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Photonic integrated circuits with second-order ( y®) nonlinearities are rapidly scaling to
remarkably low powers. At this time, state-of-the-art devices achieve saturated nonlinear
interactions with thousands of photons when driven by continuous-wave lasers, and
further reductions in these energy requirements enabled by the use of ultrafast pulses may
soon push nonlinear optics into the realm of single-photon nonlinearities. This tutorial
reviews these recent developments in ultrafast nonlinear photonics, discusses design
strategies for realizing few-photon nonlinear interactions, and presents a unified treatment
of ultrafast quantum nonlinear optics using a framework that smoothly interpolates from
classical behaviors to the few-photon scale. These emerging platforms for quantum
optics fundamentally differ from typical realizations in cavity quantum electrodynamics
due to the large number of coupled optical modes. Classically, multimode behaviors
have been well studied in nonlinear optics, with famous examples including soliton
formation and supercontinuum generation. In contrast, multimode quantum systems
exhibit a far greater variety of behaviors, and yet closed-form solutions are even sparser
than their classical counterparts. In developing a framework for ultrafast quantum optics,
we identify what behaviors carry over from classical to quantum devices, what intuition
must be abandoned, and what new opportunities exist at the intersection of ultrafast
and quantum nonlinear optics. Although this article focuses on establishing connections
between the classical and quantum behaviors of devices with y® nonlinearities, the
frameworks developed here are general and are readily extended to the description of
dynamical processes based on third-order y® nonlinearities. © 2024 Optica Publishing
Group
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1. INTRODUCTION

The development of tightly confining photonic integrated circuits with large second-
order (y?) nonlinearities is pushing nonlinear optics to substantially smaller scales.
The past few years have seen demonstrations of devices that achieve saturated nonlinear
interactions with thousands of photons [1,2], and recent theoretical proposals suggest
that single-photon nonlinear interactions will soon be realized [3]. On the surface, the
development of single-photon nonlinear photonics seems poised to revolutionize quan-
tum optics for practical reasons; in contrast with well-established approaches based on
circuit quantum electrodynamics (QED) [4,5] and cavity QED [6—10], nonlinear pho-
tonics operate at room temperature and atmospheric pressure, can be scaled to densely
integrated multi-functional platforms, and readily interface with telecom components.
We emphasize, however, that nonlinear optical devices are fundamentally different
than their traditional cavity QED counterparts. The large number of coupled optical
modes encountered in broadband devices make possible an extraordinary diversity
of classical behaviors, with well-known examples including solitons [11-14], mode-
locking [15-18], and supercontinuum generation [19]. As these devices are scaled
down to quantum limits, we arrive at a realization that is as exciting as it is unsettling:
there likely exist devices sitting on optical tables that already exhibit novel quantum
effects, yet given the massive Hilbert space associated with multimode systems no
frameworks exist for rigorously analyzing these non-classical behaviors.

The purpose of this tutorial is threefold. First, we provide an overview of recently
developed theoretical tools needed to model the behavior of broadband nonlinear
devices in the classical, semiclassical, and quantum limits. We note, however, that
this field is evolving rapidly, so we cannot provide a comprehensive overview of
the many novel dynamical regimes that have already been explored in the literature.
Instead, to build intuition we focus on a number of archetypal examples where closed-
form solutions exist. Particular focus will be given to behaviors shared across all of
these regimes, and we make clear which classical intuition must be abandoned at the
few-photon scale. The second goal of this tutorial is to provide a desk reference for
quantum engineers who aim to build devices based on highly nonlinear photonics.
This tutorial will rely on the quantum-to-classical correspondence to establish rules
for quickly calculating quantum parameters, such as the coupling rate in the quantum
mechanical Hamiltonian, from empirically measured device behaviors, such as the
normalized efficiency for second-harmonic generation (SHG). We emphasize here that
these techniques are general, and can be readily extended to behaviors that are beyond
the scope of this article such as third-order nonlinearities. With these techniques in
mind we review some recent experimental demonstrations, and wherever possible,
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provide a guide for comparing the performance of devices across different material
systems. A recurring theme throughout this tutorial is that the relevant figures of merit
and their scaling laws depend strongly on the particular process being studied, with
different nonlinear processes (i.e., pulsed quantum devices versus classical continuous-
wave devices) favoring rather different material systems. The final goal of this tutorial
is to provide a Rosetta stone that links the formalisms found in classical ultrafast
optics with the frameworks of Gaussian quantum optics and cavity QED. In many
cases, ideas that form the basis of commonly-held intuition in one context can appear
rather non-intuitive in others. For this reason, we believe that having a common
vocabulary to weave together insights from each of these communities will spur more
rapid innovation in the field.

1.1. State of the Field

Several recent advances are driving rapid progress toward single-photon optical nonlin-
earities. These include the development of low-loss integrated photonics that combine
wavelength-scale confinement with large second-order (y») nonlinearities [20—-24],
the discovery of large field-induced nonlinearities in inversion-symmetric waveg-
uides [25-27], and the development of quasi-phase-matched nonlinear interactions
in tightly confining y® waveguides [28-31]. Subsequent work has pushed closer to
quantum scales by further reducing the loss and increasing the field confinement in y®
microresonators [32-35]. In these realizations (Fig. 1) an optical microcavity confines
two resonant waves, a fundamental with optical frequency w and a second-harmonic
with optical frequency 2w, which are coupled by the second-order optical nonlinearity.
Pairs of fundamental photons upconvert to second-harmonic photons through SHG,
and second-harmonic photons downconvert back to fundamental by optical parametric
amplification (OPA). In the limit of strong coupling, where the field associated with a
single intracavity photon is sufficiently strong to drive these processes into saturation,
this system will execute Rabi oscillations between a biphoton of fundamental |20) and
a single-photon Fock state of second harmonic |01).

At this time of writing, state-of-the-art devices based on continuous wave (CW) SHG
and OPA achieve saturation with thousands of photons, and the push toward lower
photon number has been limited by practical trade-offs. As an example, the ring res-
onators shown in Fig. 1 can achieve larger nonlinearities simply by fabricating tighter
bends. However, with a decreasing radius of curvature comes increasing bending loss,
and the trade-off between these two effects sets an optimal resonator geometry. Recent
demonstrations using optimized ring geometries in periodically poled thin-film lithium
niobate (TFLN) [1] and indium phosphide [2] have led this effort, but are still two
orders of magnitude (in nonlinearity) from the threshold of strong coupling. A similar
set of limitations exist for photonic crystals. Point defect cavities can realize mode
volumes on the order of a cubic wavelength [23], which result in the largest possible
nonlinearities. However, in practice these devices have not yet been able to simultane-
ously resonate both harmonics with low loss, which cancels the benefits gained from
tight confinement.

As quasi-phase-matched nonlinear waveguides have matured, a separate approach
based on ultrafast interactions has emerged alongside efforts in resonant CW devices
[36-38]. Here, two pulses exchange photons while propagating in a traveling-wave
configuration, as illustrated in Fig. 2. In an intuitive sense, which is formalized later,
space and time are interchanged in these devices when compared with resonators:
longitudinal confinement comes from the short duration of the optical pulse, rather
than the circumference of a ring resonator, and the interaction length is set by the
distance over which the pulses overlap, rather than the lifetime of the resonator. In
this picture, the interaction length is predominantly limited by the difference in group



352  Vol. 16,No. 2/June 2024/ Advances in Optics and Photonics Tutorial

Cm
olo
T Ojo I I SIO T
w 2w Frequency

(a) CW (single-mode) second-order nonlinear interactions in resonators couple modes
at fundamental (w) and second-harmonic (2w) frequencies. In the limit of strong
coupling, cycles of upconversion and downconversion manifest as Rabi oscillations.
Ring resonators based on (b),(c) periodically poled thin-film lithium niobate (TFLN)
[1] and (d) InGaP [2] have pushed toward the few-photon limit by balancing the trade-
off between bending loss and nonlinear coupling. (e) Alternative realizations based
on GaAs and GaP photonic crystal cavities achieve the smallest mode volumes [23]
but to date have had prohibitively large losses. (b) and (c) Reprinted with permission
from [1]. © The Optical Society. (d) Reprinted with permission from [2]. © Optica
Publishing Group. (e) Reprinted with permission from [23] © The Optical Society.

I —

velocity between the two harmonics. We note, however, that pulsed interactions contain
many modes, here represented by many frequencies, which lead to a far greater variety
of behaviors [39]. An example is shown in Fig. 2(d). In this case, small phase drifts
between the interacting pulses cause the envelopes to break up in the highly saturated
limit, which leads to spectral broadening. Later, in the context of quantum nonlinear
optics, we show that care must be taken to harness (or avoid) these complicated
multimode effects.

A key development in the field of x® nonlinear photonics has been the use of
waveguide dispersion to eliminate conventional limitations to the interaction length
such as temporal walk-off and dispersive pulse spreading [36—38]. This approach relies
on the relationship between the shape of a waveguide and the dispersion relations of
the guided modes. By engineering the geometry of the waveguide to eliminate these
dispersive effects, the interaction length becomes limited only by the physical length of
the waveguide, or in extreme limits, by the loss length of the waveguide. State-of-the-art
devices that combine geometric dispersion engineering with ultrafast pump pulses have
achieved saturated optical parametric fluorescence, commonly referred to as optical
parametric generation (OPG), with millions of photons in single-pass millimeter-scale
devices [40]. As these interaction lengths are scaled longer, the required photon number
decreases quadratically, in principle enabling few-photon nonlinear interactions when
the interaction length approaches the loss length.

The clearest route toward few-photon nonlinearities is to combine the above
approaches. In the traveling-wave picture, embedding a femtosecond pulse inside
a resonator enables many passes through the nonlinear section, effectively realizing
an interaction length comparable to the loss length of the resonator. In the resonator
picture, interference between many phase-coherent cavity modes creates a localized
envelope with an effective mode volume determined by the spatial extent of this
multimode field, which can be much smaller than that of any of the constituent single-
frequency modes. A number of theoretical proposals [3,41] have suggested that this



Tutorial ! Vol. 16, No. 2/June 2024/ Advances in Optics and Photonics 353

Etched LN

z
| / waveguide
y

5um

T, NN
[T~ 111 -

b)

T 30

=

.5 25 SRR R S R N
% ; %,

220 SiN Etched trench SiN waveguide

layer to SiO, substrate
10 20 30
X position (um)

(a) In nonlinear waveguides driven by femtosecond pulses, the pulse envelopes
exchange photons during propagation. In these systems the pulse duration, combined
with the transverse mode area, can play the role of the mode volume, and the interaction
length plays the role of cavity lifetime. (b),(c) Examples of platforms used to realize
ultrafast nonlinear optics: silicon nitride [36] and TFLN [31], respectively. (d) Photo
of a TFLN waveguide producing a broadband supercontinuum. In this system, the
spectral broadening occurs due to distortions of the pulse envelopes that can occur in
the highly saturated limit [38,39]. (b) Adapted with permission from Springer Nature:
Hickstein et al., Nat. Photonics 13, 494-499 [36]. Copyright 2019. (c) Figures 1 and
2 adapted with permission from Zhao et al., Phys. Rev. Lett. 124, 163603 [31]. Copy-
right 2020 by the American Physical Society. (d) Reprinted with permission from [38]
© The Optical Society.

__________________________________________________________________________________________|

40

hybrid approach can combine the best of both worlds: effective mode volumes com-
parable to a cubic wavelength and lifetimes approaching limits set by the intrinsic
loss of the material. To date no devices have yet been demonstrated based on these
approaches due numerous technical hurdles that must be resolved, and efforts to
address these issues are ongoing in several research groups.

1.2. Themes of this Article

The following are brief summaries of four central themes covered in this tutorial. Each
theme represents a common thread throughout the rest of the sections, and together,
these serve as a summary of the entire article.

1.2a. What Does It Mean for Nonlinear Optics to be Quantum?

In the classical description of light, each mode of the electromagnetic field (e.g., each
independent frequency or wave confined to a resonator) is assumed to have a definite
amplitude and is therefore fully described by a single complex number, a. However
in quantum mechanics, because quadrature observables do not commute, there must
always be an uncertainty of each field mode amplitude around its (complex) expectation
value. As a result, describing the quantum state of an optical mode requires not just a
single complex number but rather a field operator, a. In accordance with this intuition,
we find throughout this article that an insightful way to partition the optical field is

a=a+da, (1)

with no loss of generality. Here, the first term « is the classical mean-field amplitude,
and the second term da contains quantum corrections to this mean field, which can be
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interpreted as quantum fluctuations around the mean. The quantum state corresponding
to a classical field (i.e., the light output from a laser) is commonly taken to be a
coherent state, |@). In phase space, the coherent state is given by a symmetric Gaussian
distribution centered on the mean amplitude @ with half-a-photon’s worth of quantum
uncertainty in the amplitude and phase quadratures.

In classical nonlinear optics, the equations of motion, hereafter referred to as the
coupled-wave equations (CWEs), are derived from Maxwell’s equations to describe
coupling between optical modes by a nonlinear polarization. A natural approach to
derive the classical equations of motion from quantum mechanics is to assume that
each interacting mode corresponds to a coherent state. Simply ignoring any role played
by the fluctuations reduces the dynamics of the wave function to the evolution of mean-
field amplitudes given by the CWEs. It turns out that this mean-field approach is an
excellent approximation for many realistic experiments in optics due to a separation
of scales argument. Until recently, conventional devices in nonlinear optics have
typically operated with billions of photons. In contrast, the relatively weak quantum
fluctuations rarely influence the dynamics of these mean fields, except in extreme
limits involving saturated optical parametric fluorescence. Therefore, the influence
of quantum fluctuations is rarely present in classical nonlinear devices unless care is
taken to study the fluctuations themselves.

In reality, the same nonlinear interactions that cause the mean field to change, such
as phase-sensitive amplification or self-phase modulation, similarly cause the quan-
tum noise associated with each interacting mode to evolve. Figure 3 illustrates how
non-trivial quantum fluctuations develop within natural nonlinear-optical dynamics.
The action of the nonlinearity, in this case a Kerr nonlinearity, affects each volume
element of phase space, here indicated by arrows encircling the origin. As a result, the
distribution of quantum fluctuations around the mean field value @ becomes distorted,
and forms features that are rather distinct from that of classical coherent states. These
behaviors are not unique to the simple case shown here; all coherent dynamical pro-
cesses found in nonlinear optics can lead to a non-trivial evolution of the underlying
quantum fluctuations. In this sense, quantum nonlinear optics is not a disjoint topic of
study from classical nonlinear optics, but rather a natural extension [42] of the same
behaviors to a treatment of the quantum fluctuations. These emergent quantum features
become increasingly complicated with larger nonlinearity, and become significant as
a consequence of scaling toward strong coupling and lower photon numbers.

In the regime of weak nonlinearity (or, equivalently, short interaction time), the dynam-
ics of quantum fluctuations can be approximately linearized around the mean-field
dynamics to the lowest order, and their effects on the mean field and the quantum
fluctuations can be ignored. In this linearized treatment, the dynamics of the phase-
space distribution can be treated using operators that map one Gaussian distribution
to another, namely, displacements, linear stretches (squeezing), and rotations. This
limit, commonly referred to as Gaussian quantum optics [43—45], has been sufficient
to capture the quantum behavior (e.g., squeezing) of almost all conventional nonlinear
optical devices to date [46-50].

When quantum fluctuations grow sufficiently strong to drive both the mean field
and the quantum fluctuations themselves (e.g., in OPG, where vacuum fluctuations are
amplified to macroscopic intensities), the linearized approximations used for Gaussian
quantum optics break down. In principle, such dynamics can exhibit beyond-Gaussian
quantum phenomena, e.g., non-Gaussian features in phase space (such as Wigner-
function negativities [51]). In practice, however, such features are difficult to observe
experimentally since the large degree of anti-squeezing needed to deplete the pump
makes them highly sensitive to experimental imperfections such as loss and phase
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Figure 3

Illustration of the phase-space (Wigner function) evolution under the influence of a
Kerr nonlinearity. (a) A vacuum state has symmetric quantum fluctuations around the
origin. (b) A coherent state is generated by displacing a vacuum state in the phase
space. (¢) For weak nonlinearities, or equivalently a short interaction time, nonlinear
deformation of the phase-space distribution can be approximated as linear squeezing
and rotation, which keeps the state Gaussian. (d) After a long interaction time, the
phase-space distribution becomes non-Gaussian and develops more exotic quantum
features, such as Wigner function negativities.

__________________________________________________________________________________________|

noise. Thus, to resolve non-Gaussian quantum features, the nonlinearity of a photonic
device must be strong enough that a mesoscopic number (i.e., hundreds or dozens) of
photons can cause saturated nonlinear dynamics [52].

These observations imply that the recent progress in nonlinear photonics toward
ultralow-energy scale is pushing experimental quantum optics out of the scope of
the conventional Gaussian formalism and into a much broader Hilbert space where
far richer phenomena may occur. The states that arise in this mesoscopic regime
may resemble those found in other contexts, such as a Schrodinger cat-like state,
but their dynamics can be qualitatively distinct. First, the non-Gaussian quantum
features coexist with strong Gaussian quantum features, which critically modify and
enhance the non-Gaussian quantum dynamics. Second, the ultrashort pulses necessary
to realize strong nonlinearity naturally involve millions of modes, leading to vastly
more complicated physics than traditional few-mode quantum optics.

Finally, as nonlinear photonics reaches a scale where the field associated with only
one or two photons suffices to cause saturated nonlinear dynamics, the distinction
among mean-field, Gaussian, and non-Gaussian features collapses. In this deep-
quantum regime photons behave like discrete particles [53-55], e.g., as in cavity-QED
experiments in the strong coupling regime [6—10]. Even in this limit, however, the
involvement of a large number of modes can lead to counterintuitive phenomena from
the perspective of traditional few-mode quantum optics [56], and careful engineering
is essential to harness these multimode dynamics.

1.2b. From Single-Mode to Multimode Interactions

A core recurring theme of this article is how to extend the closed-form solutions
found for single-mode problems into an intuitive understanding of complicated mul-
timode systems. In each section, from classical to quantum optics, we consider a
number of representative dynamical processes, and within each case we follow a struc-
ture of single-mode, few-mode, and fully multimode treatments. As an example, one
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commonly used archetype for classical nonlinear optics is SHG, where an input wave of
frequency w generates a second-harmonic with frequency 2w. The single-mode limit
corresponds to CW SHG, where both the fundamental and second-harmonic each
have one interacting mode. We then introduce the formalism needed for a few-mode
treatment (e.g., three-wave interactions), by allowing multiple fundamental modes
to interact with one second-harmonic mode. Finally, we generalize to broadband
interactions where each interacting harmonic contains many participating modes.

In classical nonlinear optics, closed-form solutions for broadband interactions rarely
exist. This task only becomes more difficult in the context of quantum nonlinear
optics. We can see this using a simple complexity argument. For a classical M-
mode system, we require O(M) parameters to completely describe the interacting
fields. On the other hand, in the presence of nonlinear interactions the quantum
fluctuations associated with each mode can develop correlations. In the simplest
(unsaturated) case, these correlations take the form of a covariance matrix, which is
characterized by O(M?) parameters. In the saturated regime, higher-order correlations
become important, which require O(M") parameters to capture nth-order correlations.
Eventually, as we enter the deep quantum limit, these systems can exhibit complicated
dynamics that require exponentially many degrees of freedom with increasing mode
number. Therefore, to understand the multimode quantum dynamics of photons, it is
essential that we either limit the number of modes needed to analyze the nonlinear
dynamics or that we limit the structure of the underlying correlations.

To treat complicated multimode physics, we build intuition by placing restrictions on
the equations of motion that simplify the dynamics sufficiently to admit closed-form
solutions. In almost every case, these simplified models enable us to establish a link
back to the few-mode or even single-mode treatment of the same phenomenon. The
three tools used throughout this paper are (i) linearized (or “undepleted”) treatments,
where one of the interacting waves can be treated as a constant of motion, (ii) quasi-
static heuristics, where linear optical behaviors such as dispersive pulse spreading are
neglected, and (iii) model reduction, where we restrict our dynamics to a relevant sub-
space of possible behaviors. In the undepleted limit, the frequency-domain equations
of motion typically simplify to a linear dynamical system with families of frequency
modes coupled by the nonlinear polarization. These systems can be solved using stan-
dard approaches to ordinary differential equations (ODEs). Conversely, quasi-static
heuristics are useful for treating complicated multimode interactions in the saturated
limit, provided that dispersion can be neglected. In this limit, the time-domain equa-
tions of motion reduce to an independent single-mode model for each point in time.
These systems can therefore be fully solved using the solutions from the single-mode
limit. Model reduction techniques rely on assumptions either about the structure of
the mean field, e.g., that the field can be described using a relatively small number
of pulsed “supermodes,” or about the structure of the correlations between modes.
As an example, model reduction can build upon the linearized equations of motion
by identifying a subset of generalized modes (often pulses, rather than independent
frequencies), that dominate the underlying dynamics. Working within this mode basis
renders the unsaturated dynamics trivial, and saturated behavior can be modeled as
coupling between these modes. We emphasize here that all three of these approaches
yield distinct insights into systems that otherwise have no closed-form solutions.

1.2c. A Design Workflow for the Classical to Quantum Transition

In the spirit of approaching the quantum physics from the classical side of nonlinear
optics, in this article we offer illustrations of a “workflow” that allows us to (i)
obtain experimentally meaningful parameters for quantum models and simulations,
(ii) predict new mechanisms and behaviors arising from quantum effects, and (iii)
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formulate design rules (i.e., in terms of device parameters) for observing such new
phenomena.

For the first point, we take a phenomenological approach that leverages the classi-
cal-quantum correspondence to construct quantum models from classical ones, rather
than the usual, more-involved approach of performing canonical second quantiza-
tion from first principles [57-62]. Assuming we start with wave equations rigorously
derived via classical field theory to be consistent with Maxwell’s equations, we show
how a quantum model for the same dynamics can be obtained essentially by inspec-
tion, while still avoiding the common pitfalls involved in quantizing nonlinear optical
systems [45,57,59,63]. Thatis, once a correct classical field theory for a device is estab-
lished, the form of the quantum Hamiltonian and the quantum equations of motion are
fixed by the mean-field model. Crucially, this means that parameters of the quantum
model, such as interaction rates, can be inferred directly from the calculated or meas-
ured parameters of the classical model. By taking this phenomenological approach,
we can ensure that the quantum model recovers Maxwell’s equation in the mean-field
limit while greatly reducing the activation barrier to working with quantum models,
at least for those practitioners who understand intimately and rigorously the classical
behavior of a device. We note here that while this approach cannot specify which
fields have been quantized inside the nonlinear medium, it does recover the statistics
of the photons generated by the nonlinear dynamics.

That said, the Heisenberg equations of motion (or the equivalent Schrodinger equation)
for the quantum model are often intractable to directly simulate, especially in the
multimode setting. As a result, the crucial next step in this workflow is to apply model
reduction methods to reformulate the quantum model into a more tractable form.
This part is often the “art” in the engineering of such devices, and can, in principle,
leverage any and all tools developed throughout the history of quantum mechanics.
In this article, we focus on a few specific approaches that have been found to work
particularly well for multimode bosonic systems (i.e., quantum pulse propagation),
such as the aforementioned use of supermodes to truncate the mode basis, or the use
of matrix-product state (MPS) to exploit the localized correlation structures among
photons. In this context, the use of classical-quantum hybrid techniques has been
especially fruitful in elucidating the physics in the classical-to-quantum transition.

Finally, it is worth emphasizing that while much of the new phenomenology found
in the quantum regime can be very rich and complex, it is nevertheless possible to
explicate concise design rules for observing them, e.g., figures of merit and scaling
laws for characteristic behavior as a function of device parameters. In many cases,
similar expressions and figures of merit known for classical devices turn out to govern
new quantum phenomena as well, perhaps with a slight change in scaling exponents.
Thus, for the device engineer, there is a sense in which “going quantum” is not,
figuratively speaking, a “quantum leap” conceptually; it merely requires utilizing a
natural generalization of the classical model, some well-informed model reduction,
and an eye for isolating and analyzing new engineerable mechanisms.

1.2d. Gaussian Quantum Noise Is a Gateway to Quantum Nonlinear Optics

In general, a multimode Gaussian quantum state can be completely characterized by
its mean and covariance, i.e., second-order correlations. As we go beyond Gaussian
quantum optics and enter the mesoscopic regime higher-order correlations develop,
forming non-Gaussian quantum features. Generally speaking, there are two approaches
to understanding the onset of non-Gaussian quantum physics: (i) to build up the quan-
tum state photon-by-photon to span a larger Fock space, or (ii) to build new frameworks
on top of Gaussian quantum optics that smoothly interpolate down from classical and
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semiclassical regimes toward the few-photon scale. The former approach is difficult in
broadband systems due to the exponential growth of Fock space with mode number.
On the other hand, the latter approach is much more natural and often gives more
insight into the behavior of these systems, including how the quantum-to-classical
transition occurs and conditions for experimentally observing non-Gaussianity.

Building on the discussion above in which we partition the field operator into a mean
field and its quantum fluctuations, we treat the formation of non-Gaussian features by
further partitioning the physical features of the dynamics into mean-field, Gaussian,
and non-Gaussian phenomena. More specifically, we show that we can factor out
Gaussian dynamics in the form of an interaction frame, hereafter referred to as the
Gaussian interaction frame (GIF) [64,65]. Using this frame, we can keep track of the
residual non-Gaussian quantum features as a wave function “riding” on top of the
mean-field and Gaussian features. The form of the effective Hamiltonian in the GIF
furthermore provides insights into how non-Gaussian features arise from semiclassical
dynamics. In many cases the Gaussian evolution of the system, such as the formation
of squeezing, comes with useful enhancements to the effective interaction rates of the
residual non-Gaussian quantum state.

This scaffolding provided by Gaussian quantum optics is particularly useful when
studying multimode nonlinear optical systems. Unlike typical cavity QED systems,
where only a handful of modes are involved, it is not unusual to find nonlinear
optical systems with millions of modes involved. To capture non-Gaussian quantum
correlations among such an immense number of modes, we would naively need an
exponentially large number of parameters, which quickly becomes intractable. The
Gaussian part of the hybrid state in the interaction frame can provide critical informa-
tion on which specific (super)modes are evolving most rapidly and are most likely to
generate non-Gaussian features. This predictive insight essentially allows us to restrict
our Hilbert space to a small subset of relevant supermodes. While obviously indis-
pensable for performing tractable numerical simulation, this analysis also deepens our
understanding of how multimode phenomena take shape in quantum nonlinear optics.

Finally, in the deep-quantum regime of strong photon—photon interactions, the above
hierarchy among mean-field, Gaussian, and non-Gaussian features collapses, and the
most convenient approach returns to the usual cavity-QED technique of building up
the Fock space photon by photon, which is more suitable in this regime of few-photon
physics. In particular, we have found that modeling techniques from the field of many-
body physics are effective in capturing the microscopic photon dynamics [66—68]. In
this way, we can obtain a direct chain of models and model reductions for numerical
simulation and conceptual analysis that can fully span the classical, semiclassical, and
quantum regimes of nonlinear optics.

1.3. How to Use This Tutorial

This article is directed toward newcomers to the field who may have encountered
nonlinear optics or quantum optics, but are not yet sure how these ideas fit together.
Given the above themes, this tutorial proceeds with a scaffolded approach that builds
up from classical to quantum nonlinear optics in seven sections (see Fig. 4). While the
intended audience will benefit the most from following this structure, readers more
familiar with earlier topics, such as ultrafast optics or Gaussian quantum optics, should
be able skip ahead to sections of interest where they may dive into new phenomena. We
note, however, that some of the ideas used throughout this article are less commonly
encountered in the literature. To facilitate readers interested in breaking this article
up into separate modules, we briefly discuss how these sections fit together and what
topics should be at least skimmed before diving into later parts of this article.
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Structure of this tutorial. These headings are meant to provide a concise overview of
the sections and are not necessarily the same as their actual titles. Some contents in
the quantum nonlinear optics sections are adapted with permission from Ref. [69].

We begin with a brief overview of emerging platforms for nonlinear photonics in
Section 2. This section is targeted toward experimentalists who are interested in
understanding broadly what different approaches are being explored, and how to
compare them. We discuss at a high level what considerations should go into selecting
a platform for realizing few-photon nonlinear interactions, and compare recent progress
across many promising material systems.

We then review the relevant aspects of classical nonlinear optics in Section 3. This
section introduces many of the tools used throughout the tutorial. These concepts
include the CWE:g, their closed-form solutions, and how to extract meaningful figures
of merit from these solutions. This presentation differs from most textbook treatments
by focusing on the bandwidths associated with nonlinear interactions, and their rela-
tionship to the energy requirements of devices driven by short pulses. Model reduction
will first appear in the context of analyzing unsaturated OPA, and will be used through-
out the subsection on fully static ultrafast nonlinear optics. The end of this section
introduces discrete maps, which are a useful framework for building up from the
CWE:s to nonlinear systems that comprise several parts, such as a resonator. The latter
portion of this section (Sections 3.4g—3.41) develops time-propagating equations of
motion, which are useful for connecting the theory of classical nonlinear optics to the
quantum theory. Our treatment of classical nonlinear optics concludes with Section
3.41, which discusses the prospects for realizing few-photon nonlinear interactions.
Readers more familiar with ultrafast nonlinear optics who are curious about what new
classical regimes exist in nonlinear photonics should consider reading later sections
devoted to both quasi-static and fully static nonlinear optics. These behaviors can only
be accessed using the dispersion engineering available in tightly confining nonlinear
waveguides, and are less commonly encountered in the literature. Readers interested
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in developing few-photon nonlinear devices will greatly benefit from the material in
Section 3.4.

We move from classical to quantum nonlinear optics in Section 4 by developing a
set of rules for quickly converting the classical equations of motion into a quantum
mechanical Hamiltonian. This section is crucial for anyone who wants to understand
the behaviors of real devices. The treatment presented here builds on the presentation
of Sections 3.4g-3.4j, which establish classical time-propagating equations of motion
in photon-number units. Based on the form of these classical equations of motion, we
develop a phenomenological Hamiltonian that allows for a full quantum treatment of
ultrafast nonlinear optics, and recovers the classical equations of motion in the mean-
field limit. This approach gives the correct form of the Hamiltonian as calculated
using canonical quantization, and enables straightforward calculations of quantum
parameters by matching the parameters of the quantum model to the easily calculated
(and measured) parameters of the classical model.

Having established the form of the quantum Hamiltonian for multimode x® devices,
Section 5 explains the general approach used throughout this tutorial to solve the equa-
tions of motion. The heart of this section is the introduction of the GIF, a framework
that separates out classical, semiclassical, and non-Gaussian quantum features in a
hierarchical manner [64]. Through the lens of GIF, we can intuitively understand how
the number of photons input to a nonlinear system makes a qualitative difference in
how quantum features emerge, based on which we identify three regimes of quan-
tum nonlinear optics: the macroscopic, mesoscopic, and microscopic regimes. The
remaining sections study these three regimes based on the formalism introduced here.

Gaussian quantum optics is reviewed in Section 6. This section largely builds upon
the linearized treatment of multimode OPA, and will be familiar to readers with a
quantum optics background. For CW pumping, we establish the link between OPA
bandwidth and the correlation length of the downconverted photons. Similarly, in
the pulsed case, a quasi-static treatment will establish a link between the generated
power envelope and the correlation bandwidth of the generated spectrum. These local-
ized correlation structures are later used to motivate the use of MPSs to simulate
broadband few-photon interactions. We close this section with a presentation of the
Gaussian split-step Fourier (GSSF) method, which generalizes numerical methods
commonly encountered in classical nonlinear optics to multimode Gaussian dynam-
ics. By assuming that the underlying states remain Gaussian (i.e., by neglecting any
non-Gaussian contributions to the field correlations), this approach can efficiently
simulate semiclassical dynamics (such as the formation of squeezing and Gaussian
entanglement) with an arbitrary degree of saturation. The GSSF naturally elucidates
the leading-order quantum behavior of otherwise intractable systems first encountered
in classical nonlinear optics, such as supercontinuum generation and OPG.

The latter portion of this tutorial is focused on new phenomenology. The saturated
nonlinear dynamics encountered at the end of Section 6 almost always coincide with
the formation of non-Gaussian features, yet many saturated systems contain an extraor-
dinarily large number of photons. In principle, behaviors such as those studied with the
GSSF should contain some non-Gaussian features hidden under complicated Gaussian
features. Section 7 makes use of GIFs and model reduction to analyze the formation
of such mesoscale features. This combination of techniques answers the question of
how non-Gaussian features form in many-photon systems and gives an intuitive under-
standing of what conditions may soon lead to their observation. An example where
the GIF is particularly well suited is the case of saturated optical parametric fluores-
cence, where amplified quantum fluctuations become sufficiently bright to deplete the
classical input pump. Revisiting these experiments through the lens of the GIF reveals
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what one may intuitively expect, that pump depletion coincides with the formation
of non-Gaussian features. A natural question, then, is why signatures of these behav-
iors have not yet been observed in experiments. The GIF provides a simple, heuristic
answer: since it takes an extraordinary amount of parametric gain to trigger these
non-Gaussian quantum dynamics, the resulting states become extremely squeezed,
which makes them highly sensitive to any experimental imperfections such as loss
and phase noise. As a result, the optical state devolves into an incoherent mixture of
Gaussian quantum states.

Section 8 is the final technical section of this tutorial and treats the few-photon regime.
In contrast with textbook treatments of cavity QED, where single-mode dynamics are
analyzed in a Fock space containing a handful of photons, here we consider the limit
where Fock numbers are limited to one or two, and the mode number is allowed
to be arbitrarily large. We first contrast the case of OPA against the classical and
semiclassical limits. This representative example provides readers with a preview of
the qualitatively new dynamics one might expect to see in this limit (Rabi-like oscil-
lations), but also illustrates that much of the classical intuition must be abandoned.
Many common notions, such as the use of short pulses to enhance the strength of an
interaction, simply do not carry over to this analysis. This section then proceeds to give
an overview of model reduction techniques that can be used to analyze more general
quantum systems in the few-photon limit: MPSs, which facilitate efficient numerical
simulations of multimode quantum systems by assuming a localized correlation struc-
ture, and a pulsed supermode basis. These reduced models are then applied to the
case of quantum gate operation using pulsed two-photon SHG and reveal that pulsed
enhancements to the coupling rate can exist in quantum-nonlinear devices, but that
multimode couplings often act as a decoherence channel that counteracts the bene-
fits gained by these enhancements. This section concludes by revisiting fully static
nonlinear optics in the context of few-photon nonlinearities. In this case, the use of
fully static dynamics eliminates these multimode decoherence effects while retaining
the enhancement of the coupling rate. Plugging in realistic experimental parameters
suggests that these techniques can be used to realize optical CNOT gates.

2. EMERGING PLATFORMS FOR NONLINEAR PHOTONICS

Many promising platforms for y® nonlinear photonics have proliferated in the last
decade, each exhibiting a rather different set of features, and a natural question for
newcomers to the field is how to select the appropriate platform for their desired
application. In the context of quantum nonlinear optics, this question often boils
down to how to select a platform that can realize few-photon nonlinearities. The
answer turns out to depend quite strongly on the approach being taken, with resonant
CW devices favoring rather different parameters than ultrafast devices. Similarly,
constraining devices to operate at one wavelength, such as 1560 nm for the fundamental
harmonic, leads to a different set of considerations than leaving the wavelength a free
parameter. In this section we compare these emerging photonics platforms on two
separate axes: (i) the maturity of these platforms at this time of writing; and (ii)
relevant material properties, such as the nonlinear susceptibility. To better illustrate
the trade-offs discussed above, we will compare the theoretical power requirements
of traveling-wave SHG for these material systems. The design considerations for few-
photon nonlinear devices will be revisited in Section 3.41, once the relevant figures of
merit for single-mode and pulsed interactions have been defined.

In the context of second-order nonlinear photonics, we define a mature platform as
having combined three features: (i) wavelength-scale confinement, (ii) low propaga-
tion loss, and (iii) quasi-phase-matched nonlinear interactions. While the pursuit of
low propagation loss and wavelength-scale confinement are common to nearly every
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Table 1. Maturity of Emerging Photonics Platforms, as Defined by Having Realized
Wavelength-Scale Confinement with Both Low Propagation Loss and Quasi-Phase-Matched
Nonlinear Interactions

Material QPM Technique QPM Thin Films Low-Loss Photonics Low Loss + QPM
LiNbO3 Periodic poling . . .
Silicon EFISH . . .
SiN, EFISH . . .
InGaP Orientation patterning . .

AlGaAs Orientation patterning . .

AIN Orientation patterning . .

GaN Orientation patterning . .

SiC Orientation patterning .

LiTaO; Periodic poling .

ZnSe Orientation patterning .

AlScN Periodic poling .

AIBN Periodic poling .

NbOCl, Periodic poling

emerging photonics platform, the development of quasi-phase-matching (QPM) is
equally important for realizing devices that take advantage of ultrafast pulses. Quasi-
phase-matched devices, where the y® coefficient is spatially patterned to correct
for any phase drifts between the interacting waves, have long been used to realize
efficient nonlinear interactions [70-73]. However, the recent development of quasi-
phase-matched nanophotonics [28—31] has enabled an extraordinary degree of design
freedom, in addition to much stronger nonlinear couplings. In the absence of QPM,
phase-matched nonlinear interactions (e.g., ny, = 1, for SHG) can be achieved in
nonlinear photonics with a suitable choice of waveguide geometry. However, this
approach, commonly referred to as modal phase-matching, often restricts the design
to a small window of the parameter space and comes with reduced mode overlaps
or the use of smaller off-diagonal X(z) elements, which results in weaker nonlinear
couplings. In contrast, in ferroelectric or orientation-patterned materials the y* coef-
ficient can almost always be patterned to quasi-phase-match any nonlinear process
irrespective of waveguide geometry. This freedom allows the waveguide geometry to
be used to engineer the group velocities and higher dispersion orders of the interacting
waves, which is crucial for controlling the behavior of femtosecond pulses.

With the above considerations in mind, Table 1 summarizes the status of many promis-
ing platforms for nonlinear photonics. At this time, the most well-developed platforms
are ferroelectrics, such as LiNbO3, and materials with field-induced nonlinearities,
such as silicon [27,37,74] and silicon nitride [25,26,36,75], due to their ease of use.
In these systems the y® can be patterned at any fabrication step; wafers can be
diced into small chips and processed into linear or nonlinear photonics as desired,
which allows for each component to be refined independently. In addition to these
platforms, there has been substantial recent progress in the development of thin-
film III-V semiconductors, including AlGaAs [20,76-86], GaP [87-89], and InGaP
ternaries [2,22,90]. These materials exhibit broad transparency windows, large nonlin-
ear susceptibilities (100-300 pm/V), and low propagation losses in wavelength-scale
devices. However, quasi-phase-matched interactions in these systems rely on ori-
entation patterning [89,91,92], where the y® is patterned during growth. To date,
orientation-patterned waveguides have exhibited large propagation losses, since the
different crystal orientations exhibit different etch rates, which results in strongly
corrugated surfaces [89,92]. The development of low-loss orientation patterned semi-
conductors will be a substantial step forward for the field. Similar developments
have occurred with silicon carbide [21,93-95] and with III-V nitrides such as GaN
[96-99] and AIN [32,100-103], all of which have wider bandgaps than arsenides
and phosphides, but smaller nonlinearities. Finally, we note that a number of exciting
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materials have been recently developed that have not yet been patterned into guided-
wave devices. These include NbOX, ferroelectrics, ZnSe thin films, and ferroelectric
III-V nitride semiconductors. NbOX, ferroelectrics, such as NbOCl, [104] and NbOI,
[105] have been shown to exhibit the largest nonlinear susceptibilities known to date
at telecom wavelengths and, in principle, can be poled using ferroelectric domain
inversion. Ferroelectric III-V nitrides, such as Al,B;_,N and Al Sc;_,N ternaries, are
a recent development [106—111]. These systems combine ferroelectric poling with
extremely large bandgaps (~ 6 €V), and intermediate-scale (~ 20-50 pm/V) nonlin-
ear susceptibilities, which may enable very low power nonlinear optics operating at
visible or ultraviolet wavelengths. Orientation-patterned thin films of ZnSe [112-114]
may enable the combination of a large (~ 100 pm/V) nonlinear susceptibility with an
extremely wide transparency window.

The development of low-loss nonlinear photonics in each of these material systems is
a rich topic, and a comprehensive discussion is beyond this scope of this tutorial. At a
high level, there are an remarkable number of considerations that determine whether
or not a material can be patterned into low-loss waveguides, including: whether a
material can be chemically etched or must be physically etched, corrugations due to
the differential etch rate between different crystal orientations (for QPM media), and
how amenable a material is to surface passivation. Once losses from the surface of
a material are eliminated, the bulk properties determine the remaining loss. These
include: whether the material is epitaxially grown or crucible grown, and the resulting
metal impurities, the presence of OH absorption overtones, and the transparency
window of the medium as determined by the Urbach tail and multi-phonon absorption
bands. Taking lithium niobate as an example, the bulk material loss limits, including
the role of metal impurities, are discussed in Ref. [115,116], and further studies of the
material absorption limits in thin films are given in Ref. [117]. Surface passivation is
a relatively recent topic in TFLN, and is discussed in Ref. [118,119]. While surface
corrugations are visible in scanning electron microscope images of PPLN waveguides
[29], and light can be observed to scatter from these defects [120], there have been no
quantitative studies of the loss imparted by surface corrugations in TFLN. At this time,
propagation losses in TFLN are dominated by line-edge roughness of the waveguide
surface, and state-of-the-art devices still exhibit more than an order of magnitude more
loss than the limit set by bulk material absorption [117,121].

When comparing material properties to assess the potential of realizing low-power
nonlinear interactions, there is a strong tendency to favor semiconductors with large
nonlinear susceptibilities and large refractive indices. This intuition is informed by
the idea that waveguides with large refractive indices achieve much tighter spatial
confinement, and therefore materials with both a large y'® and a large refractive
index will naturally require the least power. In practice, the nonlinear susceptibility
alone is poor predictor of the power requirements of different nonlinear media when
wavelength is also taken as a free parameter. To illustrate these trade-offs, we consider
the normalized efficiency for SHG,

ZZowdeﬁ

N2 no At

o (2)
where A is the effective interaction area of a pair of waveguide modes, Z; is the
impedance of free space, w is the frequency of the fundamental, n,, is the effective
refractive index of the relevant waveguide mode at frequency w, and d.y is the effective
nonlinear susceptibility in pm/V (2d, = )(l.(].i) for SHG and d.q = 2 maxj |dy|/m for
QPM by a square-wave grating with 50% duty cycle). Equation (2), typically quoted
in %/W-cm? is a commonly used figure of merit that determines the power required
to achieve saturated SHG. We note here that Eq. (2) is derived in Appendix A and
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(a) Comparison of the theoretical normalized efficiency for SHG, 7, as a function of
fundamental wavelength for many emerging platforms for nonlinear photonics. Each
material is assumed to be a suspended air-clad ridge, with the height and width of the
waveguide optimized at each wavelength to achieve the largest possible normalized
efficiency. Smart-cut thin films, such as SLT and MgO:LN, are shaded for wavelengths
where extrinsic absorption of the second harmonic can be significant. In principle, the
impurities that cause this absorption may be removed by using epitaxially grown thin
films, rather than bonding crucible-grown materials. (b) Example optimized waveguide

geometry for doubling a 1560-nm fundamental in a suspended lithium niobate ridge.
______________________________________________________________________________________|

discussed in more detail in the following sections. Devices with a large 7 achieve
saturated SHG with low optical power or, alternatively, with a smaller footprint and
therefore 7 is a realistic proxy for the relevant figures of merit for quantum nonlinear
optics, such as a coupling rate (in hertz), that will be introduced in later sections.

The normalized efficiency, 179, grows rapidly with the frequency of the interacting
waves and scales inversely with both the refractive index of the modes and the effective
area of the nonlinear interaction, A.¢. Noting that the effective area for a wavelength-
scale device is Ac ~ (1/n,,)* (assuming an air-clad device), we find that the reduction
of 19 due to the explicit n2,n,,, scaling of the denominator largely cancels the decrease
in Aot due to having a high-index core. Furthermore, given the w™ scaling of A.g
due to the scale-invariance of Maxwell’s equations, we should expect 7, to scale as
w*. This suggests that when the fundamental wavelength is taken as a free parame-
ter, the bandgap of the nonlinear medium strongly influences the largest normalized
efficiency that can be achieved in a given medium. Figure 5 is a more rigorous compar-
ison of the maximum normalized efficiency attainable in many emerging platforms for
nonlinear photonics as a function of fundamental wavelength. For each platform, we
have assumed a quasi-phase-matched interaction with deg = 2 maxy |dy|/7, and an
air-clad ridge waveguide with the waveguide dimensions optimized to maximize 7 at
each wavelength. For each material, we restrict the range of fundamental wavelengths
(2hw<0.9E,) to avoid absorption of the second-harmonic by the Urbach tail of the non-
linear medium. A key insight from this analysis is that many materials can obtain the
same normalized efficiency when 2hw = 0.9E,, despite the nonlinear susceptibility of
these materials varying by an order of magnitude, since materials with large nonlinear
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Comparison of the bandgap E, and the largest component of the nonlinear suscep-
tibility, dy, for many emerging nonlinear platforms. The contour lines correspond
to 3-dB steps of the heuristic figure of merit defined here, defng. Reported values
for silicon and silicon nitride correspond to the nonlinear susceptibility measured for
field-induced nonlinearities.

susceptibilities tend to have small bandgaps. In addition, the dispersion of y? itself,
here approximated using Miller’s delta scaling, contributes a slight increase in the
power law for each material system, with a typical scaling of w*?—w*>. As a result of
this strong scaling, we find that in general, the platforms with the largest normalized
efficiencies have (i) a large nonlinear susceptibility, (ii) a large bandgap, and (iii) a low
refractive index.

The above scalings suggests that for realizing single-photon nonlinearities d.g and
bandgap (more specifically Ef,) are on equal footing. In later sections we further refine
these comparisons once the relevant figures of merit for quantum nonlinear interac-
tions have been defined; the relative importance of the bandgap and the nonlinear
susceptibility will depend on whether CW or pulsed interactions are being used. For
now, as a means of comparison, we define a simplified heuristic figure of merit, d.zE2,
to compare the above material systems. This figure of merit, as a function of bandgap
and nonlinearity, is plotted in Fig. 6. By this metric many less-explored materials
appear quite promising: AIN and LiTaO; can be made to realize comparable non-
linearities to GaAs and InP by operating at shorter wavelengths, and materials such
as ZnSe and GaP are comparable to LiNbO3. Emerging ferroelectric materials such
as III-V ferroelectric nitrides and NbOCI, appear particularly promising, since they
combine large bandgaps with large nonlinearities.

3. PRINCIPLES OF CLASSICAL NONLINEAR PHOTONICS

3.1. Nonlinear Interactions between Waveguide Modes
Optical waveguides have been crucial in the development of nonlinear optics, since
efficient nonlinear interactions typically require both long interaction lengths and
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(a) Example of a nonlinear waveguide in TFLN designed to generate 780-nm light
from a fundamental at 1560 nm [29]. Here, ferroelectric domains (false color: light
and dark blue) are periodically inverted to enable QPM for efficient nonlinear inter-
actions. (b),(c) The transverse mode profiles, Hy(x,y,w), for the fundamental and
second harmonic, respectively. (d) Typical dispersion relations for a waveguide
(red, fundamental (k,); blue, second harmonic (k,); dashed black, bulk lithium
niobate). In the absence of periodic poling, the small phase mismatch (Ak) pre-
vents efficient conversion from occurring. (a) Adapted with permission from [29]
© The Optical Society. (b)—(d) Jankowski et al., J. Phys.: Photonics 3, 042005,
2021, http://doi.org/10.1088/2515-7647/ac1729, © 10OP Publishing. Adapted with

permission. All rights reserved.
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tight field confinement. Without waveguides, these two prescriptions are typically in
conflict; focusing fields more tightly in a nonlinear crystal causes them to diffract
more rapidly, which limits the length scales over which the waves can interact. Any
treatment of nonlinear photonics therefore relies on the well-developed field of guided-
wave optics. We briefly summarize the relevant aspects of optical waveguide theory
here.

In the absence of a nonlinear polarization, the electric and magnetic fields in a wave-
guide can be decomposed into independent bound modes, or eigenfunctions. More
formally, for each frequency w, we have a number of discrete transverse modes,
E,(x,y,w) and H,(x,y, w), each of which have an associated propagation constant,
k,. Figure 7(a) shows a typical waveguide used in nonlinear optics, here made out
of periodically poled TFLN, with the associated transverse TEqy modes H,(x,y, w)
and Hy(x,y,2w) shown in Figs. 7(b) and (c). The dispersion relations of a typical
waveguide are shown in Fig. 7(d). Propagation of an electric field along z is then given
by the superposition of these bound modes,

E(r,1) = /00 (Z a,(w)E,(x,y, w) exp(—iwt + ikﬂ(w)z)) do (3)

_9
o \ 5 2r

with corresponding expressions for H(r, ) and D(r, t). It can be shown using Poynting’s
theorem that the power spectral density associated with mode y is given by Pla,(w)|?,

where P = 1 Watt is chosen to normalize the mode profiles, %Re ( f E, xH), dA) =P.

In the presence of a nonlinear polarization all of these modes become coupled together,
which is modeled by allowing the Fourier components associated with each mode to
evolve during propagation, a(w) — a(z, w). In general, these CWEs are given by

—iw . .
3261#(2, U.)) = E exp(lku(w)Z) / EH (xa Y, (l_)) : PNL(x’ Y, (L)) dx dy’ (4)
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where Pyp(x, ¥, w) is a complex phasor representing the nonlinear polarization induced
at frequency w. A full derivation of the CWEs from Maxwell’s equations can be found
in Appendix A. To make this formalism more concrete, we restrict our focus for now
to the particular case of SHG. The evolution of the second harmonic is given by

0.A2,(2) = —ikA2 exp(iAkz),

where A, = VPa,(z,2w) and A,, = \/I_’a,,(z, w) are the complex field amplitudes in
power-normalized units (JA|> has units of watts) for the relevant transverse modes
(1 and v) associated with the fundamental and second harmonic, respectively. The
coupling coeflicient k contains an overlap integral that captures the strength of the
interaction between some relevant subset of modes and will be discussed in more
detail in the following sections. The phase mismatch is given by Ak = ky,, — 2k,,. For
quasi-phase-matched devices, this phase mismatch is shifted by the k-vector of the
grating, Ak = ky,, — 2k, — kg, where kg = 27/ A is the angular wavenumber of the
QPM grating and A is the period of the grating, as shown in Fig. 7.

From an engineer’s perspective, the heart of nonlinear photonics is figuring out how
to control these parameters to realize some desirable functionality. In the context of
simple CW interactions, the typical goal is to make « large and Ak = 0 in order to
achieve the greatest possible conversion efficiency with the least amount of power. For
broadband interactions involving many frequencies, many more behaviors are possi-
ble. In these systems, engineering the dispersion relations k,(w) and the input pulse
envelopes (e.g., A, (z = 0, w)) can control how all of the interacting pulses change their
shape during propagation. In the simplest of cases, we may simply choose to engineer
these systems to take advantage of the large intensity associated with the peak of a
pulse to realize efficient interactions with very low average power. However, in many
contexts, the goals of nonlinear optics broaden beyond efficient frequency conversion.
Here the nonlinear dynamics can be used to control the bandwidth generated by a
nonlinear process, or the duration of a generated pulse, or to selectively amplify one
pulse shape from a sea of pulses. We will see that often the dispersion relations &, (w)
are among the most powerful parameters for controlling these operating regimes. In
a similar vein, these ideas will generalize in the context of quantum nonlinear optics
to how we can control these dynamics to generate a particular quantum state. The
purpose of this section is to develop these engineering principles.

3.2. The Undepleted Limit

A natural starting point for analyzing nonlinear devices is the undepleted limit, where
nonlinear interactions can often be reduced to a linear system of ODEs. The sim-
ple solutions found by this linearized treatment are used to guide almost all physical
intuition regarding the behavior of nonlinear devices. Furthermore, the experimen-
tal characterization of devices in the undepleted limit is used both to extract device
parameters, such as «, and as a diagnostic to characterize non-idealities. Our approach
throughout this section will be to build up from single-mode to multimode behavior
for two key nonlinear processes, namely SHG and OPA. We begin with SHG since
this is the simplest (and most common) process in nonlinear optics, and since SHG
captures most of the essential dynamics of other nonlinear processes. We then gen-
eralize this treatment to a few modes by considering three-wave interactions, namely
sum-frequency generation (SFG) and difference-frequency generation (DFG). Having
established the CW treatment of SHG, SFG, and DFG, we have all of the theoretical
tools needed to treat pulsed SHG in an intuitive way. We then repeat this scaffolded
approach, from single-mode, to two-mode, to pulsed and multimode interactions, for
OPA.
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3.2a. CW SHG

The solutions for CW SHG in the undepleted limit establish two crucial figures of
merit for nonlinear devices: (i) the normalized efficiency, which is the typical measure
of nonlinearity in a waveguide; and (ii) the SHG transfer function [72,122,123]. The
normalized efficiency, determined by measuring the generated second-harmonic power
as a function of input fundamental power, characterizes the power required to achieve
saturation given an interaction length L. The SHG transfer function, determined by
measuring the generated second-harmonic power as a function of input wavelength,
provides a quantitative measurement of the dispersion relations k,(w), as well as
a measure of device quality. Imperfections in a fabricated device, such as spatial
variations of « and Ak manifest as broadening and skewing of the SHG transfer
function. We will see in Section 3.2d that these transfer functions are fundamentally
related to the dynamics of ultrafast pulses. The CWEs for CW SHG are given in
power-normalized units by

0,A,(2) = —ikA2,(2)A],(2) exp(—iAkz) (5a)
0-As0,(2) = —ikAZ (z) exp(iAkz), (5b)

where A,, has units of W~!/2, This choice of normalization is convenient for experi-
ments since the power contained in the waveguide mode at frequency w is |A,|*> = P,,.
In addition, this choice of normalization renders the nonlinear coupling, «, the same
in each equation, which naturally follows from power conservation,

8.P,(2) = —KlA2,(2)|Aw(2)]? Sin(AB(2)) = —8,P2.,(2), (6)

where —A8 = ¢y, — 2¢,, — Akz. For quasi-phase-matched waveguides, the phase
mismatch between the interacting harmonics is given by Ak = k., — 2k, — k.

The nonlinear coupling is derived using the complex reciprocity relations in Appendix
A.3, and is given by
\Y, ZZ()(L)deff
K= ———, 7
ny nZwAeff

where d.q = 2 maxy |djx|/ 7 is the effective nonlinear coefficient. The factor of 2/ is
introduced by assuming that the first-order Fourier component of a 50% duty cycle
square wave is used to realize QPM. Z, = 377 Ohms is the impedance of free space,
and n,, = k,(w)c/w is the effective refractive index of the relevant mode at frequency
w. The effective area, A.q, provides a measure of the relative strength of the nonlinear
interaction due to both tight confinement and the overlap of the mode with the nonlinear
medium. The effective area (Eq. (A50)) is more rigorously defined in Section A.3, and
typical values of A.g in wavelength-scale devices are on the order of Acg ~1 um? for a
fundamental of 1560 nm. Typical effective areas in diffused waveguides and machined
waveguides are on the order of A.y ~20 um?. In bulk nonlinear devices driven by
Gaussian beams the effective area is set by matching the confocal length to the crystal
length, and is of the order of hundreds or thousands of um? in centimeter-scale devices.
As discussed in Section 2 rescaling guided wave devices to shorter wavelengths (by
rescaling each of the waveguide dimensions) results in a scaling of the effective area
by 172, leading to a quadratic scaling of « as a given device is scaled to operate at
shorter wavelengths.

In the undepleted limit, Egs. (5a), (5b) are solved by assuming the input fundamental
power to be constant, A, (z) = A, (0). In the absence of phase mismatch, Ak = 0, the
generated second harmonic found by integrating Eq. (5b) is given by

Ar(2) = —iKAi) (0)z, (8)
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or in terms of the power input to the nonlinear section at z = 0 and output at z = L,
Py, (L) = K*P2(0)L*. (9)

The conversion efficiency 7(z) = P2, (2)/Pe(0) = k*P,,(0)z*> grows quadratically with
the propagation length z, and linearly with the input power P,,(0). Since the conversion
efficiency can be made arbitrarily large by using a more intense input pump or a longer
waveguide, the conventional figure of merit for guided-wave SHG is the normalized
efficiency,

_ ol o,
~ P,(0)L2

Here 7 is typically quoted in units of % /(W - cm?), and is commonly determined
by measuring the generated second-harmonic power as a function of the pump power
input to a nonlinear device of known length, L. We note here that z;2 = 70P,,(0) sets the
characteristic length scale for efficient conversion in a nonlinear device, and similarly,

Pl = noL? sets the characteristic power scale.

(10)

o

When the generated second harmonic is phase-mismatched with respect to the input
fundamental, we can integrate the CWEs to find

kAL (0)
Ak

Az (2) = —ikA2 (0) /O‘Z exp (iAkz) = — (exp (iAkz) — 1). 1)

We may gain further insight by recasting this equation in two more forms

_7ikA2
As(z) = 2”;;}:'(0) exp (iAkz/2) sin (%) , (12a)
= —ikA2 (0)z exp (iAkz/2) sinc (%) . (12b)

Equation (12a) is useful to visualize the evolution of the generated second-harmonic
power during propagation (Fig. 8(a)). The generated second-harmonic power under-
goes sinusoidal oscillations during propagation with a peak power (located at odd
multiples of the coherence length L., = 71/Ak) given by Py, max = 4170P2,(0)/Ak?. The
conversion period is given by Leony = 2Lcon = 271/|Ak|. This behavior is due to periodic
phase drifts between the generated second harmonic and the nonlinear polarization
driving the field. For z € [0, L.,) the propagating second-harmonic field and the driv-
ing polarization have the same sign, and therefore second-harmonic photons radiated
by the nonlinear polarization constructively interfere with the second-harmonic pho-
tons propagating in the waveguide. For z € [Lcon, 2Lcon) the photons generated by the
nonlinear polarization destructively interfere with the propagating second-harmonic
photons, thereby causing back-conversion to the fundamental.

Equation (12b) is useful for evaluating the generated second-harmonic output from a
device as a function of the phase mismatch,

Po(L) = 0P, (0)L*|Hsna (AKL/2)P%, (13a)
Hsuc(AKL/2) = exp (iAZkL) sinc (%) , (13b)

where |Hgyg|? is commonly referred to as the SHG transfer function and is shown in
Fig. 8(b). This transfer function reflects the response of the generated second harmonic
to the driving nonlinear polarization in the undepleted limit, and is a useful diagnostic
tool for nonlinear devices. The deviation of a measured SHG transfer function from



370  Vol. 16,No. 2/June 2024/ Advances in Optics and Photonics Tutorial

Figure 8
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(a) SHG in a nonlinear waveguide. Here, an input fundamental (red) is upconverted
to the second harmonic (blue) during propagation from z = 0 to z = L. (b) Generated
second-harmonic power P,,,(z) as a function of propagation length for select values of
phase mismatch, assuming an undepleted fundamental. In the case of phase-matched
SHG, the second-harmonic power grows as z>, whereas phase-mismatched solutions
exhibit oscillatory behavior. (c) The SHG transfer function, given by |Hsyg|*(L) (blue
dots: |Hsyg|*(L) for the values of Ak plotted in (b)).
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the theoretical sinc? provides a qualitative measurement of device non-uniformity,
and the width between the zeros of the transfer function as measured by detuning
the frequency of the input laser provides an indirect measurement of the waveguide
dispersion. We note here that more sophisticated techniques can be used to extract the
complex transfer function, Hsyg, which enable quantitative measurements of device
inhomogeneities [55]. Similar transfer functions will be used in the analysis of three-
wave mixing (TWM) and parametric amplifiers, and have fundamental implications
for ultrafast pulsed interactions.

In most cases, the SHG transfer function is measured by sweeping the frequency of
the fundamental input to the waveguide. The variation of phase mismatch with respect
to a frequency detuning Q/(2x) around a nominal operating point, w/(27x), is given
by

AK(Q) = k2w +2Q) - 2k(w + Q) — k¢ (14a)
= Ako + 2AK'Q + (2k%,, — k) Q* + O(Q%), (14b)

where the latter form follows from expanding k(w + Q) as a Taylor series in Q. Here
Ako = Ak(Q = 0) is the phase mismatch at Q = 0, Ak’ = k), — k;, = v}, — vy, is the
group velocity mismatch (GVM) between the interacting waves, and k,; represents the
group velocity dispersion (GVD) at frequency w. The first zeros of the SHG transfer
function occur when Ak(Q.)L = +27x. For a phase-matched interaction at Q = 0 (and

ignoring the GVD terms for now), we have
+ 271 = 2AK'LQ,. (15)
Figure 9 shows the generated second-harmonic power (blue lines) as a function of

the frequency input to the waveguide (red lines). The full frequency span around w
between the first two zeros of the SHG transfer function, 27Afsyg = |Q: — Q_|, is
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Y

Input fundamental frequency Generated second harmonic
When driven by a swept CW laser (represented by discrete red lines) the second
harmonic generated by a nonlinear waveguide is filtered by a transfer function (solid
black). The bandwidth between the first zeros of the transfer function, Afsug, is
determined by the GVM between the interacting waves.

given by
Afsig = AK'L. (16)

The frequency bandwidth of the SHG transfer function decreases with both Ak’ and
L, and provides a direct measurement of the GVM for a device with known nonlinear
length L. In our later analysis of pulsed interactions (Section 3.2d) we will see that
the GVM, and therefore the SHG bandwidth, is a critical parameter that determines
how easily a device may be driven into saturation. In anticipation of this discussion,
we link the frequency-domain bandwidth observed here to a time domain description
in terms of temporal walk-off; noting that the accumulated group delay between the
fundamental and second harmonic due to temporal walk-off is Tya_of = Ak’L, then
the full width between the zeros of the SHG transfer function is given simply by

AfS_}iG = Twalk—off- (1 7)

3.2b. A Comment about Alternative Normalizations and Phase Conventions

Thus far we have considered the evolution of slowly-varying envelopes A in power-
normalized units. While this choice of both normalization and phase reference
(comoving with the carrier frequency of each envelope) are common, there exist a
number of alternative choices that are more convenient in other contexts, especially in
quantum optics. We briefly address these conventions here, and will use them when
convenient in later sections.

First, we note that the use of flux-normalized, rather than power-normalized units
are extremely common, both in three-wave interactions and in quantum nonlinear
optics. If we define the flux amplitude as a,, = A,/ Vhw for the fundamental, and
Az, = Are/VR2w, then |a,,|? and |as,,|? now contain the flux rate (in photons/s) of the
fundamental and second harmonic, respectively. At this point, we have not invoked
quantization in any way. These quantities are still c-number fields, corresponding to
the mean flux rate of each mode. Substituting these definitions into Eqgs. (5a), (5b)
yields the flux-normalized CWEs,

0,a,,(z) = —ieay,(2)a;,(z) exp(—iAkz), (18a)
0.20() = =i5a%,(2) explidk2), (18b)

where € = kV2hw. Here, the physical origin of the factor of % for the second harmonic
comes from there being two generated fundamental photons from every downconverted
second-harmonic photon, and one generated second-harmonic photon from each pair
of upconverted fundamental photons, a;,0.a,, = —%azw 0.a;, .
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In addition to our choice of normalization, there are a variety of useful phase references
that can provide greater insights in different contexts. Both in the context of OPA, and
in the following sections on quantum optics, we will work in a rotating frame that
renders the right-hand side of Eqs. (5a), (5b) translation invariant. In general, such
shifts of the phase reference can be obtained by defining A,, = A, exp(—ik;z) and
Asy, = Asy, exp(—ik,z). As an example, in the context of OPA we will use k, = 0,
ki = Ak/2, which generates the following translation-invariant CWEs,

. N B
0.A,(2) = —i7 — ikA2,(2)A,(2),
0.A2,(2) = —ikA%(2).

3.2c. Three-Wave Mixing

Having reviewed the key aspects of undepleted SHG, we now generalize this treatment
to TWM in the limit of an undepleted input wave, where the CWESs reduce to a system
of coupled linear ODEs with simple closed-form solutions. We begin by considering
the case where one of the input fields is zero, and the other two fields are constant,
which yields nearly identical solutions to those found above for the case of SHG. In
this case, TWM is also characterized by a normalized efficiency, 9, and a sinc transfer
function. However, in contrast with SHG, two of the three interacting waves can be
detuned, which gives these transfer functions more complicated behavior. We also
consider the special case of SFG near degeneracy, where each pair of long wavelength
photons at angular frequencies w; and w, sums to the same wavelength, w; = w; + w>.
In this case, we introduce the concept of an SFG transfer function [122,123], which
measures how much bandwidth near degeneracy can be summed to a single frequency
around the second harmonic. The SHG transfer function introduced previously and
SFG transfer function introduced here will both be useful tools in the analysis of
pulsed interactions. We close this section by generalizing this treatment to the case
where only one of the long waves is sufficiently bright that we may assume a constant
field intensity during propagation. The insights provided by this more general solution
will be useful in Section 3.2e, where we consider OPA.

For three-wave interactions, the CWEs are given by

(9ZA1(z) = —iK1A3(Z)A§(Z) eXp(—iAkZ), (193)
0:A5(2) = —ikyA3(2)A](2) exp(—iAkz), (19b)
0.A3(2) = —ik3A1(2)A2(z) exp(iAkz), (19¢)

where each envelope A; corresponds to the field amplitude at frequency w;, with
w3 = W1 + wy and w3>w,r>w;. The phase mismatch is now given by Ak = k(w;) —
k(w,) — k(w1) — kg, and the nonlinear coupling is given by

o = V2Z()a)jdeﬁ
T eNmmnsAgr

where n; is the refractive index of the relevant waveguide mode at w;. The CWEs for
TWM exhibit slightly different conservation laws than SHG. Here, power conservation
is given by d,P; = —d,(P, + P,), and number conservation occurs between the short
(w3) wave and both long waves separately, d,P3 /(hw;) = —0.P1/(hwy) = —0.P5/ (hwy).
Stated more simply, each downconverted photon from w; generates both a signal
photon (w,) and an idler (w,) photon, and pairs of long-wavelength photons are upcon-
verted to form w3 photons. Together, these conservation laws give the Manley—Rowe

(20)
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relations,

P32 _ P, Pi®) (21)

azhu)3 zh,(t)z Zh,(t)l.

These relations suggest that closed-form solutions for TWM are more naturally found
using flux-normalized units, where the CWEs take the form

0,a1(2) = —ieaz(z)ay(z) exp(—iAkz), (22a)
0.a>(z) = —ieaz(2)a;(z) exp(—iAkz), (22b)
0.a3(z) = —iea;(z)ax(z) exp(iAkz), (22¢)

with a nonlinear coupling given by

vV 220hw1 w2w3deff
€= .
cVnnpnzAeg

The flux-normalized CWEs are useful both when considering depletion and OPA.

(23)

The simplest solutions for TWM can be found by assuming one of the input waves
to have zero power, and the other two fields to be sufficiently bright that they remain
undepleted during propagation. In the case of SFG, we have A3(0) = 0 and the other
two waves are undepleted (4,(z) = A2(0) and A(z) = A1(0)). Integrating Eq. (19¢), we
find

(24)

As(z) = —ik3zA1(0)A,(0) exp (%) sinc (%) ,

2

or in terms of the powers input and output from a device with a nonlinear section of
length L,

P = sz OPOsine? 5. 25)

The functional form of Eq. (25) is identical to the undepleted behavior encountered
for SHG, with a normalized efficiency given by 93 = K32. A similar expression may be
obtained for DFG where A;(0) = 0 and the remaining waves are undepleted (A5(z) =
A3(0), Ax(z) = A2(0)), with normalized efficiency 79 = Kf. Solutions for the case
where A,(z) = 0 may be obtained by using the symmetry of Egs. (19a), (19b) with
respect to an interchange of indices (1 <> 2); the resulting solutions are identical.

The phase mismatch can now be varied by detuning the frequency of any of the three
waves. Denoting the frequency detuning from w; and w, by Q; and Q,, respectively,
the phase mismatch is given by

Ak(Ql, Qz) = k(a)3 + Ql + Qz) - k(a)2 + Qg) - k(a)l + Ql) - kG (263)
= Ako + AK,_ Q) + AK,_, Q) + O(Q), (26b)
where Ak;_| = k'(w3) — k'(w1) = Vgy,, = Vgu,- We may establish a correspondence

to the SHG case studied above by instead parameterizing Ak using a symmetric
detuning, €, and anti-symmetric detuning, Q’, defined by the relations Q; = Q + Q'
and Q, = Q — Q'. In this case, the phase mismatch is given by

AK(Q, Q) = k(ws +2Q) — k(ws + Q + Q') — k(w; + Q — Q) — kg (27a)

= Ako + (AK}_, + AK,_,)Q + (Ak,_)Q + O(Q%). (27Db)

Comparing Eq. (27b) with Eq. (14b), we see that the symmetric detuning, 2, plays an
identical role to the frequency detuning for SHG, with the generated sum frequency
being detuned by 2Q and the rate change of the phase mismatch now being determined
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by the mean GVM of the three waves rather than the GVM between the fundamental
and second harmonic. The anti-symmetric detuning, ', determines the range of
frequency pairs that can be efficiently summed to w3, or the range of frequencies
that can be generated by DFG of a tunable signal with frequency w + Q' against a
short-wavelength pump with frequency w; = 2w.

A special case of TWM is SFG and DFG near degeneracy (w; = w; = w, w3 = 2w),
which will be useful in understanding the behavior of pulsed nonlinear devices. In this
case, the phase mismatch is given by

1
A(Q, Q') = Aky + 20K'Q + (2K}, — k/)Q* + Ek;j Q) +0(). (28)

Our choice of definition for Q and Q' renders Eq. (28) identical to Eq. (14b), up to
second order in 2. We note here that if we set Q =0, Eq. (28) only contains even
orders of Q’. This behavior suggests that the range of frequencies that can be generated
around 2w by SFG is determined by the SHG transfer function, and that the range of
frequency pairs around w that can contribute to SFG at frequency 2w is determined
by even derivatives of k(w) at frequency w.

We further formalize this notion by defining an SFG transfer function, in analogy to
the previously defined SHG transfer function, as

Hspg(Q,) = SlnC(Ak(Q = O, Q’)L/2)

Assuming Ak(Q = 0, Q") is dominated by &,/ the first zeros of the SFG transfer function
occur at
4r = K IL(QL)°, (29)

where Q) and €’ are defined to be the positively detuned and negatively detuned
zero, respectively. The frequency span between the first zeros of the transfer function,
2nAfspg = Q) — Q, is given by

1
Nsrg = E\/ﬂkgL. (30)

Figure 10 shows a typical SFG transfer function for summing contributions from
many frequencies around w to a single frequency 2w. We note here that the spacing
between successive zeros of the SFG transfer function shrinks with increasing detuning
since the argument is quadratic in ’. We may again link the frequency-domain
bandwidth observed here to an intuitive time domain description by noting that the
group delay dispersion accumulated by a pulse propagating at frequency w is given
by ¢ = k] L, resulting in dispersive spreading of the width of a typical pulse by twice
its transform-limited duration.

Figure 10
Afsre yan —_— >
Y Ll
Symmetric frequency detuning Generated second harmonic

Total bandwidth of frequency pairs (denoted by pairs of discrete lines) around w that
may be summed to frequency 2w is determined by the SFG transfer function (solid
black). The characteristic bandwidth between the zeros of the transfer function, Afsgg
is determined by the group delay dispersion of the fundamental, kL.
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3.2d. Pulsed SHG

Thus far in our consideration of traveling-wave interactions the conversion efficiency
for a given input power has been determined entirely by the normalized efficiency, 1,
and the interaction length L. As second-order nonlinear photonics approach wavelength
scale confinement, the effective areas that determine the strength of 7y reach their
theoretical limits. Noting that the conversion efficiency scales as Pj,, a common
approach to realizing low-average-power nonlinearities is the use of short pulses,
where now the instantaneous peak power located around the peak of the pulse can
drive the nonlinear interaction. We now consider pulsed SHG, where the dispersion
relations of the nonlinear waveguide become critical in determining the efficiency
and shape of the generated second harmonic. We present closed-form solutions in
the undepleted limit, introduce scaling laws for pulsed interactions, and emphasize
here that these time-domain dynamics can be analyzed intuitively using the CW
transfer functions introduced in the previous sections [122,123]. We note here that
in the presence of dispersion few closed-form solution exists for pulsed SHG in the
saturated limit. Closed-form solutions that accurately describe saturated behaviors in
dispersion-engineered devices will be presented in Section 3.3.

For broadband pulses, the CWEs for A,(w;) and A, (w3) now contain contributions
from all possible frequency pairs that sum to w,

(9]

* ) dw
K (@1, W3)A, (2, W3)A, (2, w3 — w1) exp (—iAk(w1, w3)2) 2—;
(31)
) dw
Kypp (W3, w1)A (2, w1)A (2, w3 — wy) exp (IAk(wr, w3)z) Er

(32)
where u and v refer to the relevant mode for the fundamental and second harmonic,
respectively. Here «,,,,(w, w3) takes the form of the nonlinear coupling for a three-
wave interaction,

0. (2 1) = i /

—00

o0

DA (2 w3) = —i /

—00

v 220(1)1 deff

eAct (@1, 03 (@) (@3)n (w3 — w1)

(33)

Kv,uu(wl,w3) = K,uv,u((‘)la(’-)3) =

The effective area, A, now depends on the confinement and overlap of the modes at
each of the three interacting frequencies. The phase mismatch is given by Ak(w;, ws3) =
ky(w3) — ky(w1) = ky(w3 — wi) — kg. A more detailed derivation of the CWEs and
the expressions for the effective area are given in Appendix A. In many cases, the
dispersion of A.g and n can be neglected in calculating these integrals, which allows
k(w1, w3) to be factored out of the integral. For treating extremely broadband behaviors,
alternative normalizations have been developed that further suppress the dispersion of
k [124].

Our goal is to convert these equations of motion into a system of coupled differential
equations that describe the instantaneous power of a pulse envelope centered around
frequencies w and 2w. We first note that even when the transverse modes are the same
(1 = v) the envelopes tend to be localized around discrete carrier frequencies, which
lets us continue to use Egs. (31), (32), provided that the two envelopes refer to band-
widths localized around carrier frequencies w and 2w. We therefore break up the total
optical signal in each transverse mode into discrete envelopes centered around these
carriers, A, (z,Q) = A, (z, w + Q) and Ay, (z, ) = A, (z,2w + ;). Since typical
devices only have phase-matching between one relevant spatial mode of fundamental
and one of second harmonic, we have dropped the subscripts ¢ and v to simply let
each of these envelopes refer to the appropriate pair of modes in a given context.
In quasi-phase-matched devices, the fundamental and second-harmonic are typically
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contained in the same transverse mode, such as TE, for x-cut lithium niobate, and
TMyy for z-cut. In waveguides relying on modal phase-matching the fundamental and
second harmonic are often orthogonally polarized, e.g., TEy and TMy, respectively.

Having defined these envelopes, we now move into a rotating frame that removes the
fast spatial variations of the envelope:

AL (Q)) = AL (Qy) exp(—iky,(Q)z + ik, (0)z).
This substitution converts the equations of motion into a convolution integral,

A o (2, Q) =i (ko (1) = ke (0) Ay (2, Q1)

R ~ dQ 34
- iK/ A (2, 0)A, (2, Qy — Q) exp (—iAkz) 2—7:, (34)

0:A20(2, Q) = =i (koo (Q2) = k20, (0)) Ao (2, Qo)

. ~ dQ (35)

- iK/ Au(z, Q1)Aw(z, Qo — Q) exp (iAkz) 2—;,

where Ak = ky,(0) — 2k,,(0) — kg now represents the phase mismatch between the
carrier frequencies. These convolution integrals are more naturally evaluated in the
time domain, where they take the form of a product between the two pulse envelopes. To
inverse-Fourier transform these equations, we first series expand k,,(€;) and k().
For compactness, we write these equations in terms of dispersion operators,

1 1
ke (Q)) — ko, (0) = &/, Q) + Ek;;Q% + gk;;'Qf +o =k Q) + Dino(iQ1),  (36)

’ l Va 1 17 /7 .
ke (Q2) — ke (0) = kb, Q0 + Ekzwgg + 61%93 + o=k, Q) + Din2o (i), (37)

where Diy ., (iQ) = > ﬂ(in)’”kg)" ) is the integrated dispersion for the funda-

m=2 !

mental at w and k™ = dqk is the mth derivative of k(Q), evaluated at Q = 0.

We now inverse Fourier transform these equations of motion using Fourier’s rule for
derivatives, iQ < 0;, and the convolution theorem to find the time-domain CWEs

azAu) (Z’ t) = kzuatAu) (Z’ t) - iDint,w(al)Aa)(Z’ t) (38)
— ikA2, (2, DA}, (z, 1) exp (—iAkz)

azAZw(Zv t) == kéwatAhu(Z’ t) - iDint,Zw(at)AZw(Zv t)

— ikA2 (z,1) exp (iAkz) . (39)

Equations (38), (39) often provide the most intuitive insights into the nonlinear dynam-
ics of pulses since the nonlinearity is completely localized: x only couples together A,,
and A,,, at the same point of space and time. We will see that this property can often
greatly simplify the solutions to the equations of motion. The clearest way to interpret
A, (z,1) is to consider a discrete point in the waveguide, zo. Here, |A,,(zo,)|* is the
power envelope that will pass through zp, and therefore the signal that would appear
when detected by a receiver with infinite bandwidth located at zy. Propagating along
z from the input of the waveguide to the output then produces the time-domain wave-
form output from the waveguide. We note here that in defining our rotating waves, we
have freedom in how the linear terms that go as k’Q) are absorbed into the envelopes.
We can, for example, define a rotating frame where A,, contains no linear terms, and
Ay, contains terms that go as (k,,, — k;,)Q5. This eliminates k;, from Eq. (38), and
modifies Eq. (39) to now have a temporal walk-off term (k3 — k/,)0;A,. For every
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Figure 11
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In the presence of temporal walk-off, the fundamental (red) leaves behind a tail of
generated second-harmonic (blue), as determined by Eq. (40) for 7 = 100 fs and
Ak’L = 1 ps. Here the four sub-figures are rendered for z = 0, L/3, 2L/3, and L. This

process effectively limits the interaction length of the two waves to L.y = 7/Ak’.
______________________________________________________________________________________|

problem in the following sections, we will modify Egs. (38), (39) to be comoving with
whichever wave is most convenient.

Having established the CWEs for ultrafast pulses, we now consider the case of unde-
pleted SHG with a non-dispersing fundamental. In this case, we again assume the
fundamental envelope to be undepleted A, (z, 1) = A, (0, ), and following the above
discussion, choose a reference group velocity comoving with the fundamental. In this
case, the equation of motion for the second harmonic becomes

0:A2,(z,1) = ~AK' 0,Az., (z,1) = iDim,Za)(at)AZa)(Z, 1) — lKAz)(O, 1) exp (iAkz),

where Ak’ = (kéw — k,) is the group-velocity mismatch between the interacting waves.
For a phase-matched interaction, and ignoring higher-order dispersion Dip 2., = 0, the
second-harmonic envelope is given by integrating along the characteristict’ = ¢ + Ak’z,

Z
A1) = K / A20,1+ MK (z = 2))d2’
0

K t
= AZ(0,1)dr.
Ak /tAk,Z

The qualitative features of this solution are a weak function of the shape of A, (0, #).
We take as an example A, (0, t) = Agsech(z/7), in which case the integral evaluates to

o kT LAY t—Ak'z
As(z,1) = Aj AL (tanh (‘r) tanh( - )) . (40)

Equation (40) is shown in Fig. 11. Here a second-harmonic pulse builds up until
Ak’z>7, after which the generated second harmonic becomes a top-hat pulse that grows
wider with increasing propagation length. Comparing Eq. (40) with Eq. (8), we can
identify several key differences between the pulsed and CW case. Here, as expected,
the peak power rather than the average power, determines the conversion efficiency.
However, the interaction length is now effectively limited to a walk-off length L. =
7/Ak’. Noting that A(Z) = Up/(27) for a sech pulse, the increase in conversion efficiency
due to the increased field intensity (by reducing 7) is canceled by a corresponding
reduction in interaction length. Similarly, the increase in conversion efficiency due to
increasing device length is only due to having generated a second-harmonic pulse with
a longer duration, rather than a greater peak intensity. For a fixed Ak’ the route toward
efficient, or low-power, ultrafast interactions is by a simultaneous rescaling of 7 and L.
If we consider a device of length L = 7/Ak’, a simultaneous increase of L and 7 by a
factor s, will rescale both the duration and the peak of the generated second-harmonic
pulse by s, thereby recovering the quadratic growth of the generated second-harmonic
energy with increasing device length.
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There is an intuitive link between a frequency domain picture enabled by the SHG
transfer function and the time domain envelope of the generated second harmonic.
Returning to Eq. (32) in the undepleted limit, and only retaining the group-velocity
mismatch in Ak(w;, w;), the equations of motion can be evaluated by first integrating
over the length of the waveguide,

Ak’QQZ

Az (z,0) = —ikzHsng ( )ANL,Zw(O’ D), (41)
where Anp20,(0, Q) = f_ O:o Au(z, QAL (z, Q2 — Q) dQ; /(27) is the Fourier transform
of A2 (0, 1). Therefore, the generated second harmonic is given simply by filtering the
bandwidth of A% (0,t) by the SHG transfer function. Since the functional form of
this transfer function is given by sinc(Ak’Q,z/2), the time-domain behavior (up to an
overall delay) corresponds to convolving A2 (0, ) with a top hat of temporal width
Ak’z. We note here that for a transform-limited input pulse, Eq. (41) can be used to
obtain |Hsyg|? from the power spectral density of the second harmonic.

We may further develop the link between the dynamics of ultrafast pulses and the
transfer functions for CW interactions by repeating this analysis with Ak(Q;, Q,)
series expanded to second order. Re-introducing the symmetric and anti-symmetric
detunings, Q and Q’, Eq. (41) becomes

Ak(Q)z

A2 (2,2Q) = —ikzHsuc ( )ANL,zw(O, 2Q), (42)
where Ak(Q) = 2Ak’'Q + (2k}, | — k)%, and Anp2.,(0, 2Q) is now filtered by the SFG
transfer function,

o0

Ant20(0,20) = / Aoz Q + Q)AL Q - Q) Hero(Q) A 2m). (43)

—00

The SFG transfer function is determined, as before, by the GVD of the fundamental,
1
Hspg(€Y) = sinc (Ek;j Q) z) : (44)

Equations (42), (43) allow pulsed SHG to be treated as a two step process, as shown in
Fig. 12. First, the fundamental generates an intermediate field, Any 2, (0, 2Q), which
plays a role similar to the nonlinear polarization. Here the bandwidth of the input
fundamental that may contribute to Anp 2,(0,2Q) is determined by the SFG transfer
function, which effectively determines how much bandwidth around the fundamental
can contribute to any one frequency of the second harmonic. Then, the response of
the second harmonic to the intermediate field is filtered by the SHG transfer function,
thereby limiting the generated bandwidth around 2w. This analysis can be extended to
any case where Ak(€, Q") can be separated into terms that depend only on Q and Q’.
Later, when we consider dispersion-engineered interactions, the leading-order terms
in the series expansion of Ak(2,Q’), such as Ak’ and £/, will be made small. This
naturally draws into question the validity of separating Hsyg and Hggg, since the
series expansion of Ak(Q, Q') contains many cross terms once third- and fourth-order
dispersion dominate the phase mismatch. In practice, this approach can still work well
for realistic (~ 50 fs) pulse durations since 2k, and k]’ are often strongly mismatched,
in which case Ak(Q2, Q') ~ (2k) - k!")Q2. For the special case where 2k}~ k;; and
Ak" = 0, the response of the second harmonic to the input fundamental bandwidth is
better evaluated using the full integral in Eq. (32).

We close this section by emphasizing that the techniques used here will be extended
to many more contexts in subsequent sections. In general, frequency-domain analysis
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Figure 12
220
Afsec <€ ——>
Input fundamental frequency Generated second-harmonic frequency

Frequency-domain representation of pulsed SHG. The response of the second har-
monic to the nonlinear polarization is filtered by the SHG transfer function, with the
width of the sinc? transfer function in frequency determined by the temporal walk-off
in the time-domain picture. When Ak(Q, ') can be separated into terms that depend
only on Q and €', the range of frequencies around the fundamental that can con-
tribute to any one frequency of the second harmonic is determined by the SFG transfer
function.

in the undepleted limit is well suited for identifying the dominant dispersion orders
for a nonlinear process, how these dispersion orders limit interaction lengths, and how
generated bandwidths scale in the presence of a particular dominant order. We will later
revisit these behaviors in the context of dispersion-engineered devices in Section 3.3.
The most salient advantage of dispersion-engineered waveguides is that the bandwidths
and interaction lengths of a nonlinear process can be greatly enhanced by reducing or
eliminating Ak’ and k. These limits will coincide with substantial reductions in the
required power to achieve saturated behavior. In addition, in many cases dispersion-
engineered devices admit closed-form solutions for saturated behavior in the time
domain. These solutions will provide much more insight into the behavior of highly
nonlinear waveguides.

3.2e. CWOPA

While most three-wave interactions do not deviate meaningfully from the previous
analysis for SHG, OPA warrants a separate treatment. Parametric gain is a crucial
resource in many nonlinear systems, where it can be used to generate coherent broad-
band light at arbitrary wavelengths and as a source of non-classical light at convenient
wavelengths for quantum optics. As with SHG, a natural starting point for OPA is
a CW analysis, where closed-form solutions are easily attainable. In analogy to the
SFG bandwidth for TWM around degeneracy, we establish a link between the gain
bandwidth and the GVD of the fundamental. OPA occurs when a bright pump at w;
provides gain to signal and idler pairs at w, and w, respectively. Since each photon of
pump generates a pair of signal and idler photons (Eq. (21)), the CWEs are more eas-
ily solved in flux-normalized units, |a;(z)|* = |A;(z)|*/(hw,). Assuming an undepleted
pump, Egs. (19a), (19b) become

0.a1(z) = yoa,(z) exp(—ilkz), (45a)

0.a5(2) = yoai(z) exp(iAkz), (45b)

where vy = —i+/k1k2A3(0) = 4/k1k2P3(0) is chosen to be a positive real number without
loss of generality. Equations (45a), (45b) are useful in the weak gain limit (a;(z) =
a1(0), a»(z) = a(0)), where the equations of motion can be directly integrated. In the
more general case, we can define rotating envelopes, @; = a; exp(—iAkz/2), to convert
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Egs. (45a), (45b) into a translation-invariant linear system of ODEzs,

( sk o

a(z)\ _ 0 |(a(z

9, (&i(z)) = y20 ik (a;(z))' (46)
o2’

Formally, these equations of motion can be solved using a matrix exponential or,
equivalently, using an eigenvalue decomposition,

@, (z)) = exp(Mz) (Z;Eg;) = Vexp(Az)V! (Z;Eg;) , (47)

where A = diag(1,, 1) is a diagonal matrix of eigenvalues and V = (v, 1) is a matrix
with columns corresponding to the eigenvectors of M. Some care must be taken to
interpret these solutions since M is not Hermitian. As a consequence, the eigenvalues
A; may be complex, and the corresponding eigenvectors are not orthonormal (i.e., V
is not unitary). There is, however, some sense in which the dynamics can be thought
of as decomposing the input (a;(0), 6‘12(0))T into eigenvectors, propagating them, and
reconstituting the output. Noting that V! = (w;, w,)" is a matrix with rows given by
the left eigenvectors associated with each 4;, that is MTw; = A;wj. Equation (47) can
be interpreted as evaluating the component of the input along the left eigenvectors
¢ = w; (a1(0), &2(0))T, evolving each component using exp(4,z), and reconstituting
the output in terms of eigenvectors v;. The propagator exp(Mz) is sometimes referred
to as a Green’s function G(z, 7’ = 0) since it describes the response of each frequency
generated at z to a single frequency input at 7’ = 0.

While Eq. (47) gives the general solution for CW-pumped OPA, more intuition can
be gained by taking a closer look at these solutions in limits of practical interest. In
analogy to SHG, we first consider the degenerate case, where w, = w;. In this case,
Eq. (46) becomes a two-by-two system that describes the coupling between a;, and
a;. In the absence of phase mismatch, the signal is given by

a1(z) = a.(0) exp(yoz) — ia-(0) exp(—yoz), (48)

where a. = (a; + aj)/2. In contrast with SHG and SFG, where the generated field
grows linearly with z, the solutions of OPA are characterized by exponential growth
for the in-phase component, a., and deamplification of the quadrature component, a-_.
In the case of non-degenerate OPA, the evolution of the signal and idler are given by

a(z)\ _ (cosh(ypz) sinh(ypz)\ [ a(0) (49)
a;(z)] ~ \sinh(yoz) cosh(yez)] \ @;(0) )’

where 7y, can again be identified as the field gain coefficient by considering the limit
of a strong pump, which simplifies cosh(yyz) = sinh(yyz) ~ exp(yz)/2. Under typical
experimental conditions only one of the waves is seeded, in which case cosh(yyz)
describes the growth of the seeded wave and sinh(y,z) captures the growth of the
generated wave. In all further discussion, we assume that the signal (a,) is seeded
without loss of generality. These solutions exhibit qualitatively different behavior in
the low gain (ypz < 1) and high gain (ypz > 1) limits. For small parametric gains,
the generated fields exhibit polynomial growth in z, e.g., cosh(yoz) = 1 + (y92)*/2 and
sinh(yoz) = yoz. The seeded signal wave is essentially constant for small z, since the
generated signal photons represent a small contribution relative to the input photon
flux. The generated idler wave is entirely composed of downconverted photons due to
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DFG between the undepleted pump and seed, and therefore grows linearly with z. We
note here that in the context of CW OPA, the solutions for degenerate OPA (Eq. (48))
can be recovered from Eq. (49) simply by replacing (é»(z), @;(z)) " with (a1(z), @}(z))".

In the general case (Ak # 0), the eigenvalues of M are given by y. = +, /78 — (Ak/2)2.

For |Ak|<2yy, the main role played by phase mismatch is to reduce the gain coefficient,
v+, and to impart a small shift in the propagation constants of the interacting waves.
Conversely, for large phase mismatch (|Ak|>2y,), the eigenvalues become purely
imaginary and the associated field evolution undergoes a transition from exponentially
growing to oscillatory solutions. We emphasize here that when vy, are real, there is
always an amplified mode (y,>0) and a corresponding deamplified mode (y- = —vy,).
Whenever the eigenvalues are imaginary, they are complex conjugates y, = y*. These
features will carry over to the multimode case, and can guide intuition about the
underlying dynamics of rather complicated systems. The eigenvectors of M associated
with 7y, are not orthogonal and are given by v, = (v, iAk/2 + ¥.)T /YN, where the
arbitrary normalization constant N can be chosen such that v, has unity magnitude.
With y. and v., we can evaluate the Green’s function, which results in

a(z)) _ (C()  S(z) ) (a2(0)
(a*;@) - (S*<z> C*<z>) (at«»)’ (502)
C(2) = cosh(y2) + "2 Ginh(y2), (50b)
2yz
S(z) = )ﬁsinh(yz). (50c¢)
0%4

Here, as before, the eigenvalue y = yO\/ 1 — (Ak)?/(2y0)? can be identified as the
field gain coefficient by considering the limit of a strong pump (yy > Ak). Equa-
tions (50a)—(50c) admit a wide variety of behaviors, depending on the relative
magnitudes of y,z and yy/Ak that arise in rather different experimental contexts. These
behaviors are shown in Fig. 13. As discussed previously for Ak = 0, the flux ampli-
tudes undergo a transition from polynomial to exponential growth around yz = 1.
Similarly, for constant vy, and varying Ak, the flux amplitudes undergo a transi-
tion from exponential growth to oscillatory solutions at |Ak| = 2yp. In the limit of
small yg, S(z) +— yozsinc(Akz/2) recovers the typical transfer function encountered for
weakly depleted three-wave interactions. Classically, this low gain limit recovers the
behavior of phase-matched DFG, and the high-gain limit is relevant for OPA. In the
case of semiclassical interactions (Section 6), where the input fields correspond to
a vacuum state, the low-gain limit will be used to describe spontaneous parametric
downconversion (SPDC), and the high-gain limit will coincide with vacuum squeez-
ing. We emphasize here that since the eigenvalue y = yov/1 — (Ak)?/(2y,)* converges
to yo in the limit of high gain, the gain coefficient yy = \/k;x2P3(0) can be meas-
ured experimentally by fitting the exponential growth of the unseeded wave with
respect to the in-coupled pump power, which is free of any background. This diag-
nostic is an essential tool for experimentally characterizing the behavior of nonlinear
devices.

The bandwidth generated by a CW-pumped OPA can be determined by the behavior
of A, for fixed y, and varying Ak. Since the gain coefficient y undergoes a transition
from purely real to purely imaginary when |Ak|>2y,, and the associated solutions
generated by C(z) and S(z) undergo a corresponding transition from exponentially
growing to oscillatory (sinusoidal), we define the OPA bandwidth Afopa as the range
of frequencies that satisfy |Ak| < yy. For frequency pairs detuned by +’ around
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Figure 13
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(a),(c) The self- and cross-gain coeflicients |C(z)|* and |S(z)|?, respectively, undergo
transitions from exponential to oscillatory solutions with increasing Ak. (b),(d) The
OPA gain spectrum, given by |C(L)|?> and |S(L)|?, respectively. Blue dots correspond
to the select values of Ak plotted in (a) and (c). Here, for simplicity, we take L = 1 and
voL = /2 to set the crossover from exponential to oscillatory solutions at AkL = 7.

degeneracy, the phase mismatch is given to second order in Q' by
’ k;: 72
Ak(Q:O,Q):Ak0+7(Q) . (51)

Figures 14(a)—(c) compare |S(L)|* for three qualitatively distinct regimes, referred to
as degenerate, near-degenerate, and non-degenerate OPA, respectively. Degenerate
operation occurs when Akok,, > 0. In this case, the gain spectrum exhibits a local
maximum at the degenerate point, Q" = 0, with a maximum gain coefficient given by

Ymax = A/Yg — (Ako/2)?. The OPA bandwidth around degeneracy is given by

1 [4yy — 2Ak
AfOPA, degenerate — ; % (52)

The special case of near-degenerate operation (Fig. 14(b)) occurs for a narrow range
of Aky that simultaneously satisfy Akok,,<0 and Aky<2y,. Here, the gain spectrum
exhibits two local maxima at the phase-matched frequencies Quax . = £+/2Ako/k7,,
with gain coeflicients given by ymax+ = Yo. In this case, the OPA bandwidth is

1 |4y + 2Ako
Af OPA, near-degenerate — T
©

(53)

Near-degenerate operation has previously been used to extend the gain bandwidth
of OPAs, at the cost of reduced parametric gain at the degenerate point [125]. Non-
degenerate operation occurs when Ak simultaneously satisfies Akok,, <0 and Aky>27yy.
In this limit, the gain spectrum splits into two distinct bands with oscillatory solutions
in between, as shown in Fig. 14(c). The gain bandwidth within each of these bands
is determined by the GVM between the signal and idler waves centered around w +
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Figure 14
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OPA gain spectrum |S(L)|> generated by a CW pump (blue line) for the operating
regimes described in the main text. (a) Degenerate OPA (Akok., > 0) exhibits a single
gain peak at w3 /2. (b) Near-degenerate OPA (Akok,, <0, 2yy>Aky) exhibits two local
maxima in the gain spectrum, and one continuous band of exponentially growing
solutions (shaded yellow). (c) Non-degenerate OPA (Akok,; <0, 2yg<Akp) exhibits two
separate bands corresponding to amplified signal and idler frequencies, respectively.

Qmax,i )

Af OPA, non-degenerate — %’Zz_l’ (54)
where ALK, | = k'(w + Qmax+) — K'(w — Qmax,~). We note here that in contrast with
SHG, where the relevant bandwidths are determined by the total temporal walk-off
(Ak’L) or group delay dispersion (k,,L) accumulated over the length of the nonlinear
section, the OPA bandwidths are determined by the dispersion accumulated per gain
length, i.e., k /0.

In our later treatment of quantum nonlinear optics, we will see that OPA is one of
the simplest processes that enables the observation of uniquely quantum effects. For
this reason, the above analysis will be revisited in several sections, including our
discussions of Gaussian, mesoscopic, and single-photon quantum nonlinear optics.
In the context of Gaussian quantum optics, these solutions will generalize to allow
for spontaneous parametric fluorescence, where photons downconvert from the pump
in the absence of any coherent seed. In this case, the fluorescence bandwidth and
rate is determined entirely by the cross-gain coefficient, |S(L)|>. In addition, we will
find that the correlations between these downconverted photons are determined by
the OPA bandwidth. Later, in the context of few-photon dynamics, we will again
revisit OPA as a coupling between a single-photon of pump and a continuum of
downconverted signal and idler modes. Here we will see that the choice of degenerate
versus non-degenerate operation will define two qualitatively distinct regimes, termed
“dispersive” or “dissipative” coupling, respectively. In the former regime, the 2w pump
weakly excites a localized bi-photon of fundamental with a conversion efficiency set by
the phase mismatch between the two harmonics. In the dissipative coupling regime, the
pump downconverts to a broadband signal and idler, exhibiting Rabi-like oscillations
with a period determined by the phase mismatch. In these later sections, space and
time will be interchanged, now with interaction times playing the role of interaction
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lengths, spatial-frequency bandwidth playing the role of optical frequency bandwidths,
and frequency detunings playing the role of phase mismatch.

3.2f. Pulsed Optical Parametric Amplification

As with SHG, the parametric gain generated by OPA can be greatly enhanced by using
ultrafast pulses. The treatment in this section mirrors that of pulsed SHG, albeit with
rather different behaviors. We first consider the solutions to the CWEs in the absence
of dispersion, phase mismatch, and pump depletion. This simple example will define
the interaction lengths for pulsed devices, and start to build intuition for how pulsed
OPA differs from the CW case. We then discuss more general solutions to the CWEs
using a frequency domain analysis.

In the absence of higher-order dispersion and pump depletion, the CWE for OPA of a
signal centered around a fundamental frequency w is given by

0Au(z,1) = —ikAr, (2, DA, (2, 1), (55a)

with an undepleted pump given by A,,,(z,1) = A2, (0, — Ak’z). We assume the signal
is a real function and that the pump has the appropriate relative phase to amplify the
signal. With these assumptions, the equation for the signal can be solved simply by
integration,

Au(z,1) = exp ( / kA2, (0,1 — Ak'Z")dz" | AL (0, 7). (56a)
0

This solution is readily generalized for signals with a phase offset relative to the
case considered above by noting that one quadrature is amplified and the other is
de-amplified. The field gain experienced by the signal is g(z, ) = exp(yo(z, t)z), where
vo(z, 1) = % foZ kA2, (0,1 — Ak’z’)dz’. The gain coefficient y(z, ) now has a temporal
envelope that evolves during propagation, which makes the overall gain experienced
by the signal pulse a function of the relative timing between the input signal and pump.

Figure 15 plots the amplification of a closely spaced train of pulses as a function of z for
two device lengths. The shaded yellow region corresponds to g(z, t). We first consider
the case where the total temporal walk-off Ak’L is the same order of magnitude as the
pump pulse duration, Ak’L = 57, in Fig. 15(a). Here, the signal pulse located around
t = 0 that experiences symmetric walk-off relative to the pump exhibits the most gain,
with adjacent pulses seeing less gain due to a poorer temporal overlap with the peak

Figure 15
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pulse (blue). For a total temporal walk-off comparable to the duration of the pump
pulse, most of the gain occurs around ¢ = 0, here chosen to achieve symmetric walk-off
of the pump pulse from —Ak’L/2 to Ak’L/2. (b) For a temporal walk-off much longer
than the pulse duration, the field gain g(z,t) (yellow) forms a flat top and all of the
pulses within this window become equally amplified. The length where this flat-top

behavior begins to occur is the effective interaction length of the OPA.
__________________________________________________________________________________________|
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of g(z,t). Figure 15(b) shows the case where the temporal walk-off is much longer
than the pump pulse duration Ak’L = 157. In this case, the field gain forms a flat top
in time, and all of the closely spaced pulses are equally amplified. Intuitively, each
point in time can only experience a field gain given by the duration of the pump
pulses, the nonlinear coupling, and the temporal walk-off. To better understand these
behaviors, we consider a pump pulse envelope of the form A,,,(0, t) = sech(¢/7). The
gain coeflicient can be evaluated as

2 t t— Ak
vo(z, 1) = KAz, pk—T tan™! (exp (—)) — tan™! exp < .
T Ak'z T T

For Ak’z > T, the terms inside of the brackets evaluate to &, in which case we have
Ymax (2, 1)2 = kAo, pkLesr Where Leg = 217 /Ak’. As with SHG, the interaction length is
determined by 7/Ak’.

In many respects the behaviors of degenerate OPA resemble the time-reverse of SHG.
Here, the interaction length set by 7/Ak’ determines the maximum gain experienced
by the fundamental or, equivalently, how much second-harmonic bandwidth can con-
tribute to gain. In our previous analysis of pulsed SHG, the interaction length 7/Ak’
determined the local conversion efficiency from fundamental to second harmonic or,
equivalently, the bandwidth of the generated second harmonic. Similarly, the CW anal-
ysis of OPA showed that the amount of bandwidth that can be generated around the
fundamental is determined by k,,, whereas for the CW analysis of SFG around degen-
eracy the GVD of the fundamental determined how much bandwidth can contribute
to any one second-harmonic frequency.

Having established the role played by group-velocity mismatch in determining the
effective interaction length over which gain can be accumulated, we now generalize
this treatment to allow for dispersion to arbitrary order. This presentation is similar
to the frequency domain approach used for SHG. However, to better establish a
correspondence with the few-mode treatment of OPA, we will work with discrete
Fourier modes, rather than continuous Fourier integrals. The behavior of the OPA
can then be understood in terms of Green’s functions and eigenvectors. This discrete
analysis is valid for waveguides driven by mode-locked lasers, which contain discrete
frequencies, and is well-suited for numerical analysis.

We begin by considering degenerate OPA and choose our phase reference to be
comoving with the pump. In this case, the time-domain CWE for the signal becomes

0,A,(2,1) = —ikA2,(2, DA} (2, 1) exp(—iAkz) + Ak’ 0,A (2, 1) — iDing s (01)A (2, 7).
(57)
The CWEs for discrete temporal modes are found by expanding each envelope in terms
of a Fourier series,

Az, 1) = ZAm(z) exp(2rimt/T),

where T can be chosen to be the repetition period of the pump, or the width of an
arbitrary window sufficiently large to contain both pulse envelopes. For the pump
envelope, we extract the peak amplitude, A, (z, 1) = Af(?), and series expand the
pulse shape only, f(¢) = 3, cm exp(2mimt/T). Following our treatment of CW OPA,
we define flux amplitudes a,, = A,,/ Vhw,,, and move into a rotating frame given by
ay, = ap exp(—iAkyz/2). With these definitions, Eq. (57) becomes

6zam(z) = _lAkalm(Z) + ypk Z Cm+na:;(z)’ (58)

n

where Ak, = %Ako + AK’'Qrm/T) + %k”(Zﬂm/ T)? + --- contains all contributions to
the phase mismatch from mode m, and the peak gain coefficient yp = —ikApx is
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assumed to be real. In the absence of pump depletion, Eq. (58) is a linear system of
equations for the flux amplitudes a,,. Following the treatment of Section 3.2e, it is
more insightful to write the CWEs as a matrix for a,, and &),

zlm (Z) —i Akm Ymn am (Z)

o= | e

Zl: (Z) Ynm lAkn Zl;; (Z)

where ¥, = YpkCm+n are matrix entries containing the coupling between each pair of
signal frequencies due to parametric gain. Using our notation from Section 3.2e, we

can write Eq. (59) as
az)) _, (ak
a. (a (Z)) =M (ﬁ* (Z)) , (60)

where & = (dy, d,, . . .)T are vectors containing the flux amplitudes.

In general, the solution to Eq. (60) is given by

(;((ZZ))) = exp(Mz) (:*((00))) , (61)

where the matrix exponential exp(Mz) is the Green’s function for multimode OPA.
As with CW OPA, Egs. (59) are more easily obtained using an eigenvalue decom-
position, M = VAV~!, with corresponding Green’s function given by V exp(Az)V ™.
Closed-form solutions for the multimode CWEs are rare in practice [126—129], but
we may obtain some qualitative insights about the behavior of OPA by studying the
eigenvalues. First, we note that for y,,, = 0, M is a diagonal matrix. The phase mis-
match manifests as conjugate pairs of purely imaginary eigenvalues, with associated
eigenvectors corresponding to oscillatory solutions. As the gain increases the trace
of M remains zero, and pairs of eigenvalues both move inward toward the real axis
and outward away from the imaginary axis, which coincides with the formation of
eigenvectors that extract gain during propagation. These complex eigenvalues come in
sets of four: A, 1%, —A, and —A"*. Therefore, for each amplified eigenvector with eigen-
value A, there exists a de-amplified eigenvector with eigenvalue —A. Furthermore, for
any oscillatory solution A, there exists a conjugate eigenvalue A* that interferes to
form sinusoidal and cosinusoidal terms. In practice, the most common approach for
understanding this behavior is to study the singular value decomposition (SVD) of
the Green’s function, which enables a description in terms of a handful of dominant
modes that extract the most gain. This technique will be discussed in more detail in
Section 6.4.

3.3. Dispersion-Engineered Nonlinear Interactions

In our treatment of pulsed nonlinear interactions, we found that GVM and higher-
order dispersion limit the effective interaction lengths, and therefore partially mitigate
the benefits gained from the large peak intensities associated with short pulses. In
addition, we restricted our treatment of pulsed interactions to the undepleted limit,
since general closed-form solutions have not been found for dispersive propagation.
We now consider dispersion-engineered nonlinear devices, which overcome both of
these limitations. The approach taken here is motivated by the scale invariance of
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Egs. (31), (32), copied here for convenience,

61Aw(z’ t) = - k;)atAw(Z9 t) - iDint,w (al)Aw(Z9 t)
— ikAy, (2, )A] (2, 1) exp (—iAkz)
azAZw(Za t) == kéwatAZw(a t) - iDim,Zm(at)AZw(Za t)
— ikA? (2, 1) exp (iAkz) .
The limitations to interaction length by dispersion of arbitrary order can be found by

finding the transformations that leave Egs. (31), (32) unchanged. On inspection, we
find that the CWE:s are scale invariant with respect to
Ak AK . D A1)
H —

7+ §Z, Ak — —, Ak’ , Dw— —, Az, 1) —
s s s

. (62)

where we have dropped the subscripts to denote that these scalings are applied simul-
taneously to the fundamental and second harmonic. Equation (62) shows that a
simultaneous reduction of phase mismatch, temporal walk-off, and the dispersion
operators by a factor s enables an increase of the interaction length by s, thereby
realizing a quadratic reduction of the power requirements for second-order nonlinear
waveguides.

In reality, the simultaneous rescalings in Eq. (62) cannot be realized for realistic
waveguides. Instead, we consider eliminating the dominant dispersion orders for a
given nonlinear process and ignoring the effects of less impactful dispersion orders.
In all further discussion, this operating regime will be referred to as quasi-static oper-
ation, since the length scales over which dispersion causes the pulse envelopes to
distort are far greater than a typical device length. Quasi-static devices can be realized
in practice by first identifying the relative importance of each dispersion order for
a given nonlinear process, and then using geometric dispersion engineering [36—38]
to eliminate the dominant terms. There are two key benefits to this approach. Quasi-
static operation enables arbitrarily long interaction lengths, and therefore extremely
low power requirements, and quasi-static equations of motion admit closed-form solu-
tions that often capture the observed behaviors of realistic devices. In the following
sections, we review these closed-form solutions for saturated SHG [38,70,130] in both
the phase-matched and phase-mismatched cases. In the case of phase-mismatched
SHG, saturated interactions cause the pulse envelopes to distort and bifurcate, which
limits the total conversion efficiency and can generate octaves of bandwidth. This
limit provides the most rigorous test of quasi-static heuristics. We then discuss the
role played by higher-order dispersion, and show that these behaviors place practical
limitations on the efficiency of quasi-static devices. Finally, we treat fully static non-
linear optics, where a temporal waveguide is used to define the pulse envelopes. In this
limit, the pulse envelopes no longer change shape during propagation, which allows
all of the benefits of quasi-static operation to be retained without any limitations to
conversion efficiency.

3.3a. Quasi-Static SHG

In the case of both SHG and degenerate OPA the dominant dispersion orders are given
by Ak’ and k;. Quasi-static interactions are realized by engineering these terms to be
Zero,

O.A, = —ikAsy AL exp(—iAkz) + %k;;awa +0(8?), (63a)
S—— .
-0 ignored
0.As, = —ikA2 exp(iAkz) — Ak’ 0,Az, + DinirwAse - (63b)

— — —,
=0 ignored
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Having eliminated the leading-order terms (e.g., with geometric dispersion engineer-
ing), we ignore the remaining higher-order terms to obtain heuristic solutions to the
CWE:s. Within these approximations, we recover the CW CWEs, with each time bin
acting as an independent wave,

0Au(z2,1) = —ikA, (2, DAL, (2, t) exp(—iAkz), (64a)

0.A2, (2, 1) = —ikA2 (2, 1)(z, 1) exp(iAkz). (64b)

We solve for the dynamics of each time slice separately, treating them effectively as
independent CW modes, following the treatment of Refs. [39,70,130]. A self-contained
analysis is given in Appendix C. The heart of this technique is to make use of the fact
that each time bin locally conserves power, which allows us to normalize the fields
into the notation used by Bloembergen, \/mu(z, 1) = pu(z,1), \/%v(z, 1) = Pr0(2, ).
Here P(t) = |A,(z,1)|* + |A2,(z,1)|?, and p,, = |A,|. With the fields written in terms
of u and v, the evolution of the field amplitudes depends only on u, v, and the relative
phase of the two harmonics given by 6. Once solutions are obtained for u and v,
they can be substituted back into the CWEs to determine the phase evolution of each
harmonic separately.

For the case of phase-matched SHG, the fundamental and second harmonic are given
by
A2w (Z’ t) = _iAw(O7 t) tanh(KAa)(()? t)Z), (65a)

Au(z,1) = A, (0, 1)sech(kA,, (0, 1)z). (65b)

As expected, each time bin separately evolves from undepleted SHG (A5, (z, 1) =
—ikAZ% (0, 1)z) to full conversion (A,,, = —iA,(0,)). We emphasize here that the rele-
vant length scale for conversion is now given by the peak intensity of the pulse, rather
than the average power. However, we note here that for femtosecond pulses, the small
residual dispersion in Eqgs. (63a), (63b) limits the degree of saturation that can occur
in practice. This behavior is analyzed in Section 3.3b. We note here that the solutions
for phase-matched OPA can be recovered from Eqs. (65a), (65b) by shifting the origin
to a negative value of z until the initial conditions match the fields at the boundary of
the waveguide.

In the presence of phase mismatch, we may similarly solve the equations of motion
using the CW solutions corresponding to the instantaneous field intensity. In this case,
the solutions take the form of a Jacobi elliptic sine, sn(u|m). Defining the instantaneous
field conversion efficiency as |v(z, )| = |A24,(z,1)/A,(0, 1)], the field envelopes of the
fundamental and second harmonic are

Au(z, 1) = V1 =2, D)IAL(0, D) exp(i (2. 1), (66a)
A2 (2, 1) = Wz, 1)|Aw (0, 1)] explidhae (2. 1), (66b)

where v(z, ) = v,(1)sn (kA (0, 1)v, ' (1)z|v}(1)). Here sn(u|m) is the Jacobi elliptic sine
and v,(f) = —|Ak/(4kA,(0,1))| + /1 + |Ak/(4kA, (0, 1))|>. We note here that vi(t) is
the maximum pump depletion attainable for a given Ak as a function of the local
field amplitude input to the waveguide A, (0, 7). The Jacobi-elliptic sine smoothly
interpolates between the conventional undepleted solutions for phase-mismatched
SHG and the saturated solutions for phase-matched SHG. Noting that sn(u|0) = sin(u),
we find that in the limit of large Ak the elliptic sine becomes sin(Akz/2) and we
recover the conventional solutions for undepleted SHG. Similarly, noting that sn(u|1) =
tanh(u), in the limit as Ak — 0 we recover the tanh solutions for phase-matched SHG.
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Figure 16
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(a),(b) Theoretical evolution of |A,,(¢)|* and |A,,(¢)|> based on Egs. (66a), (66b).
Dashed white lines, conversion half-periods during propagation; solid black lines,
in-coupled fundamental pulse. (c),(d) Phase of the fundamental and second har-
monic calculated using Egs. (68a), (68b). Both harmonics form plateaus of constant
phase, and therefore spectral broadening is predominantly due to femtosecond-scale
oscillations of the pump depletion. (e)—(h) Comparison of quasi-static theory with a
split-step Fourier simulation, including dispersion to third order and self-steepening.
The structure of each harmonic is largely unchanged by waveguide dispersion, so
that the essential behavior is accurately captured by the simple quasi-static heuristic.
Reprinted with permission from Jankowski et al., APL Photonics 8, 116104, 2023
[39]. Copyright 2021, AIP Publishing LLC.
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For saturated SHG, the conversion period now varies across the pulse envelope
due to the variation of the instantaneous field intensity. This conversion period is
given by

2vp(NK (vy(1))

Lconv(t) = <A (0 l’) ,

(67)

where K is the complete elliptic integral of the first kind. The contribution to Lcony
from K (v‘g(t)) is almost always a weak function of v, since K (vi(t)) varies slowly for
most physically encountered values of v, (7). In the absence of any depletion, we have
K(v} = 0) = /2. For a peak depletion of 90%, K(v} = 0.81) ~ 1.457/2. Therefore,
the variation of L., (?) is dominated by v,(7)/(kA. (0, 7)). Figure 16(a) and (b) shows
an example of the theoretical evolution of a 50-fs-wide (3 dB) sech? pulse in a 6-
mm-long dispersion-engineered TFLN waveguide given by Eqs. (66a), (66b). The
dashed white lines correspond to the mth half-period, L, (t) = mLcony(¢)/2, where
even m coincide with the local maxima and minima of the fundamental and second
harmonic, respectively. Near the peak of the pulse the conversion period is the shortest
and both harmonics undergo ~ 5 conversion periods as the field propagates through
the waveguide. The oscillations of the power in the tails of the pulse asymptotically
approach the conversion period associated with undepleted SHG (equal to twice the
conventional coherence length in this limit), Leony(c0) = 2r/|Ak|. The power at the
peak oscillates three times faster than in the tails of the pulse, which gives rise to a
pulse shape with rapid temporal amplitude oscillations as each portion of the pulse
cycles through a different number of conversion periods.
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Having solved for the fields, these Jacobi elliptic solutions can be used to predict phase
envelopes for the fundamental and second harmonic,

Ak /Z v4(0,1) —v¥ (1) .,
dz
0

¢w(Z, t) - ¢w(0’ t) =5

2 1 —v3(z,1)
68
1 (M0l Ak (682)
T2 26lAnz 0] 47
Ak
$200(21) = 2,(0,1) = —1/2 + TZ, (68b)

respectively. Equations (68a), (68b) are plotted in Fig. 16(c) and (d) for an unchirped
fundamental input to the waveguide, ¢,(0,7) = 0. We note here that the rate of
phase accumulation has a fixed sign determined by Ak, and therefore in this context
sin~!(sin(x)) = x is defined to be a monotonic function. The fundamental accumu-
lates phase most rapidly around values of z and ¢ that correspond to local maxima
of v(z,t), where input fundamental is most strongly depleted. This behavior causes
the fundamental to accumulate phase in sharp jumps, with the total accumulated
phase plateauing across large time bins (Fig. 16(c)). The phase envelope of the sec-
ond harmonic is independent of time, ¢,.,(z, ) = ¢2,(z, 0), up to the sign changes of
sn(u, m). The second-harmonic phase shown in Fig. 16(d), ZA,./(z, t), contains con-
tributions from both ¢,,,(z, t) and sign changes of v(z, t), and therefore exhibits phase
discontinuities of £ every Leony ().

This heuristic model for pulse propagation can be verified in three ways. First, compar-
ing Egs. (66a), (66b) against a split-step Fourier (SSF) simulation of the quasi-static
equations of motion, we find no difference between theory and simulation, which
verifies that this heuristic model captures all of the physics associated with saturation
and phase mismatch. We repeat this comparison, with the SSF methods now account-
ing for both self-steepening and dispersion to third order to determine whether or
not the quasi-static equations of motion are a reasonable approximation for realistic
devices. In this case, we use the parameters obtained from a waveguide simulation
of the dispersion-engineered waveguides studied in Ref. [39]: a temporal walk-off of
Ak’ =5 fs/mm, GVD for the fundamental and second harmonic of k!, = 9.5 fs*/mm
and k7 =70 fs*/mm, respectively, and third-order dispersion given by k.’ = —1100
fs*/mm and k3’ = 1200 fs*/mm. The time-domain instantaneous power associated
with each envelope, |A,,|> and |A,,, |?, is shown in Fig. 16(e) and (f), respectively. The
phase associated with each envelope is shown in Fig. 16(g) and (h). We note here
that while the fundamental phase envelope is unwrapped to better visualize the phase
accumulated during propagation, a similar procedure cannot be applied to the second
harmonic due to the phase discontinuities accumulated around L., (¢). To facilitate
comparisons between theory and simulation we have left the second-harmonic phase
wrapped. While the simulated pulse envelopes exhibit some distortion due to second-
and third-order dispersion, the key aspects of the heuristic Jacobi elliptic approach,
such as the field oscillations, are largely preserved, which suggests that quasi-static
devices may be well described by the heuristic models developed here.

The most rigorous test of quasi-static behaviors is the experimental study given in
[39], which determines whether any additional dynamics are neglected by the quasi-
static model. Figure 17 shows a side-by-side comparison between the heuristic theory
presented here and an experimentally measured power spectral density generated
by the waveguide as a function of in-coupled pump pulse energy. In this case, we
observe reasonable agreement between the theoretical and experimental power spectral
density as a function of the input pulse energy. In both experiment and in theory the
fundamental and second harmonic are observed to broaden for input pulse energies in
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(a) Experimental setup for characterizing spectral broadening generated by quasi-
static SHG. VOA, variable optical attenuator; OBJ, reflective objective; OSA, optical
spectrum analyzer. Reprinted with permission from Jankowski et al., APL Photonics
8, 116104, 2023 [39]. Copyright 2021, AIP Publishing LLC.
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excess of 100 fJ, with the two harmonics merging at the —40 dB level for pulse energies
as low as 4 pJ. In addition, there are a number of qualitative similarities between the
spectra observed in theory and experiment. For pulse energies between 1 to 5 pJ,
the power spectrum of the fundamental exhibits a local minimum around the carrier
wavelength of 2090 nm. For pulse energies greater than 5 pJ, this local minimum splits
into two minima centered symmetrically around the carrier frequency, with a local
maximum at 2090 nm. Similar patterns occur in the tails of the spectra. The spectrum
of the fundamental forms successive local minima and maxima in the band between
1600 and 1800 nm with increasing pulse energy, and the second harmonic exhibits
oscillatory tails between 1200 and 1400 nm. Given the sensitivity of these fine-scale
spectral fringes to the time-domain phase envelope of the pulses, one might not expect
these features to survive in the presence of realistic waveguide dispersion.

We close this section by emphasizing that quasi-static devices are one of the most
accessible routes toward extremely low-power devices, and that the dynamical regimes
of quasi-static devices are still a topic of active study. Early demonstrations of quasi-
static devices in TFLN achieved saturated SHG with tens of femtojoules of input
fundamental [38], with similar demonstrations in silicon [37] and silicon nitride [36].
Soon after, phase-sensitive amplification was demonstrated in a quasi-static OPA
[131], as well as saturated OPG with record-low pulse energies [40]. The mechanisms
for spectral broadening by quasi-static SHG and their scaling laws were studied in Ref.
[39]. More recent work has demonstrated ultrabroadband squeezing using quasi-static
OPA [132]. We discuss some technical limitations of quasi-static devices, and their
potential resolution, in the following sections.

3.3b. The Role of Higher-Order Dispersion
The heuristic solutions to the quasi-static equations of motion rely on the assumption
that dispersion is negligible to arbitrary order. A natural question to ask is what effects



392  Vol. 16,No. 2/June 2024/ Advances in Optics and Photonics ‘ Tutorial

higher-order dispersion can have in quasi-static devices. After all, these terms are not
zero, they are simply too weak to reshape the envelopes. In this section, we show that
higher-order dispersion can be treated as an effective shift of the propagation constant
associated with each field envelope. In a simplified limit, where the only contribution
to higher-order dispersion is GVD (k”’), this process has a direct correspondence to
the Gouy phase shift that occurs for focused Gaussian beams [133] via Akhmanov’s
space—time analogy [134]. Here we obtain closed-form solutions that describe this
Gouy phase for arbitrary pulse envelopes in the presence of any dispersion relation,
and discuss limits on the conversion efficiency imparted by this process. These prop-
agation constants undergo dynamical changes as the evolving envelopes are distorted
by saturation. As a result, the envelopes effectively become phase-mismatched, which
causes them to undergo Jacobi-elliptic oscillations in the highly depleted limit.

The approach taken here is motivated by the Gouy phase observed for a Gaussian beam
going through a focus. Near the focus, the Gaussian envelope acquires an additional
phase shift, ¢, = tan~'(z/z,), where z, is the Rayleigh length of the Gaussian beam. This
effect contributes a 7 phase shift as the Gaussian beam goes from a positive to negative
radius of curvature. An analogous effect occurs for a Gaussian pulse exp((¢/79)?)
in the presence of second-order dispersion. As the pulse goes from positively to
negatively chirped during propagation an additional phase shift is accumulated, given
by ¢, = —3 tan"'(z/z4). Here z, = 77 /(2k”) is the dispersion length of the pulse in the
presence of second-order dispersion. Our goal is to generalize this effect to arbitrary
envelopes in the presence of arbitrary dispersion.

To treat this generalized Gouy phase, we assume that the higher-order dispersion is
sufficiently weak that the pulse envelope does not change shape. Under these assump-
tions, we can use an ansatz of the form A(z, 1) = A(0, 7) exp(i¢(z)). In the frequency
domain, the field envelope evolves in a comoving frame as

A(z, Q) = exp(—iDin(Q)2)A(0, Q), (69)
which leads to the propagation equation,
0:A(z, Q) = =iDin(QA(z, Q),

with our usual definition of the dispersion operator,
177

k. k

The time-domain field envelope is given by

Az, 1) = / ) exp(iQ1)A(z, Q)g.

Noting that our choice of phase reference has the peak of the pulse located at ¢ = 0,
and that the only contribution of the phase to # = 0 is the Gouy phase, we restrict our
attention to the peak of the envelope given by

A2,0) = / " AG. Q)g,

00

and define the Gouy phase as ¢(z, 0). The evolution of the peak field is given by

e dQ
DA, 0) = / D @A DS

00
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Putting A(z, 0) = rexp(i¢) in phase-amplitude form,

(@ + iaz¢) A(z,0) = /D0 —iDin(Q)A(z, Q)d_Q’
r ~ 2n

(o]

we find the rate change of the Gouy phase, or the local propagation constant, entirely
in terms of a frequency-domain integral of the field envelopes,

[ =iDin(QA(z, Q)2 ]

- (70)
Lw A(Z’ Q g

0.0 = Im[

Equation (70) is the main result of this analysis, which allows us to solve for the Gouy
phase of an arbitrary pulse shape in the presence of arbitrary waveguide dispersion.

We can verify Eq. (70) by considering a Gaussian pulse, in which case we have

Iz
2, 2
222+7;

az¢Gaussian =

This agrees exactly with our previous expression, ¢, = —% tan~'(z/z4). Further verifi-
cation can be obtained by comparing the numerically calculated Gouy phase for sech
and sech® envelopes with Eq. (70), and we observe strong agreement in every case.
We note here that while Eq. (70) rarely admits closed-form integrals for most pulse
envelopes, we can often find closed-form answers for the propagation constant of an
unchirped pulse,

[ ~iDin( A0, Q)57

[ A0, Q)%

For quasi-static nonlinear interactions with unchirped pulse envelopes, Eq. (71) is often
sufficient for modeling the dynamical phase shifts that occur during pulse propagation.
For the simple case where Dy, is approximated by GVD, we find that pulse envelopes
of the form sech(¢/7) acquire a shift of their propagation constant given by —k”’/(272).
Similarly, a pulse envelope of the form sech?(¢/7) acquires a shift given by —k”’ /(672).

0.¢ = Im

(71)

These behaviors suggest that the dominant effect played by higher-order dispersion is
simply to change the propagation constants of the envelopes, which can be compen-
sated by an overall change in the grating period used to phase match the harmonics
[135]. In practice, the field envelopes become distorted in the saturated limit, which
causes the phase mismatch between these envelopes to dynamically evolve during
propagation. As a simple illustrative example of these dynamical phase shifts, con-
sider SHG of a fundamental given by A, (z,f) = sech(¢/7) in the presence of a small
GVD for the second harmonic, ky,”. In the limit of weak depletion, the second
harmonic envelope is given by sech®(¢/7). Substituting this form of the field enve-
lope into Eq. (70), the second-harmonic propagation constant is effectively shifted by
-k / (672). In the highly saturated limit, the second-harmonic envelope will become
sech(t/7), with a corresponding shift of the propagation constant given by =k}, /(27?).
For typical numbers (), = 100 fs>/mm and T = 100 fs), the phase mismatch between
the undepleted and depleted cases can change by 3300 m™!, or a full 7 of phase error in
a 1-mm-long waveguide. These large phase shifts will cause the envelopes to undergo
Jacobi-elliptic oscillations, which prevents SHG from being driven far into saturation.
While these Gouy phase shifts can, in principle, be compensated for by solving the
quasi-static equations of motion and evaluating Eq. (71) with the full dispersion rela-
tions of the waveguide, this technique only compensates for the accumulated Gouy
phase for a given input pulse energy. In the presence of any small phase error, such
as those occurring due to fabrication errors, the fields will undergo back-conversion
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in a highly saturated limit. As a result, this interplay between the evolution of the
saturated pulse envelopes and higher-order dispersion will ultimately limit the degree
of saturation that can be achieved in any real device.

3.3c. Fully Static Nonlinear Optics

In the previous sections we saw that saturated nonlinearities can greatly distort the
interacting envelopes due to the presence of a small phase mismatch, even in the
absence of dispersion. Furthermore, even when the fundamental and second harmonic
are phase-mismatched (including a Gouy phase), these pulse distortions can couple to
higher-order dispersion to create a dynamical phase mismatch, which ultimately limits
the degree of conversion attainable in pulsed devices. In this section we discuss recent
theoretical proposals aimed at eliminating these effects by a process known as temporal
trapping [3,136]. In this approach, the pulses are guided in time, in addition to space,
by cross-phase modulation (XPM) between a bright “trapping” pulse and the two
interacting harmonics. We will later see that temporal trapping can greatly simplify
the behavior of broadband quantum systems by eliminating multimode behaviors.
When properly designed, temporal traps can recover single-mode behavior where the
interacting modes are now pulses, rather than Fourier modes.

The dynamics of temporally trapped waves are captured by the CWEs with an addi-
tional contribution from XPM. We assume that all three waves are group-velocity
matched, and include dispersion up to second order. We also assume that the disper-
sion length of the trap pulse is much longer than any relevant nonlinear length, and
that the field associated with the trap pulse is sufficiently large that it is unperturbed
by any interactions with the trapped waves. In this limit, the CWEs become

l. ’n ) * o
azAw(Z’ t) = EkwatzAw(Z’ l) - lKA2w(Z’ t)Aw(Z, t) - V}/xpm,l |Atrap|2Aw’ (72)

i 77 . .
azA2w(Za t) = EkzwatzAZw(& t) - lKAi,(& t) — IYxpm,2 |At_rap|2A2w~ (73)

Unlike quasi-static devices, here we consider the limit where XPM and GVD are
sufficiently strong that the second-order nonlinearity is a weak perturbation to these
interactions. In this case, the pulse envelope of each harmonic is determined by the
solutions for a one-dimensional waveguide, where now the refractive index variation
is in time (due to XPM) instead of space. Without loss of generality we consider the
fundamental,

[ ’” .
BZA(,)(Z, t) = EkwatzAw(Za t) — Yxpm,1 |Atrap(t)|2Aw(Z, t)- (74)

Equation (74) admits eigenfunctions of the form u,, () exp(—iknL 2), With associated
eigenvalue —ikny,. For the special case of Ayqp(f) = Agsech(t/7), where yxpm’lA(z) =
—k!’ 772, the lowest-order eigenmode for the fundamental is given by sech(t/7), and the
associated eigenvalue given by knp, = —%k;j‘r‘z. We note here that the eigenvalue of
this mode is equivalent to the Gouy phase of an unchirped sech pulse in the presence
of second-order dispersion.

In general, Eq. (74) admits a complete orthonormal basis of eigenfunctions, with a
similar expression holding for the second harmonic. We can therefore expand both
harmonics in their respective bases,

Aw(z’ t) = Z aw,m(z)uw,m(t) exp(_ikNL,w,mZ)’

m

A (Z, t) = Z aZw,m(Z)I’Qw,m(r) exp(_ikNL,Zw,mZ)'

m
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Noting that u,, has units of s™/2 (i.e., f ' (H)u, dt = 8, Where 6,,,, is the Kronecker
delta function), |a,,|* is the energy contained in mode m. In the presence of the
second-order nonlinear coupling, the coefficients a,,, and az,, can now evolve
during propagation. Their equations of motion can be extracted from Eqgs. (72), (73)
using orthogonality,

0,a4,¢(2) = —ik Z a0 n(2)a;, ,(2) exp(—ik,z + ik, z + ik;z) / e (DU, , (D, ,(2) dt,

m,n

az“Zw,n(Z) = —iK Z aw,f(z)aw,m(z) exp(iknz — ikuz — ikfz)/ u;w,n(t)uw.m(t)uw,f(t) dz.
{.m -

Finally, noting that higher-order eigenfunctions have larger eigenvalues, we can
eliminate interactions between all but one set of phase-matched eigenfunctions by
considering the limit where both k;; and k) are large. This corresponds to having
larger splittings between adjacent eigenvalues, which strongly phase-mismatches cou-
pling into these higher-order modes. With this approximation, we recover the CW
CWEs where now the two interacting modes are pulses,

Brterap(2) = k2 (D) () / o (O (005 () .

(o)
Butr00apl@) = ik (2) / iy, (Ot (it (1) .
—00

Taking the sech(¢/7) soliton envelope as an example, these equations evaluate to
n

4V2r

azaw,trap (z) = —ik A2 trap (Z)aZ),trap ()
T

Wt

Finally, to compare these equations to a CW interaction, we convert the field coefli-
cients in J'/2 back to W'/2 by a factor of pulse repetition frequency, T,. Defining the
amplitude in mode ayrap aS Ayap VI, = dirap, We have

azazw,trap (Z) = _iKaZ),trap (Z)

. y x [T,
O:Aarsrap(2) = ~iKA2w100p (DAL (D 7 3

. n |T,
azAZw,trap(Z) = _lKAtzu,trap(Z)Z ;

We see that the power requirements of trapped pulses are reduced relative to a CW

interaction by the duty cycle,
r |T,
Ktrap = KZ E (75)

While temporal trapping comes with significant experimental overhead, we will later
see in the context of quantum nonlinear optics that the benefits seem well worth the
difficulty. Using this technique, the pulse envelopes no longer change shape during
propagation. As a result, we can completely recover the behaviors of single-mode
interactions, while retaining the power reductions associated with using short pulses.
We note here that higher-order dispersion manifests as additional couplings between
the pulse envelopes. These effects can be further suppressed by increasing k", which
increases the splitting between the eigenvalues, thereby increasing the phase-mismatch
between all of the envelopes and suppressing this loss channel. Therefore, the benefits
of temporal trapping extend to more general cases containing higher-order dispersion,
and may enable arbitrarily large degrees of saturation. In the few-photon limit, we will
see that temporal trapping can be used to realize Rabi oscillations between a biphoton
of fundamental and a single photon of second harmonic.
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Figure 18
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In addition to geometric dispersion engineering enabled by tightly confining ridge
waveguides shown in (a), emerging approaches that enable greater design flexibility
include (b) multilayer claddings, (c) coupled-core waveguides, and (d) photonic crystal
waveguides. We note here that these approaches are readily extended to dispersion-
engineered nonlinear resonators.

______________________________________________________________________________________|

3.3d. Approaches to Dispersion Engineering

Throughout our discussion of pulsed interactions we have focused on the roles played
by the dominant dispersion orders of the interacting waveguide modes. At this time, all
demonstrations of dispersion-engineered y® interactions have relied on relatively sim-
ple approaches to dispersion engineering, in which the geometry of a ridge waveguide
is chosen to realize a desirable GVM, GVD, or both. However, as more complicated
multi-wave (or short-wavelength) interactions become of interest a natural progression
for x® nonlinear photonics is the development of more sophisticated approaches to
dispersion engineering that enable greater control over each of the interacting waves.
We briefly review these recently developed approaches here.

Figure 18 summarizes several emerging approaches to dispersion engineering in non-
linear nanophotonics. The simplest extension of the ridge waveguide is the use of a
multilayer cladding, in analogy to the multilayer claddings used to realize dispersion-
shifted fibers. For both ridge waveguides and multilayer structures, the shift of the
group velocity induced by the structure of the waveguide is best intuited using
Eq. (A34), copied below for convenience,

L oy, M+ K - 0, (we(x,y, w)) - By drdy

% [400 Re (E,,(x, y,w) X Hy (x, y, wz)) - Zdxdy

k() =

Here we see that the inverse group velocity of each mode is given by the overlap
of the mode fields with the underlying materials. This facilitates a simple picture
of dispersion engineering; to modify the group-velocity mismatch of the interacting
waves one can introduce materials that overlap with the evanescent tails of the long-
wavelength fields (e.g., the signal, or the trapping pulse), which modifies the group
velocity of these waves relative to the more tightly confined short wavelengths. Since
multilayer structures can be made of many different materials, and each layer may be
deposited with a different thickness, in principle this simple approach may introduce
sufficiently many degrees of freedom to enable much finer control over each wave.

A number of more sophisticated approaches have been recently studied in y-
nonlinear media, include the development of coupled-core waveguides [137,138],
and photonic crystal resonators [139-141]. All of these approaches rely on hybridiza-
tion between pairs of modes to control the propagation constant of the emergent
supermode. In the case of coupled-core waveguides, the supermodes are formed
by linear combinations of evanescently coupled waveguide modes, where the gap
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between the two waveguides controls the coupling strength, and the geometry of the
two waveguides determines the dispersion relations of the two uncoupled modes. This
approach has been used to control the dynamics of Kerr solitons and y® supercon-
tinua. In the case of photonic crystal resonators, each waveguide mode is coupled to
a backward-propagating mode by the Fourier components of the surrounding dielec-
tric perturbations. In Ref. [141] the dispersion relations of a photonic crystal were
engineered to realize slow light by inverse-designing the hole pattern cut around
the waveguide. In Ref. [139,140], inverse-designed surface corrugations were used
to realize custom-tailored dispersion relations with unprecedented control over the
operating regimes of short pulses evolving under the influence of y® nonlinearities.
These approaches are particularly flexible since there is a one-to-one map between
the k-vector of the surface corrugation and the pair of coupled forward and backward
going modes. This one-to-one mapping allows the couplings of each mode pair to
be engineered independently using the amplitudes of each Fourier component of the
surface corrugation.

At this time, all of these approaches are relatively new and have yet to be applied to
devices with y® nonlinearities. Further development of these techniques and their
application to realizing both low-power operation and qualitatively new dynamical
regimes is an extremely ripe area of study. We note here that ultimately the approaches
most likely to become commonly adopted will enable greater design flexibility while
operating with realistic fabrication tolerances and without significant additional loss.
Thus far, the studies of [139,140] suggest that these approaches may be realized with
minimal degradation to typical waveguide losses, with demonstrated quality factors
of 1-2 million.

3.4. Nonlinear Interactions in Resonators

Until now, we have considered traveling-wave interactions in nonlinear waveguides.
At this time, the lowest power nonlinear devices all use resonators to enhance the
interaction length of the nonlinear interaction. In this section, we will connect the
behaviors of traveling-wave devices to those of resonators by using discrete maps.
This approach is commonly used to treat resonators that comprise many discrete
components [11,17,18,142,143], where each component is modeled independently
and the output from one component serves as the input into the next. In the context
of nonlinear optics, the use of discrete maps for modeling resonators is sometimes
colloquially referred to as the “Ikeda map” [143] since lkeda first applied discrete
maps to develop models of resonators with y® nonlinearities [142].

In the high-finesse limit, where the fields experience small changes on each round
trip of the cavity, these discrete maps can be converted to a differential equation that
describes how the fields evolve over many round trips of the cavity [17,18,143]. We
will see that these equations are identical to the traveling-wave coupled wave equations
with a coarse time scale, T, taking the role of the propagation coordinate z, and the
addition of driving and loss terms. A key difference is that the propagation coordinate
is now the number of round trips in the resonator, which effectively increases the
nonlinear length of a waveguide into a loss length.

In anticipation of our transition to quantum nonlinear optics, where the mean fields
are related to intracavity photon number, n, or the number density, we will explicate
concise rules for converting between the instantaneous power envelope |A(z, 1)|> and
the energy density, |u(z,#)|*. This analysis is restricted to the case of classical fields,
and will later be used to establish a correspondence between the parameters in quantum
equations of motion generated by a phenomenological Hamiltonian and the known
parameters of a classical device. We emphasize here that discrete maps are a general
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Propagation in a linear resonator can be broken up into a sequence of discrete steps.
For this example, propagation from (0) to (1) is modeled using a 2 X 2 beam splitter,
which partially outcouples the intracavity field to a bus waveguide. The closed loop
from (1) to (2) contains both the propagation loss of the resonator and the phase
accumulated during linear propagation. Taken together, (0) through (2) represent one
single pass around the resonator; a full model of resonator dynamics can then be

obtained by iterating this process over many round trips.
___________________________________________________________________________________________|

technique that can be extended to contexts beyond the presentation contained in this
tutorial. As an example of how discrete maps can be applied to quantum states, the
evolution of a Gaussian state undergoing both nonlinear propagation and measurement
feedback is presented in Ref. [144].

3.4a. Linear Propagation in a Resonator

To best illustrate the process of applying discrete maps and converting them into
differential equations in the high-finesse limit, we begin by considering the simple case
of linear propagation. We start by instantiating a pulse A, () at a reference position
7o in the cavity. Propagation around the cavity is broken into a sequence of steps, as
shown in Fig. 19, between discrete positions, z,, in the cavity. Starting with a reference
position zy located before the directional coupler (labeled (0) in Fig. 19), the field at
each successive point A, (z,, ) will be denoted with the short hand A,,(z,) = Af,’j)(t).

The first step in this example of a linear cavity is the directional coupler, here assumed to
be lossless, which out-couples the intracavity field to a bus waveguide, A% = itoc,wA,(f,)).
Here it,. ., is often referred to as the transmission coefficient or the scattering coefli-
cient for the “cross port.” The remaining intracavity field is given by Ag) = roc,wAig),
where o, is colloquially referred to as the reflection coefficient, or the scattering
coefficient for the “bar port.” In power-normalized units, the scattering coefficients
satisfy |roc?w|2 + |t0c’w|2 = Rocw + Tocw = 1 for alossless directional coupler. For sim-
plicity, we have ignored any dispersion in 7y, and f..; the more general case is
easily treated by Fourier-transforming A,,(f) and applying roc.,(€2) and 7, ., (Q) to
each frequency w + Q. When the resonator is driven by a pump field, A?U’)(t), this field
is in-coupled to the resonator through the “cross port,”

AD@) = 1o AV (1) + itoe AL (). (76)

The second step is dispersive propagation around the resonator. Here we can either
propagate each frequency independently or, equivalently, we can use the propagation
rule for time-domain envelopes (Eq. (38), as derived in Section A.4),

8ZALL)(Z, t) = _k;)alAw(Za t) + V_l aIAw(Z’ t) - iDim,w(at)Aw(Z’ t)7 (77)

g ref
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where v, .t is our arbitrary choice of reference group velocity. We can additionally add
in propagation loss, d,A,, = —%(L’g’wAw, where ay, is the power loss coefficient. After
linear propagation, the pulse envelope arriving at z, is attenuated by exp(—ay o Lcay/2),
delayed by a group delay T} ,, = k,Lc,v, and deformed by higher-order dispersion,

e w . _
Ag)(t) = eXp (_%Lcav - lDim,w(ar)Lcav) AS)(t - Trt,w - Vg,iechav)- (78)

Here, to prevent confusion between the round-trip time of the cavity and the
power transmission coefficient of the outcoupler, we have labeled them T}, and T,

respectively. For now, we consider the case where Ve lref =0.

Noting that Ag) is the field envelope after one round trip of the cavity, we overload
the variable A,, to have two arguments, A, (m,t), where m is an integer describing
the number of round trips in the cavity, and ¢ describes the time-domain waveform
that passes through the reference position zy on the mth round trip of the cavity. The
discrete map, M, iterates the round-trip number m by applying the sequence of steps
used to model the cavity, A, (m + 1,7) = MA,(m, t). Successive round trips are given
by A,(m + n,t) = M"A,(m,t). The full time history of the intracavity electric field
can be constructed using

27y

E(zo,1) = exp(iwt) Z (exp(—ikyLea)M) A, (m = 0,1).

w{imode,w

For linear propagation, the phase factor exp(—ik,, L.,y ) commutes with the discrete map
M. Later, in the context of nonlinear optics, this term will no longer commute and the
overall phase accumulated by the fields on successive round trips can determine how
power flows between the interacting waves. Noting that the field coupled out into the
bus waveguide is given by itoc,wAES)(t), the full time-history of the pulse train emerging
in the bus waveguide is simply given by Eo.(f) = —ifoc 0w E(20 1) + Toc EP(2).

Having established that the field envelope on successive passes A,,(m, f) is sufficient to
synthesize the full time history of the intracavity field in the resonator, for convenience
we now choose v} . = k!, = v;u. The time history of the intracavity electric field is

now obtained by time delaying each of the successive envelopes in the comoving frame
by Trt,wa

E(zp,t) = . exp(iwr) Z (exp(—ikchav)M)"Aw(O, t— Tiw)- (79)

nyAmode,u

In the comoving frame, the discrete map for the cavity is given by
(079 . o~ )
Apm+1,1) = rocw exp(—TLCav — iDint.o(0)Leay )A (M, 1) + iToc AL (1), (80)

where Zoc.o = tocw exp(—wT""L%w — iDint.»(0;)Lcay) has absorbed the effects of propa-
gating the pump pulse into the definition of the transmission coefficient (note that
I’iOC,lx)l2 + |rOC,L()|2 i 1)'

While Eq. (80) is sufficient for treating pulse propagation in any linear cavity, we are
often concerned with the high-finesse limit, where the change on each round trip is
small. In this case we rewrite ro,, = exp(In(7oc.)) and, assuming that the change in
the field envelope due to dispersive pulse propagation is small, we series expand the
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exponential,

Aw(m +1, t) :Aw(m’ t) + ﬁoc,on([j)(t)
e w . (81 )
+ (_ ln(roc,w) - TLcav - lDim,w(at)Lcav)Aw(me t)-
Subtracting A, (m, t) from both sides of Eq. (81) and dividing by T, we convert
Eq. (81) into a differential equation for the field envelope,

ifoc.
BTAw(T’ t) = (_Kex,w — Kinw — iDint,w(at)Vg,w)Aw(m’ t) + ;LAO(IJ))(I)- (82)
rt,w
Here Kexw = — In(roc ) T5L, is the extrinsic field loss rate due to coupling from res-

onator to the bus waveguide, and kjp , = ag wlcay Trt w = Q’[ Ve is the intrinsic field
loss rate due to propagation in the cav1ty The propagatlon coordinate of the envelope,
T,isreferred to as the “slow” or “coarse” time, T = mT,,, and the envelope coordinate
tisreferred to as the “fast” time since T describes how the pulse envelope A,,(¢) evolves
over long time scales. The round-trip time of the cavity is commonly expressed using
the free-spectral range around frequency w, Trtlw = Aftro- We note here that when
calculating . ,, it is common practice to expand the feedback coeflicient — ln(roc,w)
as a Taylor series in the high-finesse limit, —In(ro,) = ln(l Tocw) = —Toc,w.
However, this small error in the coefficient of an exponent often leads to meaningful

differences in the predicted field after a few round trips in the cavity [16].

3.4b. A Comment about Phase References

As with traveling-wave nonlinear optics and our later treatment of quantum nonlinear
optics, it is common to find a variety of phase references in use throughout the literature.
Noting that the electric field synthesized by the summation in Eq. (79) contains terms
that go as (exp(—ike,Leay)M)", a common and useful choice of convention is the
rotating frame A,,(z, 1) = exp(—ik,,2)A, (2, t), in which case the overall phase factor is
absorbed into the discrete map,

M = (exp(—ikeyLea)M)".

With this choice of phase reference, the full time history of the intracavity electric
field is given by

E(z0,1) = + /n - exp(iw?) Z "Ap(m = 0,1). (83)

While this choice of phase reference does not modify the results obtained by the
discrete map, the differential equation obtained in the high-finesse limit for the complex
field amplitude is now generalized to be able to treat off-resonant behavior. Assuming
o = ke Leay mod 27 is small, the field evolution is now given by

~ bt /ZOC w
OrA(T.1) = (=8, = Kexeo = Kineo = im0V Ao (m. 1) + T=2AL(0).  (84)

t,w

where 6, = ¢, T rtw represents the frequency detuning between w and the cavity
resonance. We note here that the same equation of motion can be obtained by mov-
ing into a rotating frame where the phase reference is given by the nearest cavity
mode, that is A,,(z, 1) = exp(—i(ke, — kef)2)A (2, 1), Where ket = ki, + Ve ! 6, satisfies
krerL = O mod 2. We will see in the following sections that this latter ch01ce of phase
reference is useful for nonlinear optics, since the phase associated with each field
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envelope evolves slowly in the rotating frame, and the interplay between detuning and
nonlinearity is now treated natively by the dynamics generated by the equations of
motion for A,,. In each section, we will briefly mention how our choice of reference
frame is related to the typical traveling-wave CWEs, before dropping the overhead
tildes from the envelopes for compactness. In the following subsections we will repeat
this analysis for SHG in the presence of y'» nonlinearities. We note here that the more
familiar extension of Eq. (84) to y'®-nonlinear resonators is commonly referred to as
the Lugiato—Lefever equation (LLE) [11].

3.4c. Canonical Examples of Linear Resonator Behaviors

Before we analyze nonlinear dynamics with discrete maps, we briefly consider some
illustrative examples of linear propagation in resonators, and compare the solutions
generated by the discrete map M with those generated by the equations for the field
evolution in a high-finesse resonator. While the connection between these two models
is seemingly straightforward, it is instructive to see where these formalisms disagree.

We begin by considering the textbook case of resonance in a cavity. Here we assume a
driving field of the form, A”)(f) = VPs, and solve for the steady-state intracavity field.
In the discrete map approach, the field envelope within the rotating frame defined in
Section 3.4b after one round trip of the cavity is given by

Aw(m + 1) = Tocw eXP(—i¢w - a’f,chav/z)Aw(m) + itoc,w VPin-

While the full electric field can be synthesized by taking the infinite series in Eq. (83),
a simpler approach for finding the steady-state intracavity field is to assert that A, (m +
1) = A, (m). In this case we find that the intracavity power is given by Airy functions,
as is well known for the analysis of Fabry—Perot resonators,
T, P in
P = oc,w ) (85)
1 g o Leav 2 a¢,wlcav 2 [ dw
( — rexp (——2 )) + 4rexp (——2 ) sin (7)

In the high-finesse model, the equations of motion are given by

oo
aTAa)(T) = (_iéw — Kex,w — Kin,w)Aw(t) + I;C,

cav

Pin,

which yield a steady-state intracavity power given by a Lorentzian distribution,

2Kex,wPinAﬁsr

P, = .
N (Kex,w + Kin,w)2 + 52)

Figure 20 compares the Lorentzian line shape predicted by the high-finesse model with
the Airy function given by the discrete maps for r = 0.95 and an intracavity propagation
loss given by exp(—ay.,Lcav/2) = 0.95. For the small outcoupling chosen here, the two
approaches largely agree about both the shape of the resonance and the intracavity field
enhancement. Both approaches also predict the same “critical coupling” condition for
maximizing the intracavity field, kin . = Kex.o- We note, however, that the continuous
model can only be used to model isolated resonances and that discrete maps must be
used to model low-finesse cavities. The intracavity field enhancement predicted by the
two models disagrees by more than 10% when r<0.9, and the continuous-time model
produces unphysical results for r< exp(-0.5).

We now consider the case of cavity ringdown spectroscopy, where we assume a cavity
is driven on resonance and into steady state. Then the pump laser is turned off at
t = 0. In this case, the discrete map exhibits some peculiarities that disagree with
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Figure 20
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Comparison of resonator line shapes predicted by discrete maps (blue) and the
continuous-time model (red) derived in the high-finesse limit. The continuous-time
model predicts a Lorentzian line shape for a single resonance centered around ¢, = 0,
whereas the discrete map yields an Airy function (Eq. (85)). Here we have assumed
r =0.95 and exp(—a¢wLeay/2) = 0.95. The slight differences of field enhancement
and line shape are due to our choice of » = 0.95; in the limit as r — 1 and a,, — 0
the two approaches yield the same line shape.
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__________________________________________________________________________________________|

the more well-known continuous model. We discuss how these disagreements can be
resolved, and note that such differences do not appear in most practical examples.
We begin with the familiar case of the continuous model, in which case drA,(T) =
—Kex.wAw(T) is solved simply by A, (T) = A, (0) exp(—kex., T). For the discrete model,
we assume a field A, (m = 0,7) is instantiated throughout the cavity from 7 =0 to
t = Ty, Ignoring propagation loss, the field on the mth round trip is given simply
by A, (m,t) = . ,Au(0, ). Figure 21 shows the full time history of A,,(m, t) and the
resulting electric field generated by successive applications of the discrete map using
Eq. (83) for » = 0.9. As opposed to the exponential decay predicted by the continuous-
time model (Fig. 21, dashed black lines), the discrete model predicts cavity ringdown
to occur as a staircase with an exponentially decaying envelope. The origin of these
differences is in how we have constructed the two envelopes. In the discrete case, we
have instantiated the cavity with a uniform field distribution with the driving field
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Figure 22
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Simulation of (a) the intracavity field envelope and (b) the intracavity electric field

during cavity ringdown of an ultrafast pulse using discrete maps. Dashed black lines:

exponential decay predicted from a continuous-time model. Here, the reduction of

the field amplitude in excess of the continuous-time model is due to dispersive pulse
spreading.

turned off at r = 0. The formation of a staircase is due to the finite time taken by the
hard edge of the pump to propagate around the cavity. In the continuous-time model,
we have associated a single quantity, A, (7'), with the entire intracavity field, which
assumes the field to be uniform by construction. This effectively distributes the loss
throughout the cavity, resulting in a continuous exponential decay. We can recover the
staircase solution in a continuous-time model by instead using the fast and slow time,
A,(T,t), with A, (0,7) having a uniform distribution throughout the cavity. In this
case, the solution A, (7,1) = A,(0,7) exp(—kex, T) still exhibits a continuous decay
with slow time 7. However, to reconstruct the time history of the electric field we must
sample A, (T,t) at discrete points T = mT,,,. The resulting envelopes are given by
Ay,(m,t) = A, (mTy 0, t), where the left-hand side of the equality refers to the discrete
envelopes and the right-hand side refers to the continuous-time envelopes. Using these
envelopes with Eq. (83) yields the same solution as the discrete map.

We close this section by considering a more general case to illustrate how the full time
history of the electric field can be constructed from A, (m, t). Here we instantiate a
transform-limited Gaussian pulse in the cavity and include both outcoupling (r = 0.9)
and GVD. Figure 22(a) (shaded red) shows the field envelopes calculated by iterating
the discrete map. The dashed black line shows the exponential decay of the peak
value of the envelopes due to linear loss, with the peak amplitude of each envelope
decaying more rapidly due to dispersive pulse spreading. Figure 22(b) shows the full
time history of the electric field obtained from the coherent sum of each independent
envelope (Eq. (83)). We note here that when the pulses spread beyond a cavity round-
trip time, the interference between the two envelopes produces the correct field in a
linear cavity. In a nonlinear cavity, these effects are better simulated using the time
evolution of a spatial envelope, rather than a temporal envelope, as developed later in
this section. We note, however, that in most experimental settings the pulse envelopes
rarely extend beyond a cavity free-spectral range, and therefore these considerations
usually do not have a meaningful impact in any real system.

3.4d. Nonlinear Propagation
We now consider a nonlinear resonator, as shown in Fig. 23. We proceed as before,
but now track the evolution of both a fundamental and second harmonic envelope in
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Figure 23
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Propagation in a nonlinear resonator can be broken up into a sequence of three discrete
steps. As before, propagation from (0) to (1) is modeled using a 2 X 2 beam splitter
and the closed loop from (2) to (3) contains both the propagation loss of the resonator
and the phase accumulated during linear propagation. Propagation from (1) to (2) is
now modeled by the CWEs.

______________________________________________________________________________________|

the resonator. As discussed in Section 3.4b, we work in a rotating frame that is not
only comoving with the fundamental, but also has a phase reference subtracted from
each envelope, A, (z,1) = exp(=i(ky, — kiet.w)?)Aw (2, 1), and As,(z,t) = exp(—i(kae, —
2kref.)2)A2,(2, 1), where the subscript w in ker,, denotes that we have chosen the
nearest resonance to w as a reference. We reiterate here that this choice is arbitrary;
for example, when studying intracavity OPA in subsequent sections both the reference
velocity and ks will be chosen using the 2w wave. In all further discussion in this
subsection, we will assume to be in a reference frame determined by w, and drop the
overhead tildes from each envelope.

For the case considered here, the resonator is broken into three steps: (i) a directional
coupler, (ii) a nonlinear section, and (iii) a linear feedback loop. Each field evolves
independently in each of the linear components. Starting with the directional coupler,
we have

AV = roe wAQ (1) + itoe AL (1), (86a)
Aglu))(t) = roc,ZwA(z(:),(t) + itoc,ZwA(zpu))(t)- (86b)

Next, in a nonlinear section that extends from z; t0 z; + Lgpm, the fields evolve according
to the CWEs,

21 +Lgpm
AL(r) - AV (1) = / Buho (1) d2 = Moy, (87a)
21
2 1 artlgpm
A2 (1) - AV (1) = / B2 1) 42 = Mo, (87b)
21

where the field evolution occurs in a reference frame copropagating with the signal,
and the phase evolution of the envelopes determined by our choice of rotating frame,

0:A0(21) = (=i¥L,60 = IDi(@)) Az 1)
— kA, (Z, I)AZ)(Z, t)

(88)

0.A2,(2, 1) + Ak 0,A2, (2, 1) = (_iv(;’i)éhu - iDim,Zw(at)) A, (2, 1)
— ikA2 (z,1).

Here v;ﬁuézw = koo — 2kt o and, as before, Ak" = k) -k, describes the temporal
walk-off between the two envelopes. We note here that in addition to exchanging

(89)
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energy between the two fields, integrating the CWEs contributes a small group delay
to the second harmonic due to temporal walk-off, and distorts the two envelopes due
to the higher-order dispersion of the waveguide. We have ignored propagation loss in
Eqgs. (88), (89) since the total accumulated loss in the nonlinear section is often small
compared with the total loss accumulated in the resonator. In the high-finesse and
weakly dispersive limit, these linear contributions, namely walk-off, dispersion, and
propagation loss, decouple from nonlinear propagation and can be incorporated into
the linear feedback section. Finally, propagating through the linear feedback section
of length Ly, where Lay = Lijy + Lgpm, we have

AS)(Z) = eXP(—ivg,L5lein - WT’lein - iDint,w(at)Llin)Ag)(t)’ (goa)
. ae20 .
A (1) = exp(=iv; L 82 Lin — —2 L — iDin 20 (9 L)AL (0). (90b)

2

Equations (86a)—(90b) comprise the Ikeda map M for a y'»-nonlinear resonator
driven by ultrafast pulses. At this stage, no approximations have been made, and the
field evolution generated by successive applications of M is valid for any amount of
loss, dispersion, or detuning.

3.4e. Nonlinear Propagation in the High-Finesse Limit

As with linear propagation, when the fields undergo small changes on each round trip,
the discrete map M can be converted into an LLE-like equation. To treat the nonlinear
interaction we rewrite A(ﬁ)(t) as

AA, AA,,
AD() = AD() + A ne = AD(0) |1+ —225 | ~ AD (D exp | —= |
AL @) AL @)

where the latter form assumes that the change AA,, ni is small compared with AS)(Z).
An identical expression holds for A(Zla)) (z) and AA;,, ni- The small change to each field is
evaluated by assuming that each field is constant within a single pass of the resonator
and integrating the CWEs,

AAw,NL(I) = (_ivg_,lwdw - iDim,w(al)) LqpmAw(Zl, t)

— ikLgpmA2e (21, DA}, (21, 1)

(91)

AA2a),NL(t) = (—iV;’Lézw - Ak/at - iDint,Zw(at)) LqpmA2a)(Z1, t)
— ikLgpmAZ (21, 1).

Putting these steps together, we obtain an pair of coupled LLE-like equations,

(92)

ﬁoc,w ») . Lqpm X
0rAL(T, 1) =——=A, (t) — ik=—A,(T, A, (T,
rAw(T, 1) Too (1 T 2 (T, DA, (T, 1) (93a)

(_iéw — Kex,w — Kinw — iDint,w(al)Vg,w)Aw(Ta t)’

Toc 20 Lgpm AT,
OrAao (T 1) =222 AD (1) — ik A (T, 1) = == 6,A0, (T 1)
Trt,a) Trt,w Trt,w (93b)
(_i(SZw — Kex 20w — Kin2w — iDint,2w(at)Vg,w)A2w(T’ t),
where AT, = (v;lzw - V;L))Lcav is the timing mismatch between the two waves. The

appearance of v, , and Ty, rather than v, ., and Ty5., in Eq. (93b) stems from our
choice of v, as the reference velocity. Equations (93a), (93b) are better interpreted in
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their discrete map form; A, (m, t) and A,,,(m, t) are the time-domain waveform passing
through the reference position zq after the fundamental w has executed m round trips in
the cavity. This asymmetry stems from the use of two time coordinates, a “fast time” ¢
and a “slow time” T, with the latter determined by the round-trip time of the reference
wave, and will be eliminated later in this section when we move to time-propagating
spatial envelopes.

3.4f. Examples: Resonant SHG and Optical Parametric Oscillators

To illustrate how the above techniques are applied, and to develop intuition about
nonlinear resonators, we briefly discuss a few textbook examples, namely resonant
SHG and optical parametric oscillators (OPOs). We first consider the case of a resonant
fundamental and a traveling-wave second harmonic, which is naturally treated using
discrete maps since the second harmonic is not resonant. We then consider the case
of a high-finesse cavity with all waves resonant, which is more naturally treated using
the LLE-like formalism. We note here that even though these two configurations
only contain a fundamental and second harmonic, they are sometimes colloquially
referred to as doubly and triply resonant since two photons of fundamental correspond
to resonant modes and one photon of pump corresponds to a resonant mode. This
naming convention is tied to the observed resonance behaviors of degenerate OPOs,
which only oscillate at discrete cavity lengths, similar to non-degenerate OPOs with a
separately resonant signal and idler. For simplicity, we will assume CW interactions
on resonance throughout this section. We note, however, that while this operating
condition is a useful theoretical tool for building intuition, a more detailed study
of the interplay between detuning and dispersion shows that this operating point
coincides with the boundary between degenerate and non-degenerate operation. A
comprehensive theoretical study of the operating regimes of near-degenerate doubly
resonant OPOs, including the extension to pulsed operation is given in Ref. [143].
The transition from single- to multimode dynamics in triply resonant OPOs is studied
in detail in Ref. [35]. As a result of these behaviors, real devices are always operated
with a finite detuning from perfect resonance.

We begin by considering the simple case of resonant SHG to clarify the role played
by a resonator in enhancing the strength of a nonlinear interaction. Here we take
Toc2w = 0, toc2 = 1, and A(fa)) = 0. Starting from position (1) in the cavity, we have

A,(,Ll,) = roc,wAES) + itoc,wAg)a
1 _
AV =,

Assuming a high-finesse cavity for the fundamental, AV is negligibly depleted during
SHG. Therefore, the fields at (2) are given by

A,(j) ~ AS),

2
@ _ _; 1
A5, = —ikLgpm (Afu)) .

Finally, we assume the fundamental incurs a small propagation loss after propagat-
ing around the cavity, AS) = Ag) exp(—a¢.wLeav/2), where we have assumed that any
loss accumulated during propagating in the QPM section decouples from nonlinear
propagation and can therefore be incorporated in the linear feedback section.

Since we assume the fundamental is negligibly depleted by SHG, the intracavity field
has the well-known solution for a linear resonator. Writing r,,, and a,, in terms of
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the intrinsic and extrinsic loss rates, we have

l\/l — €Xp (_2Kex,a)Tl‘Lw)

AD —
1 - exXp (_(Kex,w + Kin,w)Trt,w)

w

AD)

which yields a generated second harmonic field given by

2

(iAf{,’))z.

\/1 — exp (_2Kex,wTer)

1- exXp (_(Kex,u) + Kin,u))Trt,w)

2 .
A(Zu)) = —ikLgpm

Up to an overall phase, A(zzu)) is equivalent to the solution found in traveling-wave SHG,
now with an effective interaction length given by

2
\/ 1 — exp (—2Kex.co Tri0)

1 —exp (_(Kex,a) + Kin,a))Trt,w)

Leg = Lqpm

The effective interaction length is maximized when the cavity is critically coupled at
the fundamental (kex o, = Kinw), in Which case

Lqpm _ Lqpm ~ Lqpm

1- exp (_2Kex,a)Tr[,u)) B Tocw (Kex,w + Kin,w)Trt,w .

(94)

Leff, critical =

The latter form of Eq. (94) provides the clearest intuition; the interaction length for
resonant SHG is effectively enhanced by the lifetime of the cavity. Put simply, the
use of resonant devices enables interaction lengths approaching the loss length of the
nonlinear waveguide in a compact footprint. Typical devices have (kex., + Kinw)Triw ~
0.1 (see Ref. [35]), with state-of-the-art devices achieving (kex. + Kinw)Trtw = 0.01
(see Ref. [121]).

In practice, to better describe resonant SHG devices with large conversion efficiencies
Eq. (94) can be corrected to account for the single-pass depletion of the fundamental.
Noting that the steady-state second-harmonic field inside the nonlinear section is given
by Ay, = —ikA2 7 in the weakly depleted limit, a first-order correction accounting for
pump depletion is given by

AP ~ AN

L2
- ’“’%mw) , (95)

2
AD) = —ixLgpm (A1), (95b)

where the second term in Eq. (95a) is an effective nonlinear loss due to SHG. The
self-consistent intracavity field may be found by solving

2

1M0L{pm
itocwAL) + Fooo XP(=tLesy/2) (1 - SERADR AL =AY, (96)

which requires finding the roots of a cubic polynomial. We may simplify this solution
by noting that efficient operation requires an impedance matched resonator, where now
Focw 1S matched to both the linear and nonlinear loss accumulated by the fundamental

in a single pass, roc. = eXp(—aLeay/2) (1 - %UoLépm |AS)|2). In this case, the self-

consistent intracavity power can be found by solving a quadratic equation, Pj, =
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Pg) (cyLCav + UOPS)Lépm). In other words, when designing efficient SHG devices with

aknown power budget, intracavity propagation loss, and normalized efficiency, we may
first solve for the circulating intracavity power, PE},), and then solve for the outcoupling

focw = /1 = 2, Needed to achieve a matched resonator at the desired operating
power.

We now consider the case of an OPO, where an input pump A(Z’Z = (0 generates a
resonant wave of fundamental. Degenerate OPOs are a rich topic in both classical and
quantum optics, and we only provide a brief introduction here. These systems exhibit
many dynamical regimes, including both CW and pulsed operation, and have rather
different coherence properties than non-degenerate OPOs. Above threshold, these
devices are commonly used as an efficient source of coherent light. Below threshold,
degenerate OPOs are commonly used to generate squeezed light. In the context of this
tutorial, we will see that OPOs offer a realistic path toward few-photon operation, and
we will use the classical behavior of OPOs to better intuit the typical figures of merit
used in quantum nonlinear optics.

Proceeding as before we start from position (1), noting that #,c 2, = 1,

AE},) = roc,wAES),

The signal out-coupled from the directional coupler is given by Ai‘j“‘) = itoc,wAg), and
therefore to describe the total external conversion efficiency of the OPO it suffices
to solve for the steady-state intracavity field at AS,). The fields at position (2) will be
calculated by integrating the CWESs again assuming a negligibly depleted signal, and
the signal at (3) is given by AS) = Ag) exp(—Kex.w Tttw) = AS). To solve for the self-
consistent intracavity field, we make use of the fact that the CWEs for propagating
from (1) to (2) conserve power,

*=| 2—|A(2?)2. (97)

Noting that the linear loss accumulated by propagating from the output of the OPA
section to its input, Ag) exXp(—(Kex.o + Kinw) Trtew) = AS), must in steady state be com-
pensated by the gain of the OPA, we express the fractional power gained by the
signal in each pass through the saturated OPA as £, = exp (Z(Kex’w + Kin’w)Tn,w) —-1=
(Pff) —PS))/PS) , which balances the fractional power lost on each round trip. In
the high-finesse limit, the fractional power loss is typically expressed as ¢, =~

2(Kex.o + Kinw)Trtw- The pump power depleted during saturated OPA may be obtained
2
by integrating the CWEs, A(zi)) = A(zlbz + AAy,,, where AAy, = —ikLgpm (AS) ) for a

high-finesse cavity. Equation (97) can be solved (assuming AS,) is real) to find

Pl =2

Pinpro ( Pinpo 1) ’ (98)

le, P pro

where Py,pro = €5, /(k*Ly,,), is the threshold power above which PV>0. The sig-
nal power generated by the OPO is maximized when P, 2, = 4Pt pro = Psar, Which
corresponds to 100% conversion from Pi, 2., t0 Poyw = TOC,wPS) in the absence of
intrinsic loss. Looking ahead to later portions of this tutorial, where we connect the
classical treatment of resonator behaviors to the quantum theory, we note that the

photon number N = P,,, T} 2., /(2hw) at saturation is often used as a measure of how



Tutorial ‘ | / Vol. 16, No. 2/June 2024/ Advances in Optics and Photonics 409

non-classical the behaviors of an OPO are. Here Ny, < 1 is conventionally chosen as
the threshold below which highly non-classical dynamics occur. A theoretical example
is given in Ref. [145], which studied the formation of features similar to cat states in

pulsed OPOs.

We now repeat the analysis of CW SHG and OPO with all waves resonant (i.e., triply
resonant), which is more naturally treated using the LLE-like form of the CWE:s.
Starting with the case of resonant SHG, we have (from Egs. (93a), (93b))

‘Eocw L m
aTAU)(T) = l_Aa(,)]) - iKiAZw(T)AZ)(T) - (Kex,w + Kin,w)Aw(T) (gga)

Trt,w Trt,w
. Lqpm 2
aTA2w(T) = —IlK T Aw(T) - (Kex,Zu) + Kin,Zw)A2a)(T)- (ggb)
t,w

Solving Eq. (99b) for the steady-state second-harmonic field, we find that the intracav-
ity second harmonic is given by the field generated in a single pass of the nonlinear
stage, with an enhancement given by the ratio of the cavity lifetime and round-trip
time,

—iKkLgpm 5
Trt,w(Kex,2w + Kin,Zw) @
The intracavity fundamental found by solving Eq. (992) contains a resonantly enhanced
pump, in addition to a depletion term due to conversion from fundamental to second
harmonic,

Ay = (100)

- 272 2
ifoc.w ») K LipmlAwl"Aw
A, =

Trt,w(Kex,w + Kin,w) ¢ (Kex,Zu) + Kin,Za))(Kex,w + Kin,w)Trzt,w

(101)

pump nonlinear loss

As with Eq. (96), Eq. (101) can be solved by finding the roots of a cubic polynomial.
There are two approaches to obtaining simple, intuitive solutions. First, noting that
Eq. (101) has the same form as Eq. (96), we may find solutions corresponding to
efficient operation by imposing the impedance matching condition, Kex . = Kinw +
KNL.w> Where kNL ., iS the loss rate due to SHG of the fundamental. This approach again
reduces the equations for the self-consistent intracavity power to a quadratic equation.
The second approach to obtaining simple closed-form solutions is to incorporate
pump depletion perturbatively. Noting that in the absence of pump depletion A, =
ifoc.co(Trtoo(Kex.o + Km,w))‘lAE{,’) we may incorporate depletion as A, = A, (1 — A),
where
6AZ

A= —20
2 +66A2

272
5= K Lipm
(Kex,Zw + Kin,2w)(Kex,w + Kin,w)Trzt,w
At this time, resonant SHG is typically characterized in the undepleted limit, in which
case the intracavity second harmonic given by

. ~ 2
—lKLqpm ltoc,w »)

Trt,w(Kex,Zw + Kin,Zw) Trt,w(Kex,w + Kin,w) ¢

Aoy = (102)
has the same form found in traveling-wave SHG, with an interaction length enhanced
by the cavity lifetime. It is common practice in the literature to quote a normalized
SHG efficiency n = P5." /PR = ToewlArel?/ |AL({,’) | in units of %/W. We note, however,
that care must be taken when interpreting this figure of merit. It is common to find
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demonstrations of resonators with large normalized SHG efficiencies where the low
power requirements are obtained by minimizing k.« for each wave. In practice these
resonators exhibit large normalized efficiencies, but cannot achieve large external
conversion efficiencies, since most of the intracavity fundamental and second harmonic
are absorbed rather than out-coupled. Furthermore, the intracavity two-photon loss
imparted on the fundamental by pump depletion effectively introduces an impedance
mismatch between the pump and the intracavity resonance, which further reduces
the overall end-to-end conversion efficiency in the depleted limit. For CW inputs, the
clearest approach toward achieving both low-power operation and efficient operation
is to realize a large single-pass nonlinear coupling « in a resonator designed to satisfy
the nonlinear impedance matching condition.

Finally, we consider the case of triply resonant OPO. Here, the CWEs are given by

Lgpm
OrAo(T) = =ik A (TIAL(T) = (Kexs + KinwsAu(T), (103a)
rt,w
700 w L m
Oria(T) = Z22A8) = i AL(T) = (Ko + Kin2w)A2o(T). (103b)
t,w rt,w

Solving Eq. (103a) in steady state, assuming A,,(7T') to be real without loss of generality,
we find an intracavity pump given by

_ (Kex.wo * Kinw)Trtw
AZw - i .
—IKLgpm

(104)

Equation (103b) can be solved for the steady-state intracavity signal field with Eq. (104)
for the intracavity pump,

2
4P RO, 54, Piy |
w = - D
b Py 1RO

where the threshold power is given by

waZw g 5%
P =[———] =P “ . 105
th,TRO ( 4x Lqpm l‘oc,zw ) th,DRO 4%&2“) ( )

Here, for simplicity, we have made use of the relations €, = 2(Kex.» + Kinw )T and
o = 2(Kex 20 + Kin2w)Tite in the high-finesse limit.

On paper, the behaviors of triply resonant OPOs do not deviate meaningfully from
those of doubly resonant OPOs, aside from having a substantially reduced thresh-
old power. In reality, the behaviors of triply resonant OPOs depend strongly on the
detunings, ¢, and 6y, of each wave from resonance. The condition for stable single-
mode operation are derived for doubly and triply resonant OPOs in [143] and [35],
respectively.

3.4g. Toward Quantum Nonlinear Optics: Time-Evolving Fields

Thus far, our discussion has centered on the evolution of the complex field envelope
A, (z,t) in the cavity. In this approach, the envelopes describe the instantaneous power,
P (z,1) = |A,(z,1)|?, centered around frequency w flowing through a point z. Evolu-
tion occurs in z, that is, integrating the equations of motion from z; to z, yields the
instantaneous power envelope flowing through z,. In cavity QED, the object of study
is more commonly the photon number contained in the normal modes of a resonator,
such as the standing wave modes of a Fabry—Perot cavity or the azimuthal modes of
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Figure 24
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Field envelopes A, (z, f) and u,(z, f) obtained by horizontal and vertical slices of the
field distribution in the —z plane are equivalent descriptions of the field evolution.
The equations of motion for A,,(z, ) propagate a time-varying waveform from z = 0 to
z = z; (horizontal dashed line), whereas the equations of motion for u,,(z, t) propagate
a spatial distribution from ¢ = 0 to ¢ = #; (vertical dashed line).

__________________________________________________________________________________________|

a ring resonator. In the mean-field limit, these models describe the time evolution of
the energy density throughout the cavity. To better establish the connection between
classical nonlinear optics and the mean-field behavior of cavity QED, we first refor-
mulate classical nonlinear optics in terms of the time-evolving envelopes, u,,(z, t), that
describe the spatial distribution of the energy density within a nonlinear medium.

The connection between A, (z, f) and u,(z, ?) is best established by first considering
linear propagation in the absence of higher-order dispersion in a non-moving frame
(Vgref = 0). For simplicity, we first consider an isolated pulse in a waveguide, where the
fields may extend over an arbitrarily large domain. In this case, both the fundamental
and second harmonic walk off from the origin at their respective group velocities,
as shown in Fig. 24. For any position z;, the field envelope A, (z;, 1) is given by a
horizontal slice in the #—z plane, with the power flowing through z; as a function of
time given by |A,,(z;, t)|> dt. The spatial envelope describing the energy density at a
time #; is given by a vertical slice in the 7~z plane, A, (2, ;) = U, (2, ti)m, where
1ivVew = Zi- As an example, if we consider a sech pulse, we find

Au(z, 1) —1 h —t_vg’l”z o u,(z,1)
wl\Z, = SecC UuHzZ, =
1' T

sech (
2T

i Vg,wt)
Ve T

1
V2TV 0

The field envelopes A,,(z, f) and u,,(z, t) are clearly equivalent descriptions of how the
fields are distributed within the medium, and either can easily be used to calculate the
total energy, U,,, stored within a pulse envelope

/ Ao D2 dt = / o (2 )2 dz = U,

o0 —00

Thus far, with only temporal walk-off the equations of motion are given by
(9;uw(z, t) = _Vg,wazuw(27 t), (1 06a)

(9;1/!2“,(2, t) = _Vg,2wazu2¢u(z’ t)- (1 06b)
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We note here that the conversion between spatial and temporal envelopes can be non-
trivial in the presence of higher-order dispersion. We will treat this more general case
at the end of this section.

While the correspondence between A, (z, t) and u,,(z, t) undergoing linear propagation
is clear in the non-moving frame used above, the transformation to a comoving frame
commonly used to model nonlinear interactions contains subtleties that are worth
further discussion. The definition of a comoving frame in this context is not a Lorentz
transformation of the underlying coordinates, but rather a choice of phase-reference
in the Fourier domain A(z, Q) — A(z, Q) exp(—iv;}esz). Defining a comoving frame
for A, (z,t) does not distort or Doppler-shift either A, or A,,,. Instead, the centroid
of A, (z,t) at each point z is translated to ¢t = 0, which deforms the dashed white
line in Fig. 24 to a vertical line in the —z plane. This transformation skews u,,(z, 1);
while the horizontal cuts in the 7~z plane used to extract A, (z, t) are not distorted by
a horizontal shift of the time axis for each point z, the vertical cut used to extract
Uu,(z, 1) are deformed into lines running parallel to z = —v, ,,t. While the CWEs are
more easily solved in a comoving frame, the simplest way to convert between these
two descriptions of the field is to move back into a non-moving frame. Therefore,
the approach we advocate in converting between these descriptions is as follows: (i)
solve the equations of motion in a convenient comoving frame within one description
of the field evolution, (ii) convert into a non-moving frame, (iii) calculate A, (z, )
or u,(z,t) using either horizontal or vertical line cuts of the field envelopes in the
non-moving frame. With this in mind, we note that a similar comoving frame can be
defined for the spatial envelopes by Fourier transforming u,,(z, f) and applying a phase
shift of exp(—iv, rr0k?) to translate the centroid of u,,(z, f) down to z = 0. Here ok is the
detuning of the wavenumber from the mean angular wavenumber of the envelope, in
analogy to Q being the angular frequency detuning from the carrier frequency of the
envelope. These comoving frames for the spatial envelopes will be used throughout
the following sections on ultrafast quantum nonlinear optics.

Having established basic rules for converting between temporal and spatial envelopes,
we now consider nonlinear propagation. Taking SHG with temporal walk-off as
a canonical example to establish the connection between spatial and temporal
propagation, we begin with the CWEs in the non-moving frame,

8ZAIU(Z’ t) = _V;,L)atAw(Z9 t) - iKAZw (Z’ t)AZ) (Z’ t)a
aZAZlu(Z’ t) = _V;,EwatAZlu(Z’ t) - lKAZ)(Z’ t)
Multiplying each side by the respective group velocity and converting from temporal

into spatial envelopes using A, (z,1) = U, (2, 1)\/Vgw, We find the time-propagating
form of the CWEs

Oty (2, 1) = —Vg,0,0-Uy, (2, 1) — i0Un, (2, Dt (2, 1), (107a)
atMZw(Z, t) = _vg,Zwazl'tZw(Z’ t) - iO'Mz)(Z, t)’ (107b)

where o = k, /vg’wvg,z(,, is the coupling coeflicient for the field densities, u,, and uy,,,
here defined as the square root of the energy density. We note here that in the absence of
temporal walk-off, Egs. (107a), (107b) conserve the local energy density, and in general
equations of this form will conserve the total energy f [t (2, 1) + |Use(z, 1)|?dz. These
equations of motion can be converted into the more familiar comoving form by shifting
our choice of phase reference in the Fourier domain as described above,

Oty (2, 1) = —io U, (2, DU, (2, 1), (108a)

Oty (2, 1) = —AvyO,uny, (2, 1) — ol (2, 1). (108b)
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At first glance, there is no meaningful difference between Eqs. (108a), (108b) and
the more commonly encountered CWEs discussed throughout this tutorial. After all,
Egs. (108a), (108b) were obtained with a few algebraic manipulations, and have the
same functional form as the space-propagating CWEs with space and time inter-
changed. There are, however, some subtle differences with how these equations are
applied to describe physical phenomena. Take, for example, the single-mode case
given by

Oy () = —ioUp, (t)u, (1), (109a)

One, (1) = —iou? (¢). (109b)

Equations (109a), (109b) do not describe traveling-wave SHG in a nonlinear wave-
guide. While the fundamental is a uniform distribution of both power and energy in
traveling-wave SHG, the second harmonic has a quadratic spatial variation. In contrast,
in Equations (109a), (109b) we are considering a nonlinear medium that either extends
to infinity or has periodic boundary conditions extending from z = 0 to z = L. This
medium is excited by a uniform field u,,(¢) instantiated throughout the entire nonlinear
medium at ¢ = 0. In this case, in the undepleted limit the second-harmonic field builds
up with a quadratic time dependence and remains spatially uniform for all time. While
these solutions do not describe traveling-wave SHG, they do correspond well to the
behavior of extremely high-finesse resonators, where the field throughout the nonlin-
ear medium is well approximated by a uniform distribution. The usual solutions for
traveling-wave SHG can be recovered from the time-propagating model by working
in the non-moving frame (Equations (107a), (107b)) and solving for the envelopes
u,(z,t) and uy,,(z,t) in steady state (9; — 0) everywhere inside the waveguide. The
time-propagating equations of motion are not commonly used in traveling-wave non-
linear optics, since the boundary conditions for u,,(z, t) involve adding a time-varying
driving term to Maxwell’s equations.

3.4h. Normal Modes

Thus far, our treatment has considered the evolution of an isolated pulse in an arbitrarily
long waveguide. In reality, all nonlinear devices have a finite spatial extent. In the case
of traveling-wave devices or Fabry—Perot resonators, the spatial extent of each is
constrained to z € [0, L]. Similarly, for ring resonators and microtoroids, the fields
have periodic bounds, z € [0, L], where z is now the azimuthal coordinate and L is the
circumference of the resonator. In all of these cases, the intracavity field can be written
in terms of a Fourier series over spatial modes, u,(z,t) = 2, Uwp m eXp(2mimz/L).
Throughout this section we will use k,, = 27rm/L to denote the angular wavenumber
of the mth Fourier mode. For the case of a finite-domain signal, such as a straight
waveguide, u,,(z, f) can be obtained by windowing the periodic signal with a rectangle
function. A more detailed discussion of normal modes is given in Appendix B.

When the fields are constrained to a finite domain, the solutions to Maxwell’s equations
are given by

E(r,t) = % Z ay mEu(x,y, wy (ki) exp(—iw, (kn)t + ikyz) + c.c.|, (110)

wom

with identical expressions holding for H and D. Here k,, = 27am/L is the angular
wavenumber of each mode, and a,,, is a dimensionless number that describes the
fraction of the overall energy contained in the mth Fourier component of mode u. We
will see below that the physical interpretation of a,,, will depend on our choice of
mode normalization. Equation (110) is identical to Eq. (3) for waveguide modes, now
with the Fourier series expansion taken over spatial modes rather than frequencies.
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For the case of an isolated pulse, as above, the summation over m can be replaced with
a Fourier integral. The normal modes

E,u,m = exp(_iwu(km)l + ika)E,u(xa Y, Wy (km))’
H/J,m = exp(_lw,u(km)t + ika)Hﬂ(x’ y7 wﬂ(km))9
Dy,m = exp(_iw,u(km)t + ikn2)e(x, y, Wy (km))E/J (x,y, Wy (km))s

each independently satisfy Maxwell’s equations, however w,,(k,,) is now interpreted as
the eigenvalue associated with propagation constant ,,,, with corresponding eigenfunc-
tions given by E, and H,,. The normal modes are each normalized to a characteristic
energy, Up, using the expression for the energy contained in a linear dispersive
dielectric [62,146]

1
7 /MOHy ‘H, + E, - (€(x,y, w) + 0Oy €(x,y, w)) - E, dV = Up. (111)

We will take Uy to be 1 J for classical nonlinear optics, or will later be chosen indepen-
dently for each mode U, ,, = hw,(k,,). In the former case, Ug|a,, | corresponds to the
energy (in Joules) contained in a mode. Noting that in the latter case hw,,(km)la,l,m|2
is the energy contained in mode y, we can identify |a,,|* as the number of photons
contained in a mode.

As with pulse propagation in traveling-wave devices, we can define a spatial envelope
associated with transverse mode u given by

/U .
ull(Z, t) = TO Z ay,m €Xp (_l(w/l(km) - wref)t) (1 1 2)
X eXp (i(km - kref)z + i(km - kref)Vg,reft) 5

where k. is the mean spatial frequency of the envelope, wys is an arbitrary reference
frequency (wyer need not be wy,(kier)), and v, is an arbitrary reference velocity. As
with space-propagating envelopes, the envelope u,(z, t) describes the continuous field
distribution obtained from the normal modes by Fourier synthesis. We may derive a
propagation rule for u,(z, ¢) that describes the displacement and spreading of the field
distribution due to dispersion by taking the derivative of Eq. (112) with respect to
time. Series expanding w,, (k) around k., we find

atup(Z> t) =- i(wﬂ(kref) - wref)uﬂ(z’ t) - (vg"“ - vg,ref) azuﬂ(z’ t) (1 1 3)
- iDint,p(az)uﬂ(Z’ t)’

where Ding,(0;) = Xoes %(62)’”@:”) is the integrated dispersion for mode u, and
a);(,m) = Orwy,(k)|r,, is the mth derivative of w,(k), evaluated at k,.;. We reiterate here
that Eq. (113) is the Fourier dual of the more commonly encountered propagation rule

Oty (1) = —iwy (k)1 m(2) in a rotating frame defined by wrer and vg rer.

We can connect u,, back to the spatial envelope derived in Section 3.4g by working in
a non-moving frame (v, = 0) and setting wyer = w, (ker). In this case, the propaga-
tion rule is equivalent to Eq. (106a), (106b), now generalized to include higher-order
dispersion. In the time-propagating picture, the integrated dispersion contains dis-
persion orders generated by series expanding w with respect to k, rather than £ with
respect to w, and contains spatial derivatives d,. The integrated dispersion Dy, (0;)
previously encountered for temporal envelopes is not converted to Dy, ,(0;) by substi-
tuting v,d. = 0,. Instead, each dispersion order contains chain factors, as tabulated in
Table 2. There are two limiting cases where the approximate dispersion orders given
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Table 2. Relation between the nth Dispersion Order
of w(k) and the Dispersion Orders of k(w)?

w’'(k) —k,(lw) =V

w” (k) —k”(w)vz

w” (k) —k’”(w)vz; + 3(k"(w))2vf,

w" (k) 7k””(w)v§ + 10k”(m)k”’(w)v§ - 15 (K" (w))? vg

“Here, the right-hand side is evaluated using the chain rule. In many
practical applications the approximate rule w (k) ~ k(”)(w)vg“ can
be used to estimate the dispersion relations of w(k), as described in
the main text.

by (k) = k"(w)vs*! can be used to estimate the dispersion relations of w(k): when
the dispersion relations can be truncated at second order, or when k" = 0. In the latter
case, the chain factors for both third- and fourth-order dispersion become zero.

A word of caution is in order when converting between these two formalisms. In
working with highly broadband pulses, the time-propagating and space-propagating
pictures can produce different results depending on how the Taylor series of w or k is
truncated. Care must be taken to determine whether these differences have a physical or
numerical origin. For example, in a dispersion-engineered waveguide with a large GVD
and k”” = 0, the behavior of space-propagating models is well understood. However,
for a time-propagating model the non-zero third-order dispersion w’”’ = 3(k”)2v2 will
cause the envelope u(z, ) to skew. This distortion is not a numerical artifact, and
can be verified by using space—time diagrams such as Fig. 24. If we now consider a
Kerr microresonator with the same dispersion relations, one model will predict a Kerr
soliton that radiates dispersive waves, while the other model will not. This behavior
is an artifact of having only truncated the two models at third-order dispersion, and
can be reconciled by using the full dispersion relations. Before considering nonlinear
interactions between normal modes, we close this section by briefly discussing loss.
In contrast with discrete maps, where the loss rate was set by our choice of reference
wave, here kex and ki, for w and 2w will depend on the group velocity of each wave,
Vew and v, o, respectively. We limit our treatment to non-dispersive losses, which
enables a simple time-domain analysis.

We begin with propagation loss. Noting that the distance traveled by the
envelope u,(z,t) in a given time is z=v,,t, the field decays to u,(z—
Vewt, 0) exp(—ar.,2/2) = uy,(z,0) exp(—kinet). Similarly, for the second harmonic
U2, (2 = Vg pwt, 0) €Xp(—ar 2w2/2) = Uz, (2, 0) eXp(—kinowt). We may extend this anal-
ysis to extrinsic losses by considering a discrete out-coupler with transmission and
reflection coefficients ity , and roc,, respectively. Noting that the extrinsic loss rate
for a round-trip time of T} is given by kex = —In(roc)/ Ty, the extrinsic loss rate for
each wave is given by Kex., = — IN(Foc.w)/ Trtw AN Kex 200 = — I(Yoc20)/ Trt20-

A natural question is whether or not these altering definitions of loss rate between
the space- and time-propagating models contribute any measurable difference in the
predicted behaviors of nonlinear resonators. The apparent contradiction between these
two approaches can be resolved in the high-finesse limit by noting that in either case the
only physically meaningful parameters are the total loss accumulated per round trip.
This can be seen by noting that in all of the examples considered throughout Section
3.4f, the loss rates ke and k;, can always be grouped with the round-trip time of the
reference wave T}, which eliminates the reference velocity for every expression for
the loss. Similar behaviors occur for the dispersion and phase.

3.4i. Nonlinear Interactions between Normal Modes
We can incorporate nonlinearity into Eq. (113) by assuming that y® nonlinearities act
locally in space and do not couple to higher-order dispersion. In this case, comparing
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Eq. (113) to Egs. (107a), (107b) suggests equations of the form

8,uw(z, t) = (Vg,w - Vg,ref) azuw(ze t)

114a
Do (0o 2 ) — it (2 UL (2, ), (114a)

6ﬂ/l2w(Z, t) =- (Vg,Zw - Vg,ref) az”Zw(Za t)
- iDint,2w(aZ)u2w(Zs t) - l.O'uZ)(Z, t)’
for a phase-matched interaction. Here, we have dropped the subscript u in favor of w

and 2w to denote the relevant spatial mode for the fundamental and second harmonic.
Phase mismatch can be incorporated by working in a non-rotating frame,

(114b)

aﬂ/lw(Z, =~ iw(kref)uw(za t) - (Vg,w - Vg,ref) O.u,(z,1)

115a
- iDint,w(az)uw(Z’ t) - ia‘u2w(z, I)MZ,(Z’ t), ( )

Ot (2, 1) = — iw(2kref)u2w(z’ 1) — (Vg,Zw - Vg,ref) az“2w(za t)

- iDint,Zw(az)UZw(Z’ t) - i(rui)(z, t)7
where the choice of arguments ks and 2k, will be clarified below. As with traveling-
wave nonlinear optics, we now have many choices of rotating frame. Choosing a
reference frequency of w(kr) for the fundamental and w(2k.s) for the second harmonic

recovers a more familiar form of the CWEs,

atuw(z, t) = (Vg,w - Vg,ref) azuw(z’ t) - iDint,w(az)uw(Z t)

— iouy,(z, i, (2, 1) exp(—iAwt),

(115b)

(116a)

O (2, 1) = — (Vg,22w - Vg,ref) 0.uy,(z,1) — iDint,2w(az)”2w(Za 1) (1 1 6b)
—iou;,(z,1) exp(iAwt),

where Aw = w(2kf) — 2w(kyf). Another common choice of reference frequency is
w(2kt) for the second harmonic, and w(2k.¢)/2 for the fundamental, which yields

—iAw
5:’/%(1, t) = > uw(z, t) - (Vg,w - Vg,ref) 5zuw(Z, l‘) (1 17a)
= iDint (0 (2, 1) — iU, (2, D, (2, 1),
at”Zw(Za t) =- (Vg,Zw - Vg,ref) az”Zw(Za t) (117b)

- iDint,2w(az)u2w(Za [) - l'O'M(zu(Z, t)-
This latter choice of rotating frame was used throughout Section 3.2e, and will be a
common choice throughout the following sections on quantum nonlinear optics.

The origin of Aw, rather than Ak, as the phase mismatch for normal modes
can be clarified by revisiting the Fourier domain now with nonlinear coupling
terms. As before, using the periodic bounds of the resonator to express the
envelopes as i, (z,t) = 2., Uwm(t) exp(2mimz/L — ikesz) for the fundamental and
(2, 1) = X, Upeo n(t) exp(2ming /L — 2ikeerz) for the second harmonic, Egs. (115a),
(115b) become

&uw,m(t) = - i(l)(kref)uw,m(l‘) - (Vg,a) - Vg’ref) (iékm)blw,m(l‘)
— iDintao (0Kt (1) = 107 ey (O (0. (118a)

azulw,n(t) == iw(zkref)MZw,n(t) - (Vg,Zw - vg,ref) (iékn)u2w,n(t)
- iDint,Zw(iékn)”2w,n(t) —io Z uw,m(t)”w,n—m(t)a (1 18b)

where 6k, = 2nm/L — kys. Written in this form, we see that interactions between
normal modes must conserve momentum due to Fourier’s rule. We note here that
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the conditions for QPM are unchanged from the traveling-wave picture. If o — o(z)
is a periodic function, then we may also Fourier series expand o (z) and repeat the
above derivation of the Fourier-domain CWEs. In this case, we find that the Fourier
components of o (z) shift the pairs of Fourier components coupled together by the
nonlinearity, which effectively shifts the reference k-vector of one of the harmonics,
e.g., kref 20 = 2kretw — k- This shifts the frequency of the second-harmonic envelope,
thereby reducing Aw.

3.4j. Photon-Normalized Units

As with the use of flux-normalized units in classical nonlinear optics, the use of
photon-normalized units if often convenient for time-propagating models. This is
particularly useful for connecting mean-field behavior of the quantum theory to the
behaviors of the classical model. Rather than choosing our normalization energy
Up =1 J, we normalize each resonator mode to contain an energy U, = hw(k,,).
With this choice of normalization, the Fourier components «,,(f) are related to the
number of photons in each longitudinal mode, |,,|> = N,,. Inlater sections on quantum
nonlinear optics, a,, will be promoted from a c-number to an operator. In this case,
the spatial envelope associated with the intracavity photons must be obtained using
a unitary Fourier series, a(z, 1) = 3., a,(t) exp(2rimz/L)/ VL, where fOL la(z, 1)|> dz =
Yo lam|* = 3, N, is the total number of intracavity photons contained in the envelope.
We adopt this Fourier convention here, since it will be used throughout our treatment of
quantum nonlinear optics, and refer to a(z, ) as the complex amplitude density, since
|a(z, t)|? is the number density. Given this choice of Fourier convention, the connection
between the energy-normalized Fourier modes and number-normalized Fourier modes
is given by a,,(t) = u,,(1)\/L/hw,,. The connection between spatial envelopes is given
by a(z, 1) ~ u(z, 1)/ Vhw for envelopes with a narrow spectral bandwidth compared to
w. We note here that the factor of VL appears when converting Fourier modes, but not
spatial envelopes, due to this change in Fourier convention.

In photon-number units, Eqgs. (118a), (118b) become

ataw,m(t) == iw(kref)a’w,m(t) - (vg,w - Vg,ref) (iékm)aw,m(t)
= 1D (18t (1) = 8 Y 2D (1), (119a)

ata'Zw,n(t) == iw(Zkref)a'Zw,n(t) - (vg,Zw - Vg,ref) (iékn)a'hu,n(t)

= Dint 200 (16kn) @200 n(1) = ig ; oDy (D), (119b)

where g = V2hwL o is the single-mode coupling rate and |a,,, | is the number of

photons contained in mode n. Here the factor of VL1 in the coupling rate comes
from working with the total photon number, rather than the number density. In the
non-rotating frame, we can sum the series expansion contained in Dy, and Djy 2, to
write the equations of motion more succinctly as

012 (1) = =i (1) = 18 D 200 w1 (1), (120a)

ata'2w,n(t) = _ian'Zw,n(t) - l% ; aw,m(t)a'w,n—m(t)- (120b)

Equations (120a), (120b) are one of the main results of this section, which will enable
us to connect the classical equations of motion and the coupling coefficient g to the
quantum equations of motion.
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Similarly, working in real space rather than the Fourier domain, Eqgs. (115a), (115b)
become
01, (2, 1) = = iw(kper) (2, 1) — (Vg,w - Vg,ref) 0.a,(z,1)

121a
Do (0000 (@, 1) = irtsa (2, Dt (2, 1), (121a)

ata’Zw(Z’ t) == iw(Zkref)a'Zw (Z, t) - (Vg,Zw - Vg,ref) 0.z, (Z, t)

121b
- iDint,Zw(az)a'Zw(Za t) - igai}(z’ t)’ ( )

where the coupling rate is given by

r = V2hwo = \[2hwnovi ,Verw = gVL. (122)

Here |, (z,1)|* is the photon number density (in m~"). Note that for the choice of
Fourier convention used for «,,(z,?) and «,, (), Parseval’s theorem takes the form

L
/o |, (z,1)|? dz = 3, |@w.m(t)]*. These classical equations of motion will be revisited
in Section 4, where they will be shown to correspond to the mean-field limit of the
quantum equations of motion.

3.4k. Meaning of g/«

Throughout literature on few-photon nonlinear optics, a common figure of merit is the
ratio of the single-mode coupling rate, g, to a characteristic loss rate, «, not to be con-
fused with the traveling-wave nonlinear coupling coefficient. Having established the
classical equations of motion for nonlinear resonators in photon-number-normalized
units, we are equipped now to discuss the physical meaning of g/« in more detail. As
a canonical example, we consider a single-mode resonator, accounting only for loss
and nonlinear coupling

ata’w(t) = _(Kex,w + Kin,w)a'w(t) - igaZw(t)az),(t)9 (1 233)
0120(1) = ~(Kex20 + Kin2u)20(1) = IS0 (1) (123b)

To build intuition, we consider two cases: SHG and OPA. First, we consider instantiat-
ing two-photons-worth of field in the fundamental, @2(0) = 2, and solve Egs. (123a),
(123b) in the absence of loss. The second-harmonic field is given by the solution for
saturated SHG, a5, (t) = —itanh(gr). The nonlinear coupling, g, sets the time scale
over which a pair of photons from the fundamental upconverts to a single photon of
second harmonic, with saturation occurring when gz ~ 1. The ratio g/(Kex 2w + Kin2)
measures the degree to which few-photon signals can achieve saturated SHG before
the second harmonic decays from the cavity. Similarly, for the case of OPA, we instan-
tiate the cavity with a single-photon worth of field at each harmonic, @, (0) = 1 and
@,(0) = 1. In this case, g sets the time scale over which the second harmonic down-
converts to fundamental by saturated OPA, and the ratio g/(kex. + Kine) Measures
the degree to which the small-signal gain imparted by the pump photon for small ¢
exceeds the loss of the fundamental.

In both of the above cases, the coupling rate g is being compared with a characteristic
loss rate «, and the condition g>« denotes that few-photon nonlinear behaviors become
important. We note, however, that at this time there is no uniform choice for the
characteristic loss rate «, or the figure of merit. The value g/(kex.» + Kin) iS commonly
reported as the relevant figure of merit in triply resonant devices, however this neglects
decoherence due to loss of the second harmonic. g/ \/ (Kex.w T Kinw)(Kex 20 + Kin2w) Was
proposed in Ref. [3] to give equal weight to the fundamental and second harmonic, and

other arrangements such as g/ ((Kex.w + Kinw)* (Kex 20 + Kin2e)) 3 could be reasonably
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argued by comparing the factors of group velocity that enter into the numerator and
denominator. Similarly, g/max(Kex.w + Kinws Kex.w + Kinw) could be argued as a more
conservative measure. In addition to these differing conventions for g/«, there also
exist differing conventions for the underlying parameters. In the above treatment of
few-photon OPA, g and « correspond to the field gain and loss rates, respectively,
but differing conventions exist where 2g and «/2 are the field gain and loss rates,
respectively. Put simply, care must be taken when comparing reported numbers for
g/« for triply resonant devices in the literature, and apples-to-apples comparisons are
only meaningful when the same figure of merit is used.

To better interpret these differing conventions, it can be helpful to recast g/« in terms
of physical behaviors, such as the number of intracavity pump photons at threshold,
or at saturation. For doubly resonant OPOs, there is no ambiguity regarding the loss
rate, and g/(kex.w + Kinc) iS commonly taken as the relevant figure of merit. Here, we
can build further intuition by rewriting Eq. (98) in photon-number-normalized units.
Noting that the intracavity pump photon number is given by Ny, = Pay, Tii 20/ (2Aw),
the threshold photon number is Ny, = (2(Kex.o + Kinw)/g)*. For the conventions chosen
here, g/k = 1 corresponds to Ny, = 4. If instead we used « to denote the power loss
rate, then g/« = 1 corresponds to Ny, = 1. Using alternative conventions for g (— 2g),
also yields Ny, = 1 when g/« = 1, and adopting both conventions yields Ny, = 1/4.
Repeating this conversion to photon-normalized units for a triply resonant OPO, we
have

Py 1RO = (

2Kex,2w Trt,2w

2 2
Kex,w T Kin,w) ( (Kex,Zw + Kin,Zw) Trt,Zw) ( 2hw )
g b

where we have used 2kex 20 ~ Toc20 T

120 Noting that the intracavity pump power is

2Kex,2w )
9

p th,intracavity = p th,TRO ( )
Kex 2w T Kin,2w) Trl,Zw

and that intracavity photon number is

Tr w
L2 ) i (124)

N jntracavity = Pt intracavit
’ Y ’ "\ 2hw

we find that g/(Kex.» + Kinw) = 1 corresponds to the condition that the gain imparted
by a single intracavity pump photon exceeds the signal loss. We note here that employ-
ing physical comparisons, such as the intracavity photon number at threshold, is an
extremely useful practice in addition to comparing the definitions of g and « in the
equations of motion when interpreting results found in the literature. More examples
of the connection between physical phenomena and g/« are given in Ref. [2].

3.41. Prospects for Observing Few-Photon Quantum Nonlinearities

Having established g/x>1 as the condition for observing few-photon nonlinearities, we
briefly discuss experimental routes toward realizing such strongly coupled nonlinear
resonators. We note here that the practical lower bound of « is set by the bulk absorption
properties of the underlying waveguide materials, and that the upper bound for g set
by the material nonlinear susceptibility, bandgap, and refractive index. Therefore, for
any choice of material system, there is a material-limited upper bound for g/x. We
first consider the trade-offs between g and x in CW resonators, before discussing
proposals for enhancing the coupling rate using femtosecond pulses. In principle, this
latter approach circumvents the limitations of CW devices by enabling small effective
mode volumes irrespective of the physical size of the resonator. This flexibility allows
for the coupling rate and loss rate to be optimized independently. We note here that a



420  Vol. 16,No. 2/June 2024/ Advances in Optics and Photonics \ \ \ Tutorial

Figure 25
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Comparison of the CW coupling rate g for many emerging platforms for nonlinear
photonics, here assuming a cavity free-spectral range of Affy. ., = V,./L = 10 GHz and
the optimized waveguide geometries used to generate Fig. 5. Here the nonlinear cou-
pling exhibits an w*—w>’ scaling, where the w*> comes from g o \wny o« |/d%w?,

and the additional power-law scaling of 0-0.25 comes from the dispersion of dj.

comprehensive discussion of the loss mechanisms in each emerging material system
are beyond the scope of this tutorial. To familiarize readers with the current state of
the field, we will discuss loss numbers in TFLN, which achieves similar loss numbers
to other state-of-the-art platforms for nonlinear photonics.

We begin by discussing limitations to the coupling rate, g. Noting that g =

\/ Zvag,wvg,zwno /L, we identify three components necessary for realizing strong cou-

pling, namely, a large operating frequency w, a large normalized efficiency n (e.g., by
optimizing the transverse confinement as in Fig. 5), and a small cavity length, L. We
note, however, that there often exist practical limitations that set a minimum cavity
length L. For example, ring resonators are limited to a minimum bend radius R, with
the circumference 2R playing the role of cavity length, due to an increase in bending
loss and a decrease in nonlinear overlap that occurs with increasing R. In principle,
point-defect photonic crystal nanocavities can be used to confine the fundamental
and second harmonic to a wavelength-scale mode volume, however such small mode
volumes are typically accompanied by large losses of at least one harmonic, as well
as additional decoherence due to thermorefractive noise [147]. For these reasons, we
compare the largest single-mode g attainable in each emerging material system as a
function of wavelength assuming a constant free-spectral range, Afgsr o, = Ve./L = 10
GHz, in Fig. 25. In contrast with our previous comparison of the normalized efficiency,
19, Which scales as dgffa)4, g exhibits a degw?> scaling since g oc \/w1 o d.gw?>. Here
the additional factor of vw is due to a factor of vw in the field-per-photon. In reality,
g exhibits an additional scaling exponent of 0-0.25 depending on the material, due to
the dispersion of d.¢. Given this strong frequency dependence, we find that materials
with large bandgaps tend to exhibit the largest nonlinear couplings.

There are many practical considerations in designing resonators with low loss rates.
These include the intrinsic material absorption, the ability to pattern a material with
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low surface and sidewall roughness, and the geometry of the resonator itself. For exam-
ple, a ring resonator with a near-lossless directional coupler is predominantly limited
by the propagation loss accumulated over a single round trip of the ring. Therefore,
as the resonator dimensions are scaled smaller, both the round-trip propagation loss
and the round-trip time are rescaled by the same factor, which renders the loss rate
invariant with respect to resonator size (until bending loss becomes significant). Con-
versely, a Fabry—Perot resonator with discrete mirror losses exhibits a loss rate that
increases linearly as the length of the resonator is decreased, since the round-trip time
is decreased and the single-pass loss is unchanged. In other words, the nature of the
dominant loss mechanism (discrete versus distributed) determines the extent to which
the g o« L™'/? scaling of the nonlinear coupling can be utilized to increase g/«. Noting
that both discrete and distributed losses are present in any real resonator, in reality
there is always a turning point in L at which g/« is optimized for a particular design.

As an example of realistic loss numbers in nonlinear photonics, we consider the case
of TFLN. At this time, typical propagation losses at a wavelength of 1560-nm at 30
dB/m in poled waveguides [35], 3 dB/m in state-of-the-art ring resonators [121], and
0.3 dB/m at the bulk material limit set by various defects, such as in-diffused met-
als and OH absorption overtones [115-117]. For a typical group index of 2.3, these
values correspond to an intrinsic loss rate «;, ., /(27) of 76 MHz, 7.6 MHz, and 760
kHz, respectively. Comparing these values to the coupling rate for optimized TFLN
ridge waveguides (see Fig. 5), we find an optimized coupling rate of g/(27) = 100
kHz in a resonator with a free-spectral range of 10 GHz, and g/(27) ~ 10 MHz in a
wavelength-scale (100 THz free-spectral range) resonator. In other words, the best-
case scenario, namely a wavelength-scale resonator operating at the material-loss limit,
may achieve g/« ~ 10, when operating at a fundamental wavelength of 1560 nm. In
reality, given the practical trade-offs between g and « discussed above, more realistic
resonators operate at g/« ~ 0.001-0.1, with current state-of-the-art devices operating
at g/« = 0.01 (see Ref. [1]).

An alternative route is the development of resonators driven by ultrafast pulses, where
enhancements to the field per photon enabled by multimode interference can be used to
realize small effective mode volumes in resonators of arbitrary size. The full quantum
theory of pulsed nonlinear interactions will be developed in the following sections.
For the present discussion, we note that the clearest point of comparison between
CW interactions and pulsed interactions is the temporally trapped dynamics studied
in Section 3.3c. In these systems, the trapped pulses behave identically to CW fields,
with an effective coupling rate given by

o [Ty _m 27710V§'70 2
8pulsed = gZ 7 a2\ 2 (125)
where 7 is the duration of the trapped pulses, here assuming a sech? envelope. We
note here that temporal trapping requires the two interacting waves to be group-
velocity-matched, and therefore Ty = Ty, = Tr2. is the cavity round trip time. For
interactions between trapped pulses, the pulse duration 7 (more specifically 7v,) now
plays the role of the longitudinal confinement L. For resonators driven by few-cycle
pulses, the pulsed coupling rate becomes comparable to that of a wavelength-scale
resonator, irrespective of the cavity free-spectral range set by L. This feature allows for
the resonator geometry to be chosen to minimize loss, e.g., by fabricating rings with a
large radius of curvature. A comparison of optimized pulsed coupling rates for several
emerging nonlinear photonics platforms is given in Fig. 26, here assuming a pulse
duration of two cycles. We note here that since 7 = mw, where m is the number of
cycles, gpuised €xhibits an additional w'/? scaling relative to the single-mode coupling
rate in a CW resonator. As a result, pulsed devices favor short wavelength operation: in
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Figure 26
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Comparison of the effective pulsed coupling rate, gyused, for many emerging platforms

for nonlinear photonics using the optimized geometries from Fig. 5. Each material

system exhibits a power law scaling of w*-w??3, where the excess exponent >3 is due

to the dispersion of dj; estimated by Miller’s delta scaling.

TFLN, gpuisea ® 5-6 MHz at a fundamental wavelength of 1560 nm, whereas coupling
rates approaching 100 MHz become possible at much shorter wavelengths. Since ring
resonators with lifetimes approaching 10 MHz have already been demonstrated, and
the bulk material loss supports loss rates as low as 1 MHz, pulsed devices appear to
be a promising route toward realizing few-photon nonlinearities with g/x>10.

3.5. Closing Remarks

The past few sections have broadly addressed the routes toward realizing extremely low
power nonlinear devices. For CW interactions low power is enabled simply by the com-
bination of tight transverse confinement, and long interaction lengths. In a resonator,
the long interaction length is instead replaced by a long lifetime, which enables much
greater conversion efficiencies in physically compact devices. Pulsed interactions can
greatly reduce the energy required to achieve saturation, and in principle may approach
comparable energy requirements to wavelength-scale resonators by using few-cycle
pulses. In these systems, the interaction length is limited by the dispersion of the
waveguide and, in principle, the use of dispersion-engineered waveguides can enable
saturated behaviors to occur with relatively low photon number. This raises the follow-
ing questions. How extendable are these benefits to quantum devices? Does the field
enhancement seen in classical devices always improve the performance of quantum
devices? Can we still produce simple models in the quantum limit? The latter half of
this tutorial develops a more careful treatment of the quantum behaviors of ultrafast
pulses. This formalism will enable us to address these questions, and to identify new
opportunities that exist at the boundary of ultrafast and quantum nonlinear optics.

4. FROM CLASSICAL TO QUANTUM NONLINEAR OPTICS

4.1. Introduction
At first glance, the CWEs found in classical nonlinear optics are rather different than
the formalism of quantum optics. In the former, the evolution of a complex field
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envelope a(z, t) generally takes the form
0.a(z,1) = fe(a(z, 1), " (2, 1), (126)

where the subscript “c” denotes “classical.” In this picture, we associate a complex
number with each point, ¢, in the pulse envelope, and the fields evolve with respect
to propagation along z in a nonlinear waveguide. In contrast, the quantum formalism
assigns to each mode an operator

a=a-+oa, (127)

where @ = (a) is the mean-field amplitude and da is a quantized operator that captures
the quantum fluctuations around this mean. These modes may be Fourier modes in a
resonator, or modes localized around points z within a waveguide. In the Schrédinger
picture, the quantum state i) evolves under the influence of a Hamiltonian according
to the Schrédinger equation,

iho,ly) = Hp). (128)

Given how disparate these formalisms are, a natural question is how to establish a
quantum-classical correspondence between the CWEs and the Schrodinger equation.
To do this, we need to resolve several discrepancies. (i) The former concerns opti-
cal field amplitudes, described by complex numbers, while the latter describes the
dynamics of a wave function |). (ii) The former is usually a system of nonlinear
ODEs, while the latter is always a linear ODE. (iii) The former propagates in the
spatial coordinate z, while the latter propagates in the time coordinate z. The main
purpose of this section is to bridge these gaps and reconcile the classical description
of nonlinear optics with the quantum mechanical pictures. This prepares readers for
the quantum treatments discussed in the rest of the tutorial by linking many of the
observed behaviors back to the dynamics of classical devices, and establishes the
notation used throughout the quantum section. Furthermore, by using the quantum-
classical correspondence, we find the form of the quantum Hamiltonian in such a
way that its parameters are directly tied to the usual parameters found in the classical
theory.

To close the gaps (i) and (ii), we first discuss a general procedure to derive the
evolution of optical field amplitudes for a given quantum model. For this purpose, it is
more insightful to work in the Heisenberg picture rather than the Schrodinger picture
described by Eq. (128). In this picture the evolution of the field operators (rather than
the state) as determined by a Hamiltonian, A = H(a,a"), is given by

0 = Fy(a,a"), (129)

where Fy(a,a") = i[H,a)/h. Here the subscript “q” denotes that these equations of
motion are determined by the quantum Hamiltonian. For a given Hamiltonian, the
Heisenberg equations of motion can be evaluated using a commutator, and conversely,
given the Heisenberg equations of motion and the known commutators between a and
a', the equations of motion can be inverted to determine the quantum Hamiltonian, up
to a constant offset. Starting from (129), we can derive the evolution of the classical
optical fields, i.e., the expectation values of the field operators, by performing the
substitutions & = « + éa and ignoring terms of order da (i.e., déa = 0, daa = 0, and
oada = 0). With these approximations, Eq. (129) for the field operators will only
contain the mean fields,

o = Fy(a,a”), (130)

which resolves the first discrepancy (i). Intuitively, we can understand this step as
ignoring any fluctuations of the field due to da, thereby keeping only the evolution
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of the mean field. Note that F is often a nonlinear function of @ and «*, meaning
that (130) is a nonlinear ODE. This provides a resolution to (ii) as well; nonlinear
ODE:s for field amplitudes arise from the Heisenberg equations of motion, rather than
the Schrodinger equation.

Finally, to resolve the discrepancy between the space- and time-propagating pic-
tures (iii) we must recast the classical equations of motion in terms of spatial field
envelopes that evolve in time rather than temporal envelopes that evolve in space.
A heuristic derivation of the time-propagating equations of motion was presented in
Section 3.4g, and a more formal derivation based on waveguide and resonator normal
modes is given in Appendix B. In either of these cases, the classical CWEs take the
form

0 = Fe(a,a”), (131)

where the complex scalar @ is normalized in photon-number units. For normal modes,
|a(t)|?> corresponds to the expected photon number contained in each mode. We
therefore identify Fourier-domain CWEs that account for the full time evolution of the
normal modes, namely Eqgs. (120a), (120b), as the point of connection between the
classical and quantum theories.

Having resolved the above discrepancies between the classical and quantum models,
we can determine the quantum Hamiltonian by reversing these steps. That is, starting
from the classical time-evolving equations of motion, F., we promote a and a* to
quantum operators, & and &', and enforce commutation relations [21, Ef] = 1. Since the
classical and quantum equations of motion describe the same field amplitudes in the
mean-field limit, we assert that the quantum equations Fy(a,a") must have the same
form as F(a, @) with @ and o* replaced by & and &'. Finally, with F4(a,a"), we can
infer the form of the quantum Hamiltonian A by inspection.

A benefit of this top-down approach is that the resultant quantum model is ensured
to agree with classical predictions regarding the mean-field dynamics. In addition,
since the classical equations of motion are derived directly from Maxwell’s equa-
tions, the resultant Hamiltonian, and thus our quantum model, always recovers
Maxwell’s equations by construction. A drawback is that we do not immediately
have an answer to the question “what exactly is the field quantized here?” While such
questions can, of course, be answered by deriving the Hamiltonian using canon-
ical field quantization [45,57-60,62,63], this bottom-up approach to quantization
is often theoretically involved, and a failure to properly choose the fundamental
fields to be quantized can lead to systematic errors in the resulting quantum model
[45,57,63]. While lacking the rigor of canonical field quantization, this phenomenolog-
ical approach facilitates simpler calculations for experimentalists, whose interests are
simply in obtaining a form of Hamiltonian that predicts their experimental outcomes
correctly.

The rest of the section is structured as follows. In Section 4.2, we introduce a more
detailed derivation of mean-field equation from a quantum Hamiltonian, using a y®
system as an example. The purpose of this subsection is to provide intuition on how
the functional form of a Hamiltonian and the corresponding mean-field equations are
related to each other. In Section 4.3, we write down a quantum Hamiltonian for a y®
nonlinear resonator so that the Heisenberg equation of motion agrees with the classical
CWE:s in the mean-field limit. Finally, in Section 4.4, we consider the small and large
size limit of y® nonlinear resonators, which recover the behaviors of single-mode
CW resonators and traveling-wave pulse propagation, respectively. We reiterate here
that the Hamiltonians presented in these subsequent sections are equivalent to those
derived more formally using canonical quantization [60,63].
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4.2. Obtaining Coupled-Wave Equations from the Heisenberg Equations of Motion
To recover the classical equations of motion, we assume that the quantum state
associated with each mode corresponds to a coherent state for all time,

|¢classical> = D(Q’)l()), (1 32)

where |0) is a vacuum and @ characterizes a complex field amplitude. The displacement
operator D(a) moves a phase-space distribution of a vacuum from the origin, to excite
a coherent state with mean amplitude «. In making this assumption, we effectively
confine the equations of motion onto a low-dimensional manifold spanned by the
coherent states. This mean-field approximation is obtained by taking expectation
values of the Heisenberg equations of motions with respect to |W¢jassical) s

i

da = ha&TH(a, a') - da = -

i

h(‘)a*H(a, a’), (133)

where H = H(a,a%) is the Hamiltonian of the system and the short-hand notation
Oyf(a,a’) = [&, f(a, Eﬁ)] has been introduced to denote that evaluating the commutator
of f(a,a") with a yields the same expression as taking the partial derivative of f(a, a")
with respect to &' when & and a" are treated as scalars. The mean-field equation (133)
can be interpreted as a time-propagating CWE. We can easily extend the equation to
multimode dynamics involving a vector of field operators @ as

b, = —%afH(a,a"') — da = —%HQ*H(Q, a), (134)

where a is a vector containing complex mean-field values and d,- is a gradient
operator.

For instance, consider a Hamiltonian of the form
f/h = g(a% +a%bh, (135)

which is usually used to describe y® nonlinear interactions between the first-
and second-harmonic modes with annihilation operators @ and b, respectively. The
Heisenberg equations of motion are

o4 =—igalh  8b= —%geﬂ. (136)
These equations can be put to the form (134) by summarizing the operators in a vector
form @ = (a, b)7. Taking expectation values of both sides with respect to the product
state |Wenassical) = |@)|B), we obtain CWEs describing the evolution of the coherent
state amplitudes

o = —iga™p 0B = —%az. (137)

Here, it is worth asking what are the features that are excluded from the mean-field
approximation. To see this, we rewrite the full wave function |) in a form

l¢) = Dlgp), (138)

where classical dynamics are factored out in the form of a displacement operator.
The wave function |¢p) is the state in the displaced frame, which evolves under the
Hamiltonian Ap(f) = DYAD — iD'6,D. Thus, we find mean-field approximation to be
equivalent to assuming Ap ~ 0 and ignoring any deviation of quantum fluctuations in
|¢p) from a vacuum.
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4.3. A Phenomenological Quantum Model for a y® Nonlinear Waveguide

In this subsection, we introduce the Hamiltonian for a y® nonlinear waveguide.
Following the same approach as was used in the classical section, we first consider
a finite spatial window —L/2 < z < L/2 over which we assume a periodic boundary
condition. Such a finite spatial window leads to discrete wavespace modes, which we
can quantize through the standard approach to the electric field quantizations. Starting
from a model with finite L, we can take various limits to derive models depending
on the goal. If our aim is to model the propagation of an isolated pulse, we can take
the limit of L — oo to obtain a model for an infinite waveguide. In this picture, L
is an artificial parameter introduced solely for the purpose of quantization, and any
finite-size effects that depends on L are artifacts. On the other hand, L can be set
to model a physical resonator with size L, in which case finite-size effects are real.
In the following, we first establish a correspondence between quantum and classical
theories using a model with finite L. We then consider the limit of small and large L,
which correspond to single-mode resonator and free propagation of an optical pulse,
respectively.

We denote the carrier angular wavenumber for the first harmonic as k, = ZT”ma,

which sets the carrier wavenumber of the SH to &, = 2k,. We label wavenumber
modes with &, ,, = k, + 6k, for u € {a, b}, where dk,, = 2nm/L is the deviation of the
mode from the carrier wavenumber k,, so that k,, = %”(mu + m). The correspond-
ing modes are characterized by the annihilation operators &, and b,, for first and
second harmonics, respectively, and they fulfill the canonical commutation relations
[&m’&;/] = [Bm’l;jn/] = O -

With these wavespace operators, we can also denote field operators in the real space
via Fourier summations

1 & . A I & o o
a, = E Z el(ska&m’ b, = TL Z el&kabm‘ (139)

m=—oo m=—oo

Intuitively, a! (ZA)I) creates a localized excitation at position z in the first- (second-
Yharmonic mode. The definition of the field operators ensures that the commutation
relations [a,, &Z,] = [b,, 13:,] = §(z — 7’) are fulfilled. We note here that the delta function
8(z — 2) has a unit of [length™'], the field operator &, has a unit of [length™/?].

In the following, we write the functional form of the Hamiltonian by inspection from
the classical CWEs, which, in general, takes the form

H = I:IL + I:INL. (1 40a)

The linear term Ay represents the dispersion of the waveguide in the absence of any
nonlinearity, and Hy; describes nonlinear interactions. Nominally, the dispersion of the
waveguide can be denoted as w(k), which is the frequency (i.e., energy) of a mode w as
a function of the wavenumber of the mode k. Here, we expand the dispersion function
around the carrier wavenumbers k, for first (v = a) and second (1 = b) harmonics,
defining w,(6k) = w(k, + 8k). With this notation, the linear Hamiltonian is expressed
as

Bh= ) / dzifw,(-i0) = Y > i wul Sk, (140b)

ue{ab} uefab} m

We then consider the nonlinear terms. Classically, the nonlinear polarization generates
an interaction of the form given by Eq. (137) at each point in space, which suggests
a localized interaction in which two fundamental photons may “collide” to produce a
second-harmonic photon (and vice versa). These observations motivate us to denote
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the nonlinear Hamiltonian as

A r A2RT L AT ot b
HNL/h: E/dz (azbZ‘FClI bz) 2\/_ Z (amlamz m1+m2+aj;11 jﬂzbml+m2)

my,my
(140c¢)
where r is a phenomenological nonlinear coeflicient. The structure of the nonlin-
ear Hamiltonian as written in the wavespace, Hyy « (G, Gm, Bml my F &LI&LZEmWnZ),
implies that the photon—photon interaction conserves the total momentum (i.e.,
(my + my) —my —my = 0).

With this phenomenological Hamiltonian, we now are ready to derive mean-field
equations that recover the dynamics of the classical CWEs. The evolution of the field
operators, as described by the Heisenberg equations of motion, are given by

B, = —iw,(-i0.)a, — iralh., &b, = —iwy(-id.)b, — i%&f. (141)

Taking an expectation value of both sides with respect to a coherent ansatz state, we
obtain

O, = —iw,(=i0)a; — ira’p,, 0,8, = —wy(-id,)B, — (142)

22’

where we use the notation @ = (4.) and B, = (b,) [148]. Equations (142) are identical
to the classical Equations (121a), (121b), up to an overall choice of the rotating frame.
Comparing the coefficients in front of the nonlinear terms, we find

= \2hwaVv2 Ve bt (143)

where we have denoted the group velocity of the first- and second-harmonic modes as
Vg and v, respectively. The SHG normalized efficiency 1o has a unit of [power™ -
length™2], and therefore the overall nonlinear coefficient r has a unit of [length'/? -
time™'].

In principle, solving the equations of motion generated by the Hamiltonian (140) yields
the full multimode quantum state generated by the nonlinear waveguide. However, as
with the classical CWEs, it is often more convenient to consider the Hamiltonian
in a rotating frame where the overall phase and group delay accumulated by the
envelopes due to linear propagation is factored out. More specifically, we consider
a copropagating frame with a reference velocity v, and phase w; via the unitary
transformation

0(r) = exp {—i D [(@r + vikn) &t + Qe + vik) bib,] z} : (144)
m
which induces operator transformations
f]Tam f] = e_i(wr‘*‘Vrékm)lam’ UT@m f] - e_i(zwr‘f'vrékm)tgm. (1 45)
These transformation leaves Ay, invariant, while the linear Hamiltonian is transformed

as
Hh= ) / Qi ow (<) = D D ith 606K )i, (146)

uef{a,b} uef{ab} m

where 7 = z — vt is the comoving coordinate, and
0wy (0k) = wu(6k) — w, — v, Ok, dwy(6k) = wp(6k) — 2w, — v, 0k (147)

contain the residual phase accumulation within this rotating frame.
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We note here that this transformation is formally equivalent to our definition of
envelope quantities in the context of classical nonlinear optics, here generalized for
field operators rather than c-number quantities, with the residual dispersion terms dw,,
now playing the role of the integrated dispersion Dj,, encountered in z-propagating
models. While the choice of w, and v, is arbitrary, in practice, it is useful to choose them
such that the trivial phase and spatial dynamics of the system are eliminated. This is
particularly important for numerical evaluations; typically, the nonlinear coupling rate
is on the order of few megahertz, while w; is on the order of hundreds of terahertz, and
simultaneously keeping track of these vastly different time scales is computationally
expensive. To eliminate this overhead, as with our previous treatment of ultrafast
behaviors, we will define rotating frames that eliminate the explicit linear phase
evolution of the carrier frequency, as well as the group delay accumulated by the
envelopes. As an example, taking w, and v, to be the phase velocity and the group
velocity of the first-harmonic carrier, we can eliminate the zeroth- and first-order
dependence of Sw, on dk. For dwy, the residual zeroth-order term dw;(0) and first-
order term dw, (0) physically represent phase mismatch and group-velocity mismatch,
respectively. For notational simplicity, we use the z subscript to denote comoving
coordinate for the rest of this tutorial. Moving into the rotating frame, the overall
Hamiltonian takes the form

Aih= / dzajwu(—iaz)az+% / dz (agzsyazzéz)

ue{a,b}

AT N r ~ ~ ~ At At %
Z Z i, 00, (5kip )ty + ﬁ Z (amlamzbm1+m2+amlamzbmwmz) :

uc{a,b} m mp,my

(148)

4.4. Small and Large L Limits

Here, we start from the quantum model we derived in the previous section to consider
two extreme cases of L, i.e., small and large L limits, from which we obtain a single-
mode and a continuous multimode Hamiltonian, respectively. The Hamiltonians and
notation we introduce in this subsection will be the basis for the discussions in the
following sections.

4.4a. Small L limit

First, we consider the small L limit L — 0, which corresponds to the physics of a small
resonator. In this limit, the gap between the wavenumbers of neighboring modes grows
to infinity, i.e., k11 — 0k, = 2/L — oco. Consequently, all the modes get isolated
from each other, and nonlinear interactions can mediate coupling among only few
modes that are phase-matched. For instance, when only the carrier modes can interact
strongly, the Hamiltonian effectively reduces to a single-mode model

f/h= g(ag@gmg%) + 6w, (0)ara + 5wy (0)B] bo. (149)

The L dependence of the CW coupling strength

’
g=— (150)
VL
indicates that smaller resonators can produce stronger nonlinear interactions, reflecting
the enhancement of electric field amplitude per photon inside the resonator. This is
the same expression as we obtained in Section 3.4;.

Note that (149) can be further simplified via an appropriate choice of reference
frequency w;; we can eliminate dw,(0) and dw,(0) by setting w, = w,(0) and
wy = wp(0)/2, respectively.
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4.4b. Large L limit

The other limit, L — oo, corresponds to an infinitely long waveguide. In this limit,
the spacings among the wavenumber modes vanishes, i.e., 0k;,+1 — 0k, = 2 /L — 0,
forming a continuum. We model such continuous feature by defining field operators
for continuous wavespace modes

a = / dze™™%a, by = / dz e 2"5p,. (151)

Here and in the following of this tutorial, we use s to denote non-angular wavenumber,
which is related to the nominal angular wavenumber k via k = 2zrs. Such non-angular
wavenumber may seem slightly unconventional but is beneficial from notational per-
spective as it eliminates extra prefactors in front of the integrations [149]. Intuitively,
&I (lAyz) creates a delta-function-like first- (second-)harmonic excitation at wavenum-
ber s, and the operators fulfill the commutation relations [as, &I,] = [b,, IA):,] =6(s—s').
Since (s — s”) has a unit of [length], the field operator in the wavespace &, has a unit
of [length'/?]. The overall Hamiltonian is written as

b=y / dsﬁj,éwu(Zﬂs)its+§ // dsidsy (8,8, 48,8, Byyvss )+ (152)

ue{a,b}

which is the continuous wavenumber limit of (148). In Section 8.4a, we will study the
dynamics generated by these Hamiltonians in the small L, large L, and intermediate
limits to better understand how the number of interacting modes qualitatively impacts
device behaviors.

5. PROLOGUE FOR QUANTUM NONLINEAR OPTICS BEYOND MEAN FIELD

In Section 4, we established a procedure for constructing a quantum Hamiltonian for
a given nonlinear optical device. We used a phenomenological quantization approach,
determining the Hamiltonian parameters so that the mean-field-approximated quantum
dynamics match the classical dynamics studied in Section 3. With this Hamiltonian,
we can explore the quantum physics of nonlinear optics beyond the mean-field approx-
imation, which is the goal of the subsequent sections. In this context, this section serves
as a prologue to the following sections and introduces the reader to quantum physics
in nonlinear optics. The heart of this section is the introduction of the GIF, a frame-
work that captures various features of light, from classical to exotic quantum ones, in
a hierarchical manner. Through the lens of GIF, we can intuitively understand how
the number of photons input to a nonlinear system makes a qualitative difference in
how quantum features emerge, based on which we identify three regimes of nonlinear
optics: the macroscopic, mesoscopic, and microscopic regimes.

5.1. Gaussian Quantum Optics

In classical nonlinear optics, the evolution of the quantum state is determined entirely
by that of the mean-field, a(r), leading to a quantum-mechanical description strictly
in terms of coherent states

|lﬁclassical(t)> = D((I(f)) |0>’ (1 53)

where D(a) is the displacement operator that generates a coherent state of amplitude a
from vacuum. Formally, what we covered in Section 3 is only quantum-mechanically
correct in so far as the true quantum state |¥(¢)) is close to |Welassical(?)). However,
under strong nonlinearities or, equivalently, long interaction time in the absence of
dissipation, the distribution of quantum fluctuations can become deformed due to the



430  Vol. 16,No. 2/June 2024/ Advances in Optics and Photonics ) ‘ \ Tutorial

Figure 27
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Single-mode Gaussian unitary operations. Light blue and dark blue distributions rep-
resent the phase-space portraits before and after each operation, respectively. (a)
Displacement operation shifts the overall phase-space distribution. (b) The rotation
operation rotates the distribution around the origin. (c) Squeezing operation extends
the distribution linearly along one axis while shrinking it along the other axis.

nonlinear phase-space flow, forming features that do not resemble those of coherent
states (see Fig. 3 for illustration).

Nevertheless, to lowest order, such distortions can be well approximated as only
stretches and rotations, as opposed to shears, etc. In this case, while the isotropic
distribution of a coherent state around its mean is no longer accurate, the distorted
distribution is still a Gaussian, just stretched and rotated. These transformations that
preserve Gaussianity are referred Gaussian transformations in general, and the subset
of operations beyond displacement, such as rotations and squeezing, are symplectic
transformations. See Fig. 27 for illustrations of these Gaussian transformations in the
phase space. If we want to bring into our model quantum states that feature these
symplectic distortions, then we can introduce a unitary G, generating stretches and
rotations, leading to generic states of the form

[WGaussian(1)) = D(a(1)) G(C(0), S(1)) 0). (154)

The study of optical states of the form (154) is the basis of the field of Gaussian quantum
optics. In this description, the quantum state can still be concisely represented by three
sets of c-numbers, () for D, and C(r) and S(r) for G. Formally, these Gaussian
unitaries are defined by the transformations

Di(a)aD(a) = a+ « (155a)

G'(C,9aG(C,S) = Ca+ Sa’, (155b)

so that C and S together comprise a propagator, or Green’s function [43,150,151], for
the operators in the Heisenberg picture, consistent with their behavior in Section 3.
Thus, specifying the evolution of @, C, and § in Gaussian quantum optics is a full
quantum description of the system dynamics, provided the true quantum state |i/) is

close to |'70Gaussian> .

However, it remains to be specified how C(¢) and S(¢) should be determined. The most
widely used (but not the only) approach is to employ a linearized approximation,
as follows. First, as already described, we use a mean-field approximation to derive
classical mean-field dynamics for a(¢). Then, to determine what remains after taking
these mean-field dynamics into account, we move to a displaced frame given by
D(«), which induces a transformation on the system Hamiltonian according to Hp =
DYAD - iD',D. Crucially, we can partition the terms of Hp according to

FID = I,'\IG + FINg, (156)
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where, by construction, Hg contains all and only the quadratic terms, such as a'a
and aa, that generate symplectic operations. In this case, Hyg contains the remaining
terms; when D is chosen properly, the dominant linear terms (first-order in operators)
are eliminated from Ay, only leaving higher-order nonlinear (non-Gaussian) terms in
Hyg. In conventional experimental regimes of nonlinear optics, the magnitude of Hg
is much greater than Hyg, which justifies our approximation Hp ~ Hg. As a result,
the leading-order corrections to the quantum dynamics of | assical) are captured by
the Gaussian unitary

G(t) = T exp (—% '/Ot dr I:IG(t’)) (157)

for [WGaussian)- Here, 7 denotes the time-ordering operator. Then, C(¢) and S(¢) are
obtained from G(t) so defined: if we take a time derivative of (155b) and use the
equality i70,G = HgG, it follows that

6,Ca+ 3,Sa' == 6" [, G (158)
That is, we obtain a differential equation for C and S, which can in principle be
solved to generate their evolution. Going one step further, we can also compare the
coefficients of @ and &' on the two sides of this linear equation (remembering that Hg
is a quadratic function of operators to simplify the commutator). This tells us that

6C =316 fs.a16.a"Y, 8 = ~316'[flc.a1G. al. (159)

These treatments can be easily extended to multimode scenario by treating a as a
vector and C and S as matrices [43].

The linearized approximation |YGaussian) Specified by a(¢), C(¢) and S(¢) is surprisingly
effective in capturing realistic experiments, and almost all experimental studies in
quantum nonlinear optics have been based on this approximation [46-50]. As discussed
before, the success of such an approximation can be understood in terms of a separation
of energy scales: so long as the energy contained in the mean-field excitation and the
quantum fluctuations are significantly different, the quantum fluctuations see the effect
of the mean field (G is determined by «), but not the other way around. In Section 6,
we apply this linearized approximation to OPAs to elucidate their Gaussian quantum
dynamics.

5.2. Gaussian Interaction Frame

Conversely, the breakdown of the linearized approximation implies that quantum
fluctuations start to affect the evolution of both the mean field and the quantum
fluctuations themselves. For instance, in OPG [40,152], where a coherent pump field
induces strong vacuum squeezing of the signal field, the exponential growth of the
downconverted signal photons eventually grows to a comparable intensity to the
pump. At this point, the signal quantum fluctuations begin to deplete the mean field
of the pump [153]. Such dynamics can only be explained by retaining terms in the
Hamiltonian that are ignored in the linearized approximation H~ }EIG; these term can,
in principle, produce non-Gaussian features in the quantum state.

To capture these non-Gaussian quantum features, we present a framework that builds
on Gaussian quantum optics instead of completely abandoning it. This begins by
noting that we can write the true quantum state in the form

ly) = DGler) (160)

with no loss of generality. Here, an insightful way to interpret (160) is to see U = DG as
aunitary defining a GIF, in which classical mean-field and Gaussian quantum dynamics
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Figure 28
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Illustration of how a compressed quantum-state representation is realized using the
GIF. (a) In the lab frame, the phase space distribution can be far away from the
origin, which requires a large Fock space for an accurate state representation. (b)
By factoring out the Gaussian dynamics in the form of a Gaussian unitary U, the
state description in the GIF can be more efficient. The orange ellipses represent the
Gaussian approximation of the true state in each frame. Adapted with permission from
Ref. [69].

have been factored out. In contrast to the approach in Gaussian quantum optics, the
residual non-Gaussian quantum fluctuations are captured by the interaction-frame state
|¢r1), which evolves under the Hamiltonian in the interaction frame

i =UHU-iU3,0. (161)

The GIF offers both practical and conceptual benefits. First, the GIF enables a more
efficient numerical model than a lab-frame model. To capture a non-Gaussian quantum
state with n photons, one would naively need n-dimensional Fock space to numerically
represent the wave function, which is a daunting task considering that it is not unusual
to find millions of photons in nonlinear optics. The situation gets only worse when
multiple modes are involved, where the Hilbert space dimension scales as n" for the
number of modes M. In practice, most of these photon excitations correspond to mean-
field and Gaussian quantum features, such as the displacement and anti-squeezing of
the quantum state. Therefore, as shown in Fig. 28, we can factor out these trivial
features in the form of a Gaussian unitary U to minimize the excitation in the GIF,
thereby enabling a concise representation of the quantum state.

Second, using the GIF provides crucial insights into how non-Gaussian quantum inter-
actions occur, which are harder to see in the lab frame. As we can see in Eq. (161),
the form of the non-Gaussian interaction depends on the structure of the Gaussian
unitary /. Since Gaussian quantum features typically have a much larger magnitude
than the higher-order non-Gaussian features, the Gaussian part of the dynamics pro-
vides crucial information on where and how non-Gaussian quantum features emerge.
For instance, as shown in Ref. [154,155], a dominant Gaussian Hamiltonian Hg can
confine non-Gaussian dynamics to its eigenbasis, realizing emergent functionalities,
e.g., quantum-non-demolition measurements. In Section 7.3, we use the knowledge
of U to identify a handful of modes that predominantly experience non-Gaussianity,
helping to inform a tractable model for multimode non-Gaussian dynamics.

5.3. Macroscopic, Mesoscopic, and Microscopic Quantum Nonlinear Optics

Typically, the onset of non-Gaussian quantum physics coincides with the point where
classical dynamics exhibit strong saturation. Since the nonlinear dynamical rate typi-
cally increases as the number of pump photons, it is, in principle, possible to trigger
saturation on a given nonlinear device by simply driving it hard enough, no matter
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Figure 29
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Schematics for the phase-space dynamics under Kerr nonlinearity. The black arrows
depict the scale of vacuum-level quantum fluctuations. (a) When a macroscopic num-
ber of photons are involved, non-Gaussian quantum features appear on top of strong
squeezing, making these quantum features highly prone to decoherence. (b) In the
mesoscopic regime, non-Gaussian quantum features appear on top of a moderate mag-
nitude (i.e., hundreds to dozens of photons) of Gaussian quantum features. (c) In the
microscopic regime, quantum fluctuations are so large that the hierarchies among the
mean field, Gaussian quantum features, and non-Gaussian quantum features collapse.
__________________________________________________________________________________________|

how weak the nonlinearity is. Then, what has prevented us from using such operations
to realize, e.g., non-Gaussian quantum light sources? Here, a key to answering this
question is the number of photons required to trigger saturated nonlinear dynamics.
Before significant non-Gaussian quantum features are generated, Gaussian quantum
fluctuations first have to grow to the magnitude that can affect the mean field. As
a result, when a strongly driven weakly nonlinear device reaches saturation, huge
Gaussian quantum features (e.g., squeezing and mean field) should be present, and
non-Gaussian quantum features can only be present on top of them. These Gaussian
features make the exotic quantum features that ride on top of them extremely prone
to any experimental imperfections (e.g., loss and phase noise), making it impossible
to observe them in realistic experiments, and one can only detect their semiclassi-
cal remnants [156] (see Fig. 29(a)). To resolve non-Gaussian quantum features, it is
thus essential to have strong enough nonlinearity to induce saturation with a non-
macroscopic number of pump photons. We discuss how the losses affect quantum
features in more detail in Section 5.4.

These considerations motivate us to single out an intermediate mesoscopic regime of
nonlinear quantum optics. In this regime, only hundreds to dozens of photons suffice to
induce saturated nonlinear dynamics and squeezing that is comparable to the intensity
of the mean field, and all of the mean field, Gaussian quantum, and non-Gaussian
quantum features crucially contribute to the dynamics (see Fig. 29(b)). Because of the
moderate level of Gaussian features, non-Gaussian quantum features could reliably be
generated and sustained. In Section 7, we unravel non-Gaussian dynamics of OPAs in
the mesoscopic regime as a case study, showing the essential roles the GIF plays in
the analysis.

Beyond the mesoscopic regime, as the nonlinearity and interaction length increase
further, the threshold pump photon number to cause saturation eventually reaches
the order of unity. In this regime of microscopic nonlinear optics, the magnitude of
quantum fluctuations is equivalent to that of the mean field and, thus, their distinction
becomes meaningless. In this regime, it is more appropriate to perceive photons as
particles interacting with each other, like a photon gas, for which a discrete-variable
(DV) formulation becomes natural. Such DV pictures naturally find analogies in atomic
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physics, exhibiting behaviors reminiscent of atomic physics, e.g., Rabi-like oscillations
in photon conversion dynamics [157]. Many theoretical analyses in this regime played
significant roles in the initial conception of photonic quantum information [158-160].
In Section 8, we provide a case study of optical parametric interactions among a
microscopic number of photons, showing that many classical intuitions break down
in this regime.

5.3a. Further Reading

Readers can refer to Ref. [52] for a review on both theoretical and experimental efforts
toward understanding and engineering emergent non-Gaussian quantum physics in the
mesoscopic regime.

5.4. Role of Loss in Quantum Nonlinear Optics

For the experimental observation of exotic quantum features in nonlinear quantum
optics, photon loss is expected to be a major roadblock, and in this subsection, we
explain when and how photon loss diminishes quantum features. Here, it is our inten-
tion to keep the discussions to the most basic and intuitive level. While the physics
of loss and quantum decoherence constitutes a fertile field of open quantum systems,
even unitary (i.e., lossless) dynamics of quantum nonlinear optics are rich enough that
we cannot cover beyond unitary physics in this tutorial. We thus lead interested readers
to further references in open quantum systems at the end of this subsection.

It is worth noting that the impact of loss is usually much more severe for quantum
states than classical ones. Intuitively, Wigner functions of a state after loss are given
as a convolution between the original Wigner function (with appropriate scaling) and
a Gaussian distribution, which “blurs” features in the phase space. Consequently,
more exotic quantum states with finer phase-space features lose their coherence more
quickly. To see this more visually, we show Wigner functions of a coherent state, a
Schrodinger’s cat state (i.e., a coherent superposition of two coherent states), and a
squeezed Schrodinger’s cat state under various losses in Fig. 30(a). While the coherent
state does not exhibit any qualitative change in its phase space portrait under loss except
for its amplitude, the loss critically affects the (squeezed) cat states, washing away
the non-classical interference patterns. These variations can be seen more clearly
in Fig. 30(b) and (c), where we show the Wigner function negativity [161] and state
purity [158], respectively. The negativity of the Wigner function is used to quantify the
non-classicality, which we observe is quickly lost under photon loss for the (squeezed)
cat states. On the other hand, a coherent state does not have any negativity to begin
with, due to its classical nature. The state purity measures the coherence of a quantum
state, and any impurity implies that quantum information is lost due to the photon
loss. Here, while the (squeezed) cat states become impure quickly, the coherent state
remains pure under any amount of loss, reflecting the robustness of classical features
to decoherence.

It is worth noting that the squeezed cat state loses quantum features much more quickly
than the normal cat state, despite they having the same amount of negativities to
being with. This is because additional squeezing increases the magnitude of quantum
fluctuations, increasing the effective rate at which photons are lost. Such increased
magnitude of quantum fluctuations is also correlated with the horizontal stretch of
the interference patterns, making them more prone to the blurring effect that the loss
induces. These observations imply the fragility of quantum features in the macroscopic
regime: owing to the strong Gaussian dynamics in this regime, non-Gaussian quantum
features become highly stretched in the phase space, getting hit more severely by
photon loss.
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Figure 30
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(a) Wigner functions of a coherent state (top row, blue frames), a Schrodinger’s cat
state (middle row, orange frames), and a squeezed cat state (bottom row, green frames)
under various ratios of photon loss. The coherent state has a displacement of @ = 2.5.
The cat state is an even superposition of coherent states with @ = £2.5. The squeezed
cat state is obtained by applying a squeezing operation with power gain of 3 to the cat
state, where the x quadrature gets amplified. (b) Volume of Wigner function negativity
[161] and (c) purity of the states for various losses.

___________________________________________________________________________________________|

5.4a. Further Reading

For introductory contents for general physics of open quantum systems, readers can
refer to Refs. [162,163]. For nonlinear-optical systems, Refs. [145,164—166] discuss
physics that arises due to the unique interplay among quantum nonlinearity, linear
loss, and nonlinear loss. Sometimes, decoherence occurs in a non-Markovian manner,
which is reviewed in Ref. [167].

6. GAUSSIAN QUANTUM PHYSICS OF NONLINEAR OPTICS

6.1. Introduction

In the previous section on classical nonlinear optics (Section 3), we have seen that
CWE:s fully capture nonlinear interactions among classical light waves. As the clas-
sical mean fields evolve under the CWEs, the phase-space distribution of quantum
fluctuations also evolves under the same dynamics, experiencing deformations. To
the lowest order, such deformation can be well-approximated as linear displacement,
rotation, and squeezing, which map a Gaussian state to another, and thus is referred
to as Gaussian unitary (see Fig. 27 for illustration). Here, displacement and rotation
map an initial coherent state only to another coherent state, implying that they are
essentially classical operations that can be physically realized only using linear optics
(i.e., delay line, coherent light source, and beam splitters). On the other hand, the
squeezing operations decrease or increase the variance of quantum fluctuations and
can produce a non-classical state of light, i.e., squeezed light [168,169], from an initial
coherent state. Such squeezing operations inherently require an active gain medium
[151] and have filled a role for quantum science and technology that nonlinear optics
is uniquely suited to providing [170-172].
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This section introduces how to model and understand Gaussian quantum features that
appear naturally in nonlinear-optical dynamics. A central tool we employ is a linearized
approximation, where we assume that the quantum fluctuations do not affect the
dynamics of the mean field and the quantum fluctuations. Under this approximation,
the photon dynamics can be modeled as Gaussian unitary. We apply these theoretical
tools to unravel the physics of an OPA as a representative example. Before directly
going into the contents of this section, we encourage readers to visit a short prologue,
Section 5, to get familiarized with the terminologies and theory tools essential for the
quantum formulation of nonlinear optics.

The structure of this section follows the theme of the overall tutorial, i.e., single-
mode to multimode. In Section 6.2, we introduce a most elementary case of single-
mode OPA, a basic building block for more complicated setups. In Section 6.3, we
consider a broadband OPA on a nonlinear waveguide pumped with CW light, showing
that seemingly multimode dynamics of the broadband field can be decomposed as
independently squeezed pairs of modes in the frequency domain. Finally, in Section
6.4, we consider the most complicated scenario of pulse-pumped OPA on a nonlinear
waveguide. Even in this case, it is shown that the system dynamics can be decomposed
to independent squeezing of supermodes, a linear combination of canonical frequency
modes.

6.2. Single-Mode OPA

In this subsection, we introduce a most basic model for Gaussian quantum optics, i.e.,
single-mode OPA. Based on the model, we show how to use the undepleted pump
approximation to derive the Gaussian quantum approximation for the system dynam-
ics. As a critical theory tool to concisely capture such Gaussian quantum dynamics,
we use the formalism of propagators, which characterizes the linear evolution of the
optical fields. We specifically highlight how the competition between phase mismatch
and parametric gain determines the qualitative behavior of an OPA. While natural
OPA dynamics in a nonlinear waveguide are often inherently multimode (and spe-
cial engineering efforts are required to strictly enforce single-mode interactions), the
single-mode physics we discuss in this section provides valuable insights into more
general multimode OPA dynamics discussed in later subsections.

The following discussions follow the pipeline presented in Section 5.1. The
Hamiltonian for a single-mode OPA takes a form

fyh= g(aziﬁa"'zz}) +sd'a, (162)

where & and b are the annihilation operators for the signal and pump modes, respec-
tively, g is the y'® nonlinear coupling constant, and & is the phase mismatch. These
parameters can be connected to classical experimental parameters as discussed in
Section 4.4. Using the mean-field approximation, we obtain classical CWEs

i0a =ga* B+ da ioB = %az, (163)

where @ and § are signal and pump mean-field amplitudes. To solve the mean-field
evolution analytically, we perform an undepleted pump approximation, asserting that
the signal field amplitude is small enough a =~ 0 that it does not deplete the pump
field. As a result of this approximation, we get a time-independent pump amplitude

B(1) = ifo, (164)

where we have taken if3) to be the initial amplitude. Then, we linearize the dynamics
of quantum fluctuations to derive the Gaussian unitary G, which is generated by the
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Gaussian Hamiltonian terms

Hﬂh:-%@2—$%+5wa (165)

where we have defined a parametric gain u = gf3y. The Gaussian unitary G can be com-
pletely characterized by the propagators, whose equations of motion follow from (159)
as

0,C(t) = uS*(r) —i16C(2), 0,8(t) = uC*(r) — 165(z), (166)
which can be summarized in a vector form
C C
with
-0 u
M = ( - 6)' (168)

Note that this equation of motion takes an equivalent form to that we obtained in
classical formalism, with the propagation coordinate changed from space to time.
With the boundary conditions C(t = 0) = 1 and S(¢ = 0) = 0, the propagator dynamics
are solved analytically as [173]

_ o, 19 : 2 _ 52
C(t)—cosh( u>—0 t) = smh( u> -6 t), (169a)
e u . ——
S*(r) = —u2_52 s1nh( u> -6 t). (169b)

A

To intuitively understand the action of the Gaussian unitary G, we rewrite the
propagators as

C(t) = A" cosh 1A™ S(t) = A™ sinh 2A™, (170)

where A > 0 is the squeezing parameter that gives the field gain as . The complex
amplitudes A™°" are normalized as |A"™/°"|?> = 1 and characterize the input/output
modes that experience quadrature squeezing via a™°" = A"/ The motivation
behind the choice of A™/°" will become clear shortly.

‘We then have ' '
G'a™G = cosh Aa™ + sinh A a™, (171)

with which we obtain
GT;COMG — e/lj\Cin, G'I‘ﬁout("; — e—/lﬁin (172)

forz = (a+a")/2 and p = (a — a")/2i. The quadrature operator transformations (172)
show that G plays the role of a phase-sensitive amplifier with gain ¢!, where the
quadrature of the input mode 2" (p'") is amplified (deamplified) to be mapped to the
quadrature of the output mode 3°"* (p°"'). Note that the parametrization (170) was
made such that the x (p) quadrature of the output mode is proportional to the x (p)

quadrature of the input mode.

Specifically, for the case of vacuum squeezing, the final state becomes a squeezed
vacuum state whose p°'* quadrature is squeezed by the field gain of e, whereas its £\
is anti-squeezed by the same gain. This can also be seen from the quadrature variances

22 6—2/1

ZT’

quadrature exhibits sub-vacuum

e

<(20ut)2> — T <(If)0ut)2>

where 1/4 is the vacuum noise level, so the po"

quantum noise.

(173)
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(a) Real and imaginary parts of the eigenvalues of M shown as functions of normalized
phase mismatch 6/u. At the exceptional points 6/u = +1, the eigenspectrum changes
from purely real to purely imaginary. (b) Dynamics of the signal photon number (i.e.,
power of parametric fluorescence) for various values of phase mismatch (the values
of §/u correspond with the colors shown in the labels in (¢)). (¢) Potential function
Hg = u@p + pR) + 6(32 + p* — 1/2) plotted in the quadrature space for various values
of the phase mismatch. At the exceptional points |§/u| = 1, potential shapes change
from quadratic to hyperbolic. Adapted with permission from Ref. [69].
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A useful quantity to characterize the system behavior is the mean photon number

@y = S0P = smf(w—yg. (174)

W2 — 52
The value of (a'a) can intuitively imply the signal state we have; When (a'a) < 1
holds, the signal state is approximately a superposition of a vacuum state and a
small amplitude of biphoton state, i.e., |0) + €]|2) with € < 1. This low-gain regime
is conventionally called the limit of SPDC because the stimulated downconversion
process can be ignored in this regime [174]. In the other limit (a'a) > 1, a large
population of signal photons induces stimulated downconversion, forming a strongly
squeezed vacuum state.

In the following, based on the signal photon population, we discuss the behavior
of vacuum squeezing for various system parameters, which we find is strongly tied
to the structure of the generator of the dynamics M (168). More specifically, we
will find the eigenstructure of M plays a crucial role. The eigenvectors of M are
vE = (6 £ V6% — u?,iu)T with eigenvalues +iV§% — u?, and their qualitative features
change at the boundary value |6/u| = 1, at which point the eigenspectrum of M
changes from purely imaginary values to purely real values (see Fig. 31(a)). In the
language of non-Hermitian physics, this phase-transition point is referred to as an
exceptional point (EP) [175].

For |6/u|>1, corresponding to a regime with a large phase mismatch, the eigenvalues
of M are purely imaginary. In this regime, the hyperbolic functions in Eq. (174) become
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trigonometric functions with oscillation frequency V62 — u?, which leads to sinusoidal
oscillation of the power of parametric fluorescence as shown in Fig. 31(b). As we
approach the EP |6/u| — 1, the amplitude of the oscillation in signal power (174)
diverges, i.e., u?/V62 — u? — oo, while the oscillation frequency converges to zero
V62 — u? — 0, resulting in a purely quadratic growth of the parametric fluorescence
(a@'a) = u*t*. For |6 /u|<1, corresponding to the regime with a small phase mismatch,
the eigenvalues become purely real. In this phase-matched regime, the hyperbolic
functions in (174) lead to an exponential growth of the signal parametric fluorescence.

To intuitively see how the qualitative behavior of parametric interaction changes at the
boundary value |6/u| = 1, it is instructive to rewrite the Hamiltonian in the quadrature
variables

Hg/h = uGp + p3) + 6% + p> — 1/2). (175)
The shape of the potential in the x—p space is depicted in Fig. 31(c) for various |6§/u|.
We here note that classical trajectories of the quadrature variables follow equipotential
lines of the Hamiltonian. For |6/u|>1, the shape of the potential is a two-dimensional
quadratic function with bounded equipotential orbits in the phase space, resulting
in oscillatory behavior. For |§/u|<1, on the other hand, the potential shape turns
hyperbolic, and equipotential lines are unbounded. As a result, quantum fluctuations
are amplified indefinitely to induce exponential growth of parametric fluorescence.

6.3. CW-Pumped Traveling-Wave OPA

In this subsection, we study a most basic Gaussian quantum dynamical system in
a nonlinear waveguide, i.e., CW-pumped OPA. Using the undepleted pump approx-
imation, we show that the CW-pumped OPA can be decomposed into independent
single-mode OPAs in the wavespace. As a result, we can directly adopt the theoret-
ical analysis of single-mode OPA from the previous section to analytically solve the
multimode quantum behavior of the system.

Based on these analytic results, we study the phenomenology of CW-pumped vacuum
squeezing. Specifically, we show that the power of parametric fluorescence grows
polynomially at the beginning (SPDC-like regime) as a function of propagation time,
which turns into exponential growth at longer propagation time (vacuum-squeezing-
like regime). We show that the crossover point between these regimes coincides with
the time where the number of photons in the characteristic photon—photon correlation
length exceeds an order of unity, corresponding to a transition from spontaneous
downconversion to stimulated downconversion.

For a given initial coherent pump profile in the wavespace (b} = B,(0), under the
undepleted pump approximation, the mean-field dynamics at a given interaction time
t (which is related to the propagation distance via the group velocity of light) can
be solved as B,(f) = e 0“»2™) B (0). As we consider a CW pump field at the carrier
wavenumber (i.e., s = 0), the initial pump field is a delta-function-like excitation in the
wavespace S5(0) = iByd(s). By an appropriate choice of the reference phase velocity,
we can always choose a frame in which §w,(0) = 0 (see Section 4.3 for more details),
which leads to a time-independent pump field

Bs(1) = iBod(s). (176)

Physically, |Sy|> corresponds to the spatial pump photon number density. Using
the linearized approximation we introduced in Section 5.1, we obtain a Gaussian
Hamiltonian

iu

Hg/h = -5 / ds (a,a_, —alal)) + / ds &l dw,(27s)a; 177)
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Figure 32
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signal excitation is significant only within the phase-matching window with size ~ As.
(b) In the spatial domain, finite squeezing window translates to finite spatial corre-
lations among photons with characteristic correlation length of Az = 1/As. Adapted

with permission from Ref. [69].
|

with a parametric gain u = Syr. We emphasize here that in contrast with Section 6.2,
where |Bo|? represented the total number of photons in a given spatial mode, |y|*> now
represents the spatial photon number density (with units of [length™']). As in Section
3.4j we may connect 3 to the pump power using Pj, = fiwpvgp|Bo|*, and the nonlinear
coeflicient r (Eq. (122)) has units of [lengthl/ 2. time™! ]. Therefore, the parametric gain
parameter u still has units of frequency as in Section 6.2. The Heisenberg equations
of motions follow

8,1, = gajs—wwa(zns)as. (178)

Here, by moving to a rotating frame given by the odd part of the dispersion, i.e.,
%(6wa(2ns) — dwy(—2ms)), we can eliminate their contributions from (177) without
changing its form. Based on this observation, we are always allowed to assume
dw,(2ns) is an even function of s, which lets us further simplify the Hamiltonian
as

Ho/h = / ds (B3 +H13,). (179)
0
with
HGS/h = +—(A+2 - a—”) + & &”&i (180)
where we have introduced
Oy = dw,(27s) (181)

as a short-hand notation to represent the phase mismatch as a function of wavenumber
s. &, is an even function of s, and

= H
Q>
H
Q>

— = (182)
2

D

is a mode composed of symmetric/anti-symmetric pairs of wavespace modes. Note
that (180) takes the same form as its single-mode y'» Hamiltonian (165), indicating
that the CW-pumped broadband OPA can be decomposed to independent single-
mode squeezings of paired-wavespace modes a*, for which we can directly adopt the
analysis performed in the previous Section 6.2. The pairwise squeezing structure in the
wavespace is depicted in Fig. 32. Note that in this picture, the parametric amplification
is broadband in the wavespace, which, when converted into the space-propagating
picture, corresponds to broadband in the frequency space.
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Because a paired-wavespace mode a; experiences single-mode squeezing, its evo-
lution under the Gaussian unitary G should be given as a single-mode Bogoliubov
transformation

At A ia R

G'arG = Crar + Star'. (183)
The propagators for the paired-wavespace modes can be related to the ones for the
canonical wavespace modes, which are defined via

G'a,G = / dp (Cyplty + Sypaa}), (184)

. 1 1
Cyp = 5(CI+C2)8(s = p) + 5(CI=C2,)d(s +p) (185a)
Sy = %(S;“+S:S)6(s -p)+ %(s;-s:s)a(s +p). (185b)

In the following, we determine the values of the propagators C; and S; using the
results already obtained for the single-mode OPA. Similarly to the single-mode case,
we can summarize the equations of motion of the propagators in a vector form as

Co) 2 (G
where the time evolution is generated by
+ [0 *u
M = ( i i&s) . (187)

By directly adopting the results in the single-mode section, we obtain

C: (1) = cosh (w/uz - 62 t) - \/% sinh (‘/uz - 6?2 t) (188a)
us = oy

% _ *u . 2 _ 2
SE(r) = —\/m sinh (‘/u 62 t) . (188b)

Note that (188) takes exactly the same form as (169) with the only difference in the
overall sign. We note that the symmetries C; = C; and ST = —S; allow us to explicitly
simplify (185) to

and

Cop(D) = CDO(s =p)  Syp(1) = S ()S(s + p). (189)

As far as the undepleted pump approximation holds, (188) provides the analytic
solution to the quantum dynamics of OPA.

Specifically, in the following, we analyze the case of vacuum input, where the OPA
outputs a broadband squeezed vacuum state. To this goal, we first calculate the two-
photon correlation functions in the wave space (i.e., spectral correlation functions)

Sy = (@lay) = / dp St Sy = ISTPS(s - '), (190)
My = (asdy) = / dp % Cpe = ST CH8(s +5). (191)

The photon number spectral density of the parametric fluorescence P; is given by the
diagonal elements of X,y (i.e., the self-correlation terms),

2
P, = u2u—62 sinh? (,/uz—észt). (192)

N

In a waveguide, the phase mismatch ¢, varies as a function of wavenumber s due
to dispersion, which changes the qualitative behavior of the parametric amplification
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Figure 33
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(a) Power spectral density P, and (b) first-order correlation function g'"(z) for CW-
pumped vacuum squeezing. The shaded area in (a) represents the OPA bandwidth,
|s| < As, with associated correlation length given by |z| < Az = 1/As shown in (b).
As the interaction time is increased, only frequencies s within the OPA bandwidth
grow exponentially, which causes the zeros of the correlation function to shift asymp-
totically to Az = 1/As. For the quadratic dispersion assumed here, d; = 0s?, the
phase-matching bandwidth is As = (u/0»)"/?. We note that the power spectral density
shown in (a) is determined by the cross-gain coeflicient for traveling-wave OPA shown
in Fig. 13, here with space and time interchanged as in Section 3.4g. Adapted with
permission from Ref. [69].

__________________________________________________________________________________________|

for different wavenumber components. For the wavenumber modes with |5;/u|>1,
the parametric interaction is phase-mismatched, and the parametric fluorescence
P, exhibits sinusoidal oscillation with an amplitude 2u?/(6? — u?). As a result, no
strong parametric amplification can occur for these modes. For modes pairs that fulfill
|6s/u| <1, the quantum fluctuations of the signal grow exponentially, exhibiting strong
squeezing of the field. At the boundary |6,/u| = 1, which corresponds to an EP of
M, the signal power exhibits quadratic growth as a function of the propagation time,
P, = 2u”#*, marking the transition between exponential growth and sinusoidal oscilla-
tion. Based on this physical understanding, we define the phase-matching window as
the range of wavenumbers that fulfills |6,/u|<1, within which parametric gain grows
exponentially as a function of propagation distance. This window corresponds to the
phase-matching bandwidth analyzed in the classical sections. In Fig. 33(a), we show
the power spectral density for the signal fluorescence, where we observe these features
reproduced numerically.

So far, our discussions have focused on the structure of the signal correlations in the
wavenumber space (corresponding to frequency space). Here, we switch our attention
to the spatial domain to see how the spectral features translate to non-trivial spatial
structures. As a measure of photon—photon correlation, we consider the first order
spatial coherence function

(193)

Since the power envelopes of the generated signal are translationally invariant (i.e.,
(&Z&Z) = (&8&0)), we can set the reference point to z” = 0 without loss of generality,
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leading to

ala .
(= o /ds P, (194)
where we have used (&Z&0> = f ds e>™ P, and

o) = Gjan) = [ as, (195)

is the spatial photon-number density. Physically, (194) implies that the spatial cor-
relation length of the generated signal photons is given by the Fourier transform of
the photon number spectral density (see Fig. 32 for an illustration). Here, it is worth
reminding that the photon number spectral density takes significant amplitudes only
within the phase-matching window. As a result, for a given window size As, the spatial
correlation should have a width Az ~ 1/As, i.e., a broader phase-matching window
leads to narrower spatial correlation length. Figure 33(b) shows numerically calculated
g'"(z), where we observe localized but non-trivial spatial photon—photon correlation
structures.

Here, it might seem possible to argue that one can ignore the spatial photon—photon
correlation structure when the signal dispersion is small enough, because the large
phase-matching bandwidth would lead to vanishing spatial correlation length Az. This
is a tempting simplification especially because the dynamics then become local in
time (i.e., space), which would significantly simplify the physical picture. We would
like to emphasize, however, that we cannot ignore the signal dispersion for OPA, and
thus, finite temporal correlation structure is intrinsic to the broadband squeezing. To
see this more concretely, assume that signal dispersion does not exist, in which case,
0y becomes independent of s. Then, the power spectrum density P also becomes
independent of s, resulting in an infinite power flux density p(f) = / ds Py(t) — oo,
which is unphysical. In reality, finite dispersion prevents the signal fluorescence from
exhibiting infinite magnitude.

Typically, the role of dispersion is most crucial in the SPDC limit (i.e., during the early
time ut < 1), where the signal field is mostly in the vacuum state. Because SPDC is a
process stimulated by vacuum fluctuations, which have an infinite bandwidth, a pump
photon could downconvert to an infinite bandwidth of signal fields in the absence
of dispersion. In reality, competition between the broadband parametric gain and the
signal dispersion determines the fluorescence bandwidth in a non-trivial manner. In
the following, we derive analytic expressions for the dynamics of vacuum squeezing
in this SPDC limit to unravel the role of dispersion.

For this purpose, we first assume a purely quadratic dispersion d; = 05, where o, is
proportional to the GVD at the signal carrier frequency [176]. We note that the value

of the photon number spectral density P, = u’t*sinc? (\/652 - u? t) as given in (192)

is relatively flat up to the point /62 — u® ~ ™!, implying that we can approximate
V62 — u? = &, which lets us convert Eq. (195) into

p(t) ~ uth/ ds sinc? (0ps%t) = #As (ut)*? (196)

with the phase-matching bandwidth

As = (u]o)'2. (197)
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The expression (196) shows that the parametric downconversion (PDC) rate is directly
proportional to the signal phase-matching bandwidth As, and the result becomes
unphysical when zero dispersion is assumed (i.e., 0 — 0 implies As — o0).

It is worth noting that parametric fluorescence shows a fractional time scaling p(¢) ~
1372, instead of the quadratic scaling ~ ¢ that one would naively expect from single-
mode model. Such fractional scaling is caused by the narrowing of the sinc function
in (196) in the wavespace as a function of time, leading to a partial cancelation of the
overall prefactor with ~ #? scaling.

In general, the exact time scaling is determined by the dominant dispersion order in
the OPA bandwidth; when mth-order dispersion dominates, the signal power should

i . . - . .
scale as ~ >~ . For instance, with a purely quartic dispersion &, = o4s*, we obtain

As (ur)'*, (198)

ds sinc? (oys*t) = 5

woreiie [ RN

where I'(x) is the Gamma function, and the phase-matching bandwidth is now given
as

As = (u]oy) V™. (199)

Note that p() is again proportional to the phase-matching bandwidth, and we observe
an expected polynomial time scaling p(t) ~ £7/4 = £2-1.

Figure 34 compare signal photon population, obtained by solving (195) numerically, to
the analytic expressions (196) and (198). Specifically, we show the dynamics of p(f)Az,
which is the expected number of signal photons within a characteristic correlation
length Az = 1/As. Intuitively, Az is a distance over which signal photons can see each
other and, thus, p(f)Az can be interpreted as the number of photons inside a spatial
“bin” within which signal photons can interact. When p(#)Az < 1 holds, each “bin”
is almost in a vacuum state, and the pump photons downconvert only spontaneously,
marking the SPDC-like regime of optical parametric interaction. In this regime, the
signal photon population grows polynomially as a function of the interaction time.
As the magnitude of p(f)Az approaches the order of unity, a finite population of
signal photons within each spatial “bin” stimulates further downconversion of pump
photons, leading to an exponential growth of signal photon population, which marks
the transition to a vacuum-squeezing-like regime. Such crossover from polynomial
scaling (SPDC-like regime) to exponential scaling (vacuum-squeezing-like regime)
around p(r)Az ~ 1 can be clearly identified in Fig. 34.

Finally, we would like to provide an alternative interpretation of the physics in the
SPDC limit to relate it to the later Section 8.2. It turns out that we can rewrite (196) as

4y7

pl0) = B (e (200)

with a characteristic rate
Gpde = (r*/o)'. (201)

As shown later in Section 8.2, g,qc is arate at which a single pump photon downconverts
to a signal photon pair, which explains (200) as a summation of signal fluorescence
independently produced by each pump photon undergoing PDC process (note that
p(1) is proportional to the pump flux density ﬂé). This is a reflection of the fact that
stimulated PDC is negligible in the SPDC limit. The same discussion applies to the
case of purely quartic dispersion, where the single-photon PDC rate is to be modified

0 gpde = (r8/0-4)1/7-
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Figure 34
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Dynamics of the signal photon population within a characteristic spatial correlation
length p(¢)Az for CW-pumped broadband vacuum squeezing, where we consider purely
quadratic and quartic signal dispersion. The gray vertical line (marking the time
around which p(f)Az ~ 1 holds) represents the crossover point between SPDC-like
and vacuum-squeezing-like regimes of optical parametric interactions. We note here
that the saturated limit, where anti-squeezed vacuum depletes the pump, is commonly
referred to as OPG in the literature. Adapted with permission from Ref. [69].
__________________________________________________________________________________________|

6.3a. Further Reading

Readers can refer to Refs. [48,177,178] for recent experimental works that have demon-
strated CW-pumped broadband vacuum squeezing using y‘® nonlinear waveguides.
Though not covered in this work, an OPA can also be realized in a x© nonlinear
waveguide/fiber using dual-pump configuration [45], and readers can refer to Refs.
[179,180] for experimental X(3)—based OPAs.

6.4. Pulse-Pumped Traveling-Wave OPA

In this section, we study the most generic case of traveling-wave OPA, i.e., pulse-
pumped broadband OPA [132]. Due to the involvement of multiple frequency
components of the pump pulse, we can no longer decompose the system dynam-
ics into pairwise independent squeezing of wavenumber components as was done for
the CW-pumped case, and no general analytic solution exists. However, it turns out
that we can still identify discrete “supermodes” as independent entities that experi-
ence independent single-mode squeezing, providing a concise physical picture for the
multimode quantum dynamics. The formalism we introduce in this section to cap-
ture generic multimode Gaussian quantum dynamics provides a crucial scaffolding in
Section 7., where we include non-Gaussian quantum features on top of the Gaussian
quantum dynamics.

For a generic initial pump field amplitude B,(¢ = 0), we employ the undepleted pump
approximation to calculate the mean-field dynamics for following times with (134) as

Bi(1) = e (0). (202)

Owing to the finite dispersion of the pump pulse, the Gaussian Hamiltonian given in
Section 5.1 generally depends on time as

A r
Ho(0/h =5 // ds; ds, (aslaszﬁ;w(r)+ajlajz,esl+sz) + / ds &l Sw.(2ns)as.
(203)
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The Gaussian unitary G as defined in (157) is completely characterized via the
multimode Bogoliubov transformation using propagators as

G'a,G = / dp (Cyplty + Sypdt}). (204)

The values of the propagators for a given time can be obtained by solving their
equations of motion

0,Cyp(1) = —ir / dq Bs+q(1)S,,(1) — 16w, (2ms)Cyy(t) (205a)
0,Ssp(1) = —ir / dgq Bs+q(1)C, (1) — 10w, (275) S, (1), (205b)

which are obtained from obtained from (159), with boundary conditions Cj,(0) =
0(s — p) and S;,(0) = 0. Because a generic pump field 3,(¢) contains multiple frequency
components, (205) cannot be decomposed into separate components as we did in
Section 6.3 for CW-pumped OPA. Thus, for a generic pump pulse shape and gain, we
need to calculate the propagators numerically.

Notably, for a given Cy, and S;,,, it is always possible to perform SVD to obtain

Cop(t) = ) At cosh A, Al Sy(1) = > AW sinh A, Al (206)

m=0 m=0
which is to be seen as a multimode extension of (170). Here, sinh4,, > 0 and
cosh A, > 0 are the mth singular values of S,,(f) and Cy,(¢) sorted in an ascending

. . i t .
order, respectively. The singular vectors A™/*"" are normalized as

/dsAizlgout*Ain/out — 6mm’ ZAizls/Out*Ain/,Out — 5(S _ S,). (207)

m's ms
m=0
With these expansions, we can rewrite the operator transformation under the Gaussian
unitary G'a,G as
Aviaout Ay Ai . A
G'a®™G = cosh A, @™ + sinh A, a™, (208)

where the “input” and “output” supermodes are defined as
an = / ds A™ g ant = / ds A0 Gy (209)

To see the meaning of “input” and “output” more clearly, we rewrite (208) using their
quadratures as

GG = ez GTHMG = e p, (210)
These equations imply that G(r) acts independently on input pulse supermode am,
applies single-mode squeezing with field gain e*», and encodes the result to the output
pulse supermode a%". Such elegant decomposition of broadband pulsed squeezing
into independent squeezing of supermodes was established in Ref. [150] (see Fig. 35
for illustration).

It is worth emphasizing that the waveforms of input/output supermodes are different in
general (i.e., A" # A%"Y), meaning that two physical processes are involved in U, i.e.,
squeezing and pulse-waveform distortions. In addition, due to the time dependence
of the propagators, their singular vectors A™/°" also depend non-trivially on time,
implying that the structure of squeezing supermodes is not static and “morphs” in

time [181].
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Figure 35
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[lustration for multimode squeezing induced by pulse-pumped OPA, which can be
decomposed into independent squeezing of squeezing supermodes. Each of input
supermode with waveform Ai“ experiences single-mode squeezing with field gain
e, and the output is encoded to the output waveform A"“t Adapted with permission
from Ref. [69].

For a vacuum input, pulse-pumped OPA outputs broadband vacuum-squeezed light.
Using (210), quadrature variances for the final state can be written as

2m e 2Am

<()’E°ut 2> — eT <(pout)2>

(211)

which exhibits sub-vacuum quadrature fluctuations for 4,,>0. Note that higher-order
supermodes (i.e., modes with m > 1) generally contain finite excitation and, thus, the
resultant state is not a single-mode squeezed state in general, unless 4,,>; = 0 holds.
Quantitatively, the multimode-ness of the pulsed squeezed state is measured by the
Schmidt number [182]
(X sinh? A,,)2
>, sinh* 1,

where K =1 is fulfilled only when the state is single-mode squeezed, and K>1
indicates that the state is multimode squeezed.

(212)

For many applications in quantum information science, it is essential to suppress such
multimode squeezing effects; for instance, heralded photon subtraction is a powerful
and widely used technique to generate non-Gaussian quantum states, e.g., single-
photon state and Schrodinger’s cat state. When higher-order supermodes are not in
vacuum state, however, we cannot tell whether a photon has come from the primary
supermode or the higher-order supermodes, which critically limits the purity of the
generated state. In the SPDC limit of pulsed squeezing, dispersion engineering enables
one to realize a single-mode weakly squeezed state. In the high-gain regime, however,
suppressing multimode effects is more challenging, and realization of strong single-
mode squeezed light source is an active area of research.

6.4a. Further Reading

Strong demand for high-quality heralded single-photon sources has motivated the
study of pulsed squeezing in the SPDC limit. In this limit, one can ignore the time-
ordering of the operators and focus on the biphoton wave function of the generated
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state, which enables in-depth analytic studies [183—186]. Readers can refer to Ref.
[187] for a comprehensive review. Reference [188] provides a thorough analysis on
the effects of the operator time-ordering.

7. MESOSCOPIC QUANTUM NONLINEAR OPTICS

7.1. Introduction

In a typical setup of nonlinear optics, the intensity of quantum fluctuations is much
smaller than the mean field. In this regime, the photon dynamics can be approximated
as Gaussian unitary, which has been the topic of the previous section. As the non-
linearity or the interaction time increases, however, the growth of Gaussian quantum
fluctuations can eventually reach a point where they affect the dynamics of the mean
field, and non-Gaussian quantum features can emerge. The onset of this regime often
coincides with the point where classical dynamics exhibit strong saturation.

The magnitude of Gaussian quantum features required to affect the mean field strongly
correlates with the number of photons driving the nonlinear device, intuitively, large
quantum fluctuations are required to affect a strong classical mean field. Such strong
Gaussian quantum features (i.e., squeezing) make non-Gaussian quantum features
that may appear on top highly fragile and sensitive to experimental imperfections,
making the observation of the latter infeasible, as was discussed in Section 5.3. These
considerations motivate us to explore mesoscopic nonlinear optics, where only a few
hundred photons can lead to saturated dynamics. This regime offers a promising
opportunity to investigate non-Gaussian quantum physics and develop new concepts
in the field.

This section provides a case study of OPG operated in the mesoscopic regime, dis-
cussing the unique interplay among mean-field, Gaussian quantum, and non-Gaussian
quantum features. Since we assume the knowledge of the GIF, a theoretical frame-
work to capture non-Gaussian quantum optical dynamics concisely, we encourage the
readers to visit the short prologue, Section 5, before this section. The construction of
a GIF involves solving Gaussian-approximated dynamics of the system, for which we
cite the contents of Section 6, which concerns Gaussian quantum physics in nonlinear
optics.

The rest of the section is structured as follows. In Section 7.2, we introduce the
framework of the GIF to capture the onset of non-Gaussian quantum physics concisely.
Instead of completely disposing of Gaussian quantum optics, this framework allows
us to account for non-Gaussian quantum features on top of a scaffold provided by
a Gaussian model, for which we can directly adopt the analysis from the previous
Section 6. We also introduce a nonlinear Gaussian model that can account for pump
depletion effects, which allows us to develop a further refined GIF. Finally, in Section
7.3, we apply the developed formalism to study broadband squeezing pumped with
a mesoscopic number of photons. The GIF provides essential information on where
and how non-Gaussian quantum features emerge, which we can leverage to construct
a concise numerical approach for analyzing this otherwise intractable system.

7.2. Gaussian Interaction Frames for Single-Mode OPA
In this subsection, we apply the framework of GIF to unravel the non-Gaussian quantum
dynamics of a single-mode OPG efficiently. The Hamiltonian takes the form

f/h = g(aﬂiy +a2b", (213)

where @ and b are annihilation operators for the signal and pump modes, respectively,
and g is the y® nonlinear coupling rate. See Section 4.3 for the derivations of the
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Hamiltonian. For OPG, we start from an initial state | (¢ = 0)) = |0),iBo)», Where
|0), and |iB), are the vacuum signal state and coherent pump state with amplitude
By, respectively.

A conventional approach to performing full-quantum simulation is to numerically
expand the state and the Hamiltonian in the Fock space as

Na Np Ng Np
W) = > el H = > Hiy ty itk YalplllalCal, (214)
k=0 ¢=0 ky.ky 61,62

where N, and N, represent the truncation of the photon-number basis. Because
Schrédinger’s equation involves multiplication of the Hamiltonian by the wave func-
tion, the numerical cost to simulate the Schrédinger’s equation is equivalent to the
matrix—vector multiplication with dimension N,N;, which is O(N{%NZ). It is worth
noting that the pump amplitude can easily be a macroscopic quantity. For instance,
even 10 fJ of pump pulse at 750 nm wavelength contains ~ 40,000 photons. If we are
interested in, say, 20 dB of squeezing induced by the nonlinear optical dynamics, this
translates to ~ 100 signal photons, leading to a total of N,N, ~ 4 x 10°-dimensional
Hilbert space. Clearly, this approach is not scalable, especially in considering an
extension to broadband pulse dynamics, where thousands of modes can be involved.

To circumvent the challenge, we factor out the trivial Gaussian quantum features in
the form of a Gaussian unitary = DG, which defines a GIF (see Fig. 28 for an
illustration and Section 5.2 for more detailed introduction on GIF). A compressed
state can now capture the residual non-Gaussian quantum fluctuations in the GIF
|¢r). In the following, we show a concrete procedure to construct a GIF for the OPG
dynamics.

First, we construct D so that it optimally accounts for the mean-field dynamics. Due to
the parity symmetry of the signal mode & — —a, we expect no mean-field displacement
on the signal. As aresult, D is only parameterized by the pump mean-field estimate 3(¢).
A straightforward approach to set 5(¢) is by means of a linearized approximation, where
we directly use the solution for a classical model (see Section 5 for an introduction).
While this approach provides an intuitive construction of a GIF, it turns out that we
can further refine the estimate for the pump mean-field by incorporating finite pump
depletion effects. In anticipation that we will later incorporate these two approaches
to derive clearer insights, we leave () undetermined at this stage [189].

Following the discussion in Section 6.2, for a given S(¢), we can derive the Gaussian
Hamiltonian

Hg(1)/h =3 (,B(I)AT2 + B (na), (215)

which induces symplectic transformatlon G. The action of the unitary G can be
completely characterized by the propagators C and S, whose values are determined by
their equations of motion (see Eq. (159))

8,C =-igBS", S =-ighC* (216)
with boundary conditions C(0) = 1 and S(0) =

For a given (¢), we can determine C (t) and S(¢) using (216), which completes the char-
acterization of a GIF unitary U = DG, where D = exp(,BbT B*b) is a displacement
operator. The Hamiltonian in the GIF takes a form

ﬁ]] :I:\IC"'I’:IL, (217)

where .
ﬁc/hzg( C*a'+8*a)’ b+ hec. (218)
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is the cubic nonlinear term, and

is the linear term. Now, our remaining task is to identify an optimal time dependence
of B(z) so that U maximally factors out the Gaussian quantum features in |i/).

7.2a. Linearized Approximation

One way to minimize the dynamics induced by A} shown in (217) in the GIF would be
first to ignore the higher-order term H¢ and eliminate the remaining linear contribution
Hy via an appropriate choice of 8(f) = Byn(f) (the meaning for the subscripts will
become clear shortly). This can be done by simply taking

9Bin = 0, (220a)

under which the linear term vanishes A; = 0. The solution of (220a) is a trivial
constant solution Byn(r) = i8y, where iBy = (¥(0)|b|y(0)) with By € R is the initial
pump amplitude. For this choice of 5, we can solve for the propagator dynamics
analytically as

Ciin(r) = cosh(Bogt)  Sin() = sinh(Bogt), (220b)

which defines a Gaussian unitary Uy, and a Gaussian-approximated state ) =
U1in|0). The mean-field estimate By, (and, consequently, the unitary Uy;,) obtained by
this procedure is the same as what we would obtain by the linearized approximation
(thus, the subscript “lin”), which gives another interpretation to the linearized approx-
imation that it is a treatment of ignoring Hc in an interaction frame Uy, defined by
(220).

The suboptimality of the linearized approximation is seen most clearly in the pump
depletion ratio

Ni(1)
Ny(0)’

Rt)=1- (221)
where Ny(¢) is the number of pump photons. For the linearized-approximated state
[}, we have constant pump photon number Ny(f) = Ny(0), resulting in R(7) = 0
However, in reality, the pump photon number should decrease (i.e., deplete) as the
photons downconvert to the signal mode. As shown in Fig. 36, the full-quantum
simulation predicts quadratic growth of R(¢) as a function of interaction time, which
the linearized approximation fails to capture. Such misprediction of the pump field
amplitude generally results in inefficient state representation in the interaction frame,
leading to unnecessarily large requirements for the Fock space truncation when we
desire to capture non-Gaussian quantum dynamics.

The consequence of failing to capture pump depletion can also be seen in the

Manley—Rowe invariant

N. (t)
2

which is a constant of motion under optical parametric interactions. However, the
linearized-approximated state |1}/ ) leads to

Nyr(t) =

(222)

|S1in(t)|2
2

Nur(?) = |Bin(0)|* + = ﬁé + sinh*(Bogt), (223)

which increases as a function of time.
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Figure 36
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(a) Phase-space representation of the signal (upper row) and the pump state (bottom
row) shown in the lab frame (left column) and the GIF given by the nonlinear Gaussian
model (right column). Orange ellipses represent 1/e?-width of the variance predicted
by the Gaussian-approximated state |/, ). (b) Pump depletion ratio R(¢) and signal-
pump entanglement shown as functions of time for linearized-approximated state
| ), Gaussian-approximated state [/. ) with the nonlinear Gaussian model, and
full-quantum state |). Entanglement is measured by the entanglement entropy. For
all the simulations, we use initial pump amplitude 8, = V50, and the states in (a) are
for time 7 = 0.614¢p ~ 0.4g~". Adapted with permission from Ref. [69].

7.2b. Nonlinear Gaussian Model

We have seen that linearized approximation, which directly uses the classical unde-
pleted solution as the estimate for pump mean field 3(z), leads to a suboptimal GIF. It
turns out that we can find a more sophisticated choice of S(¢) so that it accounts for
pump depletion and further compresses the quantum fluctuations in the GIF.

Our starting point is to note that the nonlinear Hamiltonian (218) still contains linear
terms that induce trivial phase-space displacement. For instance, terms of the form
o btaat can induce displacement upon acting on a vacuum (which is the initial state
in |¢1)) since bfaa’ = b* + bfa'a. To see this more clearly, we order operators in Hc
(218) in the normal order to obtain

He/h = g (528 +25'C'ala+ C%a?) b +hel + g (S*C*E T SCB*), (224)

I:]'C 6I:1L
where ﬁl(’: is a normally ordered nonlinear term, and the residual linear terms are
separated as 9y . This partition establishes another way of expressing the interaction-
frame Hamiltonian

FII = HC + HL = I:Ié + I,‘\I]I_‘ (225)
with a new linear term
a k= (F + B = (gsc - i@,ﬁ) b+ (gs*c* + ia,ﬁ*) b. (226)

To maximally factor out the linear dynamics, we choose the time dependence of 5 so
that H{ (instead of Hy) is canceled, which is possible by setting

i
atﬂnlin = _Egcnlinsnlina (227)
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and we refer to the unitary it defines as the nonlinear Gaussian model Uy, (). Because
of the right-hand side of (227), Buin varies as a function of time, accounting for
pump-depletion dynamics.

It is worth mentioning that the nonlinear Gaussian model has two explicitly conserved
quantities

|Snlin(t)|2

s A (228)

|Cnlin(l‘)|2 - |Snlin(t)|2 =1 |18nlin(t)|2 +
where the second equality ensures that the Manley—Rowe invariant remains constant
for the Gaussian-approximated state |¢,. } = Unin|0). By leveraging these conserved
quantities, we can analytically solve the nonlinear differential Equations (216) and
(227) using Jacobi elliptic functions as

Buiin = B0 sn(z + K(m), m), (229a)
Culin = ,/2(,83 + 1/2)dn(t + K(m), m), (229b)
Sain = —V2By en(t + K(m), m), (229¢)

where

T=4/B;+1/2gt (230)

is the scaled time, sn and cn are the elliptic sine and cosine functions, respectively,
and dn is the delta amplitude function. They exhibit oscillation with a period 4K (m)
in 7 with parameter

By
m=——
B+1/2
and the complete elliptic integral of the first kind

! dz
K(m) = /0 Tt (232)

The Gaussian-approximated state [y, (¢)) predicts perfect pump depletion at a char-
acteristic depletion time t4., which we define such that Syiy(f4ep) = 0. The value of 4,
as a function of initial pump field amplitude is given as

(231)

o km) 1
B2+1/2 " 2gho

taep = & log(32537). (233)

The analytic expression for #4, gives us an approximate scaling for the time over which
we expect to see non-Gaussian quantum physics for a given pump field amplitude Sy.

In Fig. 36(a), we show the phase-space portraits of the full-quantum simulation shown
in the lab frame and the GIF defined by the nonlinear Gaussian model, where we
can see that the use of the GIF compresses quantum fluctuations around the origin.
In Fig. 36(b), we compare the time evolution of the pump depletion ratio for the lin-
earized approximated state |y, (¢)), Gaussian-approximated state with the nonlinear
Gaussian model |y, (¢)), and the full-quantum state |¢(¢)). The Gaussian approxima-
tion under the linearized and nonlinear Gaussian models are characterized by (220)
and (229), respectively. The full-quantum state |y(¢)) is calculated using a standard
quantum simulation package [190], where the quantum dynamics are expanded in
the photon-number basis. While the linearized approximation overestimates the pump
field amplitude, the nonlinear Gaussian model predicts the amount of pump depletion
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with high accuracy. This allows us to use minimal Fock space size for the pump mode
for the simulation in the interaction frame.

Finally, we point out that even a nonlinear Gaussian model cannot capture the full
quantum state. Nonlinear terms in the interaction frame induce non-Gaussian quan-
tum features that cannot be captured by Gaussian-approximated states, which are
clearly seen in the phase-space portraits of the states shown in the figures. Further-
more, as shown in Fig. 36, such nonlinear quantum dynamics induce non-Gaussian
entanglement between signal and pump modes, which cannot be captured by a Gaus-
sian unitary. When the pump mode is traced out, signal-pump entanglement results in
excess signal noise, limiting the level of attainable squeezing. To capture this emergent
non-Gaussian quantum physics, we include the contribution from the interaction-frame
state |¢r), which can be performed efficiently using the GIF.

7.3. Mesoscopic Pulsed Squeezing

In the previous Section 7.2, we studied single-mode OPG and saw that a GIF can
reduce requirements for the size of Fock-space, realizing an efficient numerical model.
For the case of multimode systems, however, the numerical complexity can still be
exponential even after an application of a GIF. Assume, for instance, that each of M
modes can be populated with either O or 1 photons, which is the smallest non-trivial
Fock space size. Even for such a scenario, we would naively need 2¥ parameters to
describe the system state. Therefore, to analyze multimode non-Gaussian quantum
dynamics, we need an additional model-reduction technique to realize a tractable
quantum model. To this goal, the structure of the GIF provides essential information
on where and how non-Gaussian quantum features emerge, with which we can truncate
a mode basis to realize a polynomial-size numerical model.

In this subsection, as a case study on multimode non-Gaussian quantum dynam-
ics, we consider pulse-pumped broadband OPG. By inspecting the structure of the
Hamiltonian in the GIF, we show that principal squeezing supermodes predominantly
accumulate non-Gaussian quantum features during the dynamics. By approximating
higher-order squeezing supermodes as being populated only with Gaussian states, we
realize a concise model for these otherwise intractable system dynamics.

7.3a. Construction of a GIF

We construct a GIF using the nonlinear Gaussian model for pulse-pumped OPG.
Because the pump field can constitute a broadband excitation, the pump mean-field
estimate takes a form B,(¢). In the following, we use the results presented in Section
6.4 to derive the Gaussian dynamics of the system. For given B(¢), the Gaussian
Hamiltonian takes the form

N r A e ot .
Hg/h = 5,/,/dsl ds, (,Bsm,zaslas2 +,351+S2a21a12) + Z /dsuséwu(2ns)u5,
ue{a,b}
(234)

which induces a Gaussian unitary G. The transformations of the field operators are
given as multimode Bogoliubov transformations

U'a,U = / dp (Cspa,, - Sspa;g) : (235a)
Ub,U = e 0@mp 4 g (235b)

where the values of the propagators C,, and S, are to be determined by solving their
equations of motions

0,Cy, = —ir/ dq Bs+4Sy, — 16w, (2ms)Cyp, (236a)
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0,Ssp = —ir / dq Bs+qCyp — 10wa(275)Syp. (236b)

The remaining step to construct a GIF is to choose the dynamics of S(7) so that
mean-field dynamics are optimally accounted for. As in the single-mode case, the
interaction-frame Hamiltonian H; can be decomposed as

H = I:Ié + Hﬁ (237)
with

A /h= / ds 10wt (—iﬁ,ﬁs + 6wy (27s)Bs + g / dpdqg c,,qss_,,,q) bl+h.c.
(238)

The linear term FIL can be eliminated by setting the time dependence of S; as

0,8, = —i6wy(275)B; — % / dpdg CpySspar (239)

which determines the value of S, (and, consequently, the entire U). The Hamiltonian
in the GIF becomes

A r : BRPVANPIN
Hi/h = 3 /ds ds’” dp dp’ !0 (sts ))’bzﬂ,

(240)
X (08250 428,y Co @iy + CopCopiply ) + hic.

7.3b. Supermode Expansion

The GIF can factor out trivial quantum features to create a compressed state descrip-
tion. However, the Hamiltonian (240) still involves nonlinear couplings among
multiple modes and can naively cause exponentially complicated dynamics. To real-
ize a tractable quantum model, we identify a few principal supermodes, which are
waveforms formed by combining frequency modes, that predominantly exhibit non-
Gaussian quantum features, and the GIF is essential in providing information about
these supermodes. In the case of pulsed OPG, these principal non-Gaussian super-
modes coincide with canonical squeezing supermodes (and pump modes coupled to
them), as shown in Fig. 37. Based on this knowledge, we can truncate the supermode
basis to include only the primary non-Gaussian quantum features, enabling an efficient
quantum model.

A generic supermode basis is characterized by field operators

am(t) = / ds A}, (H)ay bu(t) = / ds B (1)b;. (241)

The waveforms of the mth signal and pump supermodes are given as A,,; and B,
respectively, as functions of the wavenumber s. These waveforms form respective
complete bases and are normalized as / ds Cp, Cows = Oy and 30 Cr Cr = 6(s —

s”) with C € {A, B}. Using this basis, the Hamiltonian in the GIF can be rewritten as

H/h= % > (5; (Lm0 4Vt 1 + ggmnaman)) +he, (242)

tmn

where the nonlinear coupling tensors are given as

mp* “np’

emn = / dsds’ dpdp’ 10w 2rls+s )t SSPSS’P’BZ(S +s,)A* A (243a)



Tutorial 5 Vol. 16, No. 2/June 2024/ Advances in Optics and Photonics =~ 455

Figure 37
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For an OPG pumped by a mesoscopic number of pump photons, non-Gaussian
quantum features predominantly develop on canonical squeezing supermodes (and
pump modes coupled to them) obtained by Gaussian approximations. In a supermode
approximation, we include non-Gaussian quantum dynamics only on these principal
supermodes to realize an efficient numerical model.

Vemn = / dsds’ dp dp’ e@rrig By (o AmpAny (243b)

f[mn — / dS ds/ dp dp/ eiéwb(zn(s+S/))tCspCs’p’B;’(s_'_sl)AmpAnp/ . (2430)

Since the supermode basis itself depends on time, the dynamics in this new basis must
include the non-inertia term in the Hamiltonian as

Hcff = FII + Hnon—inertiaa (244)
with
I:Inon-inertia/h = Z Z / ds (iCnsatC;s)@Lan- (245)
Ce{A,B} mnn

To identify principal supermodes that predominantly experience non-Gaussian quan-
tum dynamics, we note that any term in A that contains an annihilation operator
does not affect the state to the lowest order because the initial state in the GIF is a
vacuum. As a result, the terms of the form o B;ALAZ crucially determine the onset of
non-Gaussian quantum physics, and we inspect their coefficients s, to unravel their
structures.

As shown in Eq. (243a), the coupling tensor p,,, comprises propagator S,, which we
can be decomposed as

Sy = ZA;;;;‘ sinh A, Aln, (246)

m=0

(see Section 6.4 for full discussions). Intuitively, Ai,ﬁp represents the signal spectral
waveform that is coupled to the pump mode via the integration f dg SypA,,, with an
amplitude sinh 4,,. Therefore, a reasonable way to choose principal signal supermodes

istosetA,, = Ai,ﬁ}p. With this choice of signal supermodes, the coupling tensor takes
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the form

Memn = / dsImn,SB}’s (247)
with

Zyuns = sinh A, sinh 4, / dg ei‘s‘“b(z”s)’Aﬁ’,:‘;Azjz_s), (248)

implying that mth and nth signal supermodes are coupled to pump waveform o 7, .

Based on these discussions, our prescription for choosing m, signal principal
supermodes and corresponding pump principal supermodes is as follows.

(1) We choose signal principal supermodes as the input squeezing supermodes of
the GIF, according to (246), i.e., A,;s = Afﬁs, for a given mode number truncation
m < mg.

(2) We calculate pump waveforms Jy,, s, according to (248), for m,n < m,. Note that
some of J,, s can vanish due to the symmetry of signal supermodes. As a result,
we have at most m,(m, + 1)/2 independent non-zero waveforms.

(3) We perform orthonormalization on the non-zero waveforms to obtain principal
pump supermodes.

For numerical simulations, we simply ignore terms consisting of higher-order super-
modes in (244) to calculate an approximate GIF state |¢[), and the lab-frame state
becomes DGlgoI’ ). Results of numerical simulations can be found, e.g., in Ref. [64].

7.4. Dynamical Moment Expansion and Gaussian Split-Step Fourier Methods

As we have shown, the GIF framework is useful for obtaining optimal Gaussian
approximations of nonlinear dynamics, as well as for model reduction in mesoscopic
systems. Given this general utility of the method, we would like to be able to derive the
equivalent of Egs. (227) and (216), but for any arbitrary nonlinear optical system. The
method presented in Section 7.2b involves finding exact cancelations of particular low-
order terms in the interaction-frame Hamiltonian, which often requires heavy operator
algebra. While the approach is general in nature, it can become rather involved for
more complicated scenarios, such as seeded OPA, saturated SHG, or even multimode
four-wave mixing (e.g., under a Kerr effect or an optical cascade).

In these situations, it can be helpful to turn to other means for obtaining Gaussian coor-
dinates for the GIF (namely, the equivalent of 8, C, and §S). Obviously, the mean-field
limit and the linearized approach are both examples of simpler Gaussian approxima-
tions that do not require operator manipulation, but as we have seen in this section
and the last, they are suboptimal in that they neglect certain Gaussian phenomena,
thus defining a GIF that still has residual Gaussian dynamics in the interaction-frame
Hamiltonian.

Here, we briefly review an alternative approach, which we call dynamical moment
expansion, that can be used to generate equations of motion for the Gaussian
coordinates that can be used to define a high-quality (in many cases, optimal) GIF.

The method is based on the idea that associated with each value of (@, C,S) in a
GIF is a pure Gaussian state that is given by applying the propagator (C,S) to the
vacuum and displacing the result by «. Thus, we can instead simply work on gener-
ating a good Gaussian-state approximation to the dynamics. For an M-mode state, a
Gaussian state |G) is fully specified by a vector of M mean fields «; = (G|a;|G) and
two M X M covariance matrices X; = (G|0a;0a,;|G) and I1; = (G|6&j621j|G). Conven-
tionally, in Gaussian quantum optics, we use one covariance matrix of size 2M x 2M
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written in terms of the quadrature operators, but converting between the conventions
is straightforward, and this form will prove more convenient for us. Furthermore, for
a pure Gaussian state, the relation between X and II with C and § are also easy to
derive.

The moment expansion technique attempts to calculate the time evolution of a;, Zj,
and II;; starting from the quantized CWEs, while making the sole assumption that rhe
quantum state is Gaussian at all times [191]. Note that this does not mean we lose
access to all non-Gaussian effects from this point onward; this assumption is merely
useful for deriving the GIF, under which non-Gaussian physics can be analyzed later.

We illustrate the dynamical moment expansion technique by an example, from which it
should become clear the technique works for any system for which we have quantized
CWE:s. Consider the single-mode OPG Hamiltonian in Eq. (213), which produces the
CWEs

da=-iga'h,  9b=-a" (249)

We start by computing
8/(a) = —ig (<aT><B> + <5aT513>) : (250a)
0,(b) = —5 (@) + (62%)). (250b)

where we have used the fact that (54| =)(6b| =)0 in general. Hence, we see that the
mean fields are driven by the covariances.

To obtain the evolution of the covariances, we first calculate

8,64 = —ig [(5&*513 - <5a*51§>) + <z3>5a*+<a*>513] , (251a)

d,6b = —%g [(6a% - (6a%)) + 2(ayoal] . (251b)

These expressions allow us to calculate the following equations of motion for the
covariances by employing (i) the product rule 9,(2122) = 21(0:22) + (0:21)Z2, and (ii) the
fact that for Gaussian states, third-order central moments such as (5a'8a6b) = 0 (as
an algebra hint, note that in doing so, we can effectively ignore the first inner-bracketed
terms of Eq. (251), since they both end up contributing odd-order central moments):

a,(sa”y = —ig [(b) ((vasa’y + (sa' sa)) +2¢a"y(oash)] (252a)
(60 6a) = —ig (<Zﬁ><5a2> + <a><5a513*>) +he. (252b)
0,(5achy = —ig [(ay(6a*) + (a"y(6b*) + (b)(5a4" 6b)| (252c¢)
a,(sa’sby = ig [(b')(5acby + (a)(ob'sb)y—(ay(sa‘sa)] (252d)
8,(6b*)y = —2ig(ay(sash) (252e)

d,(6b"sb) = ig(a*y(sa’sby + h.c. (252f)

The result is that we now have a set of Gaussian CWEs, i.e., Egs. (250) and
(252), where instead of just the equations of motion for two mean fields, we also
have six additional equations for the covariances; all eight are in general coupled
dynamically.

While the above might also seem like a good deal of algebraic manipulation, it is worth
noting the remarkable generality of the above equations: whereas the calculations
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done earlier in this section applied only to the case of vacuum squeezing, these
equations describe generic, degenerate three-wave mixing between single-mode pump
and signal, which includes for example saturated SHG. In fact, we can easily obtain
the special case considered previously by noting that for vacuum squeezing, we have
(@) = (6ash) = (sa'6b) = (6b*) = (6bT6b) = 0 for all time. In this case, we have the
much simpler equations

8,8 = -%zaa, 0% = —igB M + 1),  9Tluy = —igB'Suu + hic., (253)

where we recall B = (D), Za = (64%) and I, = (6a'6a). It can be shown that
these equations are equivalent to Egs. (227) and (216) and they result in the same
GIF.

Because this dynamical moment expansion results in equations of motion that are func-
tionally nothing more than generalized CWEs, it follows that the method is manifestly
compatible with SSF methods for treating multimode pulse propagation. Specifically,
we need only derive the moment expansion equations for the nonlinear step of the
SSF method, which follows exactly the same procedure as above, but for an M-mode
envelope, we now have covariance matrices that are M x M, whose elements are all
coupled to one another (and to the mean vectors). Numerically, one then needs to
Fourier transform these matrices to the frequency domain using two-dimensional fast
Fourier transforms (FFTs; keeping in mind that (6&; oa;) transforms differently across
its dimensions, e.g., forward FFT in the columns and backward FFT in the rows, or
vice versa). The linear step in the frequency domain is then the simple application of a
scalar multiplication (representing phase shift and loss), as in the usual SSF method.
In total, the time needed to compute a step of this GSSF method goes as O(M?* log M),
compared with the cost of O(M log M) for classical SSF, which is in a sense optimal
given that we are explicitly tracking the quantum correlations among M modes up to
second order.

Reference [192] provides a detailed derivation of the GSSF method with explicit
expressions for the multimode nonlinear steps, in both y® and y® systems. (For the
latter, it is particularly difficult to derive optimal GIFs using the operator approach due
to the higher order of the y® Hamiltonian.) Using the GSSF method, Ref. [ 192] studies
multimode quantum noise dynamics in Kerr solitons, saturated degenerate OPG, and
SHG-based supercontinuum generation. As an illustration of the method here, Fig. 38
shows the full covariance matrices of the y® supercontinuum generation discussed in
Section 3.3a. It is worth noting that even with a relatively naive implementation RK4IP
[193] SSF implementation on an Ampere A100 GPU, this simulation requires <5
seconds of compute using 2'° points per envelope. A software package implementing
GSSF in Julia for GPU deployment (via CUDA.jl [194]) is available as GaussianSSF.jl
[195].

Finally, we note that moment expansion can be generalized to higher-order correlations,
realizing systematic approximations of non-Gaussian quantum physics [196,197]. For
instance, in Ref. [153], they show higher-order correlations can capture non-Gaussian
signal-pump entanglement in pump-depleted dynamics of an OPA. However, while
such higher-order expansion techniques have been effective in studying systems with
a handful modes, application to highly multimode systems can become progressively
difficult as the order of expansion increases. In general, O(M") parameters are required
to describe nth-order correlation among M modes. Thus, to capture next-order (i.e.,
cubic) correlations in the supercontinuum generation shown in Fig. 38, we need to keep
track of (2 x 2!%)* ~ 10'° parameters, which is possible but numerically demanding.
Thus, to efficiently capture multimode, higher-order correlations, one should also
pursue additional model-reduction steps, e.g., supermode truncation.
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Figure 38
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Gaussian-state approximation to the semiclassical dynamics of supercontinuum gen-
eration based on quasi-static SHG (see Section 3.3a). The full multimode Gaussian
state is represented here by its covariance matrix in the frequency domain, expressed
in terms of the quadratures §* and p* of the first harmonic and ¢® and p? of the
second harmonic. The constant %5—function diagonal of the covariance matrix due to
the contribution from vacuum is not shown, but units are chosen such that the integral
over frequency of the diagonal (minus that of the vacuum) equals the total number of
fluorescence (i.e., non-mean-field or (6&;5&,-)) photons. Note that some blocks of the
covariance matrix are halved for better contrast.
__________________________________________________________________________________________|

8. DEEP-QUANTUM REGIME

8.1. Introduction

In the limit of strong nonlinearity, we enter the regime of deep-quantum nonlinear
optics, where even a microscopic (i.e., an order of unity) number of photons can trigger
saturated optical dynamics. In this limit, the hierarchy among mean-field, Gaussian
quantum, and non-Gaussian quantum features collapse, and the photon-number (Fock)
basis becomes the natural representation of the light. Highly quantum photon dynam-
ics in this regime can defy classical intuition, and experimental hallmarks of such
physics include photon blockade [198], quantum Rabi oscillation [7], and formation
of photon bound states [53,54,199]. We will see throughout this section that compared
with traditional cavity QED systems, nonlinear optical systems in the deeply quan-
tum limit can host an immense number of modes alongside strong photon—photon
coupling, leading to rich but complicated phenomenology. A recurring theme is that
multimode coupling can act as a decoherence channel and that quasi-static devices tend
to operate in a regime of large nonlinearity and high decoherence. A representative
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case study is given in optical parametric interactions in the deep-quantum limit, i.e.,
single-photon-pumped PDC. We can obtain a number of crucial insights from this
analysis: (i) in contrast to the classical and semiclassical limits, the pulse shape of
the pump does not enhance the gain or fluorescence rate of the fundamental. Instead,
only the fluorescence bandwidth contributes to enhancing the effective coupling rate.
(ii) The scaling laws for this effective coupling rate differs radically from the usual
coupling rates for single-mode dynamics. In particular, we find that the effective cou-
pling rate for multimode parametric fluorescence is invariant with respect to the size
of a physical resonator. In contrast, the coupling rate of a single-mode resonator grows
monotonically with the cavity-free spectral range. (iii) We observe Rabi-like oscilla-
tions, including 100% downconversion from a single-photon pump to a biphoton of
fundamental. The behavior of these oscillation dynamics is fundamentally different
from that of single-mode vacuum Rabi oscillations, and the contrast of these oscilla-
tions decays during propagation without any loss. This decaying fringe contrast arises
from the multimode nature of the nonlinear interaction, and is the first instance in this
section where the multimode dynamics can be seen to act as a decoherence channel.

The rest of the section is structured as follows. In Section 8.2, we introduce the physics
of single-photon-pumped PDC. We start from a basic single-mode case and extend
the analysis to a more complicated broadband case. The contrast between the two
instances highlights the unique physics arising from multimode interactions. Analytic
solutions for the broadband dynamics are obtained by establishing an analogy between
single-photon PDC and atomic autoionization [200,201]. In Section 8.3, we introduce
a model reduction technique based on MPS as a tool to realize efficient numerical
simulations of general photon dynamics in this deep-quantum limit. We show how
the involvement of multiple pump photons in PDC leads to deviation from the case
of a single-photon pump, highlighting the utility of the MPS to interpolate between
the microscopic and mesoscopic regimes. In Section 8.4, we take a deep dive into
the phenomenology of multimode decoherence, for which we use nonlinear-optical
quantum gate operation as a touchstone. Finally, in Section 8.5, we introduce temporal
trapping to circumvent multimode decoherence effects, enabling high-fidelity quantum
gate operations using nonlinear optics.

8.2. Single-Photon-Pumped PDC

8.2a. Introduction

In the previous sections, we have studied the physics of parametric interactions among
macroscopic (Section 6) and mesoscopic (Section 7) numbers of photons. As the
nonlinear coupling strength increases further, even fewer pump photons suffice to
trigger a strong nonlinear optical response. In this limit of the deep-quantum regime,
even a single pump photon can downconvert to a pair of signal photons with high
efficiency, which we refer to as single-photon-pumped PDC. The phenomenology
of single-photon-pumped PDC serves as an insightful case study providing essential
insights into what it means for nonlinear optics to be “quantum.”

To understand the physics of broadband PDC, it is insightful to sketch out the com-
parison to single-mode PDC as illustrated in Fig. 39. For single-mode PDC, e.g.,
inside a resonator containing mode spacings comparable to the optical frequencies,
the large energy gaps between modes allow one to isolate a pair of signal and pump
modes, which interact via the y® nonlinear interaction. The Hamiltonian that couples
an initial single-photon pump state |0 1) to a two-photon signal state |20) has the
same structure as that of a driven two-level atom. As a result, the photon-conversion
dynamics between the signal and pump exhibit clear Rabi oscillations.

On the other hand, for broadband PDC, e.g., in a dispersion-engineered waveguide or
a highly multimode resonator, a pump photon with momentum k3 can downconvert
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Figure 39
Physics of single-photon-pumped parametric downconversion
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lustrations of the physics of single-photon-pumped PDC in a single-mode resonator
and broadband waveguide. Adapted with permission from Ref. [69].
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to a signal photon pair with momentum k; and k, as long as momentum conservation
is fulfilled k; + k» = k3. This extra degree of freedom, where a single-mode pump
can couple to many distinct signal and idler pairs, leads to a characteristic structure
of the Hamiltonian where a discrete pump state is coupled to a continuum of signal
states. Such discrete—continuum interactions can be found in atomic autoionization,
where an atomic excited state is coupled to a continuum of ionized states. By coupling
to a continuum of signal and idler, the photon conversion dynamics no longer show
clear Rabi oscillation. Instead, the dephasing induced by the continuum leads to
characteristic damped oscillations. This unique behavior of multimode single-photon-
pumped PDC was originally discovered in Ref. [202], followed by an analytic study
[201], and a conception of unit-efficiency photon-pair generation [203].

The physics of broadband PDC in the deep-quantum limit cannot be recast in terms
of independently squeezed supermodes (see Section 6), which is in stark contrast to
the semiclassical parametric interactions (e.g., PDC). Intuitively, this complication
is due to the creation of a single signal photon pair in single-photon-pumped PDC
completely depleting the pump photon, which suppresses further downconversion
from happening. As a result, all the signal modes effectively get coupled to each
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Figure 40
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system. Top row: illustration for the energies of the states involved in the single-
photon-pumped PDC dynamics. Bottom row: conversion efficiencies of PDC for
various dimensionless normalized phase mismatch & as defined in (D9) and (D31)
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with permission Ref. [69].
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other via the pump depletion, and we observe inherently multimode physics with no
single-mode analog. In the rest of this subsection, we discuss the physics of single-
photon-pumped PDC in more detail. Since the mathematical treatments are highly
involved, we keep the discussions at a high level in the main and provide the full
derivations in Appendix D.

8.2b. Single-Mode PDC

In a single-mode PDC, the single-photon pump state is coupled to the two-photon
signal state with the coupling strength g, which leads to a Rabi oscillation between
these two states. A full derivations of these behaviors is provided in Appendix D.1. As
is well known from the physics of two-level systems, the overall behavior of the Rabi
oscillation is characterized by the ratio between the coupling and the energy difference
between the energy levels involved, which for the case of the PDC is the dimensionless
normalized phase mismatch £ (as defined in Eq. (D9); see Fig. 40(a) for an illustration).
Intuitively, PDC is most efficient when the phase-matching condition is met, i.e.,
¢ =0, while large ¢ indicates the interaction is phase-mismatched, and the conversion
efficiency is limited. We can derive closed-form solutions for the eigenstates, with
which the PDC conversion efficiency can be derived as (see Eq. (D15))

E(r) = éﬁ% sin’ (%\/52 +2 T) , (254)

where 7 = gt is the normalized time set by the nonlinear coupling rate g. In Fig. 40(a),
we show & for various values of normalized phase mismatch £. As expected, the
conversion efficiency & exhibits sinusoidal oscillations that reach unit efficiency for

£=0.
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8.2c. Single-Photon-Pumped Broadband PDC

In this subsection, we consider broadband PDC pumped by a single pump photon, and
we provide the full details in Appendixes D.2,D.3, D.4, and D.5. Via the y® nonlinear
interactions, the single-photon pump state with wavenumber k3 is coupled to all the
two-photon signal states that fulfill momentum conservation, i.e., k; + k, = k3, where
ki and k, are wavenumbers of the signal photons. Consequently, the Hamiltonian takes
a characteristic structure, where the discrete pump state is coupled to the continuum
of signal states (copied from Appendix D.2),

N . . r NP A
H/h= Z /dsujéa)u(Zﬂs)us+5ﬂ//ds1dsz (aslczSZbSle+aL Zszlﬂz).

ue{a,b}

When the dispersion dw,, is truncated to second order, we can normalize the interaction
time to a characteristic coupling rate gpq., and the spatial extend of the envelope to
a characteristic correlation length set by the OPA bandwidth. Once the equations of
motion are non-dimensionalized, the normalized phase mismatch & determines the
qualitative feature of the PDC dynamics. We define a normalized time 7 = gpqc? using
the characteristic PDC rate

8pde = (r*/ 47r26w;’(0))1/ 3, (255)

Physically, ¢ represents the normalized energy offset between the pump state and
the bottom of the signal continuum (see Fig. 40(b)). While the Hamiltonian involves
multimode interactions, we can derive analytic expressions for the eigenstates using
Fano’s theory for discrete—continuum interaction [200], where we find one discrete
photon-bound-state solution and a continuum of eigenstates (see Appendix D.3 for the
full derivations). This discrete bound state was first identified in Ref. [204], where it
was referred to as an optical meson. With these solutions, an analytic expression for
the PDC conversion efficiency is derived as

-1 - 2
o0 241 —i(A+Ag)T
8m:1+ b+f§) +/'M_il;___
432 0

; 2+ 4(A - &)?
| —
[ S——

optical meson contribution

, (256)

continuum contribution

where we indicate contributions from the optical meson and the continuum of eigen-
states. Here, A is the binding energy of the optical meson and is given as the solution

of the equation
b4

Je=—€+ : (257)
21,

As is apparent from the expression (256), the broadband photon conversion dynamics
are much more complicated than the sinusoidal oscillations we observe in the single-
mode case (254). In Fig. 40(b), we show the time evolution of the conversion efficiency
& for various &, where we observe Rabi-like oscillations with decaying amplitudes.
Interestingly, the asymptotic conversion efficiency E(7 — o) gets higher as the value
of phase mismatch & increases, which is in stark contrast to the single-mode case, where
¢ = 0leads to the highest efficiency. How can we make sense of such a counterintuitive
behavior?

A key to answer this question is to look at the dynamics of the signal photons in the
spatial domain. As shown in Fig. 41(a), with & > 1, the energy of the discrete pump
state lies in the middle of the signal energy band. Thus, the signal photon pairs excited
by the PDC have opposite offset of wavenumber from the center wavenumber of the
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Figure 41
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[lustrations for the phenomenology of (a) the non-degenerate and (b) the degenerate
coupling regimes of single-photon-pumped broadband PDC. The shaded regions in
the spatial distribution represent contributions from the continuum (light orange) and
the discrete (dark orange) eigenstates. The bottom figures show the dynamics of the
pump photon population in each regime, where the solid lines and circles represent
numerical results and approximate expressions. The approximate expressions for the
non-degenerate and degenerate cases are shown in (258) and (259), respectively.
Adapted with permission from Ref. [69] with modifications. We note that for the
choice of rotating frame used here the energy—wavenumber diagrams in (a) and (b)
are equivalent to the traveling-wave phase mismatch Ak(Q’), with space and time
interchanged as in Section 3.4g. The transition from degenerate to non-degenerate
operation is determined by the same conditions for as in Fig. 14.

__________________________________________________________________________________________|

parabolic dispersion (signal dispersion included up to second order) and, thus, have
opposite group velocity in the comoving frame. As a result, in this regime of non-
degenerate coupling, downconverted signal photons spatially move away from each
other, which suppresses backconversion, thereby leading to high conversion efficiency.
The decrease of the pump photon population approximately follows an exponential
function, leading to a conversion efficiency of

E(r)~ 1 - e "VE, (258)

In the other limit of ¢ <« —1, the pump energy lies well below the bottom of the signal
energy band. Here, PDC only excites a narrow band of signal states at the bottom
of the dispersion curve, which regime we refer to as the degenerate coupling regime
(see Fig. 41(b)). In this regime, a large portion of the signal excitation comprises the
discrete optical meson, in which the downconverted signal photons exhibit local spatial
correlations due to an interplay between nonlinearity and dispersion. The interference
between the signal components of the meson and the continuum of eigenstates leads
to oscillations in the photon conversion dynamics, where the oscillation amplitude



Tutorial ! Vol. 16, No. 2/June 2024 / Advances in Optics and Photonics 465

Figure 42
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pump photons g’l;dlc(itgﬁz) (u € {a, b}) as functions of time. Gray dashed lines represent
T = gpact ® 1.32, at which time, a complete conversion is achieved for the assumed
phase mismatch & ~ 1.9. Adapted with permission from Ref. [69].

__________________________________________________________________________________________|

decays due to the spatial dispersion of the continuum contributions. The conversion
efficiency in this degenerate coupling regime can be approximated as

n SV
Er)y=1-|1- + (e 259
© TR D TN (259)
which exhibits sinusoidal oscillations with sub-polynomial amplitude decay with
scaling ~ 771/2.

The behavior of the PDC for an intermediate phase mismatch can be understood as an
interpolation between the non-degenerate and degenerate coupling regimes. Note that
due to the involvement of continuum contribution, ¢ = 0 does not necessarily coincide
with the largest conversion efficiency. Rather, we numerically find that ¢ = 1.9 leads
to a unit efficiency at a transient time 7 = 1.32, due to the complete destructive
interference of the pump amplitudes (see Ref. [201] for a full discussion).

8.2d. Broadband PDC: Pulsed Pump

When PDC is pumped by a pulse, classical intuition tell us that the rate of PDC should
go up. However, in the deeply quantum limit where the pump pulse comprises a single
photon, it turns out that the PDC rate is almost independent of the shape of the pump
pulse. This can be clearly seen in the full-quantum simulation shown in Fig. 42, where
we show the dynamics of the single-photon pulse-pumped PDC with various pump-
pulse shapes (see Fig. 42(a)). The overall conversion efficiency (see Fig. 42(b)) takes
an identical trajectory regardless of the shape of the pump pulse, despite the fact that
they exhibit seemingly distinctive propagation dynamics in the spatial domain (see
Fig. 42(c)).

To see how this, a counterintuitive result, arises, it is insightful to revisit how the PDC
rate gets enhanced in semiclassical regime. Here, for small #, the fluorescence rate is
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Figure 43
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Ilustration for the coupling structures of broadband single-photon-pumped PDC. Each
spectral component of the pump pulse with wavenumber k3 is coupled to a continuum
of signal states with wavenumber k; and k, with k; + k, = k3. There is no cross talk
between states with different total wavenumbers (i.e., momenta).

dominated by the OPA bandwidth and therefore the rate at which PDC occurs is set
entirely by gpqc (see, e.g., Eq. (200)). When PDCis pumped with a strong coherent-state
pulse, these spontaneously generated signal photons can stimulate further PDC without
depleting the pump. The pulsed enhancement occurs because these downconverted
photons are localized around the peak of the pump pulse; the large pump field colocated
with the signal photons provides a large parametric gain. When PDC is pumped by a
single-photon pump pulse, however, pump depletion occurs within the time scale set
by gpdc. In other words, since the spontaneously generated photon pair (with generation
rate set by only the OPA bandwidth) depletes the pump, no further stimulated emission
occurs.

We can also intuitively understand such behavior in the wavespace picture. A single-
photon pump pulse is composed of a coherent superposition of monochromatic single-
photon pump states |k3), and each component |k3) can downconvert to two-photon
signal states |k, k) that satisfy the momentum conservation k; + k, = k3 (see Fig. 43).
These downconverted signal photons, however, cannot interact with signal photons
originated from a different pump photon because there is only one pump photon to
begin with. Consequently, the state |k, k;) always backconverts to |k3), ensuring that
the PDC dynamics are “closed” and independent within each of the Hilbert subspaces
labeled by the pump wavenumber k3. Because of the absence of cross talk between the
downconverted signal and idler pairs, the pulse-pumped PDC dynamics are insensitive
to the distribution of spectral components, and therefore the overall pump pulse shape.
We refer the reader to Appendix D.6 for more detailed discussions.

8.2e. Further Reading

When the single-photon-pumped broadband PDC physics is extended from the single
waveguide to a coupled-pair waveguide, the Hamiltonian accommodates two discrete
states and a single continuum. When the energies of the two discrete states get close,
a long-lived resonant state emerges due to Fano interference. The full discussions can
be found in Ref. [201].

8.3. Model Reduction with Matrix-Product States

In the deep-quantum regime, multimode dynamics face a Hilbert space that grows
exponentially, both in mode number and photon number. This section details a numer-
ical approach relying on the general heuristic that entanglement in a one-dimensional
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quantum many-body system is limited [205]. When entanglement between photons is
well localized, and the total number of photons in the system is small, efficient simu-
lation of quantum pulse propagation on a one-dimensional waveguide can be realized
using an MPS formalism [67,206]. A full treatment of this formalism is beyond the
scope of this work, and we refer the readers to Refs. [207,208] for comprehensive
reviews from the perspective of many-body physics. In addition, Ref. [45] provides a
comprehensive tutorial on how one could use MPS to study general quantum photonic
systems. Instead, the aim of this tutorial is to introduce the key concepts of MPS to read-
ers with nonlinear-optics background, with applications focused on one-dimensional
pulse propagation in nonlinear waveguides. While we consider one-dimensional y?
waveguides as a case study, the formalism introduced in this subsection is general and
can be applied to a broader class of systems, e.g., y'* nonlinear waveguides.

The Hamiltonian for y® nonlinear waveguide is given in (148) as

I:I = I:Ia + ﬁIb + I:INL (260)
with the nonlinear part
/b = g / dz (ajbjmf@z) , (261)
and the linear part
Hy/h = / dz il Sw,(—id. )i, (262)

for the signal (# = @) and the pump (« = b) modes, where the continuum field opera-
tors fulfill commutation relations [it,, it;] = §(z — z’). Unlike previous sections, we
specifically write down the Hamiltonian in the position basis instead of in the
wavespace.

For numerical evaluations, we impose open boundary condition —L/2 < z < L/2 and
discretize the space into N spatial bins with size Az = L/N, where the field operators
are discretized to become

A

uj
Uip,—)0 > —, 263
liAz—L/2 Az ( )
with j € {1,2,...,N}, and the commutation relations of the discretized operators

are given by a Kronecker delta [i;, ity] = 6; . The Hamiltonian is rewritten in the
discretized spatial basis as

H:ZHNLJ+ Z Zﬁu’i’ (264)
J uef{a,b} J

with the nonlinear terms
I:INLJ-/h = L (&ZI;T+AJT2];J) (2653)

and the linear terms

6w, (0) (0
- (g - ) (265b)

J

a,j/h= 5wL,(0)ajaj
—— e

relative phase—velocity

6w/ (0) (o Sto
- Saa (uj fjp1 + uju;+1—2u;uj), (265c)

relative group—velocity

group—velocity dispersion
where we have expanded the dispersion up to the second order. Physically, the first and
second terms in (265b) represent phase and group velocity relative to the reference
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Figure 44
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(a) Longitudinal spatial coordinate is discretized into spatial bins, and field annihilation
operators are assigned to each bin. (b) MPS representation of a full-quantum state as a
product of low-rank tensors. (¢) Example implementation of a one-time step of TEDB
for quantum pulse propagation under the influence of a y® nonlinear interaction.
Adapted with permission from Ref. [67] © The Optical Society.
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values, respectively, and the third term represents the GVD. The definitions of the
quantities involved and their connections to classical theories are provided in Section
4.3. Note that the Hamiltonian takes a highly localized form where only up to nearest-
neighbor interactions are present (see Fig. 44(a)). Such a local Hamiltonian structure
provides an intuitive explanation for the spatially localized photon—photon correlation
structure we observed in previous sections. This is to be contrasted to the Hamiltonian
in the wavespace, where nonlinear interactions take a highly non-local form.

A generic quantum state in the Hilbert space can be expressed in the Fock basis as

Wy =) caln), (266)

n

where n = (ng1, np1, - .., 1py)7, and [n) = |ng1) ® |npy) - - - |npy) is a tensor product of
local Fock states. While the state representation (266) may appear simple in theory, it
takes an exponentially large memory space to represent it numerically. For instance,
assuming finite truncation to the Fock space as ngj, npj<nmay, the total dimension of
the state space becomes ngi, = n2Y . Even for a moderate choice of parameters, e.g.,
N =100 and ny, = 10, we have ng, = 10%°, which clearly exceeds the available
memory on realistic computers. To enable full-quantum simulation of the photon
dynamics, we thus need to employ a sophisticated model reduction technique to
construct a tractable state representation.

Here, we leverage the fact that the amount of entanglement in a one-dimensional
quantum many-body system is heuristically limited, for which we employ Schmidt
decomposition as a main theoretical tool. For the bipartite partition of the entire
system to the left and right subsystems £ and R, the Schmidt decomposition is given

as
XSR

W) =" AalgiEH1el), (267)
a=1
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where |¢[£]) and |¢£,R]> are the eigenvectors of the reduced density matrices of the
corresponding subsystems pl£! and plR!, respectively, with corresponding Schmidt
weight A,. The index a runs from 1 to ysg, where the subscript “SR” denotes Schmidt
rank. The distribution of A, is tightly related to the entanglement that is present in the
system; The entanglement entropy between the subsystems is expressed as

XSR

= > el 1og(120P), (268)
a=1

which implies that the entanglement is strong (weak) when A, decays slowly (quickly)
as a function of a (note that |i/) becomes separable if A, vanishes for all & but @ = 1).
When the Schmidt weight A, decays quickly, it is expected that Eq. (267) could provide
a good approximation of |¢) even when the summation is truncated at @ = y < ysr.
In other words, weakly entangled states can be efficiently approximated by truncating
the sum decomposition at a minimum necessary “bond dimension” y.

To apply the intuition to the 2N-mode state (266), we first consider a Schmidt decom-
position for the bipartition between the first mode (i.e., subsystem [1]) and the rest of
the system (i.e., subsystem [2...2N])

|l//> = Z /l([lll | (l|>|¢£121”2N Z Zrlgral/l([lll]l a >|¢(121 2N]>9 (269)

aj Ng1 Q@

where we have denoted |¢([,,1|]> =D Fggf‘“ |n41). The vectors |¢£,21"'2N]> are eigenvectors
of the reduced density matrix for the subsystem [2...2N] and can be decomposed as

|22y = " Iy (270)

np1

To factor out the dependence of | ) on ap, we write down

(31 nbl

|Ta1 nZN]> — Z r 2]nb1/l[2] 2N]> (271)

|

which is an expansion in terms of the eigenvectors of the reduced density matrix for
the subsystem [3...2N]. Finally, substituting these expressions into Eq. (269) gives

us
)= D D Thar ATl Al g man gl 2. (272)

Ngl.lg2 @1,Q2

We cascade this procedure to obtain an MPS representation of the form

cn — Z 1"[1 nal/‘i 1]1—~[2 "bl/l 2] . /I[ZN 1 F[ZN]"bN (273)

layg a)ay @2N-1 ayy-11

whose structure is depicted in Fig. 44(b). For an efficient state representation, we need
to apply a finite truncation to the sum of the indices «; < x, where y is referred to as
the bond dimension of an MPS. As I'V! is a rank-3 tensor, we can interpret (273) as the
decomposition of the original rank-2N tensor ¢, to a product of low-rank tensors. As
implied previously, quantum states with strong and long-range entanglement require
larger bond dimensions y for their accurate description. Conversely, MPS is a partic-
ularly suitable representation for quantum states with limited entanglement. The total
number of parameters required for the MPS representation is ngim ~ 2N )(znmax, which
exhibits a favorable linear scaling with respect to the system size N (cf., the exponential
scaling ngi, = n2Y_for the naive state representation). Now, our remaining task is to
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evolve an MPS in time to simulate the pulse dynamics. There are various means to
update an MPS in time under a given Hamiltonian, and the readers can refer to Ref.
[209] for a comprehensive review. In this tutorial, we rely on a scheme called “time-
evolving block decimation” (TEDB), originally introduced by Vidal [206]. In TEDB,
unitary evolution under the system Hamiltonian is decomposed into local one-mode
and two-mode unitary operations, which can be applied efficiently to an MPS.

A one-mode unitary operation acting on the jth mode of an MPS can be written as

01 = > U In)nl. (274)

nn’

To update the state under this unitary |¢) — U, |y ), we simply need to update a single
tensor 'Vl as

[jln nn' il
i I—)ZU . (275)

which can be done by tensor contractions.

Updating the state under a two-mode unitary operation is a bit more involved. A
generic local two-mode unitary acting on jth and (j + 1)th modes takes a form

=Y U Omyeyn (e, (276)

nl.n '

To update the state under the unitary as |¢) — U |y), corresponding tensors are to be
updated as

Ul U pletie (0.0 ) P G _ gt
Z o gy Z z{; Ul T AT = @nt (277)

Note that the two-mode unitary has transformed a product of rank-3 tensors to a single
rank-4 tensor ®. To recast the updated state to the original form, we need to decompose
® back to a product of rank-3 tensors. To this, we reshape the tensor ®ff; to a matrix
form ©,,.4),(¢,) and perform an SVD to get

Nmax X
Oty = | AVinmsWiems ~ Z/lﬁVm a1.8Wep- (278)
p=1 B=1

where V(,, o) g and W(¢ ) 3 are singular vectors of the matrix ® with a singular value Ag.
To get the final expression, we sort Az in ascending order and apply truncation to the

singular vector component. As a result, we obtain closed-form update rules /ll[gm] = Ag,

I“LB = Vina)p, and I l[;;“]f = Wi¢,) - Because this procedure involves an SVD of a
square matrix with dimension n,,y ¥, the computational cost of each step scales as

O3 . x*), which usually becomes the computational bottleneck in TEDB.

Since unitary operations under the Hamiltonian generally induce non-local interac-
tions, we need to decompose the total time evolution to a product of local one-mode and
two-mode operations. To this, we consider implementing an infinitesimal time evolu-
tion U = ¢#%" By virtue of the Trotter—Suzuki decomposition, {/ can be approximated
as the product of infinitesimal two-mode unitaries as

U~ (UNL,IUNL,Z ce UNL,m)(Ua,IUa,S cee )(Ub,IUb,3 .- -)(Ua,Zi]aA .- -)(Ub,szm c)s
(279)
where UNL,m = exp(—iI:INL,m(St/ h) represents y'» interactions, and f]u,m =
exp(—iH,, .6t/ k) represents the dispersion interactions. Because we encode first and
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Dynamics of broadband PDC pumped by coherent pump states with various average
photon number #;,. (a) Spatial distribution of the signal and pump photons {p}i (ﬁ:ﬁz),
where the characteristic spatial correlation length {jq. is defined in Appendix D.3.
(b) Overall conversion efficiency as a function of time. Gray dashed lines represent
theoretical prediction for single-photon-pumped broadband PDC. For all the simu-
lations, we assume normalized phase mismatch of & = (dwy,(0) — 26w,(0))/gpac=1.9,
matched group velocity of dw/(0) = dw;(0), and dw,’(0) = 26w,/ (0). Initial coherent
pump state has spatial amplitude (b.) = ii)/*7~"/40=1/% exp(~z? /20°2) with pulse width
o= 0.24’;;12. Adapted with permission from Ref. [69].

second harmonics alternatively in an MPS, some unitary operations in (279) are not
local. To bring the corresponding modes next to each other in an MPS representation,
we can insert SWAP operations at appropriate locations. An example implementation
of a single-TEDB step that implements U is shown in Fig. 44(c). The figure shows the
lowest-order decomposition, and one can further employ a higher-order Trotter—Suzuki
decomposition to improve the numerical efficiency [208].

As an example case study to show the utility of the MPS framework in studying
broadband photon dynamics in the deep-quantum regime, we simulate the dynamics
of PDC pumped with a coherent pump state. As shown in Fig. 45, the PDC dynamics
converge to that of single-photon-pumped PDC (see Section 8.2) in the weak-pump
limit because a weak coherent pump state can be well-approximated as a superposition
of a vacuum and a small amplitude of a single-photon pump state. As the pump photon
number increases, however, multiphoton processes become more pronounced, which
we observe limits the conversion efficiency.

8.4. Multimode Decoherence in Nonlinear-Optical Quantum Computation

In previous sections, we noted that few-photon propagation in the deep-quantum
regime displays complex dynamics that cannot be reduced to a single-mode descrip-
tion. While this complexity opens up possibilities for novel quantum devices, the lack
of single-mode interaction presents challenges for conventional quantum applications.
This subtlety was first identified by Shapiro [56], who showed that multimode effects
limit the fidelity of quantum gates realized using ultrafast interactions. This result is
commonly cited as a “no-go argument” against using nonlinear optics for quantum
computation.

Here we discuss multimode dynamics in the deep-quantum regime with a focus on
realizing gates for optical quantum computation (OQC). In the context of multimode
quantum optics, OQC is a particularly challenging task, as any deviation from single-
mode behavior leads to gate infidelities. Single-photon qubits are the leading candidate
for OQC. In particular, the dual-rail basis, where quantum information is encoded to
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Implementation of the universal gate set for photonic qubits. (a) Single-qubit gates
can be implemented using linear optics. (b) For a two-qubit entangling gate (e.g., CZ
gate), one needs a strong nonlinearity. A CZ gate can be constructed by embedding NS
gate U, to both arms of an MZI. Various nonlinear-optical implementation of an NS
gate is possible. Adapted with permission from Ref. [3] © Optica Publishing Group.

polarization, time-bin, or path, is an attractive approach since all single-qubit gates can
be implemented using linear optics [210]. To complete the universal gate set, however,
we need one two-qubit entangling gate, such as a controlled-Z (CZ) gate. As illustrated
in Fig. 46, a popular implementation of the CZ gate is to embed nonlinear sign (NS)
gates U, into a Mach—Zehnder interferometer (MZI). An NS gate implements a
m-phase-shift only on the two-photon input as

Un(col0) + c1l1) + €212)) = col0) + 1] 1) = 2[2), (280)

which requires single-photon optical nonlinearity. For instance, unitary evolution
under the single-mode Kerr Hamiltonian /% = 14™a” for time t, = 7y~ can realize
an NS gate. Here, we consider implementing an NS gate using a single-mode y?
interaction with Hamiltonian

HJh = g(a% +a2b". (281)

For the initial input state of (c|0) + ¢1|1) + ¢2|2))|0), coherent evolution under (281)
for time 1, = V27g~" impinges a 7-phase-shift only on the state |2 0), realizing an NS
gate. Here, we have denoted |n, n,) a product state of n,-photon first-harmonic state
and np-photon second-harmonic state.

In the discussions above on quantum gate operations, it is implicitly assumed that
the form of the modes in which relevant photons are present do not change as a
function of time. However, in reality, we need to be aware that these “computational
modes” generally consist of collective excitation of continuous quantum fields, and
their structure may vary as a function of time. In other words, the complete specification
of the quantum gate operations needs to account for both the Hamiltonian and the form
of input/output modes din/ou = f dz'¥; /Ou[(z)&z. With these formulations, an NS gate
is generalized as

f]n (CO|Oin> + clllin> + chzin>) = CO|Oout> + cl“out) - C2|20ut>a (282)
where |ninjour) = #&i‘:’/out |0). As we have seen in the section for pulse-pumped squeez-

ing, the structure of the computational modes can “morph” continuously during the
gate evolution. Thus, we generalize the input/output waveforms at intermediate times
as (1, z), where Win(z) = ¥(0, z) and Wou(z) = ¥(tx, 2).

For a given system Hamiltonian H, we aim to choose the input/output waveforms
so that the unitary evolution e~#=/" approximates the action of U, as faithfully as
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possible. In this tutorial, we consider a y® nonlinear waveguide with Hamiltonian

[‘AI = [‘AINL + IA{M (283a)
uef{a,b}
with a nonlinear term
i /h =1 / dz (a2b!+al’h.) (283b)
and linear terms
H,/h = / dz il G (2)in, (283c)

where we have introduced a generic function G,(z) to represent the linear dynamics
of the system (see Section 4.3 for the derivation of the Hamiltonian). A nominal
homogeneous waveguide is described as a special case G,(z) = dw,(—id;). Because
the evolution of the vacuum input is trivial and exhibits no error, a reasonable strategy
to choose Win/ou(2) is set such that the single-photon input has no error, i.e.,

[Tou) = €7/ 15,), (284)
which is fulfilled by taking W(z, z) as a solution of
i0,¥(t,2) = G,(2)¥(1,2). (285)

Assuming that ‘¥(z,z) is defined as such, the only remaining source of error is the
deviation of the two-photon-state output e '=/"|2, ) from the expected output —|2,.),
which we can quantify using a distance measure

D = [le =720 + 1 200). (286)

Another intuitive measure of the gate performance is the time evolution of the sig-
nal/pump photon number as a function of time. If we observe a clean sinusoidal Rabi
oscillation in the photon conversion dynamics, it strongly indicates the presence of
single-mode physics. Conversely, any decay in oscillation amplitudes can be attributed
to multimode dynamics that would degrade the gate performance.

8.4a. Gate Operations with Monochromatic Resonator Modes

A conventional approach to realize single-mode physics is to use single-mode micro-
resonators [1,2], which we revisit in this section to discuss how single-mode physics is
enforced. The intuition obtained in this section can also highlight the core challenges
toward realizing the same physics in broadband pulse propagation.

To model the physics of a nonlinear waveguide resonator, we assume a periodic
boundary condition —L/2 < z < L/2 to the waveguide Hamiltonian (283). Then, a
trivial solution to (285) would be the stationary monochromatic modes, i.e., ¥,,,(z, t) o
e? M/l y e {a, b} with m € Z. Without a loss of generality, we assume the mode with
m = 0 is the computational mode. To see how single-mode physics emerges from such
construction, let us define a basis spanned by monochromatic modes

(1) = / dz V¥, (t,2)i,, (287)

with .
‘Pum(ta Z) — _e—iéwu(an/L)te%rimz/L. (288)
VL
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Large resonator size L Small resonator size L
Single-mode SHG ~ g Single-mode SHG~ g

Broadband PDC Broadband PDC

‘ ~ Jpdc ~ Jpdc
|I|” |||I| | |

Wavenumber — Wavenumber
Phase matching 1/L
bandwidth L

Physical process involved in the dynamics of initial two-photon state in the dc mode
2im) = —= AT2|O) When the resonator size L is large (left figure), many first-harmonic
modes are present in the phase-matching bandwidth (gray-shaded region), to which
broadband PDC can occur, playing the role of an effective decay channel. For a small
resonator size L (right figure), mode spacing 1/L is large enough to push all but
one first-harmonic mode out of the phase-matching bandwidth, realizing an effective
single-mode interaction. Adapted with permission from Ref. [69].

Then, the Hamiltonian can be rewritten as

Aih= %ei‘s’"’"’&fn(t)&Z(t)@,n+n(t) + h.c. (289)

with nonlinear coupling

,
=—, 290
8= L (290)

and phase mismatch
Omn = 0wp(2n(m + n)/L) — dw,2rm/L) — Sw,(-2mm/L), (291)

which we expand up to the second order.

Note that (289) mediates multimode coupling among all the modes that fulfill momen-
tum conservation, which can have an undesirable effect of leaking photons from
the computational mode As shown in Fig. 47, while the initial two-photon first-
harmonic state |agp) = «f a, 210) is only coupled to a monochromatic second-harmonic

state |by) = 133|O> via SHG, a photon that has upconverted to |by) = bg|0> can leak to
la,) = aa’,,|0) (292)

via the Hamiltonian terms boa),a’,,. Because |a,,) (m>0) is a state outside of the
computational basis, broadband PDC process to these modes should be seen as an
effective decoherence channel.

The nature of broadband PDC as multimode interaction can be more clearly seen from
the structure of the Hamiltonian. For the relevant states, the diagonal matrix elements
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of the Hamiltonian are

45wl (0)
a2,

1 N 1 N
ﬁ<b0|H|b0> =0 ﬁ(am|H|am> = _6m,—m = 12

(293a)

where we have chosen a reference phase so that dw,(0) = 0, assumed the phase-

matching between carrier modes, i.e., dw,(0) — 26w,(0) = 0, and approximated the

first-harmonic dispersion up to second order for concreteness. The off-diagonal

elements are g

1, . — (m=0),

7 {anlH|bo) = {\5 (293b)
g (m #0).

The characteristic structure of the Hamiltonian, where a discrete second-harmonic
state is coupled to multiple first-harmonic states, is reminiscent of what we saw in
Section 8.2 for single-photon-pumped broadband PDC. In fact, in the limit of large
resonator size L — oo, the band formed by discrete first-harmonic states converges to
a continuum, recovering the physics of discrete-continuum interaction. (Note that the
energy gap among neighboring first-harmonic states converge to zero in this limit in
(293).) As we have seen, dephasing caused by the continuum prohibits the realization
of single-mode physics.

Notably, such multimode interactions, which are inevitable in a large resonator, can
be suppressed when the size of resonator L is reduced to a small value. To see this, we
note that the magnitude of each off-diagonal element lh(am|I:I |bo) is g, implying that
its effect is only significant when the magnitude of corresponding phase mismatch
Om.—m is smaller than g. More formally, we define the phase-matching bandwidth for
single-photon-pumped PDC as the frequency window within which the magnitude of
phase mismatch

4n25w! (0) 3
12

-
8pdc

|Om.-m| = m’ =g m’ (294)

is smaller than g. Here, gy is the effective coupling rate for single-photon-pumped
broadband PDC
gpac = (r*[4n* 6w/ (0))', (295)

which is the same as gpq. we defined in Section D.3. The number of modes (other than
m = 0 mode) within the phase-matching bandwidth can be found as the largest m that
fulfills |6,, | <g, given by

Mpde = (gpdc/g)3/2- (296)

This can be interpreted as an effective number of “decay channels™ through which
photons can leak out from the computational modes.

Here, we note that g4 is invariant to the resonator size L, while the coupling rate among
the CW modes g ~ L™/ decreases as a function of L, reflecting the decrease of the
electric field per photon. The number of modes within the phase-matching bandwidth
therefore scales as m,q. « L4, indicating that we can reduce the number of “decay”
channels by making the resonator size smaller, as illustrated in Fig. 47. When L is small
enough to ensure m,q. < 1is fulfilled, the multimode interactions are suppressed, and
we can effectively realize a single-mode interaction with a Hamiltonian

N 8 (a2, 12 RN
an=4 (aoz(t)bo(t) + ao(t)bg(t)) . (297)
Another way to interpret how small resonators realize single-mode physics is to note

that the limit of mpg. < 1 implies g > gpqc. In this limit, SHG (with characteristic
coupling rate g) can occur before any multimode effects occur due to broadband PDC
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channels myq. oc L*/*. Adapted with permission from Ref. [69].
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process (with rate gpqc). To see the transition from multimode to single-mode physics,
in Fig. 48, we show the SHG dynamics for various m,4., where we recover clear Rabi
oscillation the limit of mpq. — 0.

These discussions, together with the fact that the nonlinear coupling g oc L7!/2

increases with smaller L, might seem to suggest that a design principle for nonlinear-
optical implementation of quantum gates is always to make resonators smaller. In a
realistic experiment, however, larger bending loss and surface roughness loss induce
a critical trade-off between the nonlinear coupling g and the linear loss rate k, which
eventually limits the attainable figure of merit g/«. The following sections discuss
how short pulses can be used to mitigate these trade-offs.

8.4b. Pulsed Operation

To circumvent the trade-off between the coupling strength g and loss rate « that occurs
when using monochromatic resonator modes, we must find approaches that enhances
the nonlinear coupling without introducing the large loss rates that occur in extremely
small resonators. One possible resolution is the use of short optical pulses to localize
the field associated with the in-coupled photons, where, intuitively, the pulse duration
plays the role of the size of an effective “flying cavity.” While temporally localized
waveforms cannot be an eigenvalue of the dispersion operator dw,(—i9,), we can still
choose the computational signal mode ¥(z,f) as a non-stationary solution of (285),
which eliminates the gate error for the single-photon input state |1;,). Since the gate
error on a vacuum input |0y,) is always zero, only the source of gate error is the action
of the Hamiltonian on the two-photon input state |2;,).

To be concrete, let us assume zero phase and GVM and expand the dispersion up to
second order as Sw, (k) = %6w;’(0)k2. Then, (285) has a solution of chirped-Gaussian
function

a4 O_Z—l/ 2

v R =
@) V1 +i(6wy(0)/4n2a2)(t — to) P (

1 (z/0)?
21 +i(6wy(0)/4n202)(t —19) ]’
(298)
where 1, is the time at which there is no chirp, and o, is the width of the pulse at ¢ = 1.
To minimize the chirp during the gate operation, it is reasonable to set #y = 1, /2 for
the total gate time of 7,. The annihilation operator for the computational modes are
defined as

njon(®) = [ 42, (20 (299)
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and group-velocity matched. The gray dashed lines represent a gate time gpqctr = 3.
Reprinted with permission from Ref. [3] © Optica Publishing Group.
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with ¥,(z) = ¥P(z,0) and Py (z) = ¥(z, t). In Fig. 49, we show the gate error D as
defined in Eq. (286), as a function of both gate time and the pulse duration. Long pulses
(red curves) exhibit Rabi-like oscillations as the input biphoton undergoes cycles
of upconversion and downconversion. For these long pulses, we observe poor gate
fidelities due to multimode decoherence. For short pulses (blue curves), we observe
an enhanced rate for the Rabi oscillations that comes with faster decoherence and
poorer gate fidelities. With an intermediate pulse duration (green curves), we obtain
optimal gate performance, with both an enhanced gate fidelity and a faster effective
coupling rate. However, even for this optimal configuration, the performance is far
from perfect. These observations are to be seen as a reformulation of Shapiro’s no-go
argument for y? systems, showing that one cannot realize high-fidelity quantum gates
using nonlinear propagation of optical pulses.

As illustrated in Fig. 50, the issue stems from the fact that the temporal supermodes
have near-degenerate energies. As a result, nonlinear interactions generally induce
all-to-all coupling, leading to a loss of photons from the computational basis. This
observation highlights the need of to eliminate the degeneracy among the temporal
supermodes, which is difficult with dispersion engineering alone. The following sec-
tion on temporal trapping discusses techniques for introducing strong frequency shifts
between the temporal modes; this approach introduces a strong phase mismatch that
suppresses coupling to any modes outside the computational basis while retaining the
enhancements the coupling rate enabled by using ultrafast pulses.

8.5. Temporal Trapping

In the previous section, we have observed that nonlinear optics is inherently mul-
timode in the deep-quantum regime, and such multimode dynamics opens effective
decoherence channels, e.g., when quantum gate operations are considered. The issue is
particularly critical for traveling-pulse implementation, where single-mode dynamics
cannot be realized even with optimized pulse waveforms. In this section, we intro-
duce the prescription using “temporal trapping” to simultaneously resolve the issue of
multimode decoherence and g/« trade-off [3].

The core idea behind temporal trapping is depicted in Fig. 50. In addition to the
quantum signal pulses, we consider a copropagating auxiliary “trap pulse” that induces
variation in the index of refraction in the temporal (i.e., longitudinal) dimension. With
an appropriate choice of waveguide dispersion, this refractive index variation can
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(a) Ilustration for the temporal trapping scheme to achieve y® nonlinear interactions
between ultrashort pulses. A trap pulse copropagates with quantum signal pulses,
creating a potential in the temporal domain via XPM. (b) In a micro-resonator,
dispersion can ensure that interactions among monochromatic cavity modes are phase-
mismatched except for a single pair. This mechanism enables the realization of effective
single-mode physics. (c¢) For traveling pulses without a trap, pulse waveforms are ener-
getically degenerate. This degeneracy causes nonlinear coupling among them to be
phase-matched, resulting in no single-mode subspace. (d) Temporal potentials created
by the trap pulse lift the degeneracy among pulse waveforms, suppressing undesired
multimode interactions. Through appropriate dispersion engineering, only the bound
modes of the trap are phase-matched. Reprinted with permission from Ref. [3] ©
Optica Publishing Group.

__________________________________________________________________________________________|

~

FH a;

form bound pulsed modes that are energetically separated from the continuum modes,
which confines the dynamics to an effective single-mode subspace spanned by the
bound modes. This is to be contrasted with the normal pulse propagation without a
trap, where all pulse waveforms are energetically degenerate, which makes multimode
interactions inevitable.

For the generic Hamiltonian for a y® nonlinear waveguide (283), we generalize the
linear operator as

Gu(z) = 6w (=i0;) + Vu(2), (300)

where V,,(z) represents position-dependent potential for signal (¢ = a) and pump (u =
b). Such a potential can be generated, e.g., via XPM induced by an auxiliary trap pulse
that copropagates with the quantum signal pulses. In this construction, the depth of
the potential is given as

V(1) = ~(na/mwole.* /A, (301)

where w, is the carrier frequency, ¢, is the amplitude of trap pulse, 7, is the nonlinear
index, and A is the mode area. We note that the following discussions do not rely on
the specific construction of the temporal trap. In addition, while we assume a finite
resonator size —L/2 < z < L/2 to make the comparison to conventional resonator-
based operation clear, our construction does not rely on a specific value of L and is
valid even in the limit of L — oo, corresponding to a traveling-wave implementation.

For concreteness, we assume group-velocity matching and include dispersion up to
second order as dw, (k) = Sw,(0) + %&o;’(O)kz, which defines an eigenproblem of the
linear operator as

(00000~ 3061012 +Vi(0) Forl0) = AP, (302



Tutorial ‘ | / Vol. 16, No. 2/June 2024/ Advances in Optics and Photonics 479

where eigenvalues A, are sorted in an ascending order. Notably, when the dispersion
is anomalous, i.e., dw;’(0)>0, (302) has at least one bound-state solution ¥,(z) with a
finite energy gap A, = 4,1 — 4,0 from the rest of the eigenmodes. Intuitively, when the
trap is deep enough, the resultant energy A, can be large enough to phase mismatch
all the undesired multimode interactions, effectively realizing single-mode interaction
only between the bound signal and pump modes ‘¥,o and ¥yg.

To see the emergence of effective single-mode interaction more clearly, we rewrite the
Hamiltonian using temporal supermodes defined by the eigenfunctions of the linear
operators as

eSS ‘%eiéfm"’?)g(t)&;(t)&l(t) +hec., (303)
€,m,n
where
(1) = / dz e (2)il, (304)

are temporal supermodes. The nonlinear coupling tensor

8tmn = r/dZ‘PZ[(Z)\Pam(Z)\Pan(Z) (305)

represents the strength of parametric interaction among ¢th pump and mth and nth
signal supermodes with corresponding phase mismatch of

Oemn = Ape — Aam — Aan. (306)

Note that the specific choice of the mode basis (304) has eliminated linear coupling
terms from the Hamiltonian (303).

The Hamiltonian (303) has a more complicated structure than that for monochromatic
modes in a homogeneous resonator (289), but they share qualitative features; both of
them are composed of a sum of multimode parametric interactions with corresponding
phase mismatch. For the case of monochromatic mode, the small resonator size has
allowed us to push undesired modes out of phase-matching bandwidth to realize an
effective single-mode interaction. Analogously, for the case of an ultrashort pulse,
we can utilize the tight temporal confinement provided by the temporal trap to make
undesired multimode interactions phase-mismatched (i.e., off-resonant).

For concreteness, let us assume 6w, (0) = dw,’(0)/2 and trap with z,
Va(2) = Vu(2)/2 = =00,/ (0)zgaysech®(2/ Zurap)- (307)

for which we have bound modes

Wao(2) = Ppo(2) =

sech(z/Zirap)- (308)

1
\l 2Ztrap

The characteristic energy gap A is defined as
6w, (0)

2
2Ztrap

A=A, =AyJ2 =

(309)

We assume the phase-matching condition between the carriers dw,(0) = dw;(0)/2,
which ensures that the interaction between the bound modes is phase-matched, i.e.,
0000 = 0. The corresponding coupling strength is

nr

8trap = 8000 = .
4\/ 2Ztrap

We note here that the nonlinear coupling is now determined by the pulse width zip,
rather than the cavity length L. The use of few-cycle pulses therefore enables coupling

(310)
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Figure 51
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rates comparable to wavelength-scale cavities, irrespective of the physical size of the
resonator. This approach to realizing enhanced nonlinearities allows resonator loss to
be engineered separately from the nonlinearity and the mode structure of the cavity
(e.g., intermediate-scale ring cavities can be fabricated to avoiding bending losses).

Here, we note that one of the terms in Eq. (303) of the form BO&L&,T, or IA)I,&O&O can
scatter photons out of the bound modes. For these terms, we can show that coupling is
upper bounded as g¢u, < girap, and the magnitude of phase mismatch is lower-bounded
as |0¢mn| = A. As aresult, if the condition

> 1 (311)
&trap

is met, all of the deleterious nonlinear interactions are suppressed, realizing an effective
single-mode interaction

22 aybo + aPB)) (312)
In Fig. 51(a), we show the dynamics of the photon distribution with and without
a temporal trap. For the case without a trap, we choose the initial chirp and the
width of an initial first-harmonic pulse to minimize the gate error ©. Even for such
an optimized waveform, however, photons disperse quickly, and photon conversion
dynamics exhibit highly damped Rabi-like oscillation (see Fig. 51(b)). On the other
hand, a temporal trap can critically suppress the dispersion of photons, and we can
observe high-contrast Rabi oscillation for multiple periods, highlighting that single-
mode dynamics are enforced. We project the dynamics onto the subspace spanned by
computational states in Fig. 51(c), where we can clearly observe that the temporal trap
enables the implementation of a high-fidelity NS gate.

H/h=

We close this section by emphasizing that temporal trapping is one of many approaches
that are currently being explored to realize ultrafast quantum gates. While the issue of
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multimode interactions was originally pointed out by Shapiro [56] regarding the use
of XPM interactions for CZ gate [158], Ref. [211] later showed that the use of wave
packets with a large group-velocity mismatch could partially resolve this issue. In
particular, the authors showed that single-mode XPM interactions can occur between
a large coherent state and a few-photon state encoded in wave packet with vastly
different group velocities. At the same time, they showed this approach still does not
enable high-fidelity CZ gates between two few-photon wave packets. The use of wave
packets with large group-velocity mismatch was later revisited in Ref. [212], where
they showed an effective TWM interaction generated by coherent photon conversion
(CPC) can realize a high-fidelity CZ gate. Further theoretical studies are presented
in Ref. [213]. More recently, Ref. [214] showed that CZ gate based on CPC with a
large GVM could have a favorable property of being wave-shape tolerant, in the sense
that gate operations can be realized with high fidelity regardless of the shape of the
input wave packets. These topics are sufficiently recent that there have not yet been
any successful experimental demonstrations of ultrafast quantum gates, and we note
that there are likely many approaches that have yet to be discovered.

9. CONCLUSIONS AND FUTURE WORK

As platforms for ultrafast nonlinear photonics continue to mature, an extraordinary
number of new possibilities emerge. At this time, the behaviors of classical devices
are pushing both to new operating regimes enabled by dispersion engineering, and
to new energy scales, enabled by the combination of tight confinement (in space and
time) with long interaction lengths. Together, these features make ultrafast nonlinear
optics an exciting platform for quantum optics, where the interplay between strong few-
photon nonlinear interactions and extremely broadband multimode behaviors produces
qualitatively new operating regimes at both the meso- and microscale. Beyond these
exciting new device behaviors, quantum circuits based on optical nonlinearities may
potentially resolve many of the outstanding challenges in scaling quantum technology
by operating at room temperature and readily interfacing with telecom components.
While few-photon nonlinearities have long been believed to be far beyond the reach of
nonlinear optics, a more systematic study of the parameter space available in nonlinear
nanophotonics suggests that these operating regimes will be accessed in the near future.

In anticipation of the considerable richness to be explored in this emerging field, we
have attempted to provide a unified treatment of ultrafast quantum nonlinear optics that
links classical- and quantum-nonlinear behaviors by using a mean-field approximation.
This correspondence connects the parameters used in quantum models, such as the
nonlinear coupling and the dispersion relations, to easily measured classical parameters
such as the normalized efficiency of a waveguide or the bandwidth of an SHG transfer
function. Furthermore, this correspondence allows us to extend the design tools used
for classical nonlinear waveguides to the design of quantum devices, and enables the
use of classical diagnostic techniques to verify the mean-field behaviors of fabricated
devices before using them to explore exotic quantum features. We then extend this
treatment to study the quantum physics of nonlinear optics at various energy scales,
spanning the semiclassical, mesoscopic, and microscopic regimes. In particular, we
argue that exotic non-Gaussian quantum features form even with the tens or hundreds of
photons found in the mesoscopic regime. While such non-Gaussian physics is beyond
the scope of conventional framework of Gaussian quantum optics, the intuition we
acquire from classical and semiclassical nonlinear optics can be used to navigate
this regime by working in the GIF. Finally, we introduce when and how some of
classical intuitions break down in the microscopic regime, discussing “what it means
for nonlinear optics to be quantum.” We hope that the approach taken here enables
the analysis of next-generation quantum nonlinear devices operating at and beyond
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mesoscale, and that this connection between classical and quantum nonlinear optics
stimulates new directions for the field.

We conclude this tutorial by saying that much work is left to be done, and that
the route forward likely involves innovations on many fronts: new materials, new
approaches to photonic design, new model reduction strategies, and new operating
regimes. In this regard, there are an extraordinary number of avenues for further study.
On the theoretical front, there are likely many undiscovered operating regimes and
model reduction strategies that may enable non-Gaussian quantum features to be more
easily accessed using current technologies. As an example, temporal trapping was
presented here as a proof of concept for how to realize few-photon nonlinearities with
coupling rates enhanced by the bandwidths of the interacting pulses. In reality, many
more undiscovered strategies likely exist that may be realized with greatly relaxed
experimental requirements. Additional work is not only needed to better understand
how to access novel quantum features, but also to better understand how these quantum
features will be used, e.g., for metrology and computation.

Experimental studies of ultrafast quantum behavior in the saturated limit are in a sim-
ilarly early stage. At this time, a relatively small number of photonics platforms have
been able to access the combination of large nonlinearity and dispersion engineering.
For the few platforms that have achieved dispersion-engineered interactions many of
the dynamical regimes discussed here have yet to be demonstrated. Thus far, the few
device demonstrations that have studied ultralow power nonlinear interactions using
femtosecond pulses are still several orders of magnitude away from the threshold of
exotic quantum features, saturating with pulse energies of femtojoules and picojoules,
rather than the attojoule and zeptojoule scales that are predicted to be possible. In
addition, these devices tend to operate at wavelengths that are not convenient for effi-
ciently detecting the generated quantum states. Attempts at accessing more favorable
(i.e., shorter) wavelength ranges have proved difficult, and the realization of short-
wavelength devices is an outstanding challenge for the field. Promising routes forward
include advanced approaches to dispersion engineering, such as inverse-designed pho-
tonic crystal waveguides or multilayer claddings, which enable greater design freedom
than simple ridge structures alone.

We hope that this tutorial provides a helpful reference for researchers interested in
working at the boundary of ultrafast and quantum nonlinear optics. While still quite
young, this field is evolving rapidly, and there are many opportunities for further
study. As the technical hurdles discussed above are resolved, we envision a new
frontier both for exploring new phenomenology in quantum nonlinear optics, and for
scalable quantum technologies, where densely integrated multi-functional photonics
can be used to generate, manipulate, and detect non-classical light.

APPENDIX A. COUPLED-WAVE EQUATIONS IN NONLINEAR WAVEGUIDES

To derive the CWEs for nonlinear waveguides, we must first treat the relevant aspects
of waveguide modes with a particular focus on their complex reciprocity relations
[215]. These relations will be used to derive closed-form expressions for the phase
and group velocity associated with each waveguide mode, which will be crucial
for designing nonlinear waveguides. We then introduce a nonlinear polarization to
Maxwell’s equations, and repeat this analysis to derive the CWE:s.

A.1. Waveguide Modes

Waveguide modes are solutions to Maxwell’s equations that result when the dielectric
tensor varies in only two spatial dimensions, €(x,y, z, w) = €(x,y,w), in the absence
of a driving current and a nonlinear polarization. We begin with Maxwell’s equations
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for a dielectric medium,

V-D(r,1) = 0, (Ala)

V-B(r,1) =0, (A1b)
V x H(r, 1) = 0,D(r, 1), (Alc)
V x E(r, 1) = —0,B(r, 1), (A1d)

where the constitutive relations for D and B are typically given in the frequency
domain. We Fourier transform Eqs. (Ala)—(A1d), using the convention

°° d 1 [~ d
E(r,?) = / E(x,y,z, w) exp(iwt)% =5 / E(x,y,z, w) exp(iwt)% +c.c.,
(A2)

where the latter form follows from E(r, #) being real. The frequency-domain Maxwell
equations are given by

V- -D(x,y,z,w) =0, (A3a)
V- -B(x,y,z,w) =0, (A3b)
VxH(x,y,z,w) =iwD(x,y,z,w), (A3c)
V X E(x,y,7,w) = —iwugH(x, y, 2, w), (A3d)
where we have used the typical constitutive relations for a dielectric given by
D(x,y,z, w) = €(x,y,w) - E(x, y,z, w), (Ada)
B(x,y,z, w) = uoH(x, y, z, w). (A4b)

Here e(x,y,w) is a second-rank tensor. In lossless media, e(x,y,w) is Hermi-
tian, €;(x,y, w) = e;lf(x, y,w), and for non-gyrotropic media €(x,y, w) is symmetric,
€j(x,y, w) = €;(x,y,w). Throughout this tutorial we will assume a lossless, non-
gyrotropic medium, which renders e(x,y, w) both real and symmetric. In addition,
for most cases of interest the crystal axes of the nonlinear medium are aligned to the
waveguide coordinates, which renders €(x, y, w) a diagonal tensor

€a(X, y, w) 0 0
elx,y,w) = g 0 €,(x,y, w) 0 , (A5)
0 0 (X, y, W)

where ¢ is the permittivity of free space, and ¢,, is the relative permittivity along the
waveguide x-coordinate. In all further discussion, we will use capital letters (X, Y, Z) to
denote crystal axes, and lowercase letters (x, y, z) to denote waveguide coordinates. For
propagation along lab coordinate z in a uniaxial medium, the direction of propagation is
typically taken along the crystalline Y-axis so that one of the transverse fields is aligned
along the crystalline Z-axis. For example, in X-cut lithium niobate thin films where the
crystalline Z-axis aligned with the waveguide x-axis we have €, = €77, €, = €xx, and
€;; = €xx. Similarly, in Z-cut lithium niobate thin films, which have their crystalline
Z-axis aligned with the waveguide y-axis, we have €, = exx, €, = €7, and €,; = exy.
Typical realizations of dispersion-engineered waveguides in TFLN have used TE
modes in X-cut films, which exhibit both large nonlinearities and allow for dispersion
engineering at many wavelengths of interest. We note here that most materials with
induced nonlinearities, such as silicon and silicon nitride, are sufficiently weakly
perturbed by the DC Kerr effect that we may approximate them as having isotropic
permittivities, €;(x,y, w) = €(x,y, w)d;, where J; is the Kronecker delta function.

For waveguides €(x, y, w) is assumed to be translation invariant with respect to z. In
this case, Maxwell’s equations may be reduced to an eigenvalue problem by assum-
ing solutions of the form E(x,y,z, w) = E,(x,y, w) exp(—ik,(w)z), and H(x,y, z, w) =
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H, (x,y, w) exp(—ik,(w)z). For the simple case of a diagonal €, which contains all of
the essential features of a more general analysis, we first combine Maxwell’s curl
equations, to find

¥V x (e<-1> LV x H) — WP uoH = 0. (A6)

This equation may be further simplified by eliminating H, using V - B = 0 and using
0. H(x,y,z,w) = —ik,(w)H(x,y, z, w) for waveguide modes,

B 0:H,+0,H,,

1K
ik,

(A7)
Substituting Eqgs. (Alla), (Al1b) into Eq. (A6), with Eq. (A7) yields

€y €y
(ﬂaf + 07 + Eyywz,uo) H, . (x,y) + (1 - f) 0x0,H, (x,y) = kZH,,,x(x, y), (A8a)

EZZ 2

Exx Exx
- (1 - _) axayHﬂ,x(x7 )’) + (E_axz + 6)2 + Exxw2/~10) Hﬂ’}'(x’ y) = k;zzHll’y(x7 y)
2 Z
(A8b)

When cast in this form, the transverse magnetic fields [H, ., H, ,]T are eigenfunctions
of a linear operator with an eigenvalue given by kﬁ. Further generalizations of the
presentation shown here to include off-diagonal components in € are given in [216].

For a lossless, non-gyrotropic medium, where € is real, the fields associated with
each waveguide mode exhibit a number of useful symmetry properties. First, we
note that H,,, and H,, can both be taken to be real functions which, with Eq. (A7),
implies H,, . is imaginary. Similarly, using Eq. (A3c), we may show that the trans-
verse displacement fields D, , and D,, are both real and that the longitudinal
displacement field D,, ; is imaginary. Second, we note that the field distributions asso-
ciated with backward-propagating waves can be found by performing the coordinate
transformation (x, y, z) — (x, y, —z), which implies that

E! E, . =-E! (A9)

- -
E#,x - EMJC’ Eﬂ,y Ty Mz 14
where + and — denote forward- and backward-propagating modes, respectively. Mag-
netic fields are pseudo-vectors, and therefore transform differently under coordinate
inversion than electric fields. We may use Maxwell’s equations to find
- _ + - _ + - _ g+
H, . =-H,,, H, =-H,, H, =H,.. (A10)
These symmetry relations will be useful in deriving closed-form expressions for &,

and 9,,k, in terms of the fields associated with a waveguide mode.

We now extend these solutions to the more general case, where the fields propagating
in the waveguide can be expanded as a series of modes that only exhibit phase evolution
along the z coordinate. In this case, for each frequency w we have

E(6y,2,0) = ) au(@)By(x,y, w)e M, (A11a)
M
H(x,y,z,w) = Z a,(w)H,(x,y, w)e ku@rz (A11b)
H
D(x,y,20) = ) au(@)e,y) - Ey(x,y, w)e %, (A11c)
H
B(x,y,z,w) = Z ay(w)poH,(x,y, w)e ku@r (A11d)

u
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where a,, represents the component of E contained in mode u around frequency w.
Here each of the field distributions associated with each mode, E,, and H,,, are eigen-
functions of Maxwell’s equations at frequency w, with a corresponding eigenvalue
ki (w). The complex reciprocity relations derived in the following appendixes will be
used to calculate the coefficients a,, needed to decompose E(x, y, z, w) into waveguide
modes.

A.2. Complex Reciprocity Relations

We now derive the complex reciprocity relations for waveguide modes following the
treatment in Ref. [215]. The reciprocity relations will yield the orthogonality relations
for the modes in linear waveguides and resonators, as well as closed-form solutions
for the eigenvalues &, in terms of the field distributions. In following appendixes we
will use complex reciprocity to derive the CWEs between modes in nonlinear devices.
We begin by noting that throughout this appendix we will make frequent use of the
two-dimensional divergence theorem,

/V-V(x,y)dxdyz GZ/V(x,y)-idxdy+‘7§V-ﬁd€, (A12)
s s ¢

where S is a disk normal to z and ¢ parameterizes a path around the boundary of S.
For all cases of interest here |v(x, y)| vanishes for large x and y, which yields

[ vovnaay=a. [ vy zacay (A13)
Aoc AOO
where fA -+ -dx dy denotes an integral over the full x—y plane.

A.2.1. Complex Reciprocity: Conjugated Form

The conjugated form of the reciprocity relations establishes both orthogonality rela-
tions between modes and their normalization in lossless media. We begin by defining
a vector G. = E; X H3, where E; and H; satisfy Maxwell’s equations, and E; and H}
satisfy the conjugated form of Maxwell’s equations,

V xH3(x,y,z, w) = —iwe"(x,y) - E5(x,y, 2, w),
V X Ez('x’ y’ 2 Cl)) = l(l_)ﬂ()Hz(x, y’ 2, CL))

We evaluate the divergence
V- (E,xH;) =H;-(VXE,)-E; - (VxH)), (A14)

using the vector identity V- (AXB)=B-(VXxA)-A-(VxB). Substituting in
Maxwell’s equations, we find

V- (E xH;) = —iwpoH5 - Hy + iwE; - € (x,y) - E;. (A15)

We may eliminate the magnetic fields from Eq. (A15) by evaluating the conjugate of
this expression with the mode numbers interchanged (G, = E; x Hy),

V- (E; xHy) = iwpoH; - H; — iwE; - €(x,y) - E;. (A16)
Adding together Egs. (A15), (A16), we arrive at the conjugated reciprocity equation
V- (E;xH +E; xH}) = —iw (E; - e(x,y) - E; —E; - €"(x,y) - E}) , (A17)
which can be rewritten as

V- (E; xH; +E; xH;) = —iwE; - (e(x,y) — €'(x,y)) - Eq, (A18)
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T : : ¥ _
where € = €;- For a non-absorbing medium €'(x, y) = €(x, y), and therefore

V- (E, xH; +E;xH,) =0. (A19)

We now derive mode orthogonality by considering two different modes, labeled ¢ and
v, with associated fields

E, = E,(x,y) exp(—ik,z), H, = H,(x,y) exp(—ik,z), (A20a)

E2 = Ev(x’ y) eXP(—ika), H2 = HV(X, y) CXP(—ika)~ (A20b)

Substituting Eqs. (A20a), (A20b) into Eq. (A18), and applying the two-dimensional
divergence theorem, we find

(ky — k) exp (—i(k, — k,)z) / (B, xH; +E; xH,) -2dxdy=0.  (A21)

Ao

The exponential term in Eq. (A21) does not contribute any meaningful insights, and
will be dropped in all further discussion unless otherwise noted. When k, # k,,, the
integral must vanish. Conversely, when k, = k, the integral can be evaluated using
Poynting’s theorem,

%/ARe (B < H;) - 2) axdy =P, (A22)

where P is an arbitrary normalization constant. By convention, we choose to normalize
the fields such that P =1 W, and therefore the power contained in each mode of
Eq. (Alla) is given by Pla,|?. It can be shown using the orthogonality relations
derived below that the total power contained in the waveguide modes is given simply
by 2, Play 2.

Repeating this derivation with a backward-propagating mode (k_,, = =k, ,E,_, = E,,
H,_, =-H,,), we have

(ky + k) exp (—i(k, — k,)z) / (-E, xH; +E; x H,) - 2dxdy = 0.  (A23)
A

o

Combining Eq. (A23) with Eq. (A21), we find the orthogonality relations,

% / Re ((E, x H}) - 2) dxdy = P6,,,. (A24)
A

Equation (A24) is one of the main results of this appendix. In addition to establishing
the normalization of each waveguide mode, the orthogonality relations enable an
efficient description of linear propagation within a waveguide. At any point z, the field
in a waveguide can be decomposed the into the basis of waveguide modes using the
orthogonality relations. The propagation of each mode u from z to any other position
7’ is given by an overall phase, exp(—ik,z), as in Eq. (Alla), and the field at point
Z’ can be reconstituted as a sum over all of the modes. In nonlinear waveguides we
will continue to work in this basis of waveguide modes, and will use the orthogonality
relations to derive the equations of motion describing the contribution of the nonlinear
polarization to the evolution of each mode.
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Having established the normalization conditions for each mode, it is convenient to
express the mode profiles using dimensionless functions e(x, y) and h(x, y)

27ZoP
E,(x,y) = \/ﬁ%(}f, ), (A25a)
uAmode,u
2n,P
H,(x,y) = \/Z()A—Hdh”(x’ ¥)s (A25b)
mode,u

where Z, = 377 Q is the impedance of free space and n,(w) = ck,(w)/w is the effective
refractive index of mode y at frequency w. The choice of normalization for the dimen-
sionless field distributions e(x, y) and h(x, y) is arbitrary; the convention presented here
is only used to give clear physical intuition. We note here that as a consequence of
Eq. (A24), the area of mode p is given by Apmodeu = f Re(e, X hy,) - Zdxdy. If the field
distributions are normalized such that the peak value of Re(e, X hy,) - Z is unity, then
Amode 18 the ratio between the peak intensity of the waveguide mode and the average
power contained the mode. This definition of modal area is an intuitive measure of how
tightly confined a mode is, with more tightly confined modes producing stronger non-
linear couplings. We note here that other choices of normalization for e, only change
the definition of the mode area, but ultimately yield the same result for any physically
measurable value such as the nonlinear coupling. The definitions used here establish
a correspondence between modes in nanowaveguides, which require a fully vecto-
rial description, and the transverse modes that occur in loosely guiding waveguides
(and in bulk media). As an example, for an x-polarized Gaussian beam propagat-
ing in free space, e(x,y) = exp(—(x* + y*)/w?)&, h(x,y) = exp(—(x* + y*)/w?)§, and
Amode = mw? /2. It should be clear from this example that e(x, y) and h(x, y) are simply
dimensionless quantities that describe the shape of the field, and the resulting A 0. iS
the conventional mode area for a Gaussian beam.

We now use the complex reciprocity relations to derive closed-form expressions for
the propagation constant of a mode in terms of €(x, y) and the field distributions. Here,
we again consider the vector G, = E; X H} and follow the same steps as above. The
divergence of G, is given by (Eq. (A15))

V- (E xH;) = —iwpoH5 - Hy + iwE; - € (x,y) - E;.

‘We now evaluate V - G, for the case where the two fields are associated with a forward-
and backward-propagating mode, respectively:

E, = E,(x,y) exp(—ik,z), H, = H,(x,y) exp(—ik,z), (A26a)

E, = E, (x, y) exp(ik,2), H, = H,(x, y) exp(ik,z). (A26b)

Recalling that £, = E, X + E,,§ — E,, .2, and that both E, . and E, , can be taken to be
purely real, thereby causing E,, ; to be purely imaginary, we have E; = E,, exp(—ik,z).
Similarly, H; = —H,, exp(—ik,z). Substituting Egs. (A26a), (A26b) into Eq. (A15)
and applying the two-dimensional divergence theorem, we find that the propagation
constant of mode u is given by

: /Am (wuo)H, - H, + E,, - (we*(x,y, w)) - E, dxdy

k/l(w) =
Lo (BuxH;) - 2dxdy

(A27)
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A.2.2. Complex Reciprocity: Generalized Form

We now establish the generalized complex reciprocity relations, which allows for
variations in the frequency between the two fields. This form of the complex reciprocity
relations will be useful for developing orthogonality relations in resonators and for
finding closed-form expressions for the inverse group velocity d,,k,,. In this case, the
fields E; and H; correspond to solutions of Maxwell’s equations for frequency w;,
and similarly, the fields E, and H, correspond to solutions of Maxwell’s equations for
frequency w,

E, = E,(x,y, w) exp(—ik,(w)z), H, = H,(x,y, w) exp(—ik,(w1)z), (A28a)
E> = E,(x,y, wp) exp(=ik,(w2)z),  Hz = H,(x,y, w) exp(—ik,(w>)z). (A28b)
Repeating our analysis for G. = E; x H}, we have
V- (E; xH;) = —iwuoH; - Hy + iwE| - €' (x,y, w,) - E5. (A29)
Similarly, for G, = E; x H,
V- (E; xHy) = iwouoH, - H — iw E; - e(x,y, wi) - E;. (A30)
Adding together Egs. (A29), (A30) to calculate F. = E; x Hj + EJ X H;, we have

V- F. = —ipg(w; — w)H; - H = i(E; - wi€(x,y, w1) - E; = E{ - w2€"(x,y, w2) - E;).
(A31)
Applying the two-dimensional divergence theorem yields

(ku(w1) = ky(w2)) /Am (EIJ x H; + EJ X H/A) -dA =

. A32
S, (@1 = wo)H, - Hj + E; - (w1€(x, y, 1) = w2€"(x,y, 1)) - By, dxdy. (A32)

There are two key insights from Eq. (A32). We first consider the case where y # v
and k,(w;) = k,(w,), which will be relevant in resonators. In this case, we find an
alternative version of the orthogonality relations,

/UMM—mmwm+mwmm%mrmﬁmwmymmwzu
A
(A33)

The second insight from Eq. (A32) is a closed-form expression for the inverse group
velocity of mode p. Assuming p = v and a lossless medium, dividing both sides by
w) — w, and taking the limit as w; — w(= w), we find

Jo_ toHy, - H, + Ef, - 8, (we(x, y, w)) - B, dxdy

S (Bue @) x By (5.3, 0) + B (5,3, @) X Hy (3, ) ) - 2dvdy

ky(w) =

Allwa poHy, - Hy, + E; - 0, (we(x, y, w)) - E, dxdy

% /Am Re (E,,(x, y,w) x Hy, (x, y, cuz)) -Zdxdy

We note here that Eq. (A34) is the ratio of the energy density carried by an
electromagnetic wave in a dispersive dielectric to the power flux [62,146].

K (w) = (A34)

A.3. Nonlinear Coupling

Having reviewed waveguide modes, their dispersion relations, and their normalization,
we now consider nonlinear interactions between these modes. The treatment used in
the following appendixes accounts for the fully vectorial nature of the modes [217,218],
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with each field component of E, coupled together by the full nonlinear tensor, X;.?,

of the media that comprise the waveguide. We note here that for SHG, dj = )(l.ﬁ) /2 is
commonly used for tabulated values of the nonlinear susceptibility.

The derivation of the CWEs follows the treatment of the previous appendix, where
complex reciprocity was used to establish the orthogonality relations between wave-
guide modes. In this case, we will consider reciprocity between two solutions to
Maxwell’s equations, E; and H;, which evolve in the presence of a nonlinear polar-
ization, Py, and E, and H,, which are solutions to Maxwell’s equations in the
absence of a nonlinear polarization. The nonlinear polarization is incorporated in the
Ampere—-Maxwell curl equation,

V x H(x,,z, ) = iwe(x,y,w) - E(x,y, 2, 0) + iwPNL(X, Y, w). (A35)

When [Py (x,y, w)| is weak compared with |e(x,y, w) - E(x,y,z, w)|, E; and H; can
be expanded as linear combination of waveguide modes, E,, and H,, where the mode
expansion coefficients a,(z) now evolve during propagation due to the presence of
Pni. We therefore generalize Eqs. (Alla)-(Al1d) to include the evolution of a,(z)
by assuming an ansatz of the form E; = } , a,(2)E,(x, y, w) exp(-ik,z), and H; =
2 4 (DH (x, y, w) exp(—ik,z), with similar expressions for D and B. We choose
E; = E,(x,y, w) exp(—ik,z) to be a pure transverse mode, which allows projection of
a single mode amplitude from the sum in E;.

As before, we evaluate the divergence of E; X H
V- (E;xH;) =H;- (VXE))-E; - (VxH)). (A36)
Substituting in Maxwell’s equations, we have
V- (E; xH;) = —iwpoH5 - Hy + iwE; - (€'(x,y) - E3). (A37)
Similarly, conjugating and interchanging these fields we find
V- (E; xH)) = iwpoH; - H; — iwE; - (e(x,y) - E; + Pny). (A38)
Adding together Eqgs. (A37), (A38) yields
V- (E; xH; +E; x H)) = —iwE; - (e(x,y) — € (x,)) - E; —iw (E} - Py) . (A39)

We now assume a lossless non-gyrotropic medium (e(x, y) = €'(x, y)), integrate both
sides over the x—y plane, and apply the two-dimensional divergence theorem ( fS V.

v(x, y)dxdy = 0, fs v(x,y) - Zdx dy) to relate the evolution of the fields along z to the
nonlinear polarization,

o, / (Ey x HS + ES  H)) - dA = —ico / (E;-Py) dd.  (AdO)
Ao Aco

The left-hand side of Eq. (A40) can be evaluated using our ansatz for the fields.
Starting with E; x H; = ¥, a,,(2)E,, x Hj; exp (—i(k, — k,)z), we find

6Z (El X H;) =

0-a,(z) . . A41
Zap(z)( - — ik — kv)) E, x H exp (=i(ky — k,)z) - (Ad1)
- a,(2)
Similarly, we evaluate E; x H; = ¥, a,(z)E; x H, exp (—i(k, — k,)z) to find
61 (E; X H]) =
(A42)

> a2 (a;j"(Z) — ik, — k,,)) E: x H,, exp (—i(k, — k,)z) .
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We add Eqgs. (A41), (A42) and evaluate the integral in Eq. (A40) using the orthog-
onality relations. This integral is only non-zero for terms where u = v, which
yields

0, / (E; x H + E; x H,) - dA = 4Pd.a, (2), (A43)
Ao

where P=1W = A—IL fA (E,l xH;, + E, X H'u) - dA. Comparing the right-hand sides
of Eq. (A43) and Eq. (A40) we find that a,(z) evolves as

d.a,(z,w) = —

%eikﬂ / E;(x,y,w) - Pap(x,y, w) dxdy. (A44)

Equation (A44) is the main result of this appendix, and can be used to derive the
evolution of any transverse mode, a,(z), in the presence of an arbitrary nonlinear
polarization.

For SHG in the limit where one pair of modes is close to phase-matching, we calculate
Py using one mode, u, for the fundamental at frequency w and one mode, v, for the
second harmonic at frequency 2w. More general expressions are obtained simply by
summing over all possible mode pairs. For the remainder of this appendix, the field
amplitudes associated with the relevant mode of fundamental and second harmonic
will be referred to as a,, and ay,, for the fundamental and second harmonic, respectively.
In this case, the nonlinear polarization is given by

PaLw = 260deray 20(2)a,, ,(2) Z dixEy j(x,y, 2w)E, (%, , w)e 2o —kuwl  (A4B)
Jk

Pniow = fodeﬁaf,,w(z) Z diBj(x,y, )B4 (x, y, w)e 2*e? (A46)
jk
where 7,7,k € {x,y,z}. For nonlinear interactions between modes polarized predom-
inantly along the crystalline Z-axis in lithium niobate, d.g = %d33 is the effective
nonlinear coefficient for a 50% duty cycle periodically poled waveguide, and d; is
the normalized y® tensor. This is expressed using contracted notation [219] in the
coordinates of the crystal as

) 1 0 0 0 0 dis dis
dij = ™ de —-de 0 ds 0 O
B¥$\ds ds dz 0 0 0

We arrive at the CWESs for SHG by inserting Eqs. (A45), (A46) into (A44), substituting
the normalizations found in Eq. (A25a), (A25b), and defining A, = VPa,,

0.A, = —ikAg, AL e ™5, (A47)
0.As, = —ik"A% ™R (A48)
The nonlinear coupling, «, and the associated effective area are given by
_ \2Zywdeg
T o VA,

2
Amodc’wAmode,Zw
Aer =

1Ol

OV[l,u = / Z C_iijke;i(x’ ya ZQ))E”J(X, y’ w)eﬂ,k(x’ y’ w) dx dy (A51)
A

© ik

exp(—idy), (A49)

; (A50)

We emphasize here that all of the geometric contributions to « are contained in the
effective area, A, and that the numerator and denominator in Eq. (A50) contain
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the same number of field envelopes. Therefore, any overall scale factor of the field
distributions is canceled, which greatly simplifies numerical calculations of «. In
practice, any electric field found using a numerical mode solver can be used for e,
as this only introduces an overall scale factor. Similarly, simply dividing the magnetic
fields output from the same mode solver by Z;/n, will produce a valid h,,, with the
same overall scale factor as e,. Using these fields in Eq. (A50) will yield the correct
nonlinear coupling, albeit with rescaled values for Apoge-

The expression for the coupling coefficient « can be further simplified by noting that
the phase of « is arbitrary. In general, « is complex in a nanophotonic waveguide
due to coupling between the purely real transverse components of the fields with the
purely imaginary z-component of the fields. The phase of the nonlinear coupling is
determined by the field overlap integral, ¢, = arg(O,,,,), and can be neglected without
loss of generality. When ¢, is non-zero, the nonlinear coupling imparts a small phase
shift between each of the interacting envelopes, but does not contribute any meaningful
change in the resulting nonlinear dynamics. We can remove this phase from the CWEs
by shifting phase reference of the second harmonic, A,.,(z) — Az, (z) exp(—igy).

The usual figure of merit for a nonlinear waveguide is the normalized efficiency,
1o = k>, which determines the power and device length needed to achieve efficient
conversion; devices with larger 17y can operate with either less power or shorter propa-
gation length. The smallest possible effective area for a given wavelength is comparable
to Acg ~ (4/n). Given the scale invariance of Maxwell’s equations, the A.s of any
given device scales as A%, provided that all of the dimensions of the waveguide are
rescaled. Therefore, we expect ny to exhibit a quartic scaling with frequency as given
designs are rescaled to shorter wavelengths, with a factor of w? coming from the
explicit w-dependence of k, and another factor of w? coming from Ag. In practice, the
scaling of 1, for a given waveguide is slightly greater than w* due to the dispersion of
e

A.4. Dispersive Pulse Propagation

Thus far, our treatment of nonlinear interactions has focused on quasi-CW limits, where
each interacting harmonic contains a single spectral mode. Our goal is to generalize
this treatment to CWEs of the form d,A,,(z, f) that describe the evolution of broadband
pulses in nonlinear waveguides. To facilitate this picture, we first review linear pulse
propagation. The following appendix will combine both linear and nonlinear pulse
propagation to derive the CWEs for ultrafast pulses.

We begin by Fourier transforming the time-domain electric field,

E(r, 1) E/ E(r, w) exp(iwt)czz—: :/ E(r, w) exp(iwt)g—(: +c.c., (A52)
—00 0

where the latter form of Eq. (A52) follows from E(r, ¢) being real. Since the integral in
Eq. (A52) can be taken over positive frequencies, we can express E(r, t) as the Fourier
transform of a single-sided distribution E*(r, w) = 2E(r, w)H(0), where H(w) is the
Heaviside step function. Expanding E(r, w) in terms of waveguide modes we have

E(r,7) = % ‘/00 Z au(w)E, (x,y, w) exp (iwt — ik, (w)z) (i—(;:) +c.c., (A53)
™ u

where a,(w) is a single-sided distribution, a,(w) = 0 for w<O0.

In principle, Eq. (A53) is sufficient for calculating the evolution of the time-domain
electric field, provided a,(w) is known. In practice, since a,(w) is typically localized
around a large frequency, wy, E(r, f) has extremely rapid phase variations on the time



492  Vol. 16,No. 2/June 2024/ Advances in Optics and Photonics \ Tutorial

scale of w; ! and length scale of k;l(a)o). We may gain much clearer insights by
removing these rapid phase variations and studying the behaviors of a residual pulse
envelope, d,(z, t). First, we use the Fourier shift theorem to rewrite Eq. (A53) in terms
of the offset frequency Q = w — wy,

1 . . . dQ
E(r,1) = 5 [m ; a,(QE, (x,y, Q) exp (iQr — ik, (Q)z + iwot) (Z) + c.c.
We define the slowly varying envelope @, (z, ) by introducing a rotating frame,
G2, Q) = a,(Q) exp (—i [kﬂ(g) — ko — v;efg] z) ,

=a,(0, Q) exp (—i (kﬂ(Q) —kuo— V;efQ) Z) ,

where ko = k,(Q = 0), and v, . is an arbitrary reference group velocity chosen to
shift the time coordinate to be comoving with the pulse envelope. With Eq. (A54) for
the field envelope, Eq. (A53) becomes

(A54)

1 [ d
E(r,t) = 3 / Z a4, (QE,(x,y, w)exp (iQt" + iwot — ik, 02) (%) +c.c.,
o 4

wheret’' =t —v, retZ In the context of linear propagation, choosing v rer = vg(wp) ren-
ders the field envelope stationary in the absence of second- and higher-order dispersion.
Later, when studying nonlinear interactions between pulse envelopes, we will see that
this reference velocity can be chosen to greatly simplify the equations of motion, and in
practice our choice of reference velocity will depend on the particular problem being
studied. We note that throughout the main text and this appendix, various choices of
reference velocity will be used. Rather than explicitly defining many separate time
coordinates (e.g., t’, t”/, and #’”’), we will instead suppress the prime on the shifted
coordinate and simply describe our choice of reference velocity in each context. The
terms “lab frame,” and “non-moving” frame (v, .t = 0) will be used interchangeably.

The time domain pulse envelope is given by

a,(z,1) = [ ) a,(z, Q) exp(iQt)g. (A55)

0

To find the propagation equation for @,(z, t), we first take the derivative of Eq. (A54)
with respect to z to find a propagation equation for a,(z, Q2),

8-tz Q) = =i (Ko + Q) = ko = ;1) (2, Q). (A56)

We convert Eq. (A56) into a propagation equation for the time-domain pulse envelope
a,(z, t) with an inverse Fourier transform,

dQ
.1, (2, 1) = / i (k#(wo + Q) — ko - v;}refg) a,(z. Qexp(iQ)7—.  (AST)

To evaluate Eq. (A57) we will make use of the Fourier rule for derivatives, 9}' < (iQ)",
by first series expanding the dispersion relations

K@) = Ko = Vb = ok - gref)su —Rk, QP + 6a3k Q+---  (A58)
= (B = vyl ) © + Dy (1), (A59)
where Diy ,(iQ) = 3, m, (Q)’”k<m) is the dispersion operator for mode u, and

k(m) Ok, (Q)|a=o is the mth derivative of k,(Q), evaluated at Q = 0. With this form
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of the propagation equation, we may now evaluate Eq. (A57) to find
0.8y, (z, 1) = =(kj, = Vg 1) (2, 1) = iDing (8 (2, ). (A60)

Equation (A60) is the main result of this appendix and describes the evolution of a
time-domain envelope with respect to propagation along z in a linear waveguide.

Once Eq. (A54) or Eq. (A60) is solved for the slowly varying envelopes, the steps
described herein can be reversed to obtain E(r, r) using Eq. (A53), with an identical
expression holding for the magnetic fields. In practice, since the fields associated with
each eigenmode are weak functions of frequency across the typical bandwidth of a
pulse, Eq. (A53) can be approximated as

1
E(r,t) ~ 3 Z ay(z,t — v;}efz)E,,(x, ¥, wo) exp (iwot — ik, 0z) + c.c. (A61)
u

When Eq. (A61) is valid a,(z, ) can be used to calculate the instantaneous power
envelope in mode u, obtained by cycle-averaging the Poynting flux,

T
1 / / E(x.y.0) x Hiv.y. 1) - dA dr =P Y [a,(z 0% (A62)
TJo Jas m

where T = i—’; and the normalization P = 1 W was introduced in Section A.2. As with
our previous analysis of nonlinear coupling, we introduce the instantaneous power
envelope associated with the bandwidth contained in mode p as A, (z, 1) = \/1_)51#(2, 7).
In the context of nonlinear optics, for typical systems only one or two transverse modes
will be relevant for each interacting wave, and therefore the mode index u will often
be dropped for compactness.

We close this appendix by briefly addressing practical considerations for how to
calculate and to use a,,. First, we note that for pulses with a bandwidth much smaller
than the carrier frequency, Djy, is simply given by truncating the Taylor series of
k,(w) at low order. Second-order dispersion is sufficient for analyzing most problems,
though occasionally we will see throughout this paper that third- or fourth-order terms
become relevant. We note, however, that the Taylor series of k,(w) truncated at a large
but finite order should not be used when simulating multi-octave effects. While this
Taylor series can be evaluated, the radius of convergence is zero due to the underlying
Sellmeier equations typically used to describe dispersive materials having real poles.
For typical waveguides, the global behavior of Djy, is usually best approximated with
a Taylor series truncated around fourth or fifth order, and treating bandwidths beyond
this approximation requires a different strategy altogether. For nonlinear propagation
with multi-octave bandwidths, the best approach is split-step Fourier methods with
the full k,(w) used to calculate linear propagation.

A.5. Coupled-Wave Equations for Short Pulses

In a nonlinear waveguide driven by short pulses we have multiple envelopes (one for
each interacting wave), each of which comprise many frequencies. For each of these
envelopes, the Fourier components a,(w) + a,(z, w) now evolve with z due to the
nonlinear polarization Py (w) according to Eq. (A44), copied below for convenience,

d.a,(z, w) = %e""“‘“’)z / E’(x,y,w) - Px(x,y, 2, w) dx dy, (A63)

where Pni (%, y,z, w) is calculated by integrating over all pairs of fields producing a
contribution at frequency w. For broadband envelopes, CWEs are most easily derived
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using the constitutive relations for Py (x, y, z, w) in the frequency domain. Thus far, we
have used dj for the constitutive relations of Py, which is has been used historically for
narrowband fields and weakly non-dispersive nonlinearities. In the context of broad-
band SHG, the nonlinear polarization around the fundamental is more conveniently
given by the frequency-domain constitutive relation

PNL(x9 Y, %, (,L)l) =€ / X;i)(wla w3, W — wl)EVJ(x’ Y (L)Z)E;,k(x, Y, w3y — (L)l)

. dw
X (2, @2)at (2, w3 = 1) exp (=ilk(@2) = kylewr = w1))z) =
(A64)
where )(l.(ji) = 2d for SHG. Our choice of X,ﬁ), rather than dj, allows for easier

accounting, since definitions of dj; vary by factors of two when treating SHG and SFG,
and the frequency integral in Eq. (A64) contains both. For notational consistence, we
will later revert back to dj when the nonlinear coupling is assumed to be weakly

dispersive. Defining A, = \/ISa,J, together with Eq. (A64), Eq. (A63) becomes
0 " . da)2
K,uvy(wl’ wZ)AV(Z9 C()Q)A”(Z, wy — wl) exp (_lAk(wl’ wZ)Z) E?

(A65)
where the phase mismatch is given by Ak(wi, w,) = k,(w>) = ky(wr — wr) = ky(wy).
The nonlinear coupling is given by identical expressions to the CW case, but now with
the frequency dependence of the overlap integrals made explicit

0Au(z,wy) = —i/

—00

2
VZowi XD (wis w2, w3 — wy)

c\2Aer (w1, W)y (W), (W) (ws — )

(A66)

K,uv,u(wl ,W2) =

Amode,y (wl )Amode,v (w2 )Amode,u ((UZ — Wi )

2
|O/1V/J(a)19 CU2)|

Opvp(wi, o) :/ g ()Elgi)(wl;wz,wz - wl)e;’i(x,y,wl)
A 5
ik (A68)

ey j(x,y, wr)e, x(x,y, w, — wy) | dx dy,

: (A67)

Acr(wi, w2) =

where Xé? and )Ziﬁ) are defined analogously to d.¢ and Ziijk. Equation (A65) is one of the
main results of this appendix, and can generally be used to propagate the broadband
CWE:s for frequencies centered around the fundamental. A similar expression holds
for the second harmonic,

(o]

d
Krpe (@2, 01)A (2, 01)A (2, w3 — wy) exp (IAk(wr, @2)2) %
(A69)

A, (2, w2) = i /

—00

where (w2, w1) = Wk, (W1, W2) /Wi

For many cases of interest, Eqs. (A65)—(A69) can be greatly simplified by ignor-
ing many of the dispersive terms contained in the integrand. The effective area,
Aqr, is a weak function of w; and w, for frequencies near degeneracy, w, ~ 2w;.
This can be seen by the symmetry of factors such as n,(w;)n,(w> — w;) under the
interchange w; < w; — w;, which implies that these terms are maximized when
wy = 2w. Since the derivative d,,, (n,(w1)n,(w, — w)) vanishes at the degenerate
point, these functions vary slowly with increasing w; away from degeneracy. The
same argument holds for Oy, and Apode,u(W1)Amodeu(w2 — w1). As a result, the dom-
inant effect resulting from the dependence of x(w;,w,) on w, is a slight decrease
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of Amodey (W2)Amode u (w2 — w1) With increasing w,, which is partially canceled by a
corresponding decrease of O,,,,. Together, these cancelations suggest that k(w1, w>)
is well approximated by the value near degeneracy,
V2Zo(w + Q)d,
Kuvp(w) = w0 + Q,wp =2w) = o(w Mett . (A70)
ey (@, 20)m, 2w (w)

The prefactor of w + Q contributes a self-steepening term, and can often be neglected
(w + Q =~ w) when considering pulses with duration greater than a few optical cycles.
With the above approximations, namely ignoring dispersive contributions to « in the
integrand, the CWEs become

0.Au(z, w1) = —iKyyu (W1, 2w) /OO Ay (z, w2)A}(z, wy — wy) exp (—iAk(w1, w2)z7) dw,,
: (A71)
0.A, (2, w2) = —ikyuu(wy, w)/ Au(z, w1)AL(Z, wy — wy) exp (IAk(wi, w2)z) dw;.
- (A72)

As with linear pulse propagation, we now define a rotating envelope Aﬂ,w(z, Q) =
A, (z,w + Q) exp (—iDin,(iQ)z) for the fundamental centered around w, and
Ay2uw(z Q) = Az, 20 + Q') exp (—i(AK'Q’ + Diy, (i€Q)z)) for the second-harmonic
centered around 2w, where Ak’ = V_,]zw - vg’lu is the group-velocity mismatch between
the interacting waves. This choice of rotating frame corresponds to setting vg ref = Vg s
which is useful for undepleted SHG, where the envelope of the fundamental in the
comoving frame is now constant. In some contexts, such as undepleted OPA, using the
group velocity of the second harmonic as the reference velocity of the fundamental
yields clearer insights. We move between these rotating frames freely throughout the
main text. With these definitions, Eqs. (A71), (A72) become convolution integrals,

0.A,0(2,Q) ~ — ik(w + Q, 2w) exp (—iAkz) f Ay 20z QA (2. Q — Q) dQ

- iDint,ﬂ(iQ)Ay,w (Z’ Q)’
(A73)

0-Ay20,(2, Q) = — ikQQw + Q', w) exp (iAkz) / Apo(@ DA, (2, - Q)dQ

- (l'Dim,v(l'Q,) + l'Ak,Q)AV’Qw(Z, Q,),

(A74)
where Ak = k,(2w) — 2k, (w) is the phase mismatch between the carrier frequencies
of the envelopes. Finally, inverse Fourier-transforming Eqs. (A73), (A74), we find the
time-domain CWEs that describe the evolution of two interacting pulse envelopes,

0.A,(2,1) = —ik(1 + W' 8))Ar, AL exp(—iAkz) — iDint.o(0,)Aw, (A75a)
6ZA2¢U(Z’ t) = _iK(l + w_lat)Az) eXP(lAkZ) - Ak,A2w - iDint,Zw(at)AZwa (A75b)
where « is the CW coupling coeflicient given by Eq. (A49). Throughout the main text,
we drop the tildes that denote a rotating frame and drop the subscripts ¢ and v, since the
relevant mode pairs will be clear by context. For all closed-form solutions, we neglect
the self-steepening term, w~'d,. Equations (A75a) and (A75b) are the main results of
this appendix, and are the equations of motion predominantly considered throughout
the main text. This simplified time-domain version of the CWEs only relies on the
assumption that the dispersion of k(wy, w,) within Egs. (A65)—(A69) can be neglected.
For situations involving extremely broadband envelopes, the dispersion of (w1, w>)
can be greatly reduced by using frequency-dependent mode normalizations such as

Al Q) = \VP[Anorm(€2) (see Ref. [124]). This approach yields the same equations of
motion, now with a slightly different meaning attached to A,,.
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APPENDIX B. COUPLED-WAVE EQUATIONS FOR SPATIAL MODES

As discussed in Section 4, the Heisenberg equations of motion in quantum optics take
the form
0ia = Fy(a,a")

with Fy(a,a’) = i[ i, &), whereas the classical CWEs take the form

d.a(z,1) = fe(a(z, 1), @*(z, 1))

To establish the correspondence between classical and quantum nonlinear optics, we
first need to reformulate classical nonlinear optics in terms of time-propagating spatial
modes of the form,

0 = Fe(a,a),

rather than space-propagating temporal modes. We will see that this approach to non-
linear optics is formally equivalent to the conventional space-propagating approach,
but with somewhat non-trivial boundary conditions. In practice this approach is rarely
used for simulating classical nonlinear optics, but is an excellent stepping stone for
linking the classical and quantum theories.

The approach taken here follows the treatment used throughout Appendix A, where
the CWEs are derived using complex reciprocity relations. We note here that this
reciprocity-based derivation is rather different than the usual Hamiltonian-based
approach found throughout the literature. There are two common pitfalls of the
Hamiltonian approach stemming from the use of constitutive relations D(E) (see Refs.
[57,59,63]). The most common mistake when using a Hamiltonian to derive the CWEs
is the assumption that the components of E, rather than D, are the canonical momenta
when the components of the vector potential A are taken to be canonical coordinates
[57]. Even when the correct Hamiltonian # is used, the equations of motion gen-
erated by this Hamiltonian, e.g., ,B; = {B;, H}, will not yield Maxwell’s equations
when the wrong canonical momenta are used to calculate the Poisson bracket. The
second common mistake is the assumption that the electromagnetic energy density
contributed by the nonlinear polarization is given by E - Pxp (see Refs. [57,63]). In
reality, the contribution to the energy density by both the electric field and the mate-
rial polarization is contained in the integral f E - dD. Both of these pitfalls lead to
some subtleties when calculating the Hamiltonian for both dispersive and nonlinear
dielectrics, where constitutive relations must now be given in terms of E(D) rather than
the usual D(E) (see Refs. [59,63]). As a result, dispersion is typically treated using
frequency derivatives of the inverse permittivity, and nonlinearity is now incorporated
by expanding E as a power series in D with expansion coefficients corresponding to
inverse susceptibilities, e.g., nfﬁ{). By avoiding a Hamiltonian and working directly
with Maxwell’s equations, the reciprocity-based approach adopted here avoids these
pitfalls, and can be used to derive coupled-wave equation for any constitutive relation,
including the commonly encountered Pni (E). Furthermore, by building upon the usual
derivation of the orthogonality relations, this approach yields CWEs for a,, ,,(¢) with
relatively few algebraic manipulations when starting from the orthogonality relations
established in linear media.

B.1. Normal Modes

The time-propagating approach to nonlinear optics can be motivated by the observation
that all physical devices have either periodic boundary conditions, as in a resonator,
or a finite spatial extent, such as a waveguide. In either case, the spatial distribution
of the fields is constrained to a finite domain z € [0, L], provided that z is identified
with the appropriate coordinate. In a waveguide, z is the usual propagation coordinate,
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whereas in a ring resonator z may be remapped to s, the angular coordinate around
the ring. In any situation where the propagation coordinate is constrained to a finite
or periodic domain, each field may be expressed using a Fourier series, A, (z,t) =
>om Awm(t) exp(ik,z) where k,, = 2zm/L. For a finite-domain signals, A,,(z, 7) can be
obtained by windowing the periodic signal synthesized by a Fourier series with a
rectangle function IT;(z). Here, the rectangle function is given by

1,(2) = {1 ce 0.

0 otherwise.
Under these conditions, the solutions to Maxwell’s equations for a uniform waveguide
(or aring resonator) now contain discrete k,,, corresponding to longitudinal modes of
the resonator. The expansion of E(r, 7) in terms of longitudinal and transverse modes
takes a similar form as Eq. (A53),

E(r,1) = % (Z By, ¥, (ki) eXp( =iy ()t + iKin2) + c.c.) ., (B1a)

um

1
D(r,?) = 3 (Z ayme(x,y, w,) - Eu(x,y, w,(ky)) exp(—iw, (ky,)t + ik,z) + c.c.) ,
um

(B1b)

H(r,1) = % (Z Ay B (X, y, 0, (ky)) exp(—iwy (kp)t + iky,2) + c.c.) , (B1c)

Hm

B(r,?) = % (Z Ay mpoH (X, y, W, (k) exp(—iw, (ky)t + ikyz) + c.c.) . (B1d)

um

These solutions can be generalized to more complicated structures, such as photonic
crystal microcavities, by including longitudinal variations in E, and H,,. To better
establish a correspondence with the traveling-wave nonlinear couplings studied in
Appendix A, we restrict our focus here to the simple longitudinal modes discussed
above. As with linearly propagating pulses, the coeflicients a,, are constant in the
absence of nonlinear coupling. When we include nonlinear couplings in the following
appendixes, the Fourier components will evolve with propagation time, a,, ,,(¢), rather
than space. The complex fields given by

E, n = exp(—iw,(kn)t + ikyn2)E, (x, y, w,(kn)),

Dy = exp(=iw, (ky)t + iknz)e(x,y, wu(kn)) - Eu(x,y, 0u(kin)),
H,,, = exp(—iw, (kn)t + ikn2)H, (x,y, Wy (kn)),

Bym = exp(—iwy (ki)t + ikyz) oHy (x, y, wu(kin)),

independently satisfy Maxwell’s equations, however w,(k,,) is now interpreted as
the eigenvalue associated with propagation constant k,,, with corresponding eigen-
functions given by E,, and H,,. Here E,,,, are best thought of as a decomposition of
E(x, y, z, t) into complex time-harmonic phasors

1 .
E(X, Y, 2, t) = 5 Z(Eﬂ’m + Eﬂ’m)'
um

Throughout this appendix, we will refer to E,, ,, as a spatial mode, or normal mode, of
Maxwell’s equations, with an associated longitudinal mode exp(ik,,z) and transverse
mode E, (x,y, w,(k,)). In contrast with z-propagating waveguide modes, we will see
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that |a,~,,m|2 can be used to calculate the energy contained in mode u, rather than
the power. In this approach to solving Maxwell’s equations, each mode now evolves
independently in time, exp(—iw,(k,,)t), and the spatial distribution of the intracavity
fields at a given time is obtained by summing the Fourier series over m. This behavior
is a direct space—time analog of our approach to pulse propagation in Section A.4,
where Fourier synthesis was used to describe a temporal envelope that evolves while
propagating along the waveguide coordinate z, as opposed to a spatial envelope that
evolves with time . In accordance with ¢, as opposed to z, being the propagation
coordinate our chosen phasor convention is now exp(—iwt + ikz).

B.2. Orthogonality and Normalization for Spatial Modes

The orthogonality relations for spatial modes can be derived by extending our previous
analysis of the generalized complex reciprocity relations in Section A.2.2. In this case,
we now use the spatial eigenmodes E,, ,,, H,, n, E, ,, and H, ,, as our ansatz

E,n = E (x,y, w,) exp(—iwy, + ikyz), W, =H,(x,y, w,)exp(—iw, + ik,z2),
(B2a)
E,, =E, (x,y,w,)exp(-iw, + ik,z), H,,=H,(x,y,w,)exp(-iw, + ik,z), (B2b)

where we have suppressed the arguments of w,(k,) and w,(k,,) for compactness. As
with our previous treatments of reciprocity, we evaluate the divergence

Vo (B X H,) = B, - (VX Ey) = By - (VX HG ). (B3)
Substituting in Maxwell’s curl equations, we have
v (Eu,m X H::n) = —#OH;n ’ ((’),H,,,m) ~Eum- (afD:i,n + 8IP;IL,n) > (B4)

where Py, now corresponds to a discrete spatial frequency k,,, rather than a frequency
w. Similarly, conjugating these fields and interchanging the mode indices (i, m) <
(v,n), we find

V- (B}, X Hyp) = —poH,, - (GHE,) —EL, - (3D, + 0Pxi) - (B5)

v,n

Adding together Eqgs. (B4), (BS) yields

V. (Fc) == /JOI_]:;,n ’ (atHu,m) — poHym - (H,I-L"j,n) (B6)
- E/l,m ' (alD::,n + afl:.ItIL,n) - E;,n : (afD,Usm + azPNL,m) ’

where, as before, F. = E,,, xH;,, + E;, | X H,, .

In the absence of a nonlinear polarization, the time derivatives can be evaluated using
Egs. (B2a), (B2b) to find

V. (Fc) = l,UOH:;’n : (w[l - U-)V)H;l,m + iE:;,n ’ (wﬂell - LL),,EJ) ’ Ey,m’ (B7)
where €, = €(x,y, w,(k,)) and €, = €(x,y, w,(k,)) have been introduced for compact-
ness. We now integrate Eq. (B7) over the volume defined by an infinite cross section A,
and z € [0, L]. Applying the divergence theorem to the left-hand side of Eq. (B7) and
noting that [, F.(x,y,z=0,)-2dxdy =~ [, F.(x,y,z=L)-2dxdy, we find that the
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integral must vanish,

—wv)/ / poHym - H,, + E; -

Noting that the integral with respect to z is zero unless k,, = k, = k, we find

T
WyE, — WyE,
+*r "Y1.E,,dV=0. (B8)

_wv

;
W, € — WyE,

(wy, — a),,)L/ uoH,m - Hy , +E; ( ) -E,mdxdy =0, (B9)
Ao

Wy — Wy

where w, (k) and w, (k) are now the eigenfrequencies of modes u and v associated with
wavenumber k. When w,, # w,, the integral in Eq. (B9) must vanish.

When u = v the integral does not vanish and can be evaluated assuming a lossless
and non-gyrotropic medium (e = €') by taking the limit w, — w,(= w), which is
equivalent to the energy density of a linear dispersive dielectric [62,146]

1
1 / toH,, - H; + E; - (e(x,y, W) + WOy,e(x,y, w)) - E, dV = U,. (B10)

Here, Uy is an arbitrary normalization constant with units of energy. For classical
nonlinear optics (in MKS units), one can simply take Uy to be 1 J, in analogy to
choosing 1 W to normalize the power propagating in a waveguide. In anticipation
of other choices for our field normalization, such as Uy = Aw, we will leave this
normalization arbitrary. Together with Eq. (B9), the orthogonality relations for spatial
modes in lossless dielectrics are given by

+
1 Wu€y — WyE,
7 luOHll,m : H\t,m + E\i,m .

1 “EumdV =Uyduy, (B11)

Wy — Wy

where the u = v case is evaluated using Eq. (B10). While the treatment presented here
focused on longitudinal modes with a simple exp(ik,,z) dependence, these orthogonal-
ity relations are readily extended to more complicated systems where E,, and H,, have
non-trivial z-dependence.

As with waveguide modes, the orthogonality relations derived here can be used to
decompose electric and magnetic fields confined to a resonator at any time ¢ into a
sum over spatial modes. The fields at any other time ¢’ can be found by evolving the
phase of each mode with exp(—iw(#' — t)). These orthogonality relations can also be
used to express the total energy stored in the waveguide as the sum of the energy
stored in each mode. The proof proceeds as follows: starting from the expression for
the energy density in a dielectric medium,

t
=// (H-3,B+E-9,D)dr' dV, (B12)

and inserting Eqgs. (Blc), (B1d) into Eq. (B12), we find the contribution to the total
energy from the magnetic fields associated with each mode

H-0,B :% (Z ay mH, (x,y, Wy (ky)) exp(—iw, (kp)t + ikyuz) + c.c.)

Hm

(Z iw, (ky)a, H;(x,y, w,(k,)) exp(iw, (k,)t — ik,z) + c.c.) .

v.,n
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Similarly, inserting Eqs. (Bla), (B1b) into Eq. (B12), we find the contribution to the
total energy from the electric fields

1
E-oD =

Z Ay mEu (x,y, w,(ky)) exp(—iw, (ky)t + ik,z) + c.c.)

MHm

. (Z iwy(ky)a,, €, - E,(x,y, w,(k,)) exp(iw, (k,)t — ik,z) + c.c.) .

v.n

We now calculate the total energy by integrating over the volume defined by A., and
z € [0, L]. For simplicity, we first evaluate the integral with respect to z to eliminate the
sum over longitudinal modes (},,) using the orthogonality of the complex exponentials,

L
HoL . . .
H:0Bdz; =— —ia, ma, ,, exp(—i(w,(ky,) — w, (ky))t)
/0 ' 4 L e g (B13)

' Hi(x’ Y wv(km)) : (wﬂ(km) - wv(km))H,u(x’ Y, wﬂ(km))

The electric fields can be evaluated similarly,

L
L
E-6,Ddz =— —idy ma,, ,, exp(—i(wy(ky) — wy (kn))t)
/0 T4 ,,; p . (B14)

: Ei(x’ ¥, wy (ki) - (wu(km)fu - wv(km)ej) : Eu(x9 Y, ‘U,u(km))-

We now evaluate the integral f_t ., dt’ for each of these equations,

t pL
’ :uOL * .
H-0,Bdzdt =— Ay @, ,, Xp(—i(w, (ky) — w, (ky))t)
[m/o ’ 4 ,,; B g (B15)

' H:;(x’ ¥, wy (ki) - H,u(x> Y, Wy (ki)

t L
L
/ / E-9/Ddzdr == Z @y EXD(—=i( @ (kip) = @y (k)1
—00 JO 4 oy ’

(B16)

Wy (km)f,u - (")v(km)eaL
w,u(km) - wv(km)

'E\t(x> y’wv(km)) : ( ) ’ E,U(x’ Y (,()/1 (km))

Adding these equations together, evaluating the integral /A dxdy, and invoking
Eq. (B11), the energy contained in the waveguide is given simply by

U= layn*Uo.
Hm

Before we treat nonlinear interactions, we first present several equivalent forms of
Eq. (B11) that are expressed only in terms of the electric fields, E,, ,, and E, ,. These
orthogonality relations are more convenient for developing the CWEs in the following
appendixes. We begin with the general vector quantity,

M= A x (VxB). (B17)
The divergence of M can be written using well-known vector identities

V-M=(VxA)-(VxB)—A-(VxVxB). (B18)
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We integrate both sides using the divergence theorem to find

/V-MdV:j{Ax(VxB)-dS:/(VxA)-(VxB)—A-(VxVxB)dV.
(B19)

Throughout this appendix we will substitute the fields associated with resonator normal
modes, such as E, ,, for A and B in Eq. (B19). All of the main insights found here
stem from the surface integral in Eq. (B19) vanishing when the volume of integration
is taken to be arbitrarily large.

We first consider the case where A =E,,, and B = E;m This case can be used to
establish a connection between f H;,,, -H,,, dVand f E, . €y, wu(kn)) - Epm dV,
which will later allow us to simplify the orthogonality relations by eliminating terms
that go as f H), ,, - Hy,, dV in favor of expressions containing electric fields. With this
choice of A and B, and assuming the surface integral vanishes, Eq. (B19) becomes

/(V XEum) (VXE,,)—E., (VXVXE,, )dV=0. (B20)

Equation (B20) can be evaluated using Maxwell’s curl equations, VXE,, =
—iw, poH,,, and V x H,, ,, = iw,€, - E, n, where we have defined the short-hand
notation €, = €(x,y,w,) and have suppressed the argument of w,(k,,) for compact-
ness. Evaluating the double-curl in Eq. (B20) yields a closed-form expression for the
eigenvalue w,, in terms of the electric fields

,  J(VXEu,) (VXE;,)dV

W = (B21)
g fEu,m : (MOEM*) ' Ez,m dv

Equation (B21) is a direct analog of Eq. (A27) for resonator normal modes. We note
here that for typical nonlinear media, which are lossless and non-gyrotropic, we have
€' = €. Throughout this presentation, we will leave €* and €' in each expression since
this allows one to more easily trace which curl equation the factors of € originated
from. Evaluating the curl equations in the numerator of Eq. (B21) allows us to express
the energy stored in the magnetic field in terms of electric fields

1 % 1 * *
ﬂ()z /Hﬂ,m . Hp,m dv = Z /Eﬂ’m . E,u . E;t,m dv. (B22)

Equation (B22) is typically interpreted as an equipartitioning of the electric and
magnetic energy stored in a dielectric medium. While the left-hand side of Eq. (B22)
is the energy stored in the magnetic field, the right-hand side of Eq. (B22) only
corresponds to the energy stored in the electric field for a non-dispersive dielectric.
Put simply, the electromagnetic energy is not equally partitioned between electric and
magnetic fields in dispersive media. We emphasize here that Eq. (B22) is still valid
in dispersive dielectrics, and therefore Eq. (B10) for the energy stored in a lossless,
non-gyrotropic medium can be written in terms of electric fields as

ZIL/E; - (26, + wd,€,) - E,dV = Uy, (B23)

*

We now repeat the above analysis with A = E,, ,, and B = E;, which will yield several
orthogonality relations for resonator normal modes. Starting from Eq. (B20), now with
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E, » and E; ,, we have

v,n?

/(V XEum) (VXE,,)=Ey - (VxVXE, )dV =0. (B24)
Evaluating all of the curl equations in Eq. (B24) using Maxwell’s equations yields
‘//,toa),,H,,’m ‘H, —wEy,-€ -E, ,dV=0. (B25)

Repeating this analysis with the fields interchanged, and subtracting, recovers our first
version of the orthogonality relations (Eq. (B8)),

:
Wy €, — WyE
(W — wy) / poH;, - H,, + E; - L) “E,,,dV = 0.

Wy — Wy

Having established that this approach is equivalent to the orthogonality relations
derived above, we now extend this analysis to two equivalent expressions containing
only electric fields. Starting from Eq. (B24), with only the double-curl evaluated, we
find

/ (VXEu ) (VXE;,) - E,, - (wjuoe)) - E;,dV = 0. (B26)

Interchanging E,,, and E;, and subtracting yields a second version of the
orthogonality relations found in [220],

/E;n ’ (w,thEll - wgej) : E;t,m dv =0. (B27)

The third version of the orthogonality relations, which will be used in the following
appendixes to derive nonlinear coupling, follows from re-expressing the magnetic field
integral in terms of electric fields (from Eq. (B25)),

* wVElf *
/uOHﬂ,m-andV:/E,,,m-( )-EvndV,
g W, ,
% Wy €y
:/Ev,n : ( w, ) : Eﬂ,m dv,

where the latter form is found by interchanging E, ,, and E; , in Eq. (B24). Substituting
Eq. (B28) into Eq. (B8) yields

(B28)

+
¥ Wy €y x W€y — Wyé
(wy — wv)/Ev,n . ( ) “Eym +Ej, - (—

‘E,,,dV=0. (B29)

Wy Wy — Wy

When w, = w,, the integrand in Eq. (B29) can be evaluated using Eq. (B23). Other-
wise, the integrand is zero. Therefore, the final version of the orthogonality relations
is given by

1 WyuE, Wy€y — W€
- [ E - Eym+E,, - | —— | - EundV =Uyd,,, B30
4/ v.n ( w, ) J18 v.n ( Wy — W, IR 00u ( )
with an equivalent expression holding for (wye,/ wy,) in the first parenthesis. For the
case of nonlinear coupling, we will make use of Eq. (B30) by assuming a weakly
dispersive medium. Defining w as the mean frequency between w, and w,, we have
wy, = w * 0w, and w, = w F dw. Similarly, for the permittivities, we have €, ~ € £
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dwd,€, and €, = € F dwd,, €. Neglecting terms of order (6w)?, and assuming ej =€,
Eq. (B30) becomes

1
1 ‘/Ej,n - (€ + 0u(we)) - By dV = Ugdy,. (B31)

In practice, since we have assumed the medium to be weakly dispersive, Eq. (B31)
will be applied with the terms inside the parenthesis evaluated using the local fre-
quencies, i.e., €, + 0,(we€)|w, , With an identical expression holding for u <> v. In the
following subsections, we will rely on Eq. (B23) to normalize the fields and the weakly
dispersive projector found in Eq. (B31) to calculate the nonlinear coupling between
the modes. This approach to deriving the CWEs, where two slightly different forms
of the orthogonality relations are used to isolate the evolution of a single mode in the
presence of a nonlinear polarization, is currently common practice in the field [45].

B.3. Nonlinear Coupling

We now derive the nonlinear coupling between spatial modes induced by a nonlinear
polarization, Py;. using the complex reciprocity relations established in the previous
appendix. The following treatment relies on several approximations. First, we assume
that the nonlinear coupling is sufficiently weak that the fields are still well described
using an expansion in terms of the linear resonators modes, E,, that independently
satisfy Maxwell’s equations in the absence of a nonlinear polarization. Therefore, to
leading order, the nonlinear polarization now induces time evolution in a, ,,(t). This
approximation is valid whenever the field evolution is slow compared with an optical
cycle, |0,a,m(H)| < wu(kn)la.m(t)|. We note here that a common misconception is
that this approximation breaks down in strongly coupled (i.e., few-photon) nonlinear
devices. In reality, the fields in strongly coupled devices evolve over time scales
comparable to a cavity lifetime, on the order of nanoseconds. This is extremely slow
compared to a typical optical cycle, which is on the order of femtoseconds. The use of
modal expansions, with the slowly varying envelope approximation made above, will
also be used to evaluate the time derivative d,D. Finally, we note that the Eq. (B31)
for the orthogonality relations in weakly dispersive media will be used to isolate the
contribution of the nonlinear polarization to the time evolution of each a,, ().

As with traveling-wave interactions, we assume solutions to Maxwell’s equations in
the presence of a nonlinear polarization are given by

1

Ei(x,y,z,1) = 3 ; E,n(x,y,2,0) + cc., (B32a)
1

Hi(xy.2.0) = 5 Z H,o(xy.2.0) + c.. (B32b)

where E,, , and H,, ,, are non-zero when m>0, and are given by
Ey,m(X, ¥ 1) = a,u,m(t)E,u(xa Y, a);z) eXP(—iwuf + iky2), (B33a)

H, ,,(x,y,2,1) = a, ,(OH,(x,y, w,) exp(—iw,t + iky2). (B33b)

Our goal is to extract the time evolution of each a,, () using the reciprocity relations
established in the previous appendixes. Following the treatment used in Section A.3,
we choose E; = (E, , + E; ) /2 as a single-mode solution to Maxwell’s equations in
the absence of nonlinear polarization to project the evolution of the mode amplitudes
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from the sum contained in E;. Noting that the expansion coefficients a,,,, evolve in
time, we begin with Maxwell’s curl equations in the time domain,

VXE = —,uo('),Hl, (B34a)

VxH, = atD] + 6[PNL, (B34b)

where the time derivative of H; can be evaluated by expanding the fields in terms of

normal modes,

8ta,u,m(t)
Aym(1)

The time derivative of D; can be evaluated by accounting for the bandwidth of a,, ,,(?)
in the constitutive relations. The constitutive relations for each mode are more clearly
written in the frequency domain,

OH,,, = ( - iw,,) H,,. (B35)

Dyu(t) = /au,m(Q)e(x,y, wy +Q)-E, (x,y,w, + Q) exp (—i(w,u + Q) + ikmz) dQ.

We may evaluate 9,D,, by approximating e(x,y,w, + Q) = €,(x,y, w,) + Qe,,
neglecting terms of order Q2, and inverse transforming to find

ala;t,m(t)

Ayun(1)

Recalling that E, corresponds to a solution of Maxwell’s equations without the non-
linear polarization, the above relations can be evaluated for E, , and H,, ,, by setting
C(),a,,,n = 0

With Egs. (B35), (B36) for §;H and 9,D, we now repeat the steps taken in Section B.2
to derive the generalized reciprocity relations,

0Dy = ( Ouw(Wy€y) = iwy €y | - Eppp. (B36)

V'(E1XH2+E2XH1):—E;n'atPNL

- /'[OH;i,n : (6 H ,m) + IU()H m (a Hz,n)
;‘ o e (B37)
- Z E - 0D, +EL, - 0D,

Hm

where the nonlinear polarization is written as a sum of complex phasors, Pyy =
%PNL + c.c. For compactness, we have suppressed overall factors of 1/4 and terms
of the form E, ,, - ¢, - E, n, H, , - H,, », and E, , - 0,Pxp in Eq. (B37). Since a, ,, is
only non-zero for positive m, these omitted terms vanish upon evaluating the volume
integral of Eq. (B37). We now insert Eqgs. (B35), (B36) for the time derivatives in
Eq. (B37) and evaluate / V- (E; xH, + E; xH;)dV = 0 to find

‘/E:,n . 8ZPNL dv = /Z IU()H;H . Hﬂ’m (la)ﬂ - la)V) dv
um
+ / ZEﬁn Niw, €, — iw,€)) - By dV (B38)

Mum

atau,m(t) . N
-/ > (uoH,,, - Hy + E - 9u(wy€) - By ) dV.
u.m

Aym(1)

The first two terms on the right-hand side of Eq. (B38) cancel (Eq. (BY)), and the
remaining terms are evaluated using Eq. (B31) for the orthogonality relations in
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weakly dispersive media, resulting in

a,dv,n(t) = - E:i,n . atPNL dV

4U,
B exp(iw, 1) (B39)

P / EX (5, v, wy (k) - Par, exp(—ikn2) dV |
4U,

Equation (B39) is the time-propagating analog to Eq. (A44), here describing the evo-
lution of each spatial mode as a function of time for an arbitrary nonlinear polarization,
and is the main result of this appendix. We will obtain further insights in the following
appendix by working through the case of SHG and OPA.

At this point, the approximations we have made in deriving Eq. (B39) are Eq. (B33a),
(B33b) for the field amplitudes, a slowly varying approximation in Eq. (B36), and the
use of weakly dispersive orthogonality relations in evaluating Eq. (B38). It is infor-
mative to verify the approximations implied by this approach by evaluating Maxwell’s
wave equation,

VX VXE = —p0’D — 110’ Py (B40)

Expanding the left-hand side of Eq. (B40) using a modal expansion, we have
1
EZVXVXEﬂ’m+c.c= %Zwﬁeﬂ “E,m+c.c (B41)
Hm psm

The time derivative of D on the right-hand side of Eq. (B40) is evaluated following the
same procedure as Eq. (B36). We write D, ,(¢) as a Fourier integral, apply the time
derivative operator twice to exp(—i(w, + Q)f), and neglect terms of order Q7 to find

ata;t,m(t)

ay,m(t)

(9,2D,,,m(t) = ( - wfle,, — iwy (€, + 0u(wWu€y)) ) By n(2). (B42)

Inserting Eqs. (B41), (B41) into Eq. (B40), we have

Oy m(t
Z iwﬂ;a”—’(f))(eﬂ + 0o (Wp€)) - Ep() + cc. = 0Px1 + c.c. (B43)
o um

Multiplying both sides by E . integrating with respect to volume, and applying

v.n°

Eq. (B31) for the weakly dispersive orthogonality relations, we obtain

1

— iw#c")ta,,,m(t) = _4_[J0

E; . - 0/PxdV. (B44)

Comparing Eq. (B44) with Eq. (B39), we find that the approximations made above
imply that the nonlinear polarization can be decomposed into time-harmonic phasors
that independently drive each resonator mode,

/E;m . G,PNL dV ~ —l'(x)ﬂ(km) / E;m . PNL dv.

We will see that this approximation is valid when the nonlinear coupling is constant
across a typical phase-matching bandwidth. An equivalent approximation has been
made in our treatment of traveling-wave interactions between ultrafast pulses, where
the self-steepening due to the dispersion of the nonlinear coupling is neglected.
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B.4. Coupled-Wave Equations
As with traveling-wave interactions, we restrict our focus to a single transverse mode
of fundamental, u, and second harmonic, v. For convenience, we introduce normalized

field distributions,

B 20,
Bl \/eonmm)vmode,ﬂ(km)e"(x’ ol (BE58)
2U
H,(x,y, wu(ky)) = Wo(k)h,u(x’ Vs Wy(ki)), (B45b)
mode,u\Km

where e, (x,y, w,(k,)) and h,,(x, y, w,(k,,)) are dimensionless vectors that capture the
shape of the electric and magnetic fields, and n,(k,,) = ck,,/w,(k,) is the effective
phase index of the mode. With Eq. (B10) for the energy density in a dispersive
dielectric, the effective mode volume is given by

1 + w, 0,
Vinodesulkn) = 5 / b, -h, +¢,- (%) e, dV. (B46)
u

For translation-invariant structures, this mode volume can be linked to the previously
defined mode area using Egs. (A25a), (A25b) for the waveguide normalization and
Eq. (A34) for the group velocity (P = Ugyv, ,/L). Together, we find for this choice of
normalization Visode = AmodeLg, /1, We reiterate here that conventions for normaliz-
ing the fields are arbitrary and in many cases other choices can be advantageous, such as
for simulating ultrabroadband interactions. The normalization chosen in Egs. (B45a),
(B45b) is meant to establish intuitive connections between the ideas of mode volume
and mode area in waveguides, and will be used to define an effective volume for the
nonlinear coupling, Vg, in analogy to the effective interaction area, Ag.

Equation (B46) for the mode volume greatly simplifies when the modal fields are trans-
verse and the waveguide is weakly dispersive. For transverse fields, Eq. (B21) for the
eigenvalue w,, becomes n, [ele*dv = [ e - €, -e,dV. Similarly, with Eq. (B22)
for the energy contained in the magnetic fields, we have

% 5 E.u %
/hﬂ-hﬂdV=/eﬂ-(nz—éo)-e,,de/eﬂ-e,,dV.
7

In a dispersionless medium, Eq. (B46) simplifies to

Vmode,p ~ /h; : h,u dV = /e; ey dv.

When the peak value of the integrand in Eq. (B46) (or the peak value of hy, - h,, for
transverse fields) is chosen to be unity, the mode volume Vino4e,, represents the ratio
of the total energy contained in mode u to the peak energy density.

Having established our choice of mode normalization, we now calculate the CWEs for
SHG and degenerate OPA, assuming a single relevant transverse mode, u and v, for
the fundamental and second harmonic, respectively. The nonlinear polarization can be
expanded in terms of the interacting resonator normal modes. Noting that the nonlinear
couplings will be evaluated using / E; - 0,PnL exp(—ik,z)dV for SHG and SFG of
frequencies centered around the second harmonic, and f E, - 0Pn1 exp(—ik,z)dV for
OPA and DFG of frequencies centered around the fundamental, we only retain terms
in Py that contain positive momentum in anticipation that the remaining terms vanish
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upon integration. For the fundamental, the relevant terms are

PO™ =6 3" " a0y n(t) exp (i, (ke)t = ieo, (kn)t) exp (i(ky = ke)2)

ijk €n
x(ix;i>( = Wy (ks @, (k). — w0 (ko) Exy (5, 3, 0 (ko) By i (x, . w0, (ki) ).

where the indices i,], k € [x,y, z] refer to the Cartesian components of each eigen-
mode E,,. The signs in the argument of )(;.i)(—w,, (km); wy(ky), —wy(ke)) are chosen to
correspond with those of the interacting k-vectors (k, — k, — k,,), which helps keep
track of which fields are being coupled. By inspecting the argument of Xl;i) , We can

quickly ascertain that the nonlinear coupling contains a product of E, ., E, ,, and E; P

Proceeding similarly for the second harmonic, the relevant terms are

P9 =¢, Z Z Ay 0 (Dt (1) exp (i, (ke )t + iy, (k)t) exp (i(k + ko)z)

ij.k €.m

X (ix;?>< = 0y (kn); 0y (i), 0 (ke)) By (%, ¥, 0 (ke ) B (%, ¥, @0 (km»).

We note here that the OPA and SFG terms contained in Py, = PS’EG) + P;?LPA) +-
contains all possible momentum-conserving interactions with the exception of optical
rectification terms generated by X;.?(O; wy(kn), —w,(ky,)). Conjugated terms obtained
by interchanging the signs of each w and k in PSEQ and P%?LP ™) drive the evolution of

* * .
a, , and a,, ,, respectively.

Following the presentation taken for traveling-wave interactions, we now evaluate the
coupling coefficients by substituting Eq. (B45a) for the field distributions into Pl(\‘?’fG)
and Pg ™ To eliminate any factors of Uy from the CWESs, we define complex “mode
amplitudes” u, ,(¢) = a,(f)VUo, where the energy contained in the mth longitudinal
mode of transverse mode u is given by |u,,|*. With these substitutions, the CWEs
take the form

C()z‘l/t,u,m(t) =-i Z g[lV[l(_m; n, _[)”v,n(t)u;,[(t)éf,n—m
e (B47a)

X exp (_l(wv(kn) - wu(km) - wy(kt’))t),

8tuv,n(t) =i Z gv,uu(_n; m, f)”ﬂ,m(t)uﬂ,f(t)éf,n—m
n,l (B47b)

X exp (l(wv(kn) - wﬂ(km) - wu(kt’))t)-

The notation introduced here for the coupling coefficients ¢, (—=m; n, —€) parallels that
used for the y® tensor to account for which fields are interacting. Here, we continue
our convention of using Greek subscripts for transverse modes, rather than Cartesian
components. The argument (—m; n, —{) follows the same sign convention used for the
nonlinear tensor, (—wy,(ky); wy(k,), —w,(ke)), to denote that longitudinal mode m is
being generated by difference-frequency mixing of modes n and ¢. We note here that
the Kronecker deltas originating from the orthogonality relations of the longitudinal
modes enforce momentum conservation, and that w, (k,) — w,(k,) — w,(k,) now plays
the same role in this time-propagating model as phase mismatch does in space-
propagating models. The double sum in Eqs. (B47a), (B47b) can be eliminated by
replacing £ = n — m. We have left —¢ in the equations of motion, rather than m — n, to
help clarify which fields are conjugated when calculating the overlap integrals for the
coupling coefficients.



508 Vol. 16, No. 2/June 2024/ Advances in Optics and Photonics \ Tutorial

The coupling coeflicients are obtained by evaluating the integrals in Eq. (B39). As
discussed previously, by comparing Eq. (B39) with Eq. (B44) the approximations used
to derive the CWEs imply that time derivatives of Pyy, appearing inside the overlap
integral are given simply by

/ E. . - 0P AV ~ —iw,(ky) / E. . -Pohdv.

We can verify this approximation by first noting that evaluating a,ngA generates

pre-factors of the form (—iw, (k,) + iw,(ke) + B,a;’ ./ a;’ ; +0.a,,/a, ,) inside the sum-
mation over n and €. Second, we note that evaluating the integral over the propagation
coordinate, f exp(—ik,,z)0,PxL dz, eliminates the sum over £ and sets £ = n — m. There-
fore, the above approximation for 0,Pyp is equivalent to having applied a slowly
varying envelope approximation and having assumed w, (k,) — w,(ky-m) = w,(k,,) for
each term inside the sum. With these approximations, the coupling coefficients are
given by

®)
VZOC(‘)MXeffd[” m_yele

Swu(—m;n, =) = Vg (=1 n, =t), (B48a)
o V2 (k) (k)"
NZoCwy X3 Stn-m
Svuu(—n;m, €) = 05y Xeir O, y 12 (-n;m,t), (B48b)

V20, (k) () (k) Vet

with an effective interaction volume given by

Voverlap,yv;t(_m; n, _5)

\/ Vmode,,u (km ) Vmode,v (kn ) Vmode,,u (kf) ’

(B49a)

Voverlap,/tvu(_m. n, _f) =

[ 3702 (= onthnr ot )5 kst ) V.
ijk

(B49Db)
Here we have suppressed the arguments of e, (x, y, w,(k,)) = e,(k,) for compactness,
and have normalized the nonlinear tensor by the largest component, ij? = Xé? Xﬁ)
For quasi-phase-matched nonlinear media y?(x,y,z) can be expanded in terms of
Fourier components along the propagation direction z, and for the case of a 50%
duty-cycle square wave along z with arbitrary extent in the x—y plane, the y® tensor is
simply scaled by the relevant Fourier component of the grating, e.g., for the first-order
Fourier component of a square-wave )(gf) = 2 max;(| Xl.(ji)l) /m. The additional phase
factor of exp(ikgz) contributed by the grating shifts which Fourier components of the
fields are phase-matched to k, = k,, + k; + kg, which modifies the phase mismatch to
Aw = wy(k,) - wﬂ(km) - w,u(knfm — ko).

As with z-propagating temporal modes, we may further simplify Eqgs. (B47a), (B47b)
by defining rotating waves i that remove fast oscillations of these envelopes due to their
respective carrier frequencies and their group velocities. Defining (spatial) reference
frequencies ket and k., , as well as reference group velocity v, t, the slowly varying
envelopes are given by

Ty (1) =ty m(t) €Xp (—iwﬂ(km)t + iy (kref )t + ng,ref(Skt) , (B50a)

ity (1) = thy (1) €Xp (—iw, (kn)t + 1w, (ke )T + 1Vg et K1) (B50b)

where 0k = kj, — ket and 0k” = k,, — ket represent the frequency detuning from
ket and kyer,,, respectively. Again extending techniques established for z-propagating
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modes, we series expand the dispersion relations for the fundamental, w,(k,,) and
wy(k,), around the reference frequencies ki, and kg,, respectively. With these
definitions, the dispersion relations can be written as

k) = Db ) + Oh, 0K + 35K+ -
= Wy (keet ) + Ve .0k + D, (iKk)

wy (k) = Wy (ket) + Ok, k" + %Bkzwv(ék’)z NI
= Wy (krety) + Vg Ok’ + D, (i5K").

The CWEs can now be written several equivalent ways,

Orlty (1) = — iZ Suvu(=m;n,m — n)ft;’n_m(l)ﬁv,n(t) exp (—iAwr)
n (B51a)

- i(wﬂ (km) - w,u(kref,;l) - Vg,refék)ﬁ,u,m(t)a

atav,n(t) == ZZ gv;m(_n; m,n — m)ﬁu,n—m(t)ﬁu,m(t) exXp (iAwt)
m (B51b)

- i(wv(km) - wv(kref,v) - Vg,refé‘kl)ﬁv,n(t),
or in terms of dispersion operators,

Oittyum(t) = = 1 )" Gy (=1m5 1, 1m0 = W), (D (1) eXP (iAW)

n

- (Vg,,u - vg,ref)(iék)au,m(t) - iDint,u(iék)ap,m(t)’
arﬁv,n(t) == lz gv;l,u(_n; m,n— m)ﬁy,n—m(t)ﬁ/l,m(t) eXp (lA(Ut)

- (Vg,v - Vg,ref)(iék,)ﬁv,n(t) - iDint,v(iék,)ﬁv,n(t)a

where Aw = W, (kiery) — Wy (Kret ) — Wy (Krery — kef) is the phase mismatch between
the reference frequencies. For SHG, the reference frequencies are typically chosen to
satisfy wy (kier,) = w, and keegy = 2Kkret -

Following the procedures established for traveling-wave interactions, we construct
time-evolving (spatial) pulse envelopes, u,(z,1) = ., i, m(t)/ VL, hereafter referred
to as the complex amplitude density of the electromagnetic fields. In analogy to the
complex field amplitudes describing the instantaneous power flowing through a point
7, Uy(z) = f |A,(z.t")|* dt’, these envelopes satisfy

L
00 = [l b = 3 a0 (B52)

and therefore the square-magnitude, |u,(z,7)|?, is the energy per unit length stored
along the longitudinal coordinate, z, at a given time . We may derive CWEs for
the complex amplitude densities by assuming the coupling coefficients are weakly
dispersive (S (—=m;n,m — n) = Gy (—=Mier; 2Myer, —Mier) = ¢). In this case, noting
that the sums over all longitudinal modes correspond to a convolution between the
interacting fields, the CWEs become

Ouy(z,1) = — iou,(z, N, (z, 1) exp (—iAwr)

. (B53a)
- (vg,,u - Vg,ref)azuy,n(z’ 1) — lDint,p(az)uy(Za 1),

O, (2, 1) = — iO'ufl (z,t) exp (iAwt)

| (B53b)
- (Vg,v - Vg,ref)azuv,n(z’ t) - lDint,v(az)uv(Z’ t)v
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where o = ¢VL is the coupling coefficient for the amplitude densities, and was sep-
arately introduced in Section 3.4g. Equations (B53a), (B53b) are equivalent to the
CWE:s derived for amplitude densities by heuristic means in the main text, and are the
main results of this appendix. Noting that for a waveguide the effective volume can
be rewritten as Vg = AeﬁLnﬁ,#ng,v / nf‘ny, we see that the coupling coefficients o are
invariant with respect to the length of the waveguide,

_ V2Z()C(,U#deff _ )
o= =K vg’ﬂvg,,,,

2 12
Acinnyng Ny,

where n,, n,,ng,, and n, , are evaluated at the reference frequencies of the fundamental

and second harmonic, and 2d.¢ = )(é? in accordance with our assumption of a weakly
dispersive nonlinearity.

We close this appendix by revisiting the correspondence with the z-propagating CWEs
by converting the line density to a power envelope using /v, ,u,(z,1) = A,(z, 1) in a
non-moving frame (vt = 0),

OA(z 1) = — i—

A DAL ) exp (i) (B54a)

— Veu azAu (z,1) - iDint,,u(az)Aﬂ (Z’ t)a

VVsyv
0A,(z,1) = —io ;&Af‘ (z,1) exp (iAwt)

Veu (B54b)
- vg,vazAv(Z, t) - iDim,v(az)Av(Z’ t)-

As with treatment in Section 3.4g, there is some subtlety involved when finishing
the conversion between time- and space-propagating models. Simply subtracting
0,A, — v A, from both sides of Eq. (B54a) and dividing by v, , recovers the correct
form of the nonlinear coupling and temporal walk-off terms. However, as discussed
in the main text, V;,LDim,ﬂ (0;) = Dini,(0;) only approximates the higher-order disper-
sion, and in reality Djy,(0;) must be calculated using the series expansion of k,(w).
Similarly, the conversion Awt — Akz is achieved by examining the phase character-
istics for each wave separately, rather than moving between space and time using a
single group velocity. In other words, while the heuristic expressions Ak = va;l and
v;yLDim,ﬂ(az) ~ Dinu(0;) are helpful for remembering the conversion between space-
and time-propagating models, the formal conversion is obtained by moving back to
the Fourier domain, and using temporal frequency modes, w,,, rather than the spatial
frequency modes, k,,, to synthesize the z-propagating pulse envelope.

APPENDIX C. QUASI-STATIC SOLUTIONS TO THE COUPLED-WAVE
EQUATIONS

In this appendix we describe in more detail the solution to the quasi-static equations
of motion. This discussion follows the treatment of Refs. [70,130]. Our goal is to solve
for the pulsed envelopes in the absence of dispersion,

0:Au(z,1) = —ikAr,(z, DA;, (2, 1) exp(—iAkz),
0.A20,(2, 1) = —ikA2 (2, 1)(z, 1) exp(iAkz).

We solve for the dynamics of each time slice separately following the treatment of
Refs. [70,130]. We begin by putting the fields in phase-amplitude form, A, (z,t) =
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Pz 1) expidn(z,1), and As,(z,1) = p2w(z, 1) exp(idhae (2, 1)), which converts the
CWE:s to

azpw(z’ t) + ipw(za t)az(bw(z’ t) = _ipr(Z’ t)pr(Z’ t) CXp(_ie(Z, t))’
0.p20(2 1) + ip200 (2, 0,200 (2, 1) = —ikpl, (2, 1) exp(i6(z, 1)),

where 0(z,1) = 2¢,(2,t) — $20,(2, 1) + Akz. The real and imaginary parts of these
equations determine the amplitude and phase evolution

0:p0(2,1) = —KPw (2, 1) P20, (2, 1) sIn(O(z, 1)),
0:00(2,1) = —Kp2,(2, 1) cos(6(z, 1)),
0:p20(2.1) = kp,, (2. 1) sin(6(z, 1)),
02,(2,1)
P20(2,1)

829(29 t) = 2az¢w(z’ t) - 6Z¢2a)(z’ t) +Ak = —« (2P2w(2, t) -

0.2 (2.1) = —k cos(6(z, 1)),

pL(z,1)
P2w (Z’ t)

cos(8(z, 1)) + Ak.

We can identify the conserved quantities of these equations by rewriting them as

0:In (po,(2,1)) = =Kk P20, (2, 1) sin(6(z, 1)),
po,(2.1)
P20(2, 1)

0:0(z,1) = 8:n (03, (2. Dpw (. 1))

9:In (p20(2,1)) = k sin(6(z, 1)),

cos (6(z, 1))
sin (6(z, 1)) '

Each time bin locally conserves power, which allows us to normalize the fields into

the notation used by Bloembergen, +/P(t)u(z,t) = pu(z,1), VPEV(Z,1) = p20(2, 1),
where P(f) = |A,(z, )| + |A2(z,1)|>. We also define the characteristic nonlinear
length for each time bin as (f) = x4/ P(t)z, and normalized phase mismatch as

As(t) = Ak/ (K P(t)). With this normalization, we have

a{u(g’ t) = _M(§7 Z‘)V(é’, t) Sin(9(§9 t))’ (C1 a)
(L, 1) = (£, 1) sin(A(L, 1)), (C1b)
6§¢w(§’ t) = _V({’ t) COS(G({, t))’ (C1 c)

_ (&)
Orhr0(L,1) = WD) cos(6(£, 1)), (C1d)
0:0(L,1) = As+ 0, In(u?(Z, )v(<, t))%. (Cle)

Throughout this appendix, we will solve these equations for u(¢, 1), v({, 1), and 6(Z, 1)
for different boundary conditions. Then, given the solutions for # and v, we may
directly integrate Eqgs. (Clc) and (C1d) to get the phase evolution of each time bin.
Almost all of the cases we will consider here have cos(6(0, t)) = 0, and in many cases
we take ¢,,(0,7) = 0, which then results in 6(0, t) = —¢,,,(0, t).

C.1. Phase-Matched Case
We begin with phase-matched SHG, which has no input second harmonic, v(0, r) = 0,
and no phase mismatch, As(r) =0. The coupled wave equations in this limit
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are
a{u(g’ t) = _u(§7 l‘)V({, I) Sin(9(§9 t))’ (cza)
8{V(§’ t) = u2(§9 t) Sil’l(g({, t))’ (CZb)
0:0(¢,t) = 0f In(u*(¢, (¢, t))%. (C2c)

The third of these equations is integrated to find the first constant of motion,

L(1) = u(Z, 1)*v({, 1) cos(8(, 1)).

Since v(0, t) = 0, we have I'(¢) = 0, which renders cos(8(Z, t)) = 0 and sin(6(Z, 1)) = 1
for all £. These conditions, with ¢,,({,#) = 0 and As = 0, give ¢,.,(0,t) = —7/2 and
the equation for the second harmonic becomes

0rv=_~1- V),

which is integrated to find v(Z, t) = tanh(Z(¢)). Converting back to our original units,

we find
AZw(Zy t) = _iAw(O’ t) tal’lh(KAw(O, t)Z),

Au(z,1) = A, (0, 1)sech(kA, (0, 1)z2).

As expected, each time bin separately evolves from undepleted SHG (A5, (z, 1) =
—ikA2 (0,1)z) to full conversion (A,,, = —iA,,(0, 7)), with a characteristic conversion
length given by the local amplitude of the input pulse envelope.

C.2. Phase-Mismatched Case

In the phase-mismatched case, the easiest starting point is the CWEs in normalized
units (Egs. (Cla)—(Cle)),

Oeu(¢, 1) = —u(Z, (L, 1) sin(6(, 1)),
0L, 1) = U (£, 1) sin(8(L, 1)),

9:0(¢,1) = As(t) + 0, n(u* (£, (¢, t))cos(e(g 1)

sin(6(¢, 1))

The last of these equations may be integrated to find a constant of motion
1
Ta(t) = v(Z, (£, 1) cos(O(Z, 1) + SASOV(L, 1), (C3)

or, in terms of I'(¢) = u%(t)vo(t) cos(8y(1)) = u*(0, £)»(0, £) cos(8(0, 1)),

(¢, 0u*(¢, 1) cos(8(4, 1) = T(1) + %AS(V?)U) — V(¢ 1)). (C4)

Squaring both sides and re-arranging terms, recasts Eq. (C4) in terms of sin(6(Z, 1)),

2
vu? sin(0) = -_0-\/(vu2)2 - (F + %As(v% - vz)) , (C5)

which allows the left-hand side of Eq. (C5) to be rewritten using the coupled wave
equation for the second harmonic, Eq. (C1b),

2
%a(vz = J_r\/vz(l - v2)2 - (F + %As(v% - vz)) ) (C6)

Noting that the spatial variation of each time bin occurs independently, we have
suppressed the (£, ) and () arguments of each term in Egs. (C5), (C6).
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In general, we may rewrite the right-hand side of Eq. (C6) as the square root of a
polynomial in v with ordered roots defined as v2<vZ<v?2 for each f,

%6{\12 = i\/(v2 —v2)(2 =) (V2 = v2), (C7)

where v,(t), vp(¢), and v.(7) are determined by I'(¢), As(7), and vy (¢). The general solution
to this differential equation is found using the following substitutions

i% dv? idy

A = = ,
\/(vz —2)(12 = 12)(2 = 12) V2 =21 = )1 - y%?)

(C8)

where y = (v —v2)/(v; —v2), and y* = (vi —v2)/(v2 —v2). Integrating both sides

yields
2 212+ 02 = R)si? (i\/vz C 2+ §0)|72) , (C9)

where sn is the Jacobi-elliptic sine.

For SHG, vy = 0 and I' = 0, which simplifies the polynomial on the right-hand side of

2
%8@/2 = i\/v2(1 - \/2)2 - (%Asvz) . (C10)

In this case, the roots are given by v,(¢) = 0, and

2
v(t) = %As(l) + (%As(r)) +1, (C11)

where v, (1) = v.(t) = v;l(t), and v_(¢) = v,(¢). The resulting fundamental and second
harmonic amplitudes are given by [70]

(g, 1) = vp(D)sn(Zve(n)]y* (1)), (C12a)
W2, 1) = 1 =V, 0). (C12b)

Having obtained the field evolution, we now calculate the phase evolution of the two
harmonics with

(94‘9231(4, t) = _V(g’ t) COS(H({’ t))’ (C1 3a)
oe82.1) = =D cosorz. 1) (C13b)
<R WL, 1) o

Integrating Eq. (C13a) with respect to £, we find

Ir- %As(v2 - v%) d
1 -2 '

61(C.1) = 61(0.1) - /

Similarly, integrating Eq. (C13b) results in

I —3As(V* = vg
¢2(§’t)=¢2(07t)_/ 2 i(zv VO) dg

Noting that, vo(f) = 0 and I'(¢) = 0 are both zero for SHG, and assuming an unchirped
input pulse at the fundamental, ¢,(0,7) = 0, and ¢,(0,¢) = —0¢(¢) = —x/2, we have

_As <o) ,
¢1(§,f)—7'/0 mdf (C14a)
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(80 = -5+ ¢ (C14b)
For a fundamental input pulse linearly chirped in frequency, ¢;(0, ) = bt>, we have

$2(0,1) = 2¢1(0, 1) — 6p(¢). In this case, the phases of the fundamental and second
harmonic are given by

As ¢ W, 1)?

— hi2 L =2 ’
¢80 =br" + - TR dg (C15a)
$2(¢, 1) = 2bt* — g + %g. (C15b)

APPENDIX D. SINGLE-PHOTON-PUMPED PDC

D.1. Single-Mode PDC
Here, we introduce the physics of single-mode single-photon-pumped PDC. The
Hamiltonian takes the form

H/h=2@"h+a*h") + 6b'h (D1)

with phase mismatch ¢ (see (149) for the derivation of the Hamiltonian). Note that the
Hamiltonian commutes with the operator representing the Manley—Rowe invariant

MR = Eﬁa + i, (D2)

where 71, = a'a and #, = b'b are signal and pump number operators, respectively.
This implies that the Hilbert space is partitioned into subspaces H,,,, spanned by
eigenstates of 71yig with different eigenvalues, and quantum states in different subspace

evolve independently without talking to other subspaces.

For instance, for an initial weak coherent pump state D(3)[00) ~ |00) + 8]0 1), where
|ngnp) is the n,-signal and n,-pump photon state, [00) and [0 1) belong to Hy,=0
and H,,,, -1, respectively. Because the dynamics inside the subspace H,,,.—o is trivial
(i.e., constant), the simplest non-trivial dynamics occur in H,,,, =1, which is the single-
photon-pumped PDC with initial state |0 1). In other words, by solving the dynamics
of single-photon-pumped PDC, we can also understand the PDC pumped with a very
weak coherent light. In the following, we focus on the subspace H,,;=1.

The Hilbert subspace H,,,, -1 is spanned by the single-photon pump state |0 1) and the
two-photon signal state |2 0). The diagonal elements of the Hamiltonian are

1 N 1 N
ﬁ(Ol|H|0 1) =9, ﬁ<20|H|20> =0 (D3)
while the off-diagonal elements are

1 ; 8
—(20|H|01) = =. D4
5 (20110 T) v (D4)

The Hamiltonian structure is analogous to a driven two-level atom, where |0 1) and
|20) correspond to atomic ground state |g) and excited state |e), respectively. We
note here that since there are only two basis states inside the subspace H,, -1, the
Hamiltonian is represented as a 2 X 2 matrix.
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To solve for eigenstates in H,,

wr=1> We posit the form of an eigenstate as

|p(w)) = (cb'+fa")|0), (D5)
where hw is an eigenenergy, and the state must fulfill the normalization condition
lc* +2[f* = 1. (D6)

Note that this w is a dummy parameter we introduce to represent the eigenenergy of a
state and is not to be seen, e.g., as a carrier frequency of light. Using

%m(p(w)) - (gca” + 5ciﬂ+gfiﬂ) 10) (D7)

and imposing the condition H|¢(w)) = fiw|d(w)), we obtain equations defining
eigenstates

we=0d6c+gf wf = gc. (D8)
Here, we convert variables into dimensionless form via
1=wlg  §=46/g, (D9)

with which (D8) is converted to a dimensionless universal form

1
/lC§ = §C§ +f /lfét = §C§, (D1 0)

where we have explicitly labeled the variables with the single non-trivial parameter
&. Multiple physical systems with different parameters but the same & = §/g can be
mapped to this universal form via trivial time scaling. The series Eq. (D10) can be

combined to give

az—ag—%zo, (D11)

which we solve to obtain “plus” and “minus” eigenvalues

X = % (fi\/§2+2). (D12)

The corresponding eigenstates are characterized by
1 \12 e
Ci =1+ — - = D13
: ( 5 Ai) f (D13)
and we label the eigenstates as |¢(1.)) = |¢.) for notational simplicity.

With the analytic expressions for the eigenstates we can, in principle, solve for any
dynamics in the Hilbert subspace. To convert these solutions from the universal
form above into the original form, we can simply rescale the time coordinate. More
concretely, for the initial state |¢(0)) = |0 1), the PDC dynamics can be solved as

() =e7 el gr) + e T o)
=e 4T {cos (%\/gmr) - §12§+ - sin (%\/fz—ﬂr)} [0 1)

— e‘ifT—;?i - sin (%\/{,:2—4-2‘1') 120)

with a normalized time 7 = gt. In analogy to the atomic two-level system, single-
photon PDC can be seen as the dynamics of an initial ground state atom undergoing

(D14)
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Figure 52
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Conversion efficiency of single-photon-pumped single-mode PDC for various
normalized phase mismatch £. Adapted with permission from Ref. [69].

Rabi oscillations with a generalized Rabi frequency g+/&2? + 2/2. The signal photon
population

4 1
Rl CAGEEY (015)
exhibits clear sinusoidal oscillation with amplitude 4/(£2 + 2), which is a manifestation
of the “single-mode” nature of the interaction (see Fig. 52). When the y® process is
phase-matched, i.e., ¢ = 0, the oscillation amplitude reaches 2, enabling unit-efficiency
PDC.

D.2. Broadband PDC: Hamiltonian Structure

We now introduce the physics of broadband single-photon-pumped PDC. To clarify
the parallelism with the single-mode discussions, we intentionally override notation
for some variables introduced in Appendix D.1. In doing so, we make their definitions
clear.

We consider the broadband Hamiltonian for a y®-nonlinear waveguide in the
wavespace

f/n = % // sy dsy (8,8 48,8 Brrvs ) + ) / ds i 6w, (2ns)it,, (D16)

ue{a,b}

which we derived in Section 4.3. Note that the Hamiltonian has two explicit conserved
quantities; the first is the multimode extension of the Manley—Rowe invariant

1 n
vk = 5 / dsala, + / ds b b, (D17)

which represents the conservation of the generalized particle number. The second is
the total wavenumber (i.e., momentum)

§= / ds’s'(alay + blby). (D18)

It is straightforward to check that these operators commute with the Hamiltonian
[A,7inmr] = [H,3] = 0, meaning that they are conserved quantities of the dynamics
under . As a result, the entire Hilbert space can be separated into Hilbert subspaces
H, s depending on the values of these conserved quantities, in which quantum states
evolve independently. In particular, we are interested in the single-photon-pumped
PDC, which occurs inside H,,,=1.5-
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We note that the Hilbert subspace H,, -1, is spanned by states

fooat
s/ 27pas/2+p
with wavenumber non-degeneracy p > 0. The diagonal Hamiltonian elements depend
on dispersion

1 N 1 N
ﬁ<asp|H|asp> = 6as(p) ﬁ<bv|H|bv> = Ops» (Dzoa)

with 6y = dwp(27s) and ,(p) = Sw,(2n(s/2 — p)) + dw,(2n(s/2 + p)), while oft-
diagonal elements take a constant value

%<asp|ﬁ1|bs> - (D20b)

The Hamiltonian structure (D20) takes a distinctive form of discrete—continuum inter-
action, where a discrete pump state |b;) is coupled to a continuum of signal states |ay,)
[221].

Notably, such a Hamiltonian structure is analogous to atomic autoionization, where
a discrete excited state |e¢) is coupled to a continuum of ionized states |gion(E)).
When the energy of the excited state lies within the energy continuum of the ionized
states, an initial excited-state atom ionizes unitarily via autoionization. A theoretical
framework to study the physics of such discrete—continuum interactions was initially
established by Ugo Fano in his iconic work on atomic autoionization [200] and,
subsequently, various physical systems have been shown to exhibit analogous physics.
Here, by leveraging the analogy to atomic autoionization, we can adapt the theoretical
machinery developed in atomic physics and elsewhere to analyze the dynamics of
broadband PDC in the deep-quantum regime.

To apply Fano’s theory for discrete—continuum interaction to broadband PDC, we
posit the form of discrete/continuum energy eigenstate in the subspace H,,, =15 as

1695 (@) = YWk + /0 ap (. p)lay) (D21)

with an eigenenergy w, where the labels “d” and “c” denote “discrete” and “con-
tinuum,” respectively. Intuitively, the discrete pump state |b,) gets hybridized with
the signal states to form the discrete eigenstate |¢%(w)), while each signal state
turns into the continuum eigenstates |¢5(w)). The discrete states are normalized
as (¢?(w)|¢§‘,(w)) = §(s —s’), while the states in the continuum energy spectrum
fulfill {#5(w)|¢S (w’)) = 6(s — s")6(w — w’) and, thus, discrete and continuum states
have different units [length!/? - frequency'/?] and [length!/?], respectively. These
orthonormalization conditions are equivalently written as

|cf(a))|2 + / dp [fsd(w,p)|2 =1 (fordiscrete state), (D22a)
0
¢ (w)c(w') + / dpfS(w,p)fi(w’,p) = §(w — w’) (for continuum state).
0

(D22b)

Because |¢s(w)) is an energy eigenstate with an eigenvalue Aw, it must fulfill

A9, (@) = wld. ) (D23)
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whose right-hand side takes the form

S0 = [ dp (1) + Vi)l
0 (D24)

. (abscsw)iazw /0 ) dpfs(w,p)) by).

We have omitted the labels for discrete/continuum states because these equations hold
for both cases. Inserting (D24) into (D23) and comparing coeflicients for |b;) and
lag,), we get

wey(@) = Spy(w) + 7 / " dpf(w.p) (D25a)

wfs(w, p) = rey(w) + dus(p)fs(w, p), (D25b)

which, together with the normalization conditions (D22), specify all the eigenstates
in H,,,.=1s- Note that (D25) can be seen as a multimode extension of the single-mode
Equations (D8).

D.3. Broadband PDC: Eigenstates

While we can, in principle, directly solve (D25), we first normalize the variables to
dimensionless forms. This normalization allows us to simplify the equations to a uni-
versal form that involves only parameters that non-trivially alter the system behavior.
In addition, by factoring out trivial scaling factors, we can establish isomorphism
among systems with different parameters that can be mapped to the same universal
form.

D.3.1. Conversion to Universal Form
For concreteness, we approximate dw, as a quadratic function near the carrier as

0w, (27s) = w,(0) + 6w, (0)(27s) + %60);’(0)(27”)2, (D26)

which lets us define
6us(p) = 6as(0) + 0'P2 (D27)

with 6,5(0) = 20w,(0) + 6w (0)(2ns) + %5w;’(0)(2ns)2 and o = 4726w/ (0)>0. Using
the conversion formulas given in Table 2, we can express o with classical experimental
parameters as o = —47r2k(’l’v§’a, where v, , and k; are the group velocity and GVD
of signal mode, respectively. The curvature term o, which physically represents an

effective mass of a signal photon, becomes independent of s.

Using the short-hand notation & = dw,(27s), we can also define
O = Ops — 045(0). (D28)

Intuitively, J; represents the energy deference between a pump photon with momentum
s and a two signal photons with momentum s/2. At the carrier wavenumber, 0,
reduces to the phase mismatch §s-¢9 = §w,(0) — 26w, (0).

For the single-mode case discussed in Section D.1, we only scaled the time (i.e., energy)
to obtain the universal form. Because multiple spectral components are involved in
broadband PDC, we must also scale the wavenumber (i.e., space) to identify minimum
set of non-trivial parameters. To find the scaling factors, we identify characteristic
nonlinear coupling gpqc and length scale {,qc via dimensional analysis. We note that r
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has a unit of [time™" - length'/?], while o~ has a unit of [time™" - length®]. As a result,
it is motivated to define

8pde = (r4/0-)1/3 {pdc = (U_/r)ZB- (D29)

It is worth noting the scaling of gpq. o o3 o« GVD™3, implying that a waveguide
with smaller dispersion exhibits stronger nonlinear coupling even if the pump state is
CW. With these variables, we scale energy and wavenumber to dimensionless variables

A= (w = 64(0))/8pac H = LpacDs (D30)
which leaves us with a single non-trivial parameter: normalized phase mismatch
& = 05/ 8pde- (D31)
The wave functions are also normalized to dimensionless forms via
B = o) Q) =), (D32a)
for discrete state and
) = guel P w.p) ) = gl cS(w) (D32b)

for continuum states, which are defined to fulfill normalization conditions

|c§(cu)|2 + / du [ffd(a), w|* =1 (fordiscrete state), (D33a)
0

cg (Deg(A) + / dpfe(w, Wfg(w’, ) = 6(1 = ') (for continuum state).
’ (D33b)

With these dimensionless variables, we can convert (D25) to a universal form
Aee) = e+ [ dufelin) (D34a)
0

e, 1) = ce(A) + @2fe(A, ), (D34b)

which has a single non-trivial parameter £ = 6,/gpac. Again, we omitted the labels for
discrete/continuum states because these relations apply to both cases. The universal
form (D34) can be seen as a broadband extension of the single-mode universal form
(D10). Because only ¢ depends non-trivially on s, once we find solutions to (D34) for
any given &, we can use the results to solve the eigenproblem for any s.

D.3.2. Discrete Eigenstate

For 1<0, it turns out that we have a discrete bound-state solution called “optical
mesons” [204] with binding energy A = —1:<0. Because there is only one solution,
we explicitly denote ¢§ = cg(=A¢) and f¢(u) = fe(~Ae, p), and we solve (D34b) for f¢
to get

d
c
d 13

=—= . D35a
fg (1) X+ 2 ( )

Then, inserting (D35a) into (D34a) gives us
Je= -6+ ——, (D35b)

21

which is an analogous equation to (D8) that determines a discrete eigenenergy. The
eigenenergy has an asymptotic scaling Az ~ (7/2£)* for§ — +ocoand g ~ —£ foré —
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—o0. Using the normalization condition for discrete states (D22a), we can determine
the value of cdf as

-1/2
cd=(1+ T ) . (D35¢)
3 33/2

47

Equations (D35) provide analytic solutions for the discrete bound state of the system.

D.3.3. Continuum Eigenstates

We now focus on the solution A > 0, for which we have a continuum solution, as
shown shortly. To explicitly denote the continuum nature of the eigenstates, we label
the variables with superscript “c,” e.g., cff(/l) and féf(/l, ). Upon solving (D34b) for
fg(/l, 1), we need to introduce a principal part of fg (4, ) to account for the singularity

at A = p? as
Je(A, ) = cz(2) /1_;;12 +we ()6 (A~ ﬂz)) : (D36)

The value of the principal component wg(A) is to be determined afterward to fulfill
the normalization condition. Inserting (D36) into (D34a) yields an equality

we ()

VL (D37)

A=&+

where we have used P [ dy (4 — 2)~" = 0 with P denoting the Cauchy principal value
integration. While Eq. (D37) might seem similar to Eq. (D35b) (and the single-mode
case (D8)), this equation has qualitatively different characteristics and cannot be used
to obtain a specific eigenenergy. This is because wz(1) is a free variable that has not
been set yet, making it possible for any 4 > 0 to be a solution of Eq. (D37). Instead,
Eq. (D37) should be seen as an equation that determines the functional form of w, (1)
as

we(d) = 2VA (1 - £) (D38)
for every 4 > 0.

Finally, we use the continuum normalization condition (D22b) to determine the value
of cz(1). For this, we note that

1 1(1 1

= 726(x — —(x
(r=2)y-2) x-y )+ S(x=y)d(z=(x+y)/2)  (D39)

y—z_x—z
holds true [200], which we use to derive

n’+ wé_.(/l)

P s G = () (—1 + 5 - a')) . (D40)

As a result, the normalization condition determines the value of ccf () as

12
_ 2V ) . (D41)

() = (7r2 + wé(/l)

In summary Eqs. (D36), (D38), and (D41) provide analytic expressions for the
continuum eigenstates with energy 4 > 0.
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D.3.4. Conversion to the Original Frame
To obtain eigenstates for a given § = s, we set & = 0;/gpdc and solve (D34) to obtain

cdf/ ‘(1) and f; /(A, w). Using these solutions, we can denote the discrete and continuum

eigenstates as

8 = ety + ¢ [ dusdoa, ) (D42a)

B0) = 2 lb) + 8L [ dufmla, gy (D420)

where A = (w — 04(0))/gpac. With these eigenstates, we can analytically solve any
pulse propagation dynamics in the subspace H,, . =1. For instance, the dynamics of
an initial single-pump photon state |(0)) = |b,) are

Ws(0)) = [Wras(1)) + |Ys(0)), (D43a)

where signal and pump wave functions are

Was0)) = €802 [ dpa (e o) + [ e e OfEL ) a1,

(1)) = 0O (I 4 [ dAe T e (D) [by)
(D43b)
with 7 = gpqct. We can now use (D43) to describe the propagation of a generic initial
single-photon pump pulse |/(0)) = f ds hg|ys(0)) = f ds hy|by);

W) = / ds Iy (1)) (D44)

It is worth mentioning that (D44) shows each momentum component [i/,(f)) evolves
independently under the parametric interactions. When we are interested in an observ-
able that commutes with §, e.g., signal/pump photon number 7, = f dséie,(c e
{a,b}), the expectation value of the operator can also be written as a sum of
independent contributions from every | (7)) as

ne(t) = W@y () = / ds |y *Ficy(1) (D45)

with 7ie(f) = (W(1)|e1e|w,(r)). Therefore, once we understand the dynamics of each
spectral component, the overall behavior of the system can be understood as a sim-
ple sum of these dynamics. In the following Appendixes D.4 and D.5, we study
pump-photon dynamics and signal dynamics of each spectral component, respec-
tively. Then, Appendix D.6 discusses pulse-pumped broadband PDC, studying the
collective behavior of multiple spectral components.

D.4. Broadband PDC: Dynamics of Pump Photon Population
Here, we focus on a single-spectral component and study the dynamics of the pump
photon number

-1 - 2
T 00 2\/1 e—i(/l+/lg)'r
fips(1) = 1 dl ——|, D46
) ‘ ( " 413/2) +./0 7+ A - £ (D48)
—_—

. T continuum contribution
optical meson contribution

where the first and the second terms in the absolute value represent the contribution
from the optical meson and the continuum, respectively.
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Figure 53
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Conversion efficiency of single-photon-pumped broadband PDC as a function of
interaction time for various values of phase mismatch £. Dashed lines represent the
asymptotic values to which the trajectories converge in the limit t — oo. For & ~ 1.9,
the unit-efficiency conversion is realized at a finite time 7 = gpct = 1.32. Adapted
with permission from Ref. [69].

__________________________________________________________________________________________|

In Fig. 53, we show the numerically calculated evolution of conversion efficiency
&E(t) = 1 — npg(z) for various phase mismatch £. Qualitatively, the behavior of & (thus,
that of 7,4(f)) becomes more “oscillatory” for smaller &, exhibiting damped Rabi-
like oscillations. Physically, the oscillation is caused by the interference between
the optical meson and continuum contributions. Thus, its characteristic frequency is
commensurate to the meson binding energy Agpa.. As & increases, the oscillation is
damped more strongly to exhibit more “relaxational” dynamics. For any values of
&, the trajectories take features qualitatively distinctive from the single-mode physics
shown in Fig. 52.

In the limit of # — oo, the continuum contribution in Eq. (D46) dephases and vanishes,
leaving only the optical meson contribution as

-2
L b
,152, fips(1) = (1 + 42—3/2) ) (D47)
and the asymptotic value 7,,(c0) becomes smaller (larger) for larger (smaller) £. While
nps(c0) can only be zero asymptotically, due to non-trivial interference effects, 7,,(r)

can transiently vanish, e.g., at £ ~ 1.9 and 7 = gt = 1.32, to enable unit-efficiency
PDC.

In the following, to obtain a more qualitative understanding, we consider the behavior
of the pump photon number in two extreme regimes; (i) non-degenerate limit & > 1,
and (ii) degenerate limit ¢ <« —1. The phenomenology of the system for an intermediate
phase mismatch & can be intuitively understood by interpolation between these two
regimes.

D.4.1. Non-Degenerate Coupling Limit

For & > 1, we are in a regime that we refer to as the “non-degenerate coupling
regime.” As illustrated in Fig. 41(a), in this regime, the pump-state energy lies deep
within the energy band formed by the signal continuum. The PDC process excites
signal frequency components with similar energy to the pump photon, leading to
a Lorentzian line shape in the signal continuum excitation, and the interaction is
non-degenerate in the sense that the signal excitation is composed of two separate
wavenumber components. In the spatial domain, such spectral features translate to two
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dispersive waves moving away from each other. This walkoff-like process suppresses
backconversion, resulting in the strong damping of the oscillation in 71,,(¢). To see this
more quantitatively, we first note that the meson binding energy is well approximated
as /if ~ (m/2¢)?* = 0 for £ > 1, implying that the meson contribution in Eq. (D46)
is negligible. As to the continuum contribution, the integrand in Eq. (D46) can be
well approximated as a Lorentzian line shape around A = ¢ with full width at half
maximum & /r as
2V N 2E

M2+ AU - € T m2+4E(A - €
As a result, the continuum contribution, which is given as a Fourier transform of
a Lorentzian line shape, exponentially decays to zero with characteristic decay time
Tdecay = VE /7. In fact, we can show that the pump photon number exponentially decays
as

(D48)

Tipg 1) ~ €77/ Taee (D49)

in this regime. As shown in Fig. 41(a), the approximate expression (D49) agrees well
with the numerically calculated pump photon population.

D.4.2. Degenerate Coupling Limit

For £ < —1, we are in a regime that we refer to as the “degenerate coupling regime.”
As shown in Fig. 41, in this regime, the pump energy lies well below the energy band
formed by the continuum. Because of the energy gap, the coupling is not highly energy
selective, and the pump photon can excite a broad spectrum of signal modes, which
translates to a localized structure in the spatial domain. Since downconverted signal
photon pairs can be physically close to each other for a longer time, backconversion is
enhanced, leading to more oscillatory behaviors. To see this more quantitatively, we
perform an approximation for the integrand in Eq. (D46) as

2V _2Va
T2 +4AA-EP  m2+4820

(D50)

The approximation holds well for A < |£], outside of which the integrant has negligible
amplitude. After some math, we can show

T, VT HETr/4)|
A=) 28T

where we have used A ~ —¢ for & < —1. As shown in Fig. 41(b), the approximate
expression (D51) agrees well with the numerically calculated pump photon popula-
tion. Notably, 7,,(f) exhibits oscillations whose amplitude decays sub-polynomially
~ 7712 Due to the fast initial decay of the sub-polynomial decay, the oscillation 7i,(f)
never converges to a canonical Rabi oscillation in any limit of &, showing that the
phenomenology of broadband PDC is qualitatively distinct from the single-mode PDC.

ips(t) = |1 (D51)

D.5. Broadband PDC: Dynamics of the Signal Wave Function

We now turn our attention to the dynamics of the signal part of state [y,(7)). In
particular, we are interested in the spatial features of the signal state. To this end, we
consider the signal biphoton wave function R(z, z"), which is defined via

s (0) = €3O / duQ(wla, 1,
0 (D52)
= ¢ 100N / dzdz e IRz, 2)alal |0),
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Figure 54
E=-1.0 £=0.0 £=1.9 £=4.0
dj2 |2 dj2 |2 dj2 RCZ dj2 RCZ
[RY [R€| [RY IR€| [RY [R€ [RY |RS| 1.0
’ 0.8
& 0.6
[
£
= 0.4
©
()
N
‘© 0.2
£
o
= 0.0
-3 0 3 -3 0 3
P05|t|0n C Yz- z) P05|t|0n C Yz- z) Position ~(z—Z2) Position ~(z - Z2)

Dynamics of the spatial biphoton wave function for various values of the phase
mismatch &. Figures on the upper row show optical meson contribution |R|?> and con-
tinuum contribution |R°|?. The white dashed lines represent the theoretically expected
group velocity of the dispersive waves V& gpaclpac/7. Adapted with permission from
Ref. [69].

where

- -1
ei/lé:‘r T o zﬁe—i/lr 1
= —— 1 da D6 = 12|
oW /lf"':“z( +4Z§/2) +/o 72+ wi(d) (ﬂ—uz + w0~ )
' (D53)

Physically, R(z,z’) is the wave function of the biphoton state written in the spatial
domain, and |R(z, z’)|? gives the joint probability distribution of finding two photons at
position z and z’. After some math, we can calculate the spatial biphoton wave function
as

R@2) = Gl [ due o)
0

27 dg €xp (—ZH/TI/Z{‘dlCIZ - Z'I) B ©  COS (Zﬂ\/ig“I;jlclz -7+ A(/l)) e it
- +/ da
0

el/l'fT ,
172 =3/2
I / (71 + 4/1 / ) (pld/cz‘ [n2 + wé(/l)

pdc
=R4 (optical meson contribution) =R (continuum contribution)

(D54)
where we denote the first and the second terms as R%(z,z’) and R°(z,7’), and
A(A) = —arctan(mr/wg(A)) is the Fano parameter. In Fig. 54, we show the dynam-
ics of the intensity of R(z,z’) alongside the optical meson contribution R%(z,z’) and
the continuum contribution R°(z, z"). Due to the translational invariance of the system,
R(z,7’) depends only on the distance between the photons |z — 7’|

For large ¢ (i.e., non-degenerate coupling regime), most of the signal contribution
comes from the continuum excitation, which disperses in space as a function of time,
where the group velocity of the dispersive waves is V& gpac{pac /7. On the other hand,
for small ¢ (i.e., degenerate coupling regime), the meson contribution dominates, and
due to the nature of the optical meson as a bound state, the signal wave function
remains exponentially localized. Finally, for an intermediate &, both continuum and
meson contribution coexist, forming a triplet structure with interference patterns.
These observations highlight that broadband PDC exhibits rich but localized spatial
features. Note that all spatial coordinates are localized by the characteristic length
scale 1/¢& o« GVD ™3, meaning waveguides with smaller dispersion can realize more
localized photon—photon correlation structures.
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Figure 55

Ilustration for the single-photon-pumped PDC with pulsed pump. Signal photons
produced from a pump photon with momentum s can only upconvert to the same
pump mode. Adapted with permission from Ref. [69].

______________________________________________________________________________________|

D.6. Broadband PDC: Pulsed Pump

So far, our analysis has focused on the behavior of a single spectral component. In
this appendix, we extend the analysis to the collective behavior of multiple spectral
components, studying PDC dynamics for an initial pulsed-pump state

0(0)) =./odshAbQ- (D55)

As we saw in the previous appendixes, one of the main advantages of using such broad-
band pump pulse for semiclassical PDC (i.e., vacuum squeezing) was to increase the
peak pump intensity, which significantly increases the conversion efficiency for the
same average pump power. However, as we see shortly as a main takeaway message
of this appendix, we show that the rate of single-photon-pumped PDC is almost inde-
pendent of the pump-pulse shape and, thus, there exists no enhancement of conversion
efficiency by broader pump bandwidth. Instead, the PDC rate is commensurate to g,
which can be enhanced by broadening the signal fluorescence bandwidth.

A major difference between semiclassical PDC and single-photon-pumped PDC is
the absence of cross talk between different spectral components of the pump. As
illustrated in Fig. 55, in single-photon-pumped PDC, signal photons that are produced
by the downconversion of a pump photon with wavenumber (i.e., momentum) s can
only upconvert to the same pump mode, because the momentum of the signal photons
s/2 + p always sums up to s. Here, it might seem possible for the pulsed nature of
the pump to break this constraint. For instance, pulse waveform (D55) can contain
non-zero amplitudes for |b,) and |b]) with s # s’, which can downconvert to signal
photons with momenta s/2 + p and s’ /2 + p’, respectively. Then, when signal photons
with, say, momenta s/2 and s’ /2 merge, the momentum of the resultant pump photon
becomes (s + s”)/2, which can be different from either s or s’. However, such scattering
processes are prohibited in single-photon-pumped PDC because the presence of |by)
and |b;) are mutually exclusive, i.e., a single pump photon cannot simultaneously
have momenta s and s’. Consequently, the production of a signal-photon pair with
momentum s/2 + p excludes the presence of another photon pair, forcing them to
upconvert to the original pump mode with momentum s. For different pump spectral
components to talk with each other, there must be at least two pump photons so that
they can exchange momentum.

Because of the absence of cross talk, the behavior of each spectral component is
independent of the overall pulse shape ;. This is reflected in the form of the system
state

|mm=/mmmmx (D56)
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where the explicit form of |y,(7)) = eiHi/ R|by) is provided in Eq. (D43) and is inde-
pendent of &,. As shown in Eq. (D43), the behavior of |(?)) is solely determined by
the normalized phase mismatch & = §,/gpqc up to an overall phase. As a result, we can
upper bound the overall conversion efficiency as

80 =5 [ asnPEOlalalm) < mxSwolalan. (57

where we have used the independence of h; and |y,(¢)) to derive the inequality.
Equation (D57) indicates that the photon conversion rate of pulse-pumped PDC cannot
exceed that of an appropriately phase-matched CW-pumped PDC, which is rather
counterintuitive from the viewpoint of classical nonlinear optics.

The explicit s-dependence of ¢, is given by
1
05 = dwp(2ms) — [26w,(0) + 6w, (0)(27s) + 55‘0(7(0)(2“)2 ) (D58)

Notably, when perfectly phase-matched conditions
Swp(0) = 6w, (0) Swy) (0) = 6w, (0)/2 (D59)

hold true, the s-dependence of §; vanishes. When this condition is met, |/,(7)) becomes
homogeneous up to an overall phase factor, and the inequality (D57) is always sat-
urated. In other words, at least in terms of conversion efficiency, the PDC dynamics
become completely independent of the pump pulse shape. To see this more clearly,
note that the pump part evolves as

|mw=@m/wf%mmm, (D60a)

where the overall amplitude is

Celt) = (e“‘7|cg|2 " / da e_i’“|c°£(/l)|2) . (D60b)
el =+ ) .

The form of Eq. (D60) suggests the pump field distribution evolves as if there were
only the linear part of the Hamiltonian, and the nonlinear dynamics affect the pump
evolution only via the variation of the overall amplitude Cz(?).

In Fig. 42, we show the results of numerical simulations for single-photon-pumped
PDC assuming Eq. (D59). We consider various initial pump-pulse shapes, i.e., mth
Hermite-Gaussian function for m € {0, 1,2} (see Fig. 42(a)), which leads to highly
complicated dynamics as shown in Fig. 42(c). However, for any pump pulse shape,
the overall conversion efficiency follows an identical trajectory (see Fig. 42(b)). For
the phase mismatch & ~ 1.9 considered for the simulation, unit conversion is achieved
at time T = gpact ~ 1.32, represented by gray dashed lines in the figures.

In summary, we have seen that the nonlinear coupling for broadband single-photon-
pumped PDC is independent of the shape (i.e., bandwidth) of the pump pulse. To
enhance the PDC rate, one really needs to increase the characteristic coupling rate
gpac = (r*/ o)'3. Aside from directly increasing waveguide nonlinearity r, this can
be achieved by reducing the signal dispersion o, implying that what determines the
broadband PDC rate is the signal fluorescence bandwidth, not the pump bandwidth.

FUNDING

National Science Foundation (CCF 1918549, OMA 2137723, PHY 2011363); NTT
Research Inc. (146395); Army Research Office (W911NF-16-1-0086).



Tutorial ‘ | Vol. 16, No. 2/June 2024/ Advances in Optics and Photonics 527

ACKNOWLEDGEMENTS

The authors thank Noah Flemens, Evan Laksono, Heesoo Kim, Niharika Gunturu,
Jean Wang, Huiting Liu, Chris Gustin, Daniel Wennberg, and Taewon Park for their
valuable feedback on this article.

DISCLOSURES

The authors declare no conflicts of interest.

DATA AVAILABILITY

No new data was generated or analyzed in this manuscript.

REFERENCES AND NOTES

1.

10.
11.
12.
13.
14.
15.
16.
17.

18.

J. Lu, M. Li, C.-L. Zou, et al., “Toward 1% single photon nonlinearity with
periodically-poled lithium niobate microring resonators,” Optica 7, 1654-1659
(2020).

. M. Zhao and K. Fang, “InGaP quantum nanophotonic integrated circuits with

1.5% nonlinearity-to-loss ratio,” Optica 9, 258-263 (2022).

. R. Yanagimoto, E. Ng, M. Jankowski, et al., “Temporal trapping: a route to

strong coupling and deterministic optical quantum computation,” Optica 9, 1289
(2022).

. J. M. Fink, M. Goppl, M. Baur, ef al., “Climbing the Jaynes-Cummings ladder

and observing its nonlinearity in a cavity QED system,” Nature 454, 315-318
(2008).

. A. Wallraff, D. I. Schuster, A. Blais, et al., “Strong coupling of a single photon

to a superconducting qubit using circuit quantum electrodynamics,” Nature 431,
162-167 (2004).

. G.Nogues, A. Rauschenbeutel, S. Osnaghi, et al., “Seeing a single photon without

destroying it,” Nature 400, 239-242 (1999).

. M. Brune, F. Schmidt-Kaler, A. Maali, ef al., “Quantum Rabi oscillation: a direct

test of field quantization in a cavity,” Phys. Rev. Lett. 76, 1800-1803 (1996).

. S. Gleyzes, S. Kuhr, C. Guertlin, et al., “Quantum jumps of light recording the

birth and death of a photon in a cavity,” Nature 446, 297-300 (2007).

. R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode

splitting for an atom in an optical cavity,” Phys. Rev. Lett. 68, 1132—-1135 (1992).
H. J. Kimble, “Strong interactions of single atoms and photons in cavity QED,”
Phys. Scr. T76, 127 (1998).

L. A. Lugiato and R. Lefever, “Spatial dissipative structures in passive optical
systems,” Phys. Rev. Lett. 58, 2209-2211 (1987).

M. Werner and P. Drummond, “Simulton solutions for the parametric amplifier,”
J. Opt. Soc. Am. B 10, 2390-2393 (1993).

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat.
Photonics 6, 84-92 (2012).

S. Trillo, “Bright and dark simultons in second-harmonic generation,” Opt. Lett.
21, 1111-1113 (1996).

L. F. Mollenauer and R. H. Stolen, “The soliton laser,” Opt. Lett. 9, 13-15 (1984).
A. E. Siegman, Lasers (University Science Books, 1986).

H. Haus, “Theory of mode locking with a slow saturable absorber,” IEEE J.
Quantum Electron. 11, 736-746 (1975).

H. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6,
1173-1185 (2000).


https://doi.org/10.1364/OPTICA.403931
https://doi.org/10.1364/OPTICA.440383
https://doi.org/10.1364/OPTICA.473276
https://doi.org/10.1038/nature07112
https://doi.org/10.1038/nature02851
https://doi.org/10.1038/22275
https://doi.org/10.1103/PhysRevLett.76.1800
https://doi.org/10.1038/nature05589
https://doi.org/10.1103/PhysRevLett.68.1132
https://doi.org/10.1238/Physica.Topical.076a00127
https://doi.org/10.1103/PhysRevLett.58.2209
https://doi.org/10.1364/JOSAB.10.002390
https://doi.org/10.1038/nphoton.2011.345
https://doi.org/10.1038/nphoton.2011.345
https://doi.org/10.1364/OL.21.001111
https://doi.org/10.1364/OL.9.000013
https://doi.org/10.1109/JQE.1975.1068922
https://doi.org/10.1109/JQE.1975.1068922
https://doi.org/10.1109/2944.902165

528  Vol. 16,No. 2/June 2024/ Advances in Optics and Photonics \ Tutorial

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic
crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).

L. Chang, A. Boes, X. Guo, et al., “Heterogeneously integrated GaAs waveg-
uides on insulator for efficient frequency conversion,” Laser Photonics Rev. 12,
1800149 (2018).

D. M. Lukin, C. Dory, M. A. Guidry, et al., “4h-silicon-carbide-on-insulator
for integrated quantum and nonlinear photonics,” Nat. Photonics 14, 330-334
(2019).

N. Poulvellarie, C. M. Arabi, C. Ciret, et al., “Efficient type 1l second harmonic
generation in an indium gallium phosphide on insulator wire waveguide aligned
with a crystallographic axis,” Opt. Lett. 46, 1490-1493 (2021).

K. Rivoire, S. Buckley, and J. Vuckovié, “Multiply resonant photonic crystal
nanocavities for nonlinear frequency conversion,” Opt. Express 19, 22198-22207
(2011).

R. Luo, H. Jiang, S. Rogers, et al., “On-chip second-harmonic generation and
broadband parametric down-conversion in a lithium niobate microresonator,”
Opt. Express 25, 24531-24539 (2017).

A. Billat, D. Grassani, M. H. P. Pfeiffer, et al., “Large second harmonic
generation enhancement in Siz;N, waveguides by all-optically induced quasi-
phase-matching,” Nat. Commun. 8, 1016 (2017).

M. A. Porcel, J. Mak, C. Taballione, et al., “Photo-induced second-order non-
linearity in stoichiometric silicon nitride waveguides,” Opt. Express 25, 33143
(2017).

E. Timurdogan, C. V. Poulton, M. J. Byrd, et al., “Electric field-induced second-
order nonlinear optical effects in silicon waveguides,” Nat. Photonics 11, 200-206
(2017).

A. Rao, M. Malinowski, A. Honardoost, et al., “Second-harmonic generation
in periodically-poled thin film lithium niobate wafer-bonded on silicon,” Opt.
Express 24, 29941-29947 (2016).

C. Wang, C. Langrock, A. Marandi, et al., “Ultrahigh-efficiency wavelength con-
version in nanophotonic periodically poled lithium niobate waveguides,” Optica
5, 1438 (2018).

A. Rao, K. Abdelsalam, T. Sjaardema, et al., “Actively-monitored periodic-
poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear
conversion efficiency of 4600% W~'cm™2,” Opt. Express 27, 25920-25930
(2019).

J. Zhao, C. Ma, M. Riising, et al., “High quality entangled photon pair generation
in periodically poled thin-film lithium niobate waveguides,” Phys. Rev. Lett. 124,
163603 (2020).

A.W.Bruch, X. Liu,J. B. Surya, et al., “On-chip y® microring optical parametric
oscillator,” Optica 6, 1361-1366 (2019).

J. Lu, J. B. Surya, X. Liu, et al., “Periodically poled thin-film lithium nio-
bate microring resonators with a second-harmonic generation efficiency of
250,000%/W,” Optica 6, 1455-1460 (2019).

J.Lu, A. Al Sayem, Z. Gong, et al., “Ultralow-threshold thin-film lithium niobate
optical parametric oscillator,” Optica 8, 539-544 (2021).

T. P. McKenna, H. S. Stokowski, V. Ansari, et al., “Ultra-low-power second-order
nonlinear optics on a chip,” Nat. Commun. 13, 4532 (2022).

D. D. Hickstein, D. R. Carlson, H. Mundoor, et al., “Self-organized nonlinear
gratings for ultrafast nanophotonics,” Nat. Photonics 13, 494-499 (2019).

N. Singh, M. Raval, A. Ruocco, et al., “Broadband 200-nm second-harmonic
generation in silicon in the telecom band,” Light: Sci. Appl. 9, 17 (2020).


https://doi.org/10.1103/RevModPhys.78.1135
https://doi.org/10.1002/lpor.201800149
https://doi.org/10.1038/s41566-019-0556-6
https://doi.org/10.1364/OL.418064
https://doi.org/10.1364/OE.19.022198
https://doi.org/10.1364/OE.25.024531
https://doi.org/10.1038/s41467-017-01110-5
https://doi.org/10.1364/OE.25.033143
https://doi.org/10.1038/nphoton.2017.14
https://doi.org/10.1364/OE.24.029941
https://doi.org/10.1364/OE.24.029941
https://doi.org/10.1364/OPTICA.5.001438
https://doi.org/10.1364/OE.27.025920
https://doi.org/10.1103/PhysRevLett.124.163603
https://doi.org/10.1364/OPTICA.6.001361
https://doi.org/10.1364/OPTICA.6.001455
https://doi.org/10.1364/OPTICA.418984
https://doi.org/10.1038/s41467-022-31134-5
https://doi.org/10.1038/s41566-019-0449-8
https://doi.org/10.1038/s41377-020-0254-7

Tutorial ‘ | Vol. 16, No. 2/June 2024/ Advances in Optics and Photonics 529

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

M. Jankowski, C. Langrock, B. Desiatov, et al., “Ultrabroadband nonlinear optics
in nanophotonic periodically poled lithium niobate waveguides,” Optica 7, 40
(2020).

M. Jankowski, C. Langrock, B. Desiatov, et al., “Supercontinuum generation by
saturated second-order nonlinear interactions,” APL Photonics 8, 116104 (2023).
M. Jankowski, N. Jornod, C. Langrock, et al., “Quasi-static optical parametric
amplification,” Optica 9, 273 (2022).

M. Jankowski, J. Mishra, and M. M. Fejer, “Dispersion-engineered y® nanopho-
tonics: a flexible tool for nonclassical light,” J. Phys. Photonics 3, 042005
(2021).

M. A. Armen and H. Mabuchi, “Low-lying bifurcations in cavity quantum
electrodynamics,” Phys. Rev. A 73, 063801 (2006).

S. Olivares, “Quantum optics in the phase space - a tutorial on Gaussian states,”
Eur. Phys. J. Spec. Top. 203, 3-24 (2012).

C. Weedbrook, S. Pirandola, R. Garcia-Patrén, et al., “Gaussian quantum
information,” Rev. Mod. Phys. 84, 621-669 (2012).

N. Quesada, L. G. Helt, M. Menotti, et al., “Beyond photon pairs—nonlinear
quantum photonics in the high-gain regime: a tutorial,” Adv. Opt. Photonics 14,
291 (2022).

G. Triginer, M. D. Vidrighin, N. Quesada, et al., “Understanding high-gain twin-
beam sources using cascaded stimulated emission,” Phys. Rev. X 10, 031063
(2020).

M. A. Guidry, D. M. Lukin, K. Y. Yang, et al., “Quantum optics of soliton
microcombs,” Nat. Photonics 16, 52-58 (2022).

T. Kashiwazaki, N. Takanashi, T. Yamashima, et al., “Continuous-wave 6-dB-
squeezed light with 2.5-THz-bandwidth from single-mode PPLN waveguide,”
APL Photonics §, 1 (2020).

H. Vahlbruch, M. Mehmet, K. Danzmann, et al., “Detection of 15 dB squeezed
states of light and their application for the absolute calibration of photoelectric
quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).

C. Bao, M.-G. Suh, B. Shen, ef al., “Quantum diffusion of microcavity solitons,”
Nat. Phys. 17, 462-466 (2021).

M. Walschaers, “Non-Gaussian quantum states and where to find them,” PRX
Quantum 2, 030204 (2021).

R. Yanagimoto, E. Ng, M. P. Jankowski, et al., “Mesoscopic ultrafast nonlinear
optics — the emergence of multimode quantum non-Gaussian physics,” arXiv,
arXiv:2311.13775 (2023).

S. H. Cantu, A. V. Venkatramani, W. Xu, et al., “Repulsive photons in a quantum
nonlinear medium,” Nat. Phys. 16, 921-925 (2020).

O. Firstenberg, T. Peyronel, Q.-Y. Liang, et al., “Attractive photons in a quantum
nonlinear medium,” Nature 502, 71-75 (2013).

D. Chang, C. Langrock, Y.-W. Lin, et al., “Complex-transfer-function analysis of
optical-frequency converters,” Opt. Lett. 39, 5106-5109 (2014).

J. H. Shapiro, “Single-photon Kerr nonlinearities do not help quantum
computation,” Phys. Rev. A 73, 062305 (2006).

M. Hillery and L. D. Mlodinow, “Quantization of electrodynamics in nonlinear
dielectric media,” Phys. Rev. A 30, 1860-1865 (1984).

P. D. Drummond, “Electromagnetic quantization in dispersive inhomogeneous
nonlinear dielectrics,” Phys. Rev. A 42, 6845-6857 (1990).

J. Sipe, “Photons in dispersive dielectrics,” J. Opt. A: Pure Appl. Opt. 11, 114006
(2009).

P. D. Drummond and M. Hillery, The Quantum Theory of Nonlinear Optics
(Cambridge University Press, 2014).


https://doi.org/10.1364/OPTICA.7.000040
https://doi.org/10.1063/5.0158926
https://doi.org/10.1364/OPTICA.442550
https://doi.org/10.1088/2515-7647/ac1729
https://doi.org/10.1103/PhysRevA.73.063801
https://doi.org/10.1140/epjst/e2012-01532-4
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1364/AOP.445496
https://doi.org/10.1103/PhysRevX.10.031063
https://doi.org/10.1038/s41566-021-00901-z
https://doi.org/10.1063/1.5142437
https://doi.org/10.1103/PhysRevLett.117.110801
https://doi.org/10.1038/s41567-020-01152-5
https://doi.org/10.1103/PRXQuantum.2.030204
https://doi.org/10.1103/PRXQuantum.2.030204
https://doi.org/10.48550/arXiv.2311.13775
https://doi.org/10.1038/s41567-020-0917-6
https://doi.org/10.1038/nature12512
https://doi.org/10.1364/OL.39.005106
https://doi.org/10.1103/PhysRevA.73.062305
https://doi.org/10.1103/PhysRevA.30.1860
https://doi.org/10.1103/PhysRevA.42.6845
https://doi.org/10.1088/1464-4258/11/11/114006

530  Vol. 16,No. 2/June 2024/ Advances in Optics and Photonics Tutorial

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

B. Huttner and S. M. Barnett, “Quantization of the electromagnetic field in
dielectrics,” Phys. Rev. A 46, 4306—4322 (1992).

M. G. Raymer, “Quantum theory of light in a dispersive structured linear dielec-
tric: a macroscopic Hamiltonian tutorial treatment,” J. Mod. Opt. 67, 196-212
(2020).

N. Quesada and J. E. Sipe, “Why you should not use the electric field to quantize
in nonlinear optics,” Opt. Lett. 42, 3443-3446 (2017).

R. Yanagimoto, E. Ng, A. Yamamura, ef al., “Onset of non-Gaussian quantum
physics in pulsed squeezing with mesoscopic fields,” Optica 9, 379-390 (2022).
N. Tezak, N. H. Amini, and H. Mabuchi, “Low-dimensional manifolds for exact
representation of open quantum systems,” Phys. Rev. A 96, 062113 (2017).

M. T. Manzoni, D. E. Chang, and J. S. Douglas, “Simulating quantum light prop-
agation through atomic ensembles using matrix product states,” Nat. Commun.
8, 1743 (2017).

R. Yanagimoto, E. Ng, L. G. Wright, et al., “Efficient simulation of ultrafast
quantum nonlinear optics with matrix product states,” Optica 8, 1306-1315
(2021).

M. Lubasch, A. A. Valido, J. J. Renema, et al., “Tensor network states in time-bin
quantum optics,” Phys. Rev. A 97, 062304 (2018).

R. Yanagimoto, “Quantum dynamics of broadband nonlinear photonics: from
phenomenology to function,” Ph.D. thesis, Stanford University (2023).

J. A. Armstrong, N. Bloembergen, J. Ducuing, et al., “Interactions between light
waves in a nonlinear dielectric,” Phys. Rev. 127, 1918-1939 (1962).

P. A. Franken and J. F. Ward, “Optical harmonics and nonlinear phenomena,”
Rev. Mod. Phys. 35, 23-39 (1963).

M. Fejer, G. Magel, D. Jundt, et al., “Quasi-phase-matched second harmonic
generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631-2654
(1992).

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8, 180-198
(2007).

D. Heydari, M. Cituneanu, E. Ng, et al., “Degenerate optical parametric
amplification in CMOS silicon,” Optica 10, 430-437 (2023).

X. Lu, G. Moille, A. Rao, et al., “Efficient photoinduced second-harmonic
generation in silicon nitride photonics,” Nat. Photonics 15, 131-136 (2020).

S. May, M. Kues, M. Clerici, et al., “Second-harmonic generation in AlGaAs-
on-insulator waveguides,” Opt. Lett. 44, 1339-1342 (2019).

L. Chang, A.Boes, P. Pintus, et al., “Low loss (Al)GaAs on an insulator waveguide
platform,” Opt. Lett. 44, 4075-4078 (2019).

J. Chiles, N. Nader, E. J. Stanton, et al., “Multifunctional integrated photonics
in the mid-infrared with suspended AlGaAs on silicon,” Optica 6, 1246-1254
(2019).

L. Chang, A. Boes, P. Pintus, et al., “Strong frequency conversion in
heterogeneously integrated GaAs resonators,” APL Photonics 4, 036103 (2019).
E. J. Stanton, J. Chiles, N. Nader, et al., “Efficient second harmonic generation
in nanophotonic GaAs-on-insulator waveguides,” Opt. Express 28, 9521-9532
(2020).

L. Chang, W. Xie, H. Shu, et al., “Ultra-efficient frequency comb generation in
AlGaAs-on-insulator microresonators,” Nat. Commun. 11, 1331 (2020).

W. Xie, L. Chang, H. Shu, ef al., “Ultrahigh-g AlGaAs-on-insulator microres-
onators for integrated nonlinear photonics,” Opt. Express 28, 32894-32906
(2020).


https://doi.org/10.1103/PhysRevA.46.4306
https://doi.org/10.1080/09500340.2019.1706773
https://doi.org/10.1364/OL.42.003443
https://doi.org/10.1364/OPTICA.447782
https://doi.org/10.1103/PhysRevA.96.062113
https://doi.org/10.1038/s41467-017-01416-4
https://doi.org/10.1364/OPTICA.423044
https://doi.org/10.1103/PhysRevA.97.062304
https://doi.org/10.1103/PhysRev.127.1918
https://doi.org/10.1103/RevModPhys.35.23
https://doi.org/10.1109/3.161322
https://doi.org/10.1016/j.crhy.2006.10.022
https://doi.org/10.1364/OPTICA.478702
https://doi.org/10.1038/s41566-020-00708-4
https://doi.org/10.1364/OL.44.001339
https://doi.org/10.1364/OL.44.004075
https://doi.org/10.1364/OPTICA.6.001246
https://doi.org/10.1063/1.5065533
https://doi.org/10.1364/OE.389423
https://doi.org/10.1038/s41467-020-15005-5
https://doi.org/10.1364/OE.405343

Tutorial ‘ | / Vol. 16, No. 2/June 2024/ Advances in Optics and Photonics 531

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

H. Mahmudlu, S. May, A. Angulo, et al., “AlGaAs-on-insulator waveguide for
highly efficient photon-pair generation via spontaneous four-wave mixing,” Opt.
Lett. 46, 1061-1064 (2021).

S. May, M. Clerici, and M. Sorel, “Supercontinuum generation in dispersion
engineered AlGaAs-on-insulator waveguides,” Sci. Rep. 11, 2052 (2021).

J. E. Castro, T. J. Steiner, L. Thiel, et al., “Expanding the quantum photonic
toolbox in AlGaAsOI,” APL Photonics 7, 1 (2022).

L. Wu, W. Xie, H.-J. Chen, et al., “AlGaAs soliton microcombs at room
temperature,” Opt. Lett. 48, 3853-3856 (2023).

K. Rivoire, S. Buckley, F. Hatami, et al., “Second harmonic generation in GaP
photonic crystal waveguides,” Appl. Phys. Lett. 98, 263113 (2011).

D. J. Wilson, K. Schneider, S. Honl, et al., “Integrated gallium phosphide
nonlinear photonics,” Nat. Photonics 14, 57-62 (2019).

K. Pantzas, S. Combrié, M. Bailly, et al., “Continuous-wave second-harmonic
generation in orientation-patterned gallium phosphide waveguides at telecom
wavelengths,” ACS Photonics 9, 2032-2039 (2022).

Y. Ueno, V. Ricci, and G. I. Stegeman, “Second-order susceptibility of Gag slng sP
crystals at 1.5 ym and their feasibility for waveguide quasi-phase matching,” J.
Opt. Soc. Am. B 14, 1428-1436 (1997).

T. Skauli, K. L. Vodopyanov, T. J. Pinguet, et al., “Measurement of the nonlinear
coefficient of orientation-patterned GaAs and demonstration of highly efficient
second-harmonic generation,” Opt. Lett. 27, 628 (2002).

X. Yu, L. Scaccabarozzi, A. C. Lin, et al., “Growth of GaAs with orientation-
patterned structures for nonlinear optics,” J. Cryst. Growth 301-302, 163-167
(2007).

B.-S. Song, T. Asano, S. Jeon, et al., “Ultrahigh-Q photonic crystal nanocavities
based on 4h silicon carbide,” Optica 6, 991-995 (2019).

M. A. Guidry, K. Y. Yang, D. M. Lukin, et al., “Optical parametric oscillation in
silicon carbide nanophotonics,” Optica 7, 1139-1142 (2020).

D. M. Lukin, M. A. Guidry, and J. Vuckovié, “Integrated quantum photonics with
silicon carbide: challenges and prospects,” PRX Quantum 1, 020102 (2020).

C. Xiong, W. Pernice, K. K. Ryu, et al., “Integrated GaN photonic circuits on
silicon (100) for second harmonic generation,” Opt. Express 19, 10462—-10470
(2011).

J. Hite, M. Twigg, M. Mastro, et al., “Development of periodically oriented
gallium nitride for non-linear optics,” Opt. Mater. Express 2, 1203-1208 (2012).
E. Stassen, M. Pu, E. Semenova, et al., “High-confinement gallium nitride-
on-sapphire waveguides for integrated nonlinear photonics,” Opt. Lett. 44,
1064-1067 (2019).

Y. Zheng, C. Sun, B. Xiong, er al., “Integrated gallium nitride nonlinear
photonics,” Laser Photonics Rev. 16, 2100071 (2022).

D. D. Hickstein, H. Jung, D. R. Carlson, et al., “Ultrabroadband supercontinuum
generation and frequency-comb stabilization using on-chip waveguides with both
cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).

J. Lu, X. Liu, A. W. Bruch, et al., “Ultraviolet to mid-infrared supercontinuum
generation in single-crystalline aluminum nitride waveguides,” Opt. Lett. 45,
4499-4502 (2020).

X. Liu, Z. Gong, A. W. Bruch, et al., “Aluminum nitride nanophotonics
for beyond-octave soliton microcomb generation and self-referencing,” Nat.
Commun. 12, 5428 (2021).

X. Liu, A. W. Bruch, and H. X. Tang, “Aluminum nitride photonic integrated
circuits: from piezo-optomechanics to nonlinear optics,” Adv. Opt. Photonics 15,
236-317 (2023).


https://doi.org/10.1364/OL.418932
https://doi.org/10.1364/OL.418932
https://doi.org/10.1038/s41598-021-81555-3
https://doi.org/10.1063/5.0098984
https://doi.org/10.1364/OL.484552
https://doi.org/10.1063/1.3607288
https://doi.org/10.1038/s41566-019-0537-9
https://doi.org/10.1021/acsphotonics.2c00156
https://doi.org/10.1364/JOSAB.14.001428
https://doi.org/10.1364/JOSAB.14.001428
https://doi.org/10.1364/OL.27.000628
https://doi.org/10.1016/j.jcrysgro.2006.11.315
https://doi.org/10.1364/OPTICA.6.000991
https://doi.org/10.1364/OPTICA.394138
https://doi.org/10.1103/PRXQuantum.1.020102
https://doi.org/10.1364/OE.19.010462
https://doi.org/10.1364/OME.2.001203
https://doi.org/10.1364/OL.44.001064
https://doi.org/10.1002/lpor.202100071
https://doi.org/10.1103/PhysRevApplied.8.014025
https://doi.org/10.1364/OL.398257
https://doi.org/10.1038/s41467-021-25751-9
https://doi.org/10.1038/s41467-021-25751-9
https://doi.org/10.1364/AOP.479017

532  Vol. 16,No. 2/June 2024/ Advances in Optics and Photonics \ Tutorial

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

Q. Guo, X.-Z. Qi, L. Zhang, et al., “Ultrathin quantum light source with van der
Waals NbOCl, crystal,” Nature 613, 53-59 (2023).

I. Abdelwahab, B. Tilmann, Y. Wu, et al., “Giant second-harmonic generation in
ferroelectric NbOI,,” Nat. Photonics 16, 644-650 (2022).

S. Fichtner, N. Wolff, F. Lofink, et al., “AlScN: a III-V semiconductor based
ferroelectric,” J. Appl. Phys. 125, 1 (2019).

P. Wang, D. Wang, N. M. Vu, et al., “Fully epitaxial ferroelectric scaln grown by
molecular beam epitaxy,” Appl. Phys. Lett. 118, 1 (2021).

W. Zhu, J. Hayden, F. He, et al., “Strongly temperature dependent ferroelectric
switching in AIN, Al;_,Sc,N, and Al;_,B,N thin films,” Appl. Phys. Lett. 119, 1
(2021).

V. Yoshioka, J. Lu, Z. Tang, et al., “Strongly enhanced second-order optical
nonlinearity in CMOS-compatible Al;_,Sc,N thin films,” APL Mater. 9, 1 (2021).
A. Suceava, J. Hayden, K. P. Kelley, et al., “Enhancement of second-order optical
nonlinearities and nanoscale periodic domain patterning in ferroelectric boron-
substituted aluminum nitride thin films,” Opt. Mater. Express 13, 1522-1534
(2023).

F. Yang, G. Yang, D. Wang, ef al., “Domain control and periodic poling of
epitaxial scaln,” Appl. Phys. Lett. 123, 1 (2023).

V. L. Tassev and S. R. Vangala, “New heteroepitaxially grown materials for
frequency conversion in the mid and longwave infrared,” in Nonlinear Optics
(NLO) (Optical Society of America, 2019), p. NTu4A.33.

S. Vangala, V. Tassev, and M. Snure, “Thick heteroepitaxial growth of ZnSe on
GaAs substrates for frequency conversion in the MLWIR,” in Nonlinear Optics
(NLO) (Optical Society of America, 2019), p. NTu4A.40.

P. G. Schunemann and K. T. Zawilski, “Vapor transport growth of single crystal
zinc selenide (Conference Presentation),” in Nonlinear Frequency Generation
and Conversion: Materials and Devices XVIII, Vol. 10902, P. G. Schunemann
and K. L. Schepler, eds., International Society for Optics and Photonics (SPIE,
2019).

J. Schwesyg, M. Kajiyama, M. Falk, et al., “Light absorption in undoped con-
gruent and magnesium-doped lithium niobate crystals in the visible wavelength
range,” Appl. Phys. B 100, 109-115 (2010).

M. Leidinger, S. Fieberg, N. Waasem, et al., “Comparative study on three highly
sensitive absorption measurement techniques characterizing lithium niobate over
its entire transparent spectral range,” Opt. Express 23, 21690-21705 (2015).

A. Shams-Ansari, G. Huang, L. He, et al., “Reduced material loss in thin-film
lithium niobate waveguides,” APL Photonics 7, 1 (2022).

Z. Li, Z. Qiu, R. N. Wang, et al., “Low-temperature and hydrogen-free silicon
dioxide cladding for next-generation integrated photonics,” in 2023 Confer-
ence on Lasers and Electro-Optics Europe & European Quantum Electronics
Conference (CLEO/Europe-EQEC) (IEEE, 2023), p. 1.

R. G. Gruenke, O. A. Hitchcock, E. A. Wollack, et al., “Surface modification and
coherence in lithium niobate SAW resonators,” arXiv, arXiv:2306.14813 (2023).
J. Zhao, X. Li, T.-C. Hu, et al., “Unveiling the origins of quasi-phase matching
spectral imperfections in thin-film lithium niobate frequency doublers,” APL
Photonics 8, 126106 (2023).

M. Zhang, C. Wang, R. Cheng, et al., “Monolithic ultra-high-Q lithium niobate
microring resonator,” Optica 4, 15361537 (2017).

G. Imeshev, M. A. Arbore, M. M. Fejer, et al., “Ultrashort-pulse second-harmonic
generation with longitudinally nonuniform quasi-phase-matching gratings: pulse
compression and shaping,” J. Opt. Soc. Am. B 17, 304 (2000).


https://doi.org/10.1038/s41586-022-05393-7
https://doi.org/10.1038/s41566-022-01021-y
https://doi.org/10.1063/1.5084945
https://doi.org/10.1063/5.0054539
https://doi.org/10.1063/5.0057869
https://doi.org/10.1063/5.0061787
https://doi.org/10.1364/OME.488459
https://doi.org/10.1063/5.0156514
https://doi.org/10.1007/s00340-010-4063-1
https://doi.org/10.1364/OE.23.021690
https://doi.org/10.1063/5.0095146
https://doi.org/10.48550/arXiv.2306.14813
https://doi.org/10.1063/5.0171106
https://doi.org/10.1063/5.0171106
https://doi.org/10.1364/OPTICA.4.001536
https://doi.org/10.1364/JOSAB.17.000304

Tutorial ‘ | / Vol. 16, No. 2/June 2024/ Advances in Optics and Photonics 533

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

G. Imeshev, M. A. Arbore, S. Kasriel, et al., “Pulse shaping and compression by
second-harmonic generation with quasi-phase-matching gratings in the presence
of arbitrary dispersion,” J. Opt. Soc. Am. B 17, 1420 (2000).

C. R. Phillips, Broadband Optical Sources Based on Highly Nonlinear Quasi-
Phasematched Interactions (Stanford University, 2012).

D. D. Crouch, “Broadband squeezing via degenerate parametric amplification,”
Phys. Rev. A 38, 508-511 (1988).

A. Sukhorukov and A. Shchednova, “Parametric amplification of light in the field
of a modulated laser wave,” Soviet Phys. JETP 33, 677-682 (1971).

R. Danielius, G. P. Banfi, P. D. Trapani, et al., “Traveling-wave parametric gener-
ation of widely tunable, highly coherent femtosecond light pulses,” J. Opt. Soc.
Am. B 10, 2222 (1993).

C. Manzoni and G. Cerullo, “Design criteria for ultrafast optical parametric
amplifiers,” J. Opt. 18, 103501 (2016).

M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Theory and simula-
tion of gain-guided noncollinear modes in chirped quasi-phase-matched optical
parametric amplifiers,” J. Opt. Soc. Am. B 27, 824 (2010).

R. Eckardt and J. Reintjes, “Phase matching limitations of high efficiency second
harmonic generation,” IEEE J. Quantum Electron. 20, 1178-1187 (1984).

L. Ledezma, R. Sekine, Q. Guo, et al., “Intense optical parametric amplification
in dispersion-engineered nanophotonic lithium niobate waveguides,” Optica 9,
303 (2022).

R. Nehra, R. Sekine, L. Ledezma, et al., “Few-cycle vacuum squeezing in
nanophotonics,” Science 377, 1333-1337 (2022).

C. R. Gouy, “Sur une propriété nouvelle des ondes lumineuses,” C. R. Acad. Sci.
Paris 110 (1890).

S. Akhmanov, A. Sukhorukov, and A. Chirkin, “Nonstationary phenomena and
space-time analogy in nonlinear optics,” Sov. Phys. JETP 28, 748-757 (1969).
H. E. Major, C. B. Gawith, and P. G. Smith, “Gouy phase compensation in
quasi-phase matching,” Opt. Commun. 281, 5036-5040 (2008).

I. Babushkin, O. Melchert, U. Morgner, et al., “Photon trapping in a time cavity
flying with a speed of light,” Preprint (2022).

H. Guo, W. Weng, J. Liu, et al., “Nanophotonic supercontinuum-based mid-
infrared dual-comb spectroscopy,” Optica 7, 1181-1188 (2020).

A. Lukashchuk, F. Gremion, M. Karpov, et al., “Advanced dispersion engineering
of dispersive waves in Si3N4 microresonators,” in CLEO: QELS_Fundamental
Science (Optica Publishing Group, 2019), pp. FF2D-1.

E. Lucas, S.-P. Yu, T. C. Briles, et al., “Tailoring microcombs with inverse-
designed, meta-dispersion microresonators,” Nat. Photonics 17, 943-950 (2023).
G. Moille, X. Lu, J. Stone, et al., “Fourier synthesis dispersion engineering of
photonic crystal microrings for broadband frequency combs,” Commun. Phys. 6,
144 (2023).

D. Vercruysse, N. V. Sapra, L. Su, et al., “Dispersion engineering with photonic
inverse design,” IEEE J. Sel. Top. Quantum Electron. 26, 1-6 (2020).

K. Ikeda, “Multiple-valued stationary state and its instability of the transmitted
light by a ring cavity system,” Opt. Commun. 30, 257-261 (1979).

R. Hamerly, A. Marandi, M. Jankowski, et al., “Reduced models and design prin-
ciples for half-harmonic generation in synchronously pumped optical parametric
oscillators,” Phys. Rev. A 94, 063809 (2016).

E. Ng, T. Onodera, S. Kako, et al., “Efficient sampling of ground and low-energy
ising spin configurations with a coherent Ising machine,” Phys. Rev. Res. 4,
013009 (2022).


https://doi.org/10.1364/JOSAB.17.001420
https://doi.org/10.1103/PhysRevA.38.508
https://doi.org/10.1364/JOSAB.10.002222
https://doi.org/10.1364/JOSAB.10.002222
https://doi.org/10.1088/2040-8978/18/10/103501
https://doi.org/10.1364/JOSAB.27.000824
https://doi.org/10.1109/JQE.1984.1072294
https://doi.org/10.1364/OPTICA.442332
https://doi.org/10.1126/science.abo6213
https://doi.org/10.1016/j.optcom.2008.06.056
https://doi.org/10.1364/OPTICA.396542
https://doi.org/10.1038/s41566-023-01252-7
https://doi.org/10.1038/s42005-023-01253-6
https://doi.org/10.1109/JSTQE.2019.2950803
https://doi.org/10.1016/0030-4018(79)90090-7
https://doi.org/10.1103/PhysRevA.94.063809
https://doi.org/10.1103/PhysRevResearch.4.013009

534 Vol. 16, No. 2/June 2024/ Advances in Optics and Photonics \ Tutorial

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

T. Onodera, E. Ng, C. Gustin, ef al., “Nonlinear quantum behavior of ultrashort-
pulse optical parametric oscillators,” Phys. Rev. A 105, 033508 (2022).

H. Haus, Waves and Fields in Optoelectronics, (Prentice-Hall, Inc., Englewood
Cliffs, NJ 07632, USA, 1984).

C. Panuski, D. Englund, and R. Hamerly, “Fundamental thermal noise limits for
optical microcavities,” Phys. Rev. X 10, 041046 (2020).

The expectation values of products of operators can be decomposed to product of
expectation values for coherent states. How this classical treatment breaks down
through the classical-quantum transitions is discussed in Ref. [42], for instance.
If we use angular wavenumber &, the transform pairs @, = \/%7 f dze *a, and

a, = # f dz @, must be used in order to ensure commutation relationships
T

[ax, &Z,] = 6(k — k), which are accompanied with an extra prefactor \/%7 in front
of the integrals.

W. Wasilewski, A. 1. Lvovsky, K. Banaszek, et al., “Pulsed squeezed light:
simultaneous squeezing of multiple modes,” Phys. Rev. A 73, 063819 (2006).
S. Braunstein, “Squeezing as an irreducible resource,” Phys. Rev. A 71, 055801
(2005).

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable optical
parametric fluorescence,” Phys. Rev. Lett. 18, 732734 (1967).

W. Xing and T. C. Ralph, “Pump depletion in optical parametric amplification,”
Phys. Rev. A 107, 023712 (2023).

R. Yanagimoto, R. Nehra, R. Hamerly, et al, “Quantum nondemolition
measurements with optical parametric amplifiers for ultrafast universal quantum
information processing,” PRX Quantum 4, 010333 (2023).

W. Qin, A. Miranowicz, and F. Nori, “Beating the 3 dB limit for intracavity
squeezing and its application to nondemolition qubit readout,” Phys. Rev. Lett.
129, 123602 (2022).

J. Flérez, J. S. Lundeen, and M. V. Chekhova, “Pump depletion in parametric
down-conversion with low pump energies,” Opt. Lett. 45, 4264-4267 (2020).
N. K. Langford, S. Ramelow, R. Prevedel, et al., “Efficient quantum computing
using coherent photon conversion,” Nature 478, 360-363 (2011).

I. L. Chuang and Y. Yamamoto, “Simple quantum computer,” Phys. Rev. A 52,
3489-3496 (1995).

G. J. Milburn, “Quantum optical Fredkin gate,” Phys. Rev. Lett. 62, 2124-2127
(1989).

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information (Cambridge University Press, 2000).

A. Kenfack and K. Zyczkowski, “Negativity of the Wigner function as an indicator
of non-classicality,” J. Opt. B: Quantum Semiclassical Opt. 6, 396-404 (2004).
H. Wiseman and G. Milburn, Quantum Measurement and Control (Cambridge
University Press, 2010).

H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford
University Press, 2002).

D. Roberts and A. A. Clerk, “Driven-dissipative quantum Kerr resonators: new
exact solutions, photon blockade and quantum bistability,” Phys. Rev. X 10,
021022 (2020).

N. Riveraa, J. Sloanc, Y. Salaminc, et al., “Creating large Fock states and mas-
sively squeezed states in optics using systems with nonlinear bound states in the
continuum,” Proc. Natl. Acad. Sci. U. S. A. 120, €2219208120 (2023).

K. Seibold, R. Rota, F. Minganti, et al., “Quantum dynamics of dissipative Kerr
solitons,” Phys. Rev. A 105, 053530 (2022).


https://doi.org/10.1103/PhysRevA.105.033508
https://doi.org/10.1103/PhysRevX.10.041046
https://doi.org/10.1103/PhysRevA.73.063819
https://doi.org/10.1103/PhysRevA.71.055801
https://doi.org/10.1103/PhysRevLett.18.732
https://doi.org/10.1103/PhysRevA.107.023712
https://doi.org/10.1103/PRXQuantum.4.010333
https://doi.org/10.1103/PhysRevLett.129.123602
https://doi.org/10.1364/OL.394925
https://doi.org/10.1038/nature10463
https://doi.org/10.1103/PhysRevA.52.3489
https://doi.org/10.1103/PhysRevLett.62.2124
https://doi.org/10.1088/1464-4266/6/10/003
https://doi.org/10.1103/PhysRevX.10.021022
https://doi.org/10.1073/pnas.2219208120
https://doi.org/10.1103/PhysRevA.105.053530

Tutorial ‘ | / Vol. 16, No. 2/June 2024/ Advances in Optics and Photonics 535

167.

168.
169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

I. de Vega and D. Alonso, “Dynamics of non-Markovian open quantum systems,”
Rev. Mod. Phys. 89, 015001 (2017).

D. F. Walls, “Squeezed states of light,” Nature 306, 141-146 (1983).

L.-A. Wu, H. J. Kimble, J. L. Hall, et al., “Generation of squeezed states by
parametric down conversion,” Phys. Rev. Lett. 57, 2520-2523 (1986).

The L. I. G. O. Scientific Collaboration, “Enhanced sensitivity of the LIGO
gravitational wave detector by using squeezed states of light,” Nat. Photonics 7,
613-619 (2013).

A. Furusawa, J. L. Sgrensen, S. L. Braunstein, ef al., “Unconditional quantum
teleportation,” Science 282, 706—709 (1998).

S. Takeda and A. Furusawa, “Toward large-scale fault-tolerant universal photonic
quantum computing,” APL Photonics 4, 060902 (2019).

For u? — 62<0, the arguments inside the sinh and cosh functions become imagi-
nary. The functional expressions of the propagators are well defined in this regime
as well via cosh(ix) = cos(x) and sinh(ix) = i sin(x).

C. Couteau, “Spontaneous parametric down-conversion,” Contemp. Phys. 59,
291-304 (2018).

R. El-Ganainy, K. G. Makris, M. Khajavikhan, et al., “Non-Hermitian physics
and PT symmetry,” Nat. Phys. 14, 11-19 (2018).

Expanding signal dispersion up to second order and using the conversion formulas
in Table 2, we write the series expansion of the phase mismatch as dw,(k) =

1ol (0)k* = —%kc’,’vf,’akz. Thus, 6, = —47°k,/v; ,s*, meaning that the value of o,
is related to classical experimental parameters via o, = —47r2k(’4’v§,a.

M. Pysher, R. Bloomer, C. M. Kaleva, et al., “Broadband amplitude squeezing
in a periodically poled KTiOPO, waveguide,” Opt. Lett. 34, 256-258 (2009).

F. Mondain, T. Lunghi, A. Zavatta, et al., “Chip-based squeezing at a telecom
wavelength,” Photonics Res. 7, A36-A39 (2019).

J. Riemensberger, N. Kuznetsov, J. Liu, ef al., “A photonic integrated continuous-
travelling-wave parametric amplifier,” Nature 612, 56-61 (2022).

J. Hansryd and P. A. Andrekson, “Broad-band continuous-wave-pumped
fiber optical parametric amplifier with 49-dB gain and wavelength-conversion
efficiency,” IEEE Photonics Technol. Lett. 13, 194-196 (2001).

E. Gouzien, S. Tanzilli, V. d’ Auria, et al., “Morphing supermodes: a full charac-
terization for enabling multimode quantum optics,” Phys. Rev. Lett. 125, 103601
(2020).

B. Brecht, D. V. Reddy, C. Silberhorn, et al., “Photon temporal modes: a complete
framework for quantum information science,” Phys. Rev. X' §, 041017 (2015).
W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in
type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627-1634
(1997).

C.K.Law, . A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement:
effective finite Hilbert space and entropy control,” Phys. Rev. A 84, 5304 (2000).
A.B.U’Ren, C. Silberhorn, K. Banaszek, et al., “Generation of pure-state single-
photon wavepackets by conditional preparation based on spontaneous parametric
downconversion,” arXiv, arXiv:quant-ph/0611019 (2005).

T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for sponta-
neous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev.
A 56, 1534-1541 (1997).

V. Ansari, J. M. Donohue, B. Brecht, et al., “Tailoring nonlinear processes
for quantum optics with pulsed temporal-mode encodings,” Optica 5, 534-550
(2018).

N. Quesada and J. E. Sipe, “Effects of time ordering in quantum nonlinear optics,”
Phys. Rev. A 90, 063840 (2014).


https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1038/306141a0
https://doi.org/10.1103/PhysRevLett.57.2520
https://doi.org/10.1038/nphoton.2013.177
https://doi.org/10.1126/science.282.5389.706
https://doi.org/10.1063/1.5100160
https://doi.org/10.1080/00107514.2018.1488463
https://doi.org/10.1038/nphys4323
https://doi.org/10.1364/OL.34.000256
https://doi.org/10.1364/PRJ.7.000A36
https://doi.org/10.1038/s41586-022-05329-1
https://doi.org/10.1109/68.914318
https://doi.org/10.1103/PhysRevLett.125.103601
https://doi.org/10.1103/PhysRevX.5.041017
https://doi.org/10.1103/PhysRevA.56.1627
https://doi.org/10.1103/PhysRevLett.84.5304
https://doi.org/10.48550/arXiv.quant-ph/0611019
https://doi.org/10.1103/PhysRevA.56.1534
https://doi.org/10.1103/PhysRevA.56.1534
https://doi.org/10.1364/OPTICA.5.000534
https://doi.org/10.1103/PhysRevA.90.063840

536  Vol. 16,No. 2/June 2024/ Advances in Optics and Photonics Tutorial

189.

190.

191.

192.

193.

194.

195.
196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

209.

210.
211.

Itis, in principle, possible to construct a physically valid GIF based on any choice
of D and G, but the resultant representation of |¢;) becomes inefficient. For an
efficient and concise representation of the quantum state, it is essential that we
find a good estimate of the Gaussian part of the dynamics based on semiclassical
intuition.

S. Krémer, D. Plankensteiner, L. Ostermann, et al., “QuantumOptics.jl: a Julia
framework for simulating open quantum systems,” Comput. Phys. Commun. 227,
109-116 (2018).

R. Schack and A. Schenzle, “Moment hierarchies and cumulants in quantum
optics,” Phys. Rev. A 41, 3847-3852 (1990).

E. Ng, R. Yanagimoto, M. Jankowski, et al., “Quantum noise dynamics in
nonlinear pulse propagation,” arXiv, arXiv:2307.05464 (2023).

J. Hult, “A fourth-order Runge-Kutta in the interaction picture method for sim-
ulating supercontinuum generation in optical fibers,” J. Lightwave Technol. 25,
3770-3775 (2007).

“JuliaGPU/CUDA jl,” https://github.com/JuliaGPU/CUDA jl.
“ngedwin98/GaussianSSF,jl,” https://github.com/ngedwin98/GaussianSSF.jl.
Y.-X. Huang, M. Li, K. Lin, et al., “Classical-to-quantum transition in mul-
timode nonlinear systems with strong photon—photon coupling,” Phys. Rev. A
105, 043707 (2022).

D. Plankensteiner and H. Ritsch, “QuantumCumulants.jl: a Julia framework for
generalized mean-field equations in open quantum systems,” Quantum 6, 617
(2021).

K. M. Birnbaum, A. Boca, R. Miller, et al., “Photon blockade in an optical cavity
with one trapped atom,” Nature 436, 87-90 (2005).

D. E. Chang, V. Vuleti¢, and M. D. Lukin, “Quantum nonlinear optics - photon
by photon,” Nat. Photonics 8, 685-694 (2014).

U. Fano, “Effects of configuration interaction on intensities and phase shifts,”
Phys. Rev. 124, 18661878 (1961).

R. Yanagimoto, E. Ng, M. P. Jankowski, et al., “Broadband parametric down-
conversion as a discrete-continuum Fano interaction,” arXiv, arXiv:2009.01457
(2020).

D. A. Antonosyan, A. S. Solntsev, and A. A. Sukhorukov, “Single-photon spon-
taneous parametric down-conversion in quadratic nonlinear waveguide arrays,”
Opt. Commun. 327, 22-26 (2014).

A. S. Solntsev, S. V. Batalov, N. K. Langford, ef al., “Complete conversion
between one and two photons in nonlinear waveguides: theory of dispersion
engineering,” New J. Phys. 24, 065002 (2022).

P. D. Drummond and H. He, “Optical mesons,” Phys. Rev. A 56, R1107-R1109
(1997).

G. Vidal, “Efficient simulation of one-dimensional quantum many-body sys-
tems,” Phys. Rev. Lett. 93, 040502 (2004).

G. Vidal, “Efficient classical simulation of slightly entangled quantum computa-
tions,” Phys. Rev. Lett. 91, 147902 (2003).

R. Or’us, “A practical introduction to tensor networks: matrix product states and
projected entangled pair states,” Ann. Phys. 349, 117-158 (2014).

A. T. Sornborger and E. D. Stewart, “Higher-order methods for simulations on
quantum computers,” Phys. Rev. A 60, 1956-1965 (1999).

S. Paeckel, T. Kohler, A. Swoboda, et al., “Time-evolution methods for matrix-
product states,” Ann. Phys. 411, 167998 (2019).

J. L. O’Brien, “Optical quantum computing,” Science 318, 1567-1570 (2007).
B. He, Q. Lin, and C. Simon, “Cross-Kerr nonlinearity between continuous-mode
coherent states and single photons,” Phys. Rev. A 83, 053826 (2011).


https://doi.org/10.1016/j.cpc.2018.02.004
https://doi.org/10.1103/PhysRevA.41.3847
https://doi.org/10.48550/arXiv.2307.05464
https://doi.org/10.1109/JLT.2007.909373
https://github.com/JuliaGPU/CUDA.jl
https://github.com/ngedwin98/GaussianSSF.jl
https://doi.org/10.1103/PhysRevA.105.043707
https://doi.org/10.22331/q-2022-01-04-617
https://doi.org/10.1038/nature03804
https://doi.org/10.1038/nphoton.2014.192
https://doi.org/10.1103/PhysRev.124.1866
https://doi.org/10.48550/arXiv.2009.01457
https://doi.org/10.1016/j.optcom.2014.02.047
https://doi.org/10.1088/1367-2630/ac7348
https://doi.org/10.1103/PhysRevA.56.R1107
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1103/PhysRevA.60.1956
https://doi.org/10.1016/j.aop.2019.167998
https://doi.org/10.1126/science.1142892
https://doi.org/10.1103/PhysRevA.83.053826

Tutorial Vol. 16, No. 2/June 2024/ Advances in Optics and Photonics 537

212.

213.

214.

215.

216.

217.

218.

219.

220.

221.

K. Xia, M. Johnsson, P. L. Knight, ez al., “Cavity-free scheme for nondestructive
detection of a single optical photon,” Phys. Rev. Lett. 116, 023601 (2016).

B. Viswanathan and J. Gea-Banacloche, “Analytical results for a conditional
phase shift between single-photon pulses in a nonlocal nonlinear medium,” Phys.
Rev. A 97, 032314 (2018).

I. Babushkin, A. Demircan, M. Kues, et al., “Wave-shape-tolerant photonic
quantum gates,” Phys. Rev. Lett. 128, 090502 (2022).

A. W. Snyder and J. D. Loves, Optical Waveguide Theory, Vol. 175 (Chapman
and Hall London, 1983).

A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver
for anisotropic dielectric waveguides,” J. Lightwave Technol. 26, 1423-1431
(2008).

M. M. Fejer, Single Crystal Fibers: Growth Dynamics and Nonlinear Optical
Interactions (Stanford University, 1986).

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation:
from Maxwell’s to unidirectional equations,” Phys. Rev. E 70, 036604 (2004).
J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and
Matrices (Oxford University Press, 1985).

H. A. Haus, Electromagnetic Noise and Quantum Optical Measurements
(Springer Science & Business Media, 2000).

Because a continuum of states exist in the Hilbert subspace H,, =15, the Hamil-
tonian takes the form of an infinite-dimensional matrix. In practice, we can
discretize the Fourier modes and truncate them within a finite bandwidth to
approximate the Hamiltonian as a finite-dimensional matrix.

Marc Jankowski is a Senior Research Scientist at NTT Research
Inc. Physics and Informatics Laboratories and a visiting scholar at
Stanford University. His research interests focus on the intersection
between nonlinear, quantum, and ultrafast optics, with a particular
interest in new operating regimes enabled by nonlinear nanopho-
tonics. He holds a B.Sc. in Engineering Physics from the University
of Michigan, Ann Arbor, and both an M.S. and Ph.D. in Electrical
Engineering from Stanford University.

Ryotatsu Yanagimoto is a postdoctoral fellow at NTT Research and
Cornell University. He received his Ph.D. degree in Applied Physics
from Stanford University (United States) in 2023. He received fel-
lowships from Stanford Q-FARM and the Masason Foundation
through his Ph.D.

Edwin Ng Edwin Ng is a senior scientist in the Physics and Infor-
. matics Laboratories at NTT Research and a visiting scholar in the
Edward L. Ginzton Laboratory at Stanford University. He received
his B.S. in Physics and Mathematics from MIT and his M.S. and
Ph.D. in Electrical Engineering and Applied Physics, respectively,
from Stanford University. His research areas include developing
theoretical models and experimental techniques for handling the
complex dynamics of multimode optical systems, including non-

linear oscillator networks and ultrafast nonlinear optics, with a particular interest in
the measurement and control of quantum noise and other non-classical phenomena.


https://doi.org/10.1103/PhysRevLett.116.023601
https://doi.org/10.1103/PhysRevA.97.032314
https://doi.org/10.1103/PhysRevA.97.032314
https://doi.org/10.1103/PhysRevLett.128.090502
https://doi.org/10.1109/JLT.2008.923643
https://doi.org/10.1103/PhysRevE.70.036604

538  Vol. 16,No. 2/June 2024/ Advances in Optics and Photonics i Tutorial

Ryan Hamerly was born in San Antonio, Texas in 1988. In 2016
he received a Ph.D. degree in Applied Physics from Stanford Uni-
versity, California, for work with Prof. Hideo Mabuchi on quantum
control, nanophotonics, and nonlinear optics. In 2017 he was at the
National Institute of Informatics, Tokyo, Japan, working with Prof.
Yoshihisa Yamamoto on quantum annealing and optical computing
concepts, and is currently a Senior Scientist at NTT PHI Labora-
tories and a visiting scientist at MIT, Cambridge, Massachusetts,
with Prof. Dirk Englund.

Timothy P. McKenna explores the limits of on-chip integrated
photonic systems to perform tasks in the areas of computing,
communications, and sensing. He combines nonlinear optics with
quantum information science and advances in nanofabrication to
further the state-of-the-art. He holds a B.S. in Electrical Engineer-
ing from the University of Pennsylvania and an M.S. and Ph.D. in
Electrical Engineering from Stanford University.

Hideo Mabuchi received an A.B. in Physics from Princeton and
a Ph.D. in Physics from Caltech. He served as Chair of the
Department of Applied Physics at Stanford from 2010-2016. His
early scientific research was focused on understanding open quan-
tum systems, quantum measurement, and the quantum-to-classical
transition. In recent years his research group has turned toward
fundamental issues of quantum engineering, such as quantum non-
linear dynamics, quantum feedback control, and quantum model
reduction. Along the way his group has also worked substantially on single-molecule
biophysics and quantum information science.

Martin M. Fejer is a professor of Applied Physics at Stanford
University. His current research interests are in nonlinear, ultrafast,
and guided-wave optics, and instrument science for gravitational
wave detectors. He is a fellow of Optica and IEEE LEOS and has
coauthored more than 500 journal publications.




