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Flexible octopus arms exhibit an exceptional ability
to coordinate large numbers of degrees of freedom
and perform complex manipulation tasks. As a
consequence, these systems continue to attract the
attention of biologists and roboticists alike. In this
article, we develop a three-dimensional model of a
soft octopus arm, equipped with biomechanically
realistic muscle actuation. Internal forces and couples
exerted by all major muscle groups are considered.
An energy-shaping control method is described to
coordinate muscle activity so as to grasp and reach
in three-dimensional space. Key contributions
of this article are as follows: (i) modelling of
major muscle groups to elicit three-dimensional
movements; (ii) a mathematical formulation for
muscle activations based on a stored energy function;
and (iii) a computationally efficient procedure to
design task-specific equilibrium configurations,
obtained by solving an optimization problem in
the Special Euclidean group SE(3). Muscle controls
are then iteratively computed based on the co-state
variable arising from the solution of the optimization
problem. The approach is numerically demonstrated
in the physically accurate software environment
Elastica. Results of numerical experiments mimicking
observed octopus behaviours are reported.

2023 The Author(s) Published by the Royal Society. All rights reserved.
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1. Introduction
Interest in soft robots, specifically soft continuum arms (SCAs), comes from their potential ability
to perform complex tasks in unstructured environments as well as to operate safely around
humans, with applications ranging from agriculture [1–3] to surgery [4–6]. An important bio-
inspiration for SCAs is provided by octopus arms [7–10]. An octopus arm is hyper-flexible with
nearly infinite degrees of freedom, seamlessly coordinated to generate a rich orchestra of motions
such as reaching, grasping, fetching, crawling or swimming [11,12]. How such a marvellous
coordination is possible remains a source of mystery and amazement and of inspiration to soft
roboticists. Part of the challenge comes from the intricate organization and biomechanics of the
three major muscle groups—transverse, longitudinal, and oblique—which add to the overall
complexity of the problem [13–16].

In this article, we develop a biophysical model of octopus arm equipped with virtual
musculature, using the formalism of the Cosserat rod theory [17,18]. In this type of modelling, a
key concept is the stored energy function of nonlinear elasticity theory, whereby the internal forces
and couples of a hyperelastic rod are obtained as the gradients of the stored energy function. The
goal of this work is to extend the energy concept for following interrelated tasks: (i) bio-physical
modelling of the internal muscles, and (ii) model-based control design. The specific contributions
on the two tasks are as follows.

(i) Muscle stored energy function. For each of the three major muscles of octopus arm, we
present a mathematical model in terms of muscle stored energy function. Starting from the
first principle, and incorporating empirical force–length data [19], explicit formulae of
the muscle stored energy function are derived. Our approach represents the first such
extension, to the continuum setting of a Cosserat rod, of the celebrated Hill’s model for
skeletal muscles [20–22]. This is contrasted with earlier work based on segment-based
finite-dimensional models of octopus arm [23,24].

(ii) Energy-shaping control. The energy-based modelling of muscles (actuators) greatly
simplifies the ensuing control design. It particular, it is shown to circumvent the key
difficulty of computing the solution of the so-called matching conditions during the
application of energy-shaping control [25–27]. To compute the muscle control input, the
energy-shaping control design is first posed as an optimization problem in the space
of the special Euclidean group SE(3). Its solution is obtained through an application of
the maximum principle of optimal control theory, which also leads to a computationally
tractable algorithm to compute the muscle control inputs. Several novel features of the
solution are noted, among which the physical interpretation of the co-state variable as
resultant internal forces and couples exerted by activating the muscles.

While this article focuses on the octopus arm, the aforementioned two contributions can broadly
inform also the modelling and control of SCAs. A key insight is that the conventional paradigm
of modelling robot and actuators as two separate systems (in series) is no longer applicable for
soft robots. Worse yet, such an approach may be counterproductive because the resulting control
problem is often computationally intractable. Because the actuators in SCAs—such as artificial
muscles [28,29] or embedded pneumatic devices [30,31]—are themselves mechanical systems,
energy provides a unifying concept to simultaneously model both in an integrated manner. The
total potential energy of an SCA is then simply the sum of its intrinsic elastic (passive) potential
energy and the (active) potential energy of the actuator. This renders the overall SCA of a
Hamiltonian control system for which energy-shaping control methodology is a natural option
with a rich history in robotics.

The two contributions are numerically illustrated in the high-fidelity simulation package
Elastica [18,32]. Results from two representative experiments, reaching and grasping, are
described. These results help showcase the out-of-plane motion of the arm, mimicking observed
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Table 1. Nomenclature

arm-related variables generic muscle-related variables
x centre line position L rest length of the arm xm muscle position

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

di centre line directors w velocity m muscle relative position
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Q centre line orientation v linear velocity tm muscle tangent director
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

q pose  angular velocity m muscle strain
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 strain p momentum ℓm muscle local length
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 shears and stretch n internal forces nm muscle forces
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 curvatures and twist m internal couples mm muscle couples
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

r radius of the cross section  density of the arm um muscle activation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

octopus behaviours, e.g. an octopus twisting its arm to reach a target, and an octopus wrapping
its arm around a cylindrical pole.

Before this work, there have been a number of applications of the energy-shaping control
methodology to both rigid robots [33,34] and soft robots [35–37]. These demonstrations rely
either on finite-dimensional articulated models (multiple rigid links) of the robot [38,39] or a
finite-dimensional approximation of the robot’s energy [37]. In continuum settings, optimization-
based formulations to design static equilibria appear in [40,41]. Here, we build on the prior work
in planar cases, whereby only longitudinal and transverse muscles were considered to obtain
motions in two dimensions [42–46]. While the planar modelling is an important first step, this
article represents a significant advancement including a comprehensive modelling and control of
all major muscle groups to obtain complex three-dimensional motions .

The remainder of this article is organized as follows. An overview of the anatomy of the
octopus arm musculature together with its kinematic modelling appears in §2. The dynamics
of the arm, modelling of muscle actuation, and the control objectives appear in §3. The details of
the energy-shaping control method are contained in §4. Numerical experiments are reported in
§5, and conclusions are given in §6. A summary of the notations used in this paper is provided in
table 1.

2. Kinematic model of an octopus arm and its musculature
(a) Pose of an arm
A flexible octopus arm is modelled as a single Cosserat rod with rest length L in an inertial
laboratory frame {e1, e2, e3}. The arc-length coordinate of the centre line of the arm is denoted as
s ∈ [0,L]. Physically, the centre line runs through the axial nerve cord of the octopus arm. Along
with s, the second independent coordinate is time t. For notational ease, the partial derivatives
with respect to s and t are denoted as ∂s := ∂/∂s and ∂t := ∂/∂t, respectively.

The shape of the arm is described through its kinematic pose

q(s, t) :=
[
Q(s, t) x(s, t)

0 1

]

, 0≤ s≤ L, t≥ 0,

where x(s, t) ∈R3 is the position vector of the centre line at the material point s, and Q(s, t)=
[d1(s, t) d2(s, t) d3(s, t)] is a special orthogonal matrix whose column vectors are referred to as the
director vectors. The normal and binormal directors d1 and d2, respectively, span the cross-section
of the arm and d3 = d1 × d2, where × denotes the vector cross product. The matrix Q(s, t) describes
the orientation of the material frame at point s at time t. See figure 1a for an illustration.
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local frame Q = [d1 d2 d3]

lab frame

(a) (b)
virtual
musculature

s = 0

s = L

∂s x
elastic arm

e3
e3

xm

nm

mm

x
e2 e1

s

x

e1
e2

d3

d1
d2

m = LM

m

Figure 1. An octopus arm is modelled as a Cosserat rod. (a) The blue line denotes the centre line of the arm where the base is
denoted as s= 0, and the tip is denoted as s= L. At each time t, its position at arc-length location s is denoted as x(s, t) and
its orientation (local frame) is Q(s, t). (b) Example of a longitudinal muscle m= LM. The purple line denotes the position xm of
the virtual longitudinal muscle. The muscle exerts an active force nm along the direction of the tangent vector tm. This results
in a couplemm acting on the centre line.

transverse muscle longitudinal muscle

clock-wise oblique muscle counter clock-wise oblique muscle

(a) (b)

(c) (d)

γ TM = 0 γ LMk = βLM

γ OM
+
k = βOM

k = 0

k = 0

k = 0

3

3

3

2

2 2

1

1 1

L

1 mm

1 mm 1 mm

1 mm

cos(kπ/2)

sin(kπ/2 + 2πNcs/L)
cos(kπ/2 + 2πNcs/L)

γ OM–
k = βOM

cos(kπ/2 – 2πNcs/L)
sin(kπ/2 – 2πNcs/L)

sin(kπ/2)
0

0 0

Figure 2. Illustration of the (virtual) musculature modelling. Insets show a physiological cross-section of an Octopus rubescens
arm (see appendix B for details). Different muscle groups are colour coded differently. Each figure shows the position of each
type of muscle. Position vector of a muscle relative to the centre line is denoted byγ m. (a) Transverse muscles are illustrated as
green rings surrounding the axial nerve cord. Since they do not result in couples acting on the centre line, their relative position
is set as γ TM = 0. (b) Longitudinal muscles are coloured in purple. They run parallel to the centre line. (c) and (d) are oblique
muscles with clockwise and counter clockwise rotations, respectively. They are coloured in orange.

(b) Physiology and geometry of the muscles
In an octopus arm, the axial nerve cord is surrounded by densely packed muscles and
connective tissue. Organizationally, there exist three major muscle groups [14–16] as seen from the
physiological cross-section of an Octopus rubescens arm (figure 2):
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Table 2. Summarized muscle model

muscle model notation values of parameters
muscle relative position local length max stress normalized area
m γ m ℓm βm/r σm

max (kPa) Am/A

TM 0

√∣∣νTM
◦

∣∣
∣∣νTM

∣∣ — 15
1
8

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LMk βLM

⎡

⎢⎣
cos(kπ/2)
sin(kπ/2)

0

⎤

⎥⎦

∣∣νLMk
∣∣

∣∣∣νLMk◦

∣∣∣

5
8

10
1
16

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OM+
k βOM

⎡

⎢⎣
cos(kπ/2+ 2πNcs/L)
sin(kπ/2+ 2πNcs/L)

0

⎤

⎥⎦

∣∣∣νOM+
k

∣∣∣
∣∣∣νOM+

k◦

∣∣∣

15
16

100
1
256

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OM−
k βOM

⎡

⎢⎣
cos(kπ/2 − 2πNcs/L)
sin(kπ/2 − 2πNcs/L)

0

⎤

⎥⎦

∣∣∣νOM−
k

∣∣∣
∣∣∣νOM−

k◦

∣∣∣

15
16

100
1
256

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(i) Transverse muscles (TMs) surround the nerve cord and are oriented orthogonally to the
axial direction of the arm.

(ii) Longitudinal muscles (LMs) run parallel to the nerve cord.
(iii) Oblique muscles (OMs) are helically arranged around the longitudinal and TMs.

While each of these muscles can only contract when activated, by virtue of their geometrical
arrangement, internal forces (both contractile and extensional) and couples are generated,
allowing the arm to shorten and bend (LM), extend (TM) and twist (OM). A generic muscle is
denoted as m ∈ {TM,LM,OM}. In the laboratory frame, its position is

xm := x+Qγm, (2.1)

where γm is the muscle’s relative position from the centre line, represented in the material frame.
The unit tangent vector of a muscle is defined as follows:

tm :=Q⊤ ∂sxm

|∂sxm|
.

An illustration of these quantities is given in figure 1b for m= LM. For each muscle group,
corresponding locations are sketched in figure 2, tabulated in table 2 and further detailed in
appendix B.

(c) Strains, velocities and energies
For each fixed (s, t), the pose q(s, t) is an element of the special Euclidean group SE(3). The
orientation Q(s, t) is an element of the special orthogonal group SO(3). The associated Lie algebra
are denoted as se(3) and so(3), respectively. A linear map [·]× : R3 → so(3) is defined as follows:

[z]× :=

⎡

⎢⎣
0 −z3 z2
z3 0 −z1

−z2 z1 0

⎤

⎥⎦ , z ∈R3,

and its inverse map is denoted as vec[·] : so(3)→R3. The strains and the velocities of the arm are
defined as follows:

∂sq(s, t)= q(s, t)ε̂(s, t) and ε̂ :=
[
[κ]× ν

0 0

]

, (2.2)
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where ε̂(s, t) ∈ se(3) with ε := (ν, κ) ∈R6 referred to as strain. The strain includes shears (ν1, ν2),
stretch ν3, curvatures (κ1, κ2) and twist κ3. Similarly,

∂tq(s, t)= q(s, t)ŵ(s, t) and ŵ :=
[
[ω]× v

0 0

]

, (2.3)

where ŵ(s, t) ∈ se(3) with w= (v,ω) ∈R6 referred to as velocity. Note that elements of ε and w are
strains and velocities, respectively, expressed in the material frame.

The kinetic energy of the arm is given by

T (p)=
∫ L

0

1
2
|p|2M−1 ds, (2.4)

where M is the inertia matrix (see appendix A) and p := Mw is the momentum in the material frame.
The vector norm is defined as |z|2A := z⊤Az, for any vector z ∈Rn, and A is a symmetric positive
definite n × n real matrix. The elastic potential energy is defined as follows:

Ve(q)=
∫ L

0
We(ε) ds, (2.5)

where the function We :R6 →R is the elastic stored energy function of the rod. Assuming a
hyperelastic rod, the elastic internal forces and couples (ne,me) are gradients of this function,
leading to the constitutive relationships

ne = ∂We

∂ν
(ε) and me = ∂We

∂κ
(ε). (2.6)

Remark 2.1. The simplest example of the elastic stored energy function is the quadratic form

We(ε)= 1
2
(|ν − ν◦|2S + |κ − κ◦|2B ), (2.7)

where S and B are the shearing and bending rigidity matrices of the rod (see appendix A),
respectively, and ε◦ = (ν◦, κ◦) is the intrinsic strain of the rod. This particular form of the elastic
stored energy function yields the linear stress–strain constitutive relation:

ne = ∂We

∂ν
= S(ν − ν◦) and me = ∂We

∂κ
= B(κ − κ◦).

3. Mathematical model of the control problem
(a) Dynamics
The dynamics of a Cosserat rod are captured by the system of nonlinear partial differential
equations [17,18]

∂tq= qŵ (3.1a)

and

∂tp=
[

∂sn+ κ × n − ω × (ρAv)
∂sm+ κ × m+ ν × n − ω × (ρJω)

]

+
[
f
c

]

− ζp, (3.1b)

where (n,m) are internal forces and couples, represented in the material frame, (f, c) are external
body forces and couples in the material frame and ζ is the damping matrix which serves as a
reduced-order model (see appendix A) for the viscoelastic properties of the elastic arm [18,42].
The rod dynamics (3.1) (in the absence of external body forces and couples) are accompanied by
a set of fixed-free type boundary conditions

x(0, t)= x0, Q(0, t)=Q0, n(L, t)= 0, m(L, t)= 0, ∀t≥ 0, (3.2)

where x0 ∈R3 and Q0 ∈ SO(3) are given position and orientation at the base, respectively. The
control (muscles) affects the dynamics by modifying the overall internal forces and couples (n,m)
as follows:
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n= ne +
∑

m
nm and m=me +

∑

m
mm, (3.3)

where (ne,me) are restoring loads due to passive elasticity (see (2.6)) and (nm,mm) are active loads
on the arm resulting from muscle contractions. The latter depend on the muscle activations u :=
{um} that serve as the control input. It remains to model the effect of muscles, namely, (nm,mm) as
functions of the control um.

(b) Forces and couples frommuscle actuation
Wemodel the arm and itsmusculature via a set of virtual muscles whose effects, upon contraction,
are translated into resulting forces and couples acting on a single Cosserat rod, representing the
arm itself. We start by noting that eachmuscle can only produce local contractile forces. According
to the classical Hill’s model [20–22,47], muscle forces are related to muscle lengths (relative to rest
state) ℓm through a force–length relationship described by a (normalized) function h(ℓm) ∈ [0, 1].
Descriptions of such force–length relationships are found in [23,43,48], and the specific form of
h(·), fitted from experimental data [19], is given in §5a. For simplicity, here, we use the same
force–length relationship for all muscle groups. However, different force–length relationships
for different muscle groups [48] can be accommodated. Moreover, the muscle contractile force
is proportional to its (rest) area Am(s), through the maximum force per unit area (σm

max) that the
muscle can provide. Hence, we write the active local muscle contractile force as follows:

fm(s, ℓm)= σm
maxA

m(s)h(ℓm). (3.4)

To extend the Hill’s model to express the effect of muscles on the single Cosserat rod
representing the arm, we need to account for their geometric arrangement (figure 2). Depending
on the muscle group, active contractions result in contractile (LM,OM) or extensile (TM) forces
as well as couples (LM,OM) on the arm. For example, TM contractions create radial shortening,
which in turn makes the arm extend in length due to incompressibility. Thus, local TM contractile
forces effectively generate an axial extensile force on the arm. The model describing these effects
is provided next.

For a generic muscle m, the control input is the intensity of the actuation denoted as um(s, t) ∈
[0, 1], where m ∈ {TM,LM,OM}. Physically, the control input um represents the innervating motor
neuron stimulation (e.g. the firing frequency). The bound on the control is the manifestation of
neurophysiological limits. When activated, the muscle exerts a resultant internal force nm along
the tangent direction of the muscle tm, modulated by um. That is,

nm :=±umfmtm, (3.5)

where the negative sign indicates extensile force in the case of TMs. Because the longitudinal and
OMs are located away from the centre line, they also generate the couple

mm := γm × nm. (3.6)

Notice that the TMs are perpendicular to the arm axis, and thus, they do not produce resulting
couples. Hence, we set γ TM = 0 (see discussions in appendix B).

It remains to specify the model for local muscle length ℓm. We first define the muscle strain νm

by the following relationship:
∂sxm =: Qνm.

Recalling the definition of the muscle position vector xm in (2.1), we then readily obtain

νm = ν + κ × γm + ∂sγ
m. (3.7)

As a result, a natural definition of the intrinsic or rest muscle strain νm◦ as a function of the intrinsic
rod strain (ν◦, κ◦) is given by

νm◦ := ν◦+κ◦×γm + ∂sγ
m. (3.8)
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The local muscle length is then taken to be a function of the muscle strain, i.e. ℓm = ℓm(|νm|). For
all three types of muscles, the model for ℓm appears in table 2. Explanations for such modelling
are provided in appendix B.

(c) Control problem
It is useful to view the dynamics (3.1) as a Hamiltonian control system. The Hamiltonian of a
non-actuated arm is the sum of kinetic and elastic potential energy. Dynamics of an actuated arm
are abstractly written as follows:

d
dt

[
q
p

]

=
[

0 Ξ

−Ξ∗ −Ω − ζM

] ⎡

⎣
∇qVe

∇pT

⎤

⎦ +
[
0
Gu

]

, (3.9)

where the map Ξ , its dual map Ξ∗, the map Ω and the generalized gradients ∇q and ∇p are used
to express the dynamics (3.1) in the canonical form [49,50]. The term Gu represents the overall
forces and couples generated by the muscles. Explicit forms of Ω and Gu are given in appendix A.

The control problem is to obtain stabilizing control inputs u for the system (3.9) so as to
achieve some predefined tasks. Here, the tasks are motivated by stereotypical motions observed
in octopuses [11,12]. Two of these motions are reaching and grasping. Mathematically, these two
problems are modelled by specifying an objective function for an optimization problem. Details
appear in §5b and §5c.

4. Energy-shaping control method
(a) Difficulties with the matching conditions
Consider the Hamiltonian control system (3.9) with its total energy or the Hamiltonian given by
T + Ve. The key idea of the (potential) energy-shaping control scheme is to implement controls
u such that the Hamiltonian is modified from T + Ve to T + Vd, where Vd is a desired potential
energy. That is, the controlled system evolves according to

d
dt

[
q
p

]

=
[

0 Ξ

−Ξ∗ −Ω − ζM

] ⎡

⎣
∇qVd

∇pT

⎤

⎦ . (4.1)

For the systems (3.9) and (4.1) to match (for arbitrary choice of initial conditions), it must follow
that

Gu=Ξ∗(∇qVe − ∇qVd), ∀ (q, p). (4.2)

The operator G is viewed as the actuator (muscle) constraint that restricts the muscle forces and
couples to be applied only in certain directions (see appendix A). In other words, the muscle
group TM, for example, can only produce axial forces on the arm. This is in contrast with the
fully actuated case where G is the identity operator, i.e. forces and couples on the arm are directly
specified via arbitrary continuous functions and may be applied along any desired direction, as
in [42]. As a result, equation (4.2) restricts the set of attainable desired potential energies Vd. The
restriction on Vd is expressed in the form of the matching condition, which is described next.

Let G⊥ denote the left annihilator of G, i.e.
〈
G⊥, Gu

〉
L2 = 0, for all (q, p) and for all u. Here, ⟨·, ·⟩L2

represents the usual L2 inner product. Then applying G⊥ to both sides of (4.2) yields
〈
G⊥,Ξ∗(∇qVe − ∇qVd)

〉

L2
= 0, ∀ (q, p). (4.3)

Equation (4.3) is referred to as the (potential) matching condition in literature [51–54]. Its solution
determines the set of allowable Vd that may be used in the energy-shaping control design. For
example, in the fully actuated case G⊥ = 0, so the matching condition is trivial and any choice
of Vd is a solution. However, in the presence of actuator constraints, the matching condition is
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impractical to solve, requiring convoluted and specialized techniques, e.g. the λ-method [55], or
additional assumptions [51,56], even in finite-dimensional settings.

Here, we do not attempt to directly solve the matching condition. Instead, we show in §4b
that it is possible to express active muscle forces and couples as gradients of a muscle stored energy
function. This implicitly solves the matching condition, leading to the energy-shaping control law
of §4d.

(b) Muscle stored energy function
Inspired by hyperelastic rod theory, we express the internal muscle forces and couples (see (3.5)
and (3.6)) as gradients of a scalar muscle stored energy function, defined as follows.

Definition 4.1. For a generic muscle m, let the rest strain vector (shear and stretch) be denoted
by νm◦ . Then, the muscle stored energy function is defined as the line integral along a (piecewise)
smooth curve C ∈R3

Wm(s, νm) :=

⎧
⎪⎪⎨

⎪⎪⎩

∫
C fm(s, ℓm(|y|)) y

|y|
· dy, if m ∈ {LM,OM}

∫
C −fm(s, ℓm(|y|)) y

|y|
· dy, if m= TM

, (4.4)

where y : [0, 1] /→C is a parameterization of the curve C, and y(0)= νm◦ , y(1)= νm.

Note that the integral of (4.4) is path independent as shown in appendix C. Given the stored
energy function (4.4), muscle forces and couples are obtained as follows.

Proposition 4.2. Suppose um = um(s, t) is a given activation of a generic muscle m. Then, resulting
muscle forces and couples acting on the arm are given by

nm = um
∂Wm

∂ν
and mm = um

∂Wm

∂κ
. (4.5)

Proof. See appendix C. !

Proposition 4.2 leads to the following expression for the total stored energy function of the arm

W(s, ε; u)=We(ε)+
∑

m
umWm(s, νm(ε)). (4.6)

Thus, the total potential energy of the arm becomes

V(q;u)=
∫ L

0
W(s, ε(s); u) ds. (4.7)

Similar to any mechanical system, an equilibrium configuration of the arm is characterized by
the (local) minimum of its potential energy landscape, as illustrated in figure 3. We present the
mathematical conditions for such an equilibrium next.

(i) Equilibrium of the arm
Consider the time-independent activation of a muscle m

um(s, t)= αm(s), 0≤ s≤ L, t≥ 0. (4.8)

Such an activation profile α = {αm} modifies the stored energy function and potential energy
according to (4.6) and (4.7), respectively. The change in potential energy alters the equilibrium
configuration of the arm. The necessary condition satisfied by the equilibrium is the subject of the
following proposition.

Proposition 4.3. Consider the time-independent activation profile (4.8). Then, the necessary condition
for the resulting equilibrium is given by

∂W
∂ε

(s, ε;α)= 0, 0≤ s≤ L. (4.9)
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potential energy

initial
equilibrium

desired
equilibrium

q

u

Figure 3. An illustration of the energy-shaping control method. The system starts as a straight rod (equilibrium of potential
energy landscape V e) and moves to a new equilibrium configuration based on the desired potential energy landscape Vd,
through the control u.

Proof. See appendix D. !

Physically, condition (4.9) means that total internal loads resulting from passive elasticity and
active muscles are in balance

ne +
∑

m
nm = 0 and me +

∑

m
mm = 0.

Henceforth, equation (4.9) is referred to as the equilibrium constraint. For brevity, we define
P(s, ε;α) := (∂W/∂ε)(s, ε;α).

(c) Design of potential energy: the static problem
For a fixed time-independent activation, the equilibrium is given by (4.9). The control design
problem then becomes selecting the activation profile that meets the control objective. In
applications, additional constraints may arise, e.g. because of solid obstacles in the environment,
which we model as inequalities Ψj(s, q(s))≤ 0 for j= 1, 2, . . . ,Nobs, where Nobs is the total number
of obstacles.

We pose the control design as an optimization problem

min
α(·),αm(s)∈[0,1]

J=
∫ L

0
L(s, q(s),α(s)) ds+ Φ(q(L))

subject to ∂sq= qε̂, q(0)= q0, q(L) free

and P(s, ε(s);α(s))= 0, ∀s ∈ [0, L]

with Ψj(s, q(s))≤ 0, j= 1, 2, . . . ,Nobs.

(4.10)

The form of the objective function J depends on each different control objective. Specifically,
we write J= Jmuscle(α)+ Jtask(q), where Jmuscle models the cost of muscles’ activation, and Jtask

depends on the control task. In this article, we treat the constraints for obstacles Ψj ≤ 0 as
soft constraints, following the approach of [42,43]. This is done by augmenting the Lagrangian
L as L̄(s, q,α)= L(s, q,α)+

∑
j ζjcj(s, q), where the functions cj penalize the violation of respective

inequalities and ζj > 0 are some chosen weights. For simplicity of exposition, we ignore the
obstacle constraints in the following.

Remark 4.4. Here, we inherently assume that the equilibrium constraint P(s, ε;α)= 0 is
solvable for all s and for a given α. In addition, we assume the existence of the inverse of the
Jacobian matrix ∂P

∂ε for all s. Thus, according to the implicit function theorem, one may write
ε = ε(α). This allows us to disregard the equilibrium constraint as an explicit constraint for the
optimization problem (4.10). These assumptions are also helpful for numerically solving (4.10), as
explained in §4c(i).
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Remark 4.5. The optimization problem (4.10) is sometimes referred to as a bilevel optimization
problem or structural optimization problem [57,58]. The equilibrium constraint P(s, ε;α)= 0 is
the solution to an optimization problem, which we regard as the lower level optimization
problem. Appendix D and references therein contain details about this lower level problem. This
equilibrium constraint is then embedded in the problem of minimizing J, which is regarded as the
higher level problem.

Solutions to (4.10) are obtained as follows. First, an enlargement technique is employed so that
the classical Pontryagin’s maximum principle (PMP) [59,60] conditions can be written. This is
followed by a reduction technique to express the co-state variable in a lower dimensional space
for efficient computations. Finally, a numerical algorithm for solving (4.10) is described in §4c(i).

We first notice that the state (the pose of the arm) q evolves in SE(3) according to the equation
∂sq= qε̂. However, one can also regard the evolution in Mat(4), the vector space of all 4 × 4 real
matrices, with the restriction of initial condition q(0)= q0 ∈ SE(3). This extrinsic viewpoint, known
as enlargement technique [61,62], is adopted here to obtain the PMP conditions. We denote the
co-state by λ ∈Mat(4), and we write the control Hamiltonian (or the pre-Hamiltonian) as follows:

H(s, q, λ,α)=
〈
λ, qε̂

〉
− L(s, q,α), (4.11)

where ⟨·, ·⟩ denotes the inner product of two real matrices ⟨A,B⟩= Tr(A⊤B). The first-order
necessary conditions (PMP) for the optimization problem (4.10) are then given by

(state) ∂sq= ∂H
∂λ

= qε̂, (4.12a)

(co-state) ∂sλ=− ∂H
∂q

, (4.12b)

(boundary) q(0)= q0, λ(L)=−∂Φ

∂q
(q(L)), (4.12c)

and (maximum principle) αopt = argmax
α(·),αm(s)∈[0,1]

H(s, q, λ,α), (4.12d)

where αopt represents the optimal muscle activations.
We then notice that the co-state equation (4.12b) evolves in Mat(4), a 16-dimensional vector

space. However, it is possible to parameterize the co-state matrix λ in terms of two three-
dimensional vectors n ∈R3 and m ∈R3. This reduction leads to an efficient computation of the
optimal control. We present this result as the following proposition.

Proposition 4.6. The co-state λ has the form

λ=
[
1
2Q([m]×−M) Qn

0 0

]

, (4.13a)

where the symmetric matrix M is defined as follows:

M :=Q⊤(Λ + (Qn)x⊤ + x(Qn)⊤)Q, (4.13b)

with

Λ(s) :=
∫ L

s

∂L
∂x

x⊤ + x
(

∂L
∂x

)⊤
+ ∂L

∂Q
Q⊤ +Q

(
∂L
∂Q

)⊤
ds̄+ ΛL (4.13c)

and

ΛL =
[

∂Φ

∂x
x⊤ + x

(
∂Φ

∂x

)⊤
+ ∂Φ

∂Q
Q⊤ +Q

(
∂Φ

∂Q

)⊤
]

s=L

. (4.13d)

Here, the vectors n and m are the static internal forces and couples in the material frame, respectively. They
satisfy the differential equations:

∂sn=−κ × n+Q⊤ ∂L
∂x

(4.14a)
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and

∂sm=−κ × m − ν × n+ vec

[

Q⊤ ∂L
∂Q

−
(

∂L
∂Q

)⊤
Q

]

, (4.14b)

and the transversality (boundary) conditions

n(L)=−Q⊤(L)
∂Φ

∂x
(q(L)) and m(L)=−vec

[

Q⊤(L)
∂Φ

∂Q
(q(L)) −

(
∂Φ

∂Q
(q(L))

)⊤
Q(L)

]

. (4.14c)

Proof. See appendix E. !

Discussion: The vectors n andm are identified with the static overall internal forces and couples
acting on the rod, respectively. To see this, consider a Lagrangian L that is q independent, i.e.
the terms ∂L/∂x and ∂L/∂Q vanish. Then, equations (4.14) are just the static counterparts to
the dynamics (3.1), under no external body forces and couples. For a q-dependent Lagrangian
L, the terms involving ∂L/∂x and ∂L/∂Q represent the external body forces and couples at the
equilibrium. Therefore, the parameterization (4.13) yields a physical interpretation of the co-state
variable λ.

(i) Algorithm for solving the static problem
For a given task, the optimization problem (4.10) is solved by an iterative forward–backward
algorithm to find the desired muscle activation α. In each iteration k, the equilibrium constraint
(4.9) is first solved pointwise in s to obtain the strain ε(k) corresponding to the muscle activation
α(k). Next, the state q(k) and the co-state λ(k) are solved by noting the boundary conditions (4.12c)
and (4.14c). This lets us solve the state equation (4.12a) in a forwardmanner from the base to the tip
(from s= 0 to s= L), whereas the reduced co-state equations (4.14) are solved in a backward fashion
from the tip to the base (from s= L to s= 0). The co-state λ(k) is finally obtained by utilizing the
relation (4.13). At the end of each iteration, the control α(k) is updated by using a gradient ascent
rule with step size η > 0 to maximize the control Hamiltonian H. The control update rule is written
as follows:

α(k+1) = α(k) + η
∂H
∂α

∣∣∣∣
α=α(k)

, (4.15a)

where the gradient of H is computed as follows:

∂H
∂α

=−∂P
∂α

(
∂P
∂ε

)−1 (
∂

∂ε

〈
λ, qε̂

〉)
− ∂L

∂α
. (4.15b)

A detailed discussion of the forward–backward algorithm is found in [42,43,63]. A brief pseudo-
code and corresponding illustration are provided in figure 4. The value of η is listed in table 3.

(d) Energy-shaping control law and dynamic stability
In this section, we argue that the control law given in equation (4.8) is an energy-shaping control
law for the whole system and discuss its stability properties. We notice the following:

(i) Applying control (4.8) modifies the potential energy from Ve(q) to V(q;α), which we
consider as the desired potential energy Vd (see figure 3).

(ii) The modified Hamiltonian H := T + V , under suitable technical conditions, acts as a
Lyapunov functional whereby along a solution trajectory

d
dt

H(q, p)=−
∫ L

0
|p(s, t)|2

ζM−1 ds≤ 0. (4.16)

Derivation of (4.16) is not straightforward and is shown in appendix F. We thus have that the
total energy of the system is non-increasing. Finally, an application of the LaSalle’s theorem
guarantees local asymptotic stability to the largest invariant subset of {(q, p)|dH/dt= 0}, which
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arm

(c) update activations

ac
tiv

at
io

n

α(k+1)
α(k)

(b) backward path

update λ(k)

update q(k)

(a) forward path

1:  initialize: activations α(0)

2:  for k = 0 to MaxIter do
3:   solve (4.9) to obtain ε(k)

4:   update q(k) forwardly using (4.12a)
5:   update λ(k) backwardly using (4.13) and (4.14)
6:   update desired activations by using (4.15)
7:   limit activations α(k+1) within [0, 1]
8:  end for
9:  output the final activations as α

forward-backward algorithm
input: task
output: optimal activations α

Figure 4. A pseudo-code and an illustration of the forward–backward algorithm

Table 3. Parameters for numerical simulation and algorithm

parameter description value
L rest arm length (cm) 20

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rbase base radius (cm) 1.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rtip tip radius (cm) 0.12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E Young’s modulus (kPa) 10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

G shear modulus (kPa) 40/9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 density (kg m−3) 1050
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

v linear velocity dissipation (1/s) 0.02
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ω angular velocity dissipation (1/s) 0.02
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Nd discrete number of elements 100
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

t discrete time step (s) 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 algorithm update step size 10−8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pos position regularization parameter 106
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dir director regularization parameter 103
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

is indeed the equilibrium point (qα , 0), where qα is the desired static pose. Note that a rigorous
functional analytic treatment of the stability requires an analysis of the compact semigroup
properties of the closed loop dynamics and an application of the generalized LaSalle’s principle
for infinite-dimensional systems [64,65]. Such analysis is outside the scope of this article and will
be considered as a future work.

Remark 4.7. In this article, we effectively express the muscle actuation term Gu as a gradient of
a potential energy functional. Thus, the time invariant muscle activation (4.8) restricts the set of
allowable desired potential energy functionals. Indeed, under (4.8), any desired potential energy
Vd must possess a specific form, namely, Vd(q)= V(q;α), instead of having any functional form.
This solves the matching conditions implicitly. Moreover, the static muscle actuation profile α is
a solution to the energy-shaping control problem. For a finite-dimensional setting, this viewpoint
is explored in [66].
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5. Arm reaching and grasping in three-dimensional space
In this section, two biophysically motivated examples including reaching and grasping are
discussed. These well-characterized examples produce three-dimensional motions, which are
seen as stereotypical motions of an octopus arm [12,67]. Moreover, some of these movements
have also been observed in isolated arms [68], thereby affording the possibility of experimentally
probing them. The numerical simulation environment setup is described in §5a, and the two
example tasks are discussed in §5b and §5c.

(a) Biophysical and numerical setup
To investigate arm behaviour, the explicit Cosserat rod equations (3.9) are discretized into Nd
connected cylindrical segments and solved numerically by using our open-source, dynamic and
three-dimensional simulation framework Elastica [18,32,69].

Based on experimental measurements [42,43], the radius profile of the tapered geometry of an
octopus arm is modelled as follows:

r(s)= rtip
s
L
+ rbase

L − s
L

,

where rbase and rtip are the radii of the arm at the base and at the tip, respectively. We take the
rest configuration of the rod to be straight and of length L (i.e. κ◦ ≡ 0, ν◦

1 = ν◦
2 ≡ 0 and ν◦

3 ≡ 1). The
muscles are implemented as sources of active internal forces and couples on the arm as described
in §3b. The following force length curve h(·) is used

h(ℓ)=max{3.06ℓ3 − 13.64ℓ2 + 18.01ℓ − 6.44, 0},

where ℓ> 0 is the local muscle length. This model is fitted from experimental data ([19], Fig. 6).
We also consider the suckers along the octopus arm’s side, which serve a variety of purposes,

from sensing chemical stimuli [70,71] to adhering to surfaces [72,73]. This affects the arm’s
deformation patterns [12,46]. For example, during a grasping motion, the arm may need to twist
itself so that a large number of suckers are faced towards the object surface. Even though sucker
models for sensing or the adhering mechanisms are beyond the scope of this article, we do
consider their one-sided orientation by aligning the director d1(s) with the (virtual) sucker-facing
direction, and accounting for this information in designing muscle controls.

Biophysically realistic arm and muscle parameter values are listed in table 2 and also in [42].
Parameters for numerical simulations are found in table 3 with further details in [18].

(b) Reaching a static target
The first experiment consists of reaching a stationary target with the tip of the arm in a prescribed,
desired orientation. This mimics the behaviour of an octopus fetching food. The form of the
objective function in (4.10) is written as J= Jmuscle + Jtask with

Jmuscle(α)=
∑

m

∫ L

0

1
2
(αm(s))2 ds, (5.1)

being the activation cost of muscles. Given the target position x∗ ∈R3 and the reaching orientation
Q∗ ∈ SO(3), we couch the task cost as a function of the distance between desired and achieved tip
location and orientation:

Jtask = Jreach(q(L))= µpos

2
|x∗ − x(L)|2 + µdir

2
∥Q∗ − Q(L)∥2F, (5.2)

where ∥·∥F denotes the matrix Frobenius norm, and the parameters µpos,µdir > 0 are
regularization weights for position and directors, respectively, and are listed in table 3.
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Figure 5. Reaching task. (a) The arm is tasked to reach the target with an orientation that ensures the suckers facing the
target, mimicking real octopus reaching motions. (b) The target is located at (1,15,6) (cm) and is indicated as an orange sphere.
Muscle activations are shown on top, and the time evolution of the arm is depicted as translucent purple rods. (c) Different
target locations are tested. Two representative cases characterized by large position errors are shown on the left, and two cases
characterized by relatively large director errors are shown on the right. The arm on the e1 axis depicts its initial posture.

The reaching orientation Q∗ = [d∗1 d∗2 d∗3] is determined by

d∗1 = d∗2 × d∗3, d∗2 = b(0) × b(L), d∗3 = b(L),

with
b(s) := x∗ − x(s)

|x∗ − x(s)|
,

where the vector b(s) denotes the unit vector pointing from the initial arm configuration to the
target position x∗. The vector d∗3 aligns with b(L), d∗2 is the normal director of the plane spanned by
b(0) and b(L) and d∗1 is another unit vector that completes the orthonormal triad (figure 5a). This
setup is motivated by a common behaviour observed in octopuses [12], whereby the arm first
points its tip towards the target (i.e. d3(L) aligns with d∗3 = b(L)), and then orients the suckers on
the distal end towards the target (i.e. d1(L) aligns with d∗1).

After formalizing the reaching problem, we proceed with analyzing the ensuing arm
behaviour. A representative example is illustrated in figure 5b. The arm, initially at rest in a
straight configuration, activates the TMs to extend its distal end, in an attempt at stretching out
given the far away target location. Two LMs near the base are activated so that the arm bends
towards the target. OMs are also activated, so as to twist the arm and reorient the distal suckers
towards the target.

Next, we systematically characterize the arm reaching performance by considering 125 targets
uniformly distributed inside a cube with side length of 20 (cm), as shown in figure 5c. The ability
of the arm to carry out the task accurately is quantified via the position and director errors as
follows:

epos(x(L))= |x∗ − x(L)|
L

and edir(Q(L))= 1
8
∥Q∗ − Q(L)∥2F.

The position error is scaled by the rest length of the arm, and the director error is scaled by
8, which is the maximum value of the squared matrix norm of the difference between two
orientation matrices. From the position error plot on the left of figure 5c, we see that the largest
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errors occur near the corners, opposite to the base of the arm. This is because those targets are
physically positioned outside of the reachable workspace of the arm. For these cases, the arm
stretches as much as it can in the target direction, but cannot reach it, as shown in the two
insets. For targets very close to the base, it is again difficult for the arm to both bend and twist to
properly reach and orient, leading to high errors. We note that director errors are all small, with
the maximum error less than 0.1. This is because the orientation error is evaluated at the very tip
of the arm, which is very nimble and can relatively easily reconfigure in space. Such behaviour
is on display in the right of figure 5c. The two examples are the ones characterized by the largest
director errors, and yet, for all intents and purposes, the tip successfully re-orients as desired.
Therefore, we conclude that our algorithm is able to compute the muscle activations needed to
reliably complete the reaching task.

(c) Grasping a static object
In the second experiment, the octopus arm is tasked to grasp a target object. This behaviour is
commonly seen when an octopus tries to reach for a bottle, a stick or other objects [72,73]. In
finding the desired static configuration, the object is treated as both an obstacle and a target, so
that the arm cannot penetrate its surface but seeks to wrap around it.

The objective function J presents a decomposition similar to the aforementioned described
reaching example. Here, we use the same muscle activation cost Jmuscle (5.1), while obstacle
constraints and task cost are designed as follows.

The target is represented by a closed and convex set C⊂R3 with its boundary denoted by ∂C.
The non-penetration constraint is modelled by

Ψ (s, q(s); C)= r(s) − dist(x(s), C)≤ 0,

where the signed distance function dist(z, C) denotes the minimum distance from point z ∈R3 to
the object C. Explicitly, the distance function is defined as follows:

dist(z, C) :=
{
min

{
|z − x′| : x′ ∈ ∂C

}
, if z ̸∈ C

−min
{
|z − x′| : x′ ∈ ∂C

}
, otherwise.

The negative value of the function Ψ indicates that the arm is not penetrating the boundary.
Other than avoiding penetration, the arm is also expected to wrap around the target. The task
cost function is then set to

Jtask = Jgrasp(q)=
∫ L

0
1(s; s′)(µposJpos(q(s), s)+ µdirJdir(q(s))) ds, (5.3)

where the indicator function is

1(s; s′)=
{
0 if s ∈ [0, s′)
1 if s ∈ [s′, L]

with s′ = 0.3L, indicating the location at which the arm begins to wrap around the target. The
first term Jpos minimizes the distance between the arm and the object surface, while the second
term Jdir induces the suckers to face towards the object for grasping. For this experiment, the arm
is initialized straight and is tasked to wrap around an upright solid cylinder target as shown in
figure 6a. A point x∗ = (6,−5, 2) (cm) is chosen as an interior point of the cylinder, and the cost
Jpos is designed to minimize surface-to-surface distance

Jpos(q(s), s; x∗) := 1
2
(|x∗ − x(s)| − r(s))2,

while Jdir causes d1(s) to point towards the cylinder’s surface

Jdir(q(s); x∗) := 1
2
(1 − b(s) · d1(s)).
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Figure 6. Grasping task. (a) The arm is tasked to wrap around a cylinder of radius R= 2 (cm) and height 15 (cm). The interior
point x∗ is located at (6,−5, 2) (cm). The cylinder is upright, i.e. its orientation aligns with the e3 axis. The cylinder is shown in
translucent orange. (b) Muscle activations are shown on top, and the time evolution of the arm is depicted as translucent purple
rods. (c) (i) the radius of the cylinder R varies from 1 (cm) to 4 (cm). The normalized (relative to the R= 1 (cm) case : reference
case 1) error plot and two representative results (R= 1 (cm) and R= 4 (cm)) are shown. (ii) and (iii) consider cylinders rotated
about the e1 and e2 axes, respectively, keeping R= 2 (cm) fixed. The rotation angle varies from −60◦ to 60◦. Normalized
(relative to the rotation angle of 0◦ : reference case 2) error plots and two representative results for−60◦ and 60◦ are presented.

After formalizing the grasping problem, we proceed by demonstrating the arm behaviour in
figure 6b. The arm starts with a straight configuration. The LMs and OMs cooperate with each
other causing the arm to reconfigure in a spiral shape and wrap around the cylinder. Meanwhile,
as is apparent in figure 6b, the arm further modulates twist to approach the cylinder with the
suckers side, mimicking the grasping behaviour.

For systematic characterization of the grasping performance, we next test different radii
and orientation angles of the target cylinder. These results are demonstrated in figure 6c. To
numerically assess the results, we define the following position and director errors:

epos(x)=
∫ L

0
1(s; s′)

1
2

( |x∗ − x(s)| − r(s)
R

)2
ds

and

edir(Q)=
∫ L

0
1(s; s′)

1
2
(1 − b(s) · d1(s)) ds,

where R is the radius of the cylinder. First, we keep the cylinder upright (orienting toward the
e3 axis) and vary its radius R from 1 (cm) to 4 (cm). As shown in the error plot (figure 6c(i)), the
thinner the cylinder, the higher the position and director errors. In other words, grasping a slender
cylinder is harder than wrapping around a thick one. This is because larger curvatures of the
cylinder surface require greater muscle energy expenditures. We then keep R fixed at 2 (cm) and
vary its orientation by rotating about the e1 and e2 axes, sequentially. This is to test the ability of
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our control to cope with misalignment. We observe small variability (relative standard deviation
of 3.2% and 1.3%) in epos and larger variability (relative standard deviation of 23.4% and 14.5%)
in edir for both kinds of rotation. The larger variability in edir occurs because the arm prioritizes
position error minimization (large µpos, see table 3). We therefore conclude that the arm is able
to reliably grasp the differently tilted cylinders; however, properly orienting the suckers is harder
for certain orientations of the cylinder.

6. Conclusion and future work
In this article, a mathematical model is developed for capturing the three-dimensional motion
of a muscular octopus arm. First, principle models for all major muscle groups are described
in terms of the forces and couples that they generate on a single Cosserat rod representing the
arm. Furthermore, the muscles are described via a generalized notion of muscle stored energy
functions. The total potential energy of the arm is then expressed by the summation of the
passive elastic energy and active muscle potential energy, modulated by muscle control inputs.
This is helpful from a control viewpoint since it paves the way for solving an energy-shaping
control problem. The energy-shaping control problem is formulated as a task-specific geometric
optimization problem. First-order necessary conditions for such a problem are obtained, and
the relationship between the co-state variable and the forces and couples acting on the arm
is elucidated. Numerical simulations mimicking octopus behavioural experiments demonstrate
the engagement of three-dimensional specific deformation modes (e.g. twist), leading to rich
manoeuvres. Systematic analyses of the reaching and grasping cases illustrate the ability and
robustness of our proposed method.

An important next step will be to extend the control framework to address dynamic control
problems, such as trajectory tracking. Examples of such motion in octopus arms include tracking
an evading prey or rhythmic arm motions for swimming. One approach to solving this problem
is to modify both the potential and kinetic energy of the system [33,74,75]. By changing the
desired inertia matrix, one can control the dynamic response of the arm and therefore its
trajectory. Another important direction of future research is applying the theoretical framework
developed in this article to soft robotics. In particular, the key idea of modelling the internal
muscles of octopus arm in terms of stored energy function may be a useful paradigm for
modelling internal actuators in soft robots. Examples of such actuators include twisted-and-
coiled actuators [76] or pneumatic actuators [77]. These actuators are mechanical systems, and as
shown in our article, energy-basedmodelling can pave the way for energy-shaping control of soft
robots.

Data accessibility. The code for our paper is freely available at this website: https://github.com/hanson-
hschang/COOMM. The readme file therein describes how to install the package and run the code.

The data are provided in electronic supplementary material [78].
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Appendix A. Parameter specification in the modelling
(i) The inertia matrix of a single soft arm takes the form

M :=
[
ρAI3 0
0 ρJ

]

and J= diag(J11, J22, J33) :=
A2

4π

⎡

⎢⎣
1 0 0
0 1 0
0 0 2

⎤

⎥⎦ ,

where I3 is the 3 × 3 identity matrix and A=A(s) is the cross-sectional area of the rod.
(ii) The shearing and bending rigidity matrices used in the definition of elastic stored potential

energy (2.7) are defined as follows:

S :=

⎡

⎢⎣
GA 0 0
0 GA 0
0 0 EA

⎤

⎥⎦ and B :=

⎡

⎢⎣
EJ11 0 0
0 EJ22 0
0 0 GJ33

⎤

⎥⎦ ,

where E and G are the Young’s modulus and shear modulus, respectively.
(iii) Consider the dynamics (3.1). The damping matrix ζ takes the form

ζ :=
[
ζvI3 0
0 ζωI3

]

,

where ζv , ζω > 0 are damping coefficients.
(iv) Consider the dynamics (3.9). The frame transformation velocity matrix Ω takes the form

Ω =
[
[ω]× 0
[v]× [ω]×

]

.

(v) The muscle actuation model in equation (3.9) Gu=
∑

m Gmum is explicitly written in the
following form:

Gmum =
[

∂snm + κ × nm

∂smm + κ × mm + ν × nm

]

,

where the models of muscle forces and couples for each type are shown in equations (B 1), (B 2)
and (B 3).

Appendix B. Physiology and modelling of the muscles
(a) Physiology of an octopus arm
An Octopus rubescens was anesthetized in seawater with 333 nM MgCl concentration. An arm
was amputated, fixed in 4% PFA for 48 hours and transferred to a 1× PBS solution. Hematoxylin
and eosin staining was performed using standard protocols. Microscopy was then performed
using Hamamatsu’s NanoZoomer slide scanner to achieve full field of view images of the arm’s
musculature. Histological cross-sections are provided in figure 2.

(b) Muscle modelling
In this section, we describe how each individual muscle is modelled, i.e. its relative position with
respect to the centre line, strain, length, force and couple. Note that a tapered arm radius profile
r(s) is considered as described in §5a. A summary of this section is given in table 2.
(i) Transverse muscle (TM):

These muscles surround the central nerve cord and are arranged perpendicularly to the arm.
Their relative position to the centre line is considered as zero, i.e. γ TM = 0, and thus, νTM = ν

from definition (3.7). Since TMs surround the nerve cord, the local length ℓTM is proportional to
the circumference of the arm. Owing to the constancy of volume, the circumference of the arm is
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proportional to inverse square root of |νTM|. For simplicity, we then model the local muscle length
ℓTM as follows:

ℓTM =

√
|νTM◦ |
|νTM|

.

When TMs are activated, the local length of muscles is shortened. Due to conservation of
the volume, the arm expands in the axial direction tTM = νTM/|νTM|. Thus, the TMs create an
extensional force on the tangent direction of the arm. The internal force is then modelled as
(written in the material frame)

nTM =−uTMfTMtTM, (B 1)

and no internal couples are created, i.e. mTM = 0.
(ii) Longitudinal muscle (LM):

These muscles run parallel to the axial nerve cord. Here, we use four to represent these groups
of muscle. They are located at the following positions relative to the centre line:

γ LMk = βLM

⎡

⎢⎢⎢⎢⎢⎣

cos
(
kπ
2

)

sin
(
kπ
2

)

0

⎤

⎥⎥⎥⎥⎥⎦
, k= 0, 1, 2, 3,

where βLM is the ratio of the LM off-centre distance with respect to the radius of the arm. Thus,
we have the muscle strains

νLMk = ν + κ × γ LMk + ∂sγ
LMk ,

and muscle length as ℓLMk = |νLMk |/|νLMk◦ |. When each of them is activated, it creates contraction
locally on the tangent direction of the muscle, and since it is located a distance away from the
centre line, its contraction force creates couple and thus locally bends the arm. That is

nLMk = uLMk fLMk tLMk and mLMk = γ LMk × nLMk (B 2)

with muscle tangent tLMk = νLMk/|νLMk |.
(iii) Oblique muscle (OM):

These muscles are similar to the LMs, but they do not run parallel to the centre line. For
simplicity, each of these fibers is considered to position like a helical curve with Nc number of
cycles around the centre line (see figure 2). Two types of winding are considered here: rotating
clockwise and counter clockwise. For each type of winding, they are modelled by four muscles,
and we write their relative positions as follows:

γOM+
k = βOM

⎡

⎢⎢⎢⎢⎢⎢⎣

cos
(
kπ
2

+ 2πNcs
L

)

sin
(
kπ
2

+ 2πNcs
L

)

0

⎤

⎥⎥⎥⎥⎥⎥⎦
, k= 0, 1, 2, 3, Nc = 6,

for clockwise OMs and

γOM−
k = βOM

⎡

⎢⎢⎢⎢⎢⎣

cos
(
kπ
2

− 2πNcs
L

)

sin
(
kπ
2

− 2πNcs
L

)

0

⎤

⎥⎥⎥⎥⎥⎦
, k= 0, 1, 2, 3, Nc = 6,

for counter clock-wise OMs. Note that βOM is the ratio of the LM off-centre distance with respect
to the radius of the arm. The muscle strains are then calculated by (OM+

k for example)

νOM+
k = ν + κ × γOM+

k + ∂sγ
OM+

k ,
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and the muscle length ℓOM+

k =
∣∣∣νOM+

k

∣∣∣ /
∣∣∣∣ν

OM+
k◦

∣∣∣∣. Muscle force and couple are then modelled using

a similar equation to the LM. Within each group of differently wound OM groups, the four fibers
are activated together locally, i.e. only two controls: uOM+

(s, t) and uOM−
(s, t) control two groups

of OMs. For example, for the OM+ group,

nOM+
k = uOM+

fOM+
k tOM+

k and mOM+
k = γOM+

k × nOM+
k (B 3)

with muscle tangent tOM+
k = νOM+

k /
∣∣∣νOM+

k

∣∣∣. Similar equations follow for the counter clockwise
rotated muscle group. Cumulatively, one muscle group mainly contributes to twist the arm, e.g.
the OM+ group provides counter clockwise twisting.

Appendix C. Proof of proposition 4.2
Proof. Indeed, define a vector valued function

gm(s, y) :=

⎧
⎪⎪⎨

⎪⎪⎩

fm(s, ℓm(|y|)) y
|y|

, if m ∈ {LM,OM}

−fm(s, ℓm(|y|)) y
|y|

, if m= TM

with y ∈R3, y ̸= 0, and a scalar function µm(s, y) as follows:

µm(s, y) :=

⎧
⎪⎨

⎪⎩

∫ ℓm(|y|)
ℓm◦

σm
maxA

m(s)h(ℓ)|νm◦ |dℓ, if m ∈ {LM,OM}

∫ ℓm(|y|)
ℓm◦

2σm
maxA

m(s)h(ℓ)|νm◦ | dℓ

ℓ3
, if m= TM

,

where ℓm◦ = ℓm(|νm◦ |). Then through a straightforward calculation, it is clear that, gm(s, y)=
∇y µ

m(s, y) for all muscle m, where we have used the definitions of the muscle length function
ℓm(·) as per table 2. This means the line integral in (4.4) is path independent, and hence, we can
write

Wm(s, νm)=µm(s, νm).

This implies
∂Wm

∂νm
(s, νm)= ∂µm

∂νm
= gm(s, νm).

Then it is clear that

um
∂Wm

∂ν
= um

∂νm

∂ν

∂Wm

∂νm
=±umfm

νm

|νm|
= nm

and

um
∂Wm

∂κ
= um

∂νm

∂κ

∂Wm

∂νm
= γm × nm =mm.

!

Appendix D. Proof of proposition 4.3
Proof. For a given set of static muscle activation profile α, the arm is subjected to a fixed-free

type boundary condition. For such a scenario, static equilibria of the arm are obtained by solving
an optimization problem [40–43] as follows:

min
ε(·)

V =
∫ L

0
W(s, ε;α) ds

s. t. ∂sq= qε̂, q(0)= q0, q(L) free.

(D 1)

Here, W is the total stored energy function as introduced in (4.6). Any minimizer of the
problem (D1), denoted by ε, must satisfy the necessary conditions of optimality. Let the control
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Hamiltonian be

H(q, ε, λ;α)=
〈
λ, qε̂

〉
− W(s, ε;α),

where λ ∈Mat(4) is the co-state. The Hamilton’s equations are then given by the PMP condition:

∂sq= ∂H
∂λ

= qε̂, q(0)= q0

and
∂sλ=−∂H

∂q
=−λε̂⊤, λ(L)= 0

and the optimal strains satisfy the maximization of the Hamiltonian

∂H
∂ε

= 0. (D 2)

Indeed, from the transversality condition λ(L)= 0 (due to the free boundary condition at the
tip) and the evolution equation ∂sλ=−λε̂⊤, we see that λ(s)≡ 0 for all s. Then, the definition
of the total stored energy function (4.6) and proposition 4.2 readily yield equation (4.9) from
maximization of the Hamiltonian (D 2). !

Appendix E. Proof of proposition 4.6
Proof. At the outset, we first define a transformation of the co-state as follows:

K= q⊤λ,

and then its evolution and the transversality condition are derived as follows:

∂sK= [ε̂⊤, K]+ q⊤ ∂L
∂q

and K(L)=−q⊤(L)
∂Φ

∂q
(q(L)) (E 1)

where [A, B]=AB − BA is the standard matrix commutator. It is then clear that solving the co-
state equation (4.12b) is equivalent to solving (E 1), since once the K is solved, the co-state λ is then
given by

λ= (q⊤)−1K, (E 2)

where the inverse always exists. Next, we consider the following form of the transformed co-state

K=

⎡

⎣
KA KC

K⊤
B KD

⎤

⎦ ,

where KA(s) ∈R3×3, KB(s) ∈R3, KC(s) ∈R3 and KD(s) ∈R. Based on this partition, (E 1) becomes

∂sKA = [[κ]⊤×, KA] − KCν⊤ +Q⊤ ∂L
∂Q

, KA(L)=−Q⊤(L)
∂Φ

∂Q
(q(L)), (E 3a)

∂sK⊤
B = ν⊤KA − K⊤

B [κ]
⊤
× − KDν⊤ + x⊤ ∂L

∂Q
, K⊤

B (L)=−x⊤(L)
∂Φ

∂Q
(q(L)), (E 3b)

∂sKC = [κ]⊤×KC +Q⊤ ∂L
∂x

, KC(L)=−Q⊤(L)
∂Φ

∂x
(q(L)), (E 3c)

and ∂sKD = ν⊤KC + x⊤ ∂L
∂x

, KD(L)=−x⊤(L)
∂Φ

∂x
(q(L)) (E 3d)

Now, we define n :=KC and rewrite (E 3c) as follows:

∂sn=−κ × n+Q⊤ ∂L
∂x

,

with the transversality condition

n(L)=−Q⊤(L)
∂Φ

∂x
(q(L)).
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By integrating both sides of (E 3d) and utilizing (E 3c), we have the following form of KD:

KD = x⊤Qn.

To find the form of KA, we first can write it as a combination of the symmetric part and skew-
symmetric part and derive their corresponding evolution. The skew-symmetric part’s evolution
is given by

∂s(KA − K⊤
A)=

[
KA − K⊤

A, [κ]×
]

−
(
nν⊤ − νn⊤

)
+

(

Q⊤ ∂L
∂Q

−
(

∂L
∂Q

)⊤
Q

)

.

Defining [m]× :=KA − K⊤
A, for some m(s) ∈R3, we have

∂sm=−κ × m − ν × n+ vec

[

Q⊤ ∂L
∂Q

−
(

∂L
∂Q

)⊤
Q

]

,

with the transversality condition

m(L)=−vec

[

Q⊤ ∂Φ

∂Q
−

(
∂Φ

∂Q

)⊤
Q

]

.

The evolution of the symmetric part of KA is given by

∂s

(
KA + K⊤

A

)
=

[
KA + K⊤

A, [κ]×
]

−
(
nν⊤ + νn⊤

)
+

(

Q⊤ ∂L
∂Q

+
(

∂L
∂Q

)⊤
Q

)

.

By integrating both sides of the equation and after some direct calculations, we have

M=Q⊤(Λ + (Qn)x⊤ + x(Qn)⊤)Q,

where we denote M :=−(KA + K⊤
A), and Λ is defined as follows:

Λ(s) :=
∫ L

s

∂L
∂x

x⊤ + x
(

∂L
∂x

)⊤
+ ∂L

∂Q
Q⊤ +Q

(
∂L
∂Q

)⊤
ds̄+ ΛL,

where

ΛL =
[

∂Φ

∂x
x⊤ + x

(
∂Φ

∂x

)⊤
+ ∂Φ

∂Q
Q⊤ +Q

(
∂Φ

∂Q

)⊤
]

s=L

.

Finally, we write

KA = 1
2 ([m]×−M).

Lastly, by integrating both sides of (E 3b), we obtain

K⊤
B = x⊤QKA.

Now, we already have the form of the transformed co-state K. To find the form of the co-state, we
calculate (E 2) and have

λ= (q⊤)−1K=
[

Q 0
−x⊤Q 1

][
KA n

x⊤QKA x⊤Qn

]

=
[
1
2Q([m]×−M) Qn

0 0

]

.

!
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Appendix F. Time derivative of the Hamiltonian—derivation of (4.16)
Recall that the Hamiltonian of the rod system is H(q, p) := T (p)+ V(q) and its time derivative is

d
dt

H(q, p)=
∫ L

0
(M−1p)⊤(∂tp)+

(
∂W
∂ε

)⊤
(∂tε) ds

=
∫ L

0
v⊤∂t(ρAv)+ ω⊤∂t(ρJω)+ n⊤(∂tν)+m⊤(∂tκ) ds. (F 1)

We first focus on the first and the third terms
∫ L

0
v⊤∂t(ρAv)+ n⊤(∂tν) ds=

∫ L

0
v⊤∂t(ρAv)+ (Qn)⊤

(
∂s(Qv) − (∂tQ)ν

)
ds

=
∫ L

0
v⊤∂t(ρAv) −

(
Q⊤∂s(Qn)

)⊤
v − n⊤Q⊤∂tQν ds

=
∫ L

0
−ζv |ρAv|2(ρA)−1 − n · (ω × ν) ds.

Next, for the second and the fourth terms in (F 1), we have
∫ L

0
ω⊤∂t(ρJω)+m⊤(∂tκ) ds=

∫ L

0
ω⊤∂t(ρJω)+ (Qm)⊤∂s(Qω) ds

=
∫ L

0
ω⊤∂t(ρJω) −

(
Q⊤∂s(Qm)

)⊤
ω ds=

∫ L

0
ω · (ν × n) − ζω|ρJω|2(ρJ)−1 ds.

Together, the time derivative of the Hamiltonian (F 1) follows

d
dt

H(q, p)=−
∫ L

0
|p|2

ζM−1 ds≤ 0,

with damping coefficients ζv , ζω > 0.
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