well-
documented biophysical plant model. Our simulations illustrate
how the interplay between active gravitropic response and passive
elasticity are the minimal requirements to generate straight,
waving, and coiling patterns, while the addition of intrinsic twist
is responsible for skewing. We find that neither thigmotropism
nor circumnutation are required to recover waving or skewing
patterns, as previously argued (16, 23–25); however, they could
play a secondary role.

A scaling analysis reveals that the amplitude of waving patterns
is modulated by the mechanical interaction with the substrate,
while the wavelength depends on oscillations inherent to the
gravitropic dynamics of a free organ, regardless of the interaction
with the plane. Based on this analysis we develop analytical
expressions for the critical tilt angles for which the root behavior
transitions from straight to waving and then coiling. Further, we
elucidate the relation between skewing angles and intrinsic twist.
We corroborate all these analytical insights by comparing model
predictions to both simulations and experimental observations,
obtaining good agreement.

This framework provides, effectively, an in silico laboratory
to form and test hypotheses relative to the behaviors of plants
and their mechano-sensory machinery in realistic environments.
Future extensions will consider heterogeneous terrain via the
inclusion of granular mechanics. Finally, we note that since our
approach is general and agnostic to the underlying biological
building blocks, it can be applied to growth-driven systems
other than plant organs, such as neurons, fungal hyphae, or new
generation of growing robots (65–68).

Materials and Methods
Here, we consider a plant organ as a slender rod, whose centerline is
parameterized by s, with s = 0 at the base and s = l at the tip, l being
the organ length (Fig. 1B). In order to describe its dynamics, we assume a
separation of timescales between slow growth-driven processes and fast elastic
relaxation (28, 29). At each time step of our integration scheme, we first update
the configuration of the organ according to the growth process alone, and then
allow it to relax mechanically following Cosserat rod theory (37) (Fig. 1D). For
the sake of clarity, the intermediate stress-free configuration is parameterized
with S, in order to differentiate it from the final relaxed configuration described
with s. The initial configuration is marked with S0. In what follows, we bring
the governing equations describing the growth dynamics and the mechanical
relaxation.

Shape. At each point s along the centerline we define the position vector r(s, t),
which provides the 3D description of the rod at time t (Fig. 1B). We also define
a local orthonormal material frame {d1(s, t), d2(s, t), d3(s, t)}, where d1 and
d2 span the cross-section of the organ, and in a shearless and inextensible
systemd3 coincideswith the tangent of the centerline. The local curvature vector
(s, t) (or Darboux vector) of the center-line is defined through the relation
@di(s,t)

@s = (s, t)⇥di(s, t) (37). The components of curvatureprojected along
theprincipal vectors of thematerial frame ( = 1d1+2d2+3d3) coincide
with bending (1, 2) and twist (3) strains in the material frame. Introducing
elastic stretchmay lead toadifferencebetweenthearc-lengthconfiguration sand
the stress-free configurationS, describedby the local stretch (37)�e(s, t) = @s

@S .
Shear may leads to an incongruity between d3 and the tangent of the center-
line, and the local deviation is described by the translation vector �(s, t) =

�e(s, t)
@r(s,t)

@s � d3(s, t) (Fig. 1B).

Growth. Root growth occurs in the growth zone, an area of length Lgz just below
the root tip. Cells divide at the tip, and elongate within the growth zone, until
stop elongating and reach the mature zone (Fig. 1E). The initial configuration
then represents the material (or Lagrangian) coordinate which flows due to
growth with velocity vg, which is the integral of the mean axial relative growth
rate "̇g � 0

vg(S, t) = Ṡ(S0, t) =
Z S

0
"̇g(u, t)du. [16]

Here the growth rate is the time derivative of the logarithmic growth strain
"g = ln �g, where �g ⌘

@S
@S0

is the growth stretch. The increase in rest
lengths enters the dynamics via the actual and intrinsic stretch vectors, defined
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as � =
⇣
�e @r

@s � �gd3
⌘
and �0 = �

�
�g � 1

�
d3 respectively, such that

� � �0 =
⇣
�e @r

@s � d3
⌘
. As described in the main text, growth-driven

movements are generally classified into tropic andnasticmovements, where the
former are due to external stimuli, such as gravitropism, and the latter are due to
internal cues, such as the oscillatorymovements of circumnutations. Changes in
curvature are due to the anisotropic redistribution of growth hormones, leading
to asymmetric growth along the cross-section capturedby thedifferential growth
vector�(s, t) (30). The dynamics resulting change in intrinsic curvature 0 for
L(t) � Lgz  s  L(t) within the growth zone follows (30)

̇0 =
"̇g
R
(d3 ⇥ �). [17]

Here ̇0 = @0
@ t +vg @0

@s ⌘
D0
Dt is amaterialderivativewhichaccounts for the

growth of the centerline. For simplicity, we assume no intrinsic twist, 03 = 0.
The cross-product d3 ⇥� represents a projection of� on the local cross-section
of the organ (details in SI Appendix, 2). The tropic and nastic movements then
contribute to the total differential growth vector�. In the case of gravitropism,
we have

�g(s, t) = �R(s, t)ĝ � �R(s, t)N̂(s, t). [18]
The first term represents the gravity stimulus, with ĝ the direction of gravity and
� the gravitropic sensitivity or gain reflecting the variance in the magnitude of
gravitropic responses across different species (41). The second term represents
proprioception which can be thought of as a counter-curving response (41),

where � is its gain, R is the radius of the organ,  ⌘

q
21 + 22 is the norm of

the bending curvature, and N̂ is the normal director of the Frenet-Serret frame.
The matrix R(s, t) in the gravitropic term represents the sensingmechanism: in
the case of local sensing used here R(s, t) = I, and in the case of apical sensing
where sensing occurs at the tip alone we set R(s, t) = Q(s, t)QT (l(t), t). This
rotation matrix takes vectors from the material frame at the apex, s = l(t),
to points along the growth zone s, and assures that the directional signal
sensed at the apex is instantaneously transferred to every arc-length s. Results
of simulations with apical sensing are described in SI Appendix, 5 and 7. We
model circumnutations as resulting fromdifferential growth rotating around the
center-line without introducing twist (30, 31, 33, 42)

�CN = �
�
cos (⌦t)m̂1 + sin (⌦t)m̂2

�
, [19]

where � is the circumnutation gain, ⌦ is its temporal angular frequency and
m̂1 and m̂2 are unit vectors of a normal development of the centerline (30). We
assume that the two processes are additive, allowing to take� = �CN + �g.

Adding a Twisting Material Frame. Various Arabidopsis mutants exhibiting
skewing angles also seem to exhibit a twisting cell profile (49–51), which can
be interpreted as a twisting material frame around the centerline of the organ,
described by the relative angle ⇠ ⌘ arccos (m̂1 · d1) (Fig. 1C). Based on
experimental observations, we chose a twist profile where the angle between
the cell files and the root axis increases from the apex, where it is zero, to
the mature zone where it reaches a constant value (Fig. 4 B and C). This is
implemented using a linear profile for the arc-length derivative of ⇠

@⇠(S, t)
@S

=

(
⌧ �

⌧
Lgz

�
S � (L(t) � Lgz)

�
S 2 GZ

⌧ S 2 MZ
[20]

with GZ is the growth zone L(t) � Lgz  S  L(t), and MZ is the mature zone
0  S < L(t)� Lgz , where L(t) is the length of the organ and Lgz is the length
of the growth zone. Here ⌧ represents twist, where a positive or negative value
represents a right or left-handed twist respectively. The intrinsic angle between
the cell files and the root axis is arctan

⇣
R @⇠

@S

⌘
with a maximal value in the

mature zone of arctan(R⌧). The angular frequency of rotation of the tissue at the
tip follows! = @⇠(L(t), t)/@ t = ⌧"̇gLgz clockwise (looking from the base to
the apex, see Fig. 4C). When incorporating twist into the dynamics of Eq. 4, only
the component in the direction of d3 is affected, reading

̇03(S, t) =
d
dt

@

@S
⇠(S, t). [21]

See more details in SI Appendix, 2.

Mechanics. Mechanical equilibrium is achieved at each time step when the
time-independent Cosserat rod equations are fulfilled along the centerline (37)

@n
@s

+ f = 0, [22]

@m
@s

+
@r
@s

⇥ n+ c = 0, [23]

where n are the internal contact forces, ⌧ are the internal torques or bending
moments, f are the external forces per unit length and c are the external
couples per unit length, all functions of s and t. The full elastic relaxation
dynamics of the second step are based on the Cosserat model with a dissipation
mechanism, as described in ref. 37 and SI Appendix, 3B. We follow (37)
and choose a constitutive model that assumes linear elasticity, namely the
internal contact forces are linearly related to the shear and stretch of the
centerline, and the internal torques are linearly related to the bending and
twisting

n = S
⇣
� � �0

⌘
= S

✓
�e

@r
@s

� d3

◆
, [24]

m = B
⇣
 � 0

⌘
, [25]

where S and B are stiffnessmatrices which are related to the cross-sectional area
and thesecondmomentof inertia andare thereforediagonal in the localmaterial
coordinates. We also assume volume conservation, varying the local radius of
the organ in order to compensate for the elastic stretch R ! R/

p
�e(s, t).

Simulating Arabidopsis thaliana rRoots. We simulate classic waving exper-
iments on Arabidopsis thaliana, placing a rod on a plane tilted at an angle ↵
with respect to the vertical (see Fig. 1D), allowing it to grow during 1,500 to
3,000 growth time-steps, which increases their length by a factor of 15 to 30.We
adopt values for Arabidopsis thaliana, taking the radius R = 0.1mm (43, 64),
and an initial length L0 = 1.1mm (see Table 1). We assume that growth is
restricted to a sub-apical growth zone of length Lgz, such that "̇g(s, t) = "̇0g
within the growth zone L(t)� Lgz  S  L(t), and "̇g(s, t) = 0 elsewhere (8)
(Fig. 1 B and E). According to Eq. 16, the maximal growth velocity at the
tip is vtipg = "̇0gLgz , so that L(t) = L0 + "̇0gLgzt. In our simulations we

take Lgz = 1mm and "̇0g = 0.2h�1 following experimental data (43). We
assume the roots are incompressible with an effective Poisson’s ratio of 0.5
and Young’s modulus of E = 50MPa (8, 69), yielding the stiffness matrices
S = E⇡R2 ·diag(8/9, 8/9, 1)andB = E⇡R4 ·diag(1/4, 1/4, 1/6), expressed
in the local material frame (37). Values are summarized in Table 1. We assume
the plane is frictionless. In order to emulate the stiff agar surface we assume the

Table 1. Parameters used to emulate Arabidopsis
thaliana roots
Parameter Value used Units

R 100 �m
Lgz 1 mm
"̇0g 0.2 1/h
E 50 MPa
� 0.05 to 1.0
� 0.0 to 10.0
R⌧ 0.0 to 0.8
vtipg = "̇0gLgz 0.2 mm/h
�Lgz/R 0.5

The values takenhave the sameorder ofmagnitude as theirmeasured values, as described
in refs. 8, 27, 43, 64, 69. The values for R⌧ are chosen based on data from refs. 23, 26, 38,
52, 53 and Eq. 27 as plotted in SI Appendix, 9. The last relation was used in order to fit
experimental data in Fig.4.
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plane applies a local normal restoring force with a spring constant of 100 kg/s2

and dissipative damping of the normal velocity with a dissipation coefficient of
0.01 kg/s for more details see ref. 37. The mature zone adheres to the substrate
due to development of root hairs and lignification (8), which we emulate by
using a restoring force with a spring constant of 1,000 kg/s2 which fixes in
place material that exists the growth zone. Thus only the growth zone is free
to change its form, while the mature zone is only free to twist around its
axis. We vary the gravitropic sensitivity between 0.05  �  1.0 following
experimental observations (43), and vary proprioceptive sensitivity in the range
0  �  10 (27), though its role in roots hasn’t been established as clearly as
in shoots (64).

Solver Validation. We validate our solver in SI Appendix, 3 by comparing
our simulations to two analytically solvable cases: i) a clamped organ growing
in the direction of an obstacle until it buckles , and ii) the tropic response to a
constant stimulus in the case of apical sensing. InSI Appendix, 3,we also provide
additional information regarding the numerical discretization of growth, and a
numerical criterion for mechanical equilibrium. For more details about Elastica
and the implementation of interactions between the rod and external obstacles
see refs. 37 and 54.

Estimation of Intrinsic Twist Profile. The intrinsic twist can be evaluated
by counting the number of epidermal cells that cross a line tangent to the
root axis, yielding the parameter CFR (cell file rotation) such that [CFR] =
Number/length. The average projected length of one epidermal cell on the root
axis is therefore 1/CFR. Assuming that a cell’s width is w ⇡ 0.01mm (51), we
can estimate the angle of the cell file with respect to the root axis by

sin (⌘) = CFR · w. [26]

This angle in the mature zone can be expressed using ⌘ = arctan (⌧ · R), and
we estimate ⌧ from the CFR following

⌧ ⇡
1
R
tan (arcsin(CFR · w)) =

1
R

CFR · w
q
1 � (CFR · w)2

. [27]

Data, Materials, and Software Availability. All study data are included in
the article and/or supporting information.
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