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STABLE LAWS FOR RANDOM DYNAMICAL SYSTEMS

ROMAIN AIMINO, MATTHEW NICOL, AND ANDREW TOROK

ABSTRACT. In this paper we consider random dynamical systems formed by concatenating maps acting on
the unit interval [0, 1] in an iid fashion. Considered as a stationary Markov process, the random dynamical
system possesses a unique stationary measure v. We consider a class of non square-integrable observables
¢, mostly of form ¢(z) = d(z, xo)fi where zg is a non-recurrent point (in particular a non-periodic point)
satisfying some other genericity conditions, and more generally regularly varying observables with index
a € (0,2). The two types of maps we concatenate are a class of piecewise C? expanding maps, and a class of
intermittent maps possessing an indifferent fixed point at the origin. Under conditions on the dynamics and
a we establish Poisson limit laws, convergence of scaled Birkhoff sums to a stable limit law and functional
stable limit laws, in both the annealed and quenched case. The scaling constants for the limit laws for
almost every quenched realization are the same as those of the annealed case and determined by v. This
is in contrast to the scalings in quenched central limit theorems where the centering constants depend in a
critical way upon the realization and are not the same for almost every realization.
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1. INTRODUCTION

In this paper we consider non square-integrable observables ¢ : [0, 1] — R on two simple classes of random
dynamical system. One consists of randomly choosing in an iid manner from a finite set of maps which are
strictly polynomially mixing with an indifferent fixed point at the origin, the other consisting of randomly
choosing from a finite set of maps which are uniformly expanding and exponentially mixing. The main type
of observable we consider is of the form ¢(z) = |z —z0|~ =, a € (0,2) which in the ITD case lies in the domain
of attraction of a stable law of index «. For certain results the point zy has to satisfy some nongenericity
conditions and in particular not be a periodic point for almost every realization of the random system (see
Definition 2.3). Some of our results, particularly those involving convergence to exponential and Poisson
laws hold for general observables that are regularly varying with index «.

The settings for investigations on stable limit laws for observables on dynamical systems tend to be of two
broad types: (1) “good observables” (typically Holder) on slowly mixing non-uniformly hyperbolic systems;
and (2) “bad” observables (unbounded with fat tails) on fast mixing dynamical systems. As illustrative
examples of both settings we give two results.

Example of (1): The LSV intermittent map 7% : [0,1] — [0,1], v € (0,1), is defined by
r(14+2727) if0<x<i;
T'Y(:E){%:—l iflcr<l

The map T’, has a unique absolutely continuous invariant measure f..

Gouézel [Gou04, Theorem 1.3] showed that if v > % and ¢ : [0,1] — R is Holder continuous with ¢(0) # 0,
E,. (¢) =0 then for a = %

n—1
1 .
- E poT! % Xo g
L

(8 has a complicated expression).
Example of (2): Gouézel [Gou][Theorem 2.1] showed that if T" : [0, 1] — [0, 1] is the doubling map T'(z) = 2z
(mod 1) with invariant measure m, Lebesgue, and ¢(z) = 2~ =, o € (0,2) then there exists a sequence ¢,
such that
2% _1 n—1 )
— Y ¢oT! — ¢y 5 Xay

§=0
For further results on the first type we refer to the influential papers [Gou04, Gou07] and [MZ15]. In
the setting of “good observables” (typically Holder) on slowly mixing non-uniformly hyperbolic systems the
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technique of inducing on a subset of phase space and constructing a Young Tower has been used with some
success. “Good” observables lift to well-behaved observables lying in a suitable Banach space on the Young
Tower. This is not the case with unbounded observables with fat tails, though in [Gou04] the induction
technique allows an observable to be unbounded at the fixed point in a family of intermittent maps.

For further results on the second type we refer to the papers by Marta Tyran-Kaminska [TK10a, TK10b].
In the setting of Gibbs-Markov maps she shows, among other results, that functions which are measurable
with respect to the Gibbs-Markov partition and in the domain of attraction of a stable law with index «
converge (under the appropriate scaling) in the J; topology to a Lévy process of index o [TK10b, Theorem
3.3, Corollaries 4.1 and 4.2].

For recent results on limit laws, though not stable laws, in the setting of skew-products with an ergodic
base map and uniformly hyperbolic fiber maps see also [DFGTV20a, DFGTV20b]. For a still very useful
survey of techniques and ideas in random dynamical systems we refer to [Kif98].

Our main results are given in Section 2. An introduction to stable laws and a discussion of modes of
convergence is given in Sections 3 and 4. The Poisson point approach and its application to our random
setting is detailed in Section 5. Results on convergence of return times to an exponential law and our point
processes to a Poisson process are given in Section 6 (though the proofs of these results are delayed until
sections 8.1, 8.2, 9.1 and 9.2). The proofs of the main results are given in Section 10. We conclude in Section
11 with results on stable laws for the corresponding annealed systems.

2. MAIN RESULTS

For the sake of concreteness, we restrict ourselves to observables of the form
1

(2.1) Oz () = |z — 0| 7>,  €[0,1].
where xo is a non-recurrent point (see Definition 2.3) and o € (0,2) but it is possible to consider more
general regularly varying observables ¢ which are piecewise monotonic with finitely many branches, see for
instance [TK10b, Section 4.2] in the deterministic case. Note that ¢,, is regularity varying with index a.

We will be considering the following set-up, with (€2, o) the full two-sided shift on finitely many symbols.
In most of our settings we take Y = [0, 1].

Let 0 : Q — Q be an invertible ergodic measure-preserving transformation on a probability space (€2, F, P).
For a measurable space (Y, B), let o : Q — Q be the usual full shift and define

F:OxY —-QxY

by

Fw,z) = (ow, T, (z))
We assume F' preserves a probability measure v on 2 x Y. We assume that v admits a disintegration given
by v(dw, dz) = P(dw)v*(dz). For all n > 1, we have

F'"w,z) = (0"w, T x),
where

T =Tyn-1,0...0T,,

which satisfies the equivariance relations (7%),0* = v7"¢ for P-a.e. w € Q.
For each w € (2, we denote by P, the transfer operator of T, with respect to the Lebesgue measure m:
for all ¢ € L>°(m) and ¢ € L' (m),

/ (poT,) -pdm= ¢ - P,y dm.

[0,1] [0,1]

We can then form, for w € 2 and n > 1, the cocycle
P'=P,.1,0...0P,.

w
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Definition 2.1 (scaling constants). We consider a sequence (b,)n>1 of positive real numbers such that

(2.2) Jim nv(gz, > bn) = 1.
Definition 2.2 (centering constants). We define the centering sequence (c,)n>1 by
0 if o€ (0,1)
Cp = TLEV(%Ul{%OSbn}) ifa=1
nE, (¢a,) ifae(1,2)

We now introduce two classes of random dynamical system (RDS) for which we are able to establish stable
limit laws.

2.1. Random uniformly expanding maps. We consider random i.i.d. compositions with additional
assumptions of uniform expansion. Let S be a finite collection of m piecewise C? uniformly expanding maps
of the unit interval [0, 1]. More precisely, we assume that for each T' € S, there exist a finite partition Ar of
[0, 1] into intervals, such that for each I € Ar, T can be continuously extended as a strictly monotonic C?
function on I and

A= inf inf|T(z)| > 1.
I€eAr zel

The maps T, (determined by the 0-th coordinate of w) are chosen from S in an i.i.d. fashion according to
a Bernoulli probability measure P on Q := {1, ... ,m}Z. We will denote by A, the partition of monotonicity
of T,,, and by A = V25 (T%) "' (Ayr,) the partition associated to T;?. We introduce

D= UnZO Uwean 8-’43

the set of discontinuities of all the maps T}}. Note that D is at most a countable set.

In the uniformly expanding case we also assume the conditions (LY),(Dec) and (Min). (LY) is the usual
Lasota-Yorke inequality while (Dec) and (Min) were introduced by Conze and Raugi [CRO7].

(LY): there exist r > 1, M >0 and D > 0 and p € (0,1) such that for all w € Q and all f € BV,

1P fllBv < M||fllBv,
and
Var(P[f) < pVar(f) + DI fll 22 (m)-
(Dec): there exists C > 0 and 6 € (0,1) such that for all n > 1, all w € @ and all f € BV with
E,..(f) = 0:
1P fllBv < CO"(|flBv
(Min): there exists ¢ > 0 such that for all n > 1 and all w € Q,

inf (P"1 >c>0.
IEH[})’U( wl)(z) = ¢
Definition 2.3. We say that xg is non-recurrent if xo satisfies the condition T*(xq) # xo for alln > 1 for
P-a.e. w e Q.

Theorem 2.4. In the setting of exapnding maps assume (LY), (Min) and (Dec). Suppose that xo ¢ D is
non-recurrent and consider the observable ¢, .
If a € (0,1) then for P-a.e. w € Q, the Functional Stable Limit holds:
1 [nt]—1 ‘
X2(0) = 5 ST e 0TS —ten] 5 X(oy(t) in D0, 00)

n =0
in the Jy topology under the probability measure v*, where X (o) (t) is the a-stable process with Lévy measure
dll, (dz) = alz|~ @+ on [0, 00).
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If a € [1,2) then the same result holds for m-a.e. xg.

Example 2.5 (S-transformations). A simple example of a class of maps satisfying (LY), (Dec) and (Min) [CROT]
is to take m [-maps of the unit interval, Tp,(x) = Bix (mod 1). We suppose B; > 1+ a, a > 0, for all j;,
1=1,...,m.

2.2. Random intermittent maps. Now we consider a simple class of intermittent type maps.
Liverani, Saussol and Vaienti [LSV99] introduced the map T, as a simple model for intermittent dynamics:

(2727 + 1)z f0<z<i;
2z — 1 if 1l <2<l

If 0 <y < 1 then T/, has an absolutely continuous invariant measure p., with density k., bounded away from
zero and satisfying h.(z) ~ Cz~7 for « near zero.

We form a random dynamical system by selecting ~; € (0,1), ¢ = 1,...,m in an iid fashion and setting
T; :=T,,. The associated Markov process on [0, 1] has a stationary invariant measure v which is absolutely
continuous, with density h bounded away from zero.

We denote Yimqap = maxi<i<m {7V} and Ymin 1= mini<;<m{vi}-

T, :00,1] 0,1,  Ty(x):= {

Theorem 2.6. In the setting of iid random composition of intermittent maps suppose o € (0,1) and Ymazr <

+. Then, for m-a.e. xg 3 Z;L:_Ol Gy 0 T2 gX(a)(l) under the probability measure v* for P-a.e. w (recall

that ¢, =0 for a € (0,1)).

Remark 2.7 (Convergence with respect to Lebesgue measure). We state our limiting theorems with respect
to the fiberwise measures v~ but by general results of Fagleson [Eag76](see also [Zwe0T]) the convergence
holds with respect to any measure p for which p < v, in particular our convergence results hold with respect
to Lebesgue measure m. Further details are given in the Appendiz.

Our proofs are based on a Poisson process approach developed for dynamical systems by Marta Tyran-
Kaminska [TK10a, TK10b].

3. PROBABILISTIC TOOLS
In this section, we review some topics from Probability Theory.

3.1. Regularly varying functions and domains of attraction. We refer to Feller [Fel71] or Bingham,
Goldie and Teugels [BGT87] for the relations between domains of attraction of stable laws and regularly
varying functions. For ¢ regularly varying we define the constants b,, and c¢,, as in the case of ¢,,.

Remark 3.1. When « € (0,1) then ¢ is not integrable and one can choose the centering sequence (c,) to
be identically 0. When o« = 1, it might happen that ¢ is not integrable, and it is then necessary to define cy,
with suitably truncated moments as above. If ¢ is integrable then center by ¢, = nE,(¢).

We will use the following asymptotics for truncated moments, which can be deduced from Karamata’s
v(p>x) _

results concerning the tail behavior of regularly varying functions. Define p by lim, s Sesay = P

Proposition 3.2 (Karamata). Let ¢ be reqularly varying with index o € (0,2). Then, setting 8 := 2p — 1
and, for e >0,

0 if a €(0,1)
(3.1) ca(e) := ¢ —Bloge ifa=1
el=2Ba/(a—1) ifa e (1,2)
the following hold for all € > 0:
(a) By (1617 Ljoizen,)) ~ g (bn)?v([6] > ebn),

2
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(b) if a €(0,1),

«

EV(|¢‘1{|¢|§sbn}) ~ 1 ebnv(|@| > €bn),

—

(c) if a € (1,2),

. n

lim ;Ey(¢1{|¢|>ebn}) = ca(e),

n— o0
(d) if a =1,
. n
i o=y (01 (et <[ol<b,}) = Cale),
(e) if =1,

n ~
FEV(|¢|1{\¢\§sbn}) ~ L(n),

for a slowly varying function E,

3.2. Lévy a-stable processes. A helpful and more detailed discussion can be found, e.g., in [TK10a,
TK10b].

X(t) is a Lévy stable process if X(0) = 0, X has stationary independent increments and X (1) has an
a-stable distribution.

The Lévy-Khintchine representation for the characteristic function of an a-stable random variable X, 5
with index a € (0,2) and parameter § € [—1,1] has the form:

E[e"™X] = exp L'taa + / (e = 1 — itwl_y 1)(2))Tla(dz)

where
_ [ Bt a#l
0 a=1"
e I, is a Lévy measure given by

dIly = a(pl(g,e0)(z) + (1 — p)l(,ooyo)(:v))|w\_"_1dx

® (n

B+1
op:T,

Note that p and § may equally serve as parameters for X, 3. We will drop the 3 from X, g, as is common
in the literature, for simplicity of notation and when it plays no essential role.

3.3. Poisson point processes. Let (T},)n,>1 be a sequence of measurable transformations on a probability
space (Y, B, u). For n > 1 we denote

(3.2) 7 :=T,o0...0T1}.
Given ¢ : Y — R measurable, recall that we define the scaled Birkhoff sum by

n—1
1 ,
(3.3) S ::b—[g poT! — ¢y,
n 520

for some real constants b,, > 0, ¢, and the scaled random process X,,(t), n > 1, by
[nt]—1

[ > ¢oT{ —tey), t >0,

j=0
For X, (t) a Lévy a-stable process and B € B((0,00) x (R\ {0})) define
Noy(B) :=#{s>0:(5,AX,(s)) € B}
where AX, () := X, (t) — Xo(t7).

(3.4) Xo(t) =

=
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The random variable N(4)(B), which counts the jumps (and their time) of the Lévy process that lie in B,
is finite a.s. if and only if (m x I, )(B) < oo. In that case N(4)(B) has a Poisson distribution with mean
(m x I1,)(B).

Similarly define

. —1
Nn<B>:=#{j>1: (fﬁf) eB},n>1,

N,,(B) counts the jumps of the process (3.4) that lie in B. When a realization w € Q is fixed we define
N (B) ::#{jzl : (j7¢ob“’) EB}, n>1.
n n

Definition 3.3. We say N, converges in distribution to N,y and write
d
Nn — N(a)

if and only if N,,(B) —d>N(a)(B) for all B € B((0,00) x (R\{0})) with (mxIl,)(B) < co and (mxI1,)(0B) =
0.

4. MODES OF CONVERGENCE

Consider the process X, determined by the observable ¢ (that is, an iid version of ¢ which regularly
varying with the same index «a and parameter p ). We are interested the following limits:

(A) Poisson point process convergence.
w d

with respect to v for P a.e. w where N(,) is the Poisson point process of an a-stable process with
parameter determined by v, the annealed measure.
(B) Stable law convergence.

n—1
w 1 ] d,
SY = E[;qﬁo:ﬁg —cn] = Xa(1)

for P-a.e. w, with respect to v*, for ¢ regularly varying with index « and X, (¢) the corresponding
a-stable process, for suitable scaling and centering constants b,, and c,,.
(C) Functional stable law convergence.

[nt]—1
w 1 i d
Xy (t) = E[ Z ¢oT) —ten] = Xa(t)
7=0
in D[0, 00) in the J; topology P-a.e. w, with respect to v* for ¢ regularly varying with index « and
X (t) the corresponding a-stable process.

For the cases we are considering, the scaling constants b,, are given by (2.2) in Definition 2.1, and the
centering constants ¢, are given in Definition 2.2 (see also Remark 3.1).

Remark 4.1. In the limit laws for quenched systems that we obtain of type (B) and (C), the centering
sequence ¢, does not depend on the realization w. This is in contrast to the case of the CLT, where a
random centering is necessary; see [AA16, Theorem 9] and [NPT21, Theorem 5.3].
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5. A Po1ssoN PoOINT PROCESS APPROACH TO RANDOM AND SEQUENTIAL DYNAMICAL SYSTEMS

Our results are based on the Poisson point process approach developed by Marta Tyran-Kamiriska [TK10a,
TK10b] adapted to our random setting (see Theorems 5.1 and 5.3). Namely, convergence to a stable law or
a Lévy process follows from the convergence of the corresponding (Poisson) jump processes, and control of
the small jumps.

A key role is played by Kallenberg’s Theorem [Kal76, Theorem 4.7] to check convergence of the Poisson

point processes, N, 4 N(q)- Kallenberg’s theorem does not assume stationarity and hence we may use it in
our setting.

In this section, we provide general conditions ensuring weak convergence to Lévy stable processes for non-
stationary dynamical systems, following closely the approach of Tyran-Kaminiska [TK10b]. We start from
the very general setting of non-autonomous sequential dynamics and then specialize to the case of quenched
random dynamical systems, which will be useful to treat iid random compositions in the later sections.

5.1. Sequential transformations. Recall the notations introduced in Section 3.3. (T,),>1 is a sequence
of measurable transformations on a probability space (Y, B, ). For n > 1, recall we define

"' =T,0...0T.

The proof of the following statement is essentially the same as the proof of [TK10b, Theorem 1.1].

Note that the measure p does not have to be invariant. Moreover (see [TK10b, Remark 2.1]), the
convergence X, £>X(a) holds even without the condition pu(¢ o le # 0) = 1, which is used only for the
converse implication of the “if and only if”.

Theorem 5.1 (Functional stable limit law, [TK10b, Theorem 1.1]). Let o € (0,2) and suppose that pu($ o
le #0)=1 forall j > 0. Then X, iX(a) in D[0, 00) under the probability measure p for some constants
b, > 0 and ¢, if and only if

e N, iN(a) and

e foralld >0, ¢ >1, with cy(e) given by (3.1),

[nt]—1

o 1 j v _ _ >s| =
(5.1) i limsup e | sup |- ;O 0TV Ly iporsi<ep,} — Hen = buca(€)) || 28 | =0

Remark 5.2. In some cases the convergence NniN(a) does not hold, but one has convergence of the

marginals, N,((0,1] x ')£>N(a)((0,1] x -). In this case, although unable to obtain a functional stable law
convergence of type (C), we can in some settings prove the convergence to a stable law for the Birkhoff sums
(convergence of type (B)).

In particular, we are unable to prove Ny £>N(a) for the case of random intermittent maps. On the other
hand, in the setting of random uniformly expanding maps we use the spectral gap to show that N i)N(a),

and then obtain the functional stable limit law.

The next statement is [TK10b, Lemma 2.2, part (2)], which follows from [TK10a, Theorem 3.2]. Again,
the measure does not have to be invariant.

Theorem 5.3 (Stable limit law, [TK10b, Lemma 2.2]). For o € (0,2), consider an observable ¢ on the
probability measure p, and co(€) given by (3.1).
If

N ((0,1] x )% Nioy ((0,1] % )
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and, for all § > 0,
n—1

- 1 j
(5.2) lim lim sup p o Z ¢po Tfl{on{ISEb”} —(cn —bnea(e))|| =6 =0

e=0 pnooo

then

n—1
ng)OT — Cn] *)X(a)( )
under the probability measure p.
5.2. Random dynamical systems. Let ¢ : Y — R be a measurable function such that v*(¢ # 0) = 1.

Proposition 5.4 ([TK10b, proof of Theorem 1.2]).
Let « € (0,1). With b, as in Definition 2.1 and ¢, = 0, suppose that for P-a.e. w € Q

né—1
2 ; - >
(5.3) ;%hﬁsolip ™ ZO E .i.(|¢11{4/<eb,y) =0 forall £ >1,
J

and
NZ % Niay-
Then XY ﬁ)X(a) in D[0, 00) under the probability measure v* for P-a.e. w € Q.

Proof. We will check that the hypothesis of Theorem 5.1 are met for P-a.e. w with T, = Tyn-1,, p =
v¥. Recall that ¢, = co(e) = 0 when a € (0,1). Using [KW69, Theorem 1] (see Theorem 5.6) and the

equivariance of the family of measures {v} ,, we have
|nt]—1 . =
P\ 5 2 O T uemisan}| 20| < 5 30 B (902 otsenn)
which shows that condition (5.3) implies condition (5.1) for all § > 0 and ¢ > 1. O

Remark 5.5. One could replace condition (5.3) by one similar to (5.5), and use the argument in the proof
of Proposition 5.7.

Theorem 5.6 (Kounias and Weng [KW69, special case of Theorem 1 therein]).
Assume the random variables X are in Ll( ). Then

1
> —
(1211?2( ZX‘ 5) 5 kz_ p (1Xk])-
Proposition 5.7. Let a € [1,2).

With b, and ¢, as in Definitions 2.1 and 2.2, and c,(€) as in (3.1), suppose that for all € > 0 and all
0>1,

[nt]—1
Z E, oiw(@1qp<ebny) —t(cn —bncale))|| =0  for P-a.e. w € Q,
j=0

(5.4) lim sup
n—=00 <t<y | On

and that for all § > 0

k‘
H

(5.5)  lim lim sup esssup v* ( max
e—=0 pnsoo wEeN 1<k<n

1 .
b, 4 [¢°T$1{\¢oT£|sEbn} _Ev”jw(¢1{\¢|§€bn})]‘ 2 5) = 0.

<.
I
o
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If NT“j—d>N(a) for P-a.e. w € Q, then X,“jiX(a) in D[0,00) under the probability measure v* for P-
a.e. w € Q.

Proof. As in the proof of Proposition 5.4, we check the hypothesis of Theorem 5.1 with T, = Tyn-1,,, 4 = V¥
for P-a.e. w € 2. We will see that (5.1) follows from (5.4) and (5.5).
Using the equivariance of {v*} ., we see that condition (5.1) is implied by (5.4) and (5.6) below:

k—1

(60 21 oo} — Evora (61 ga1<en))] | 28] = 0.

(5.6) lim limsup v | sup

1
e=0 nooo 1<k<nt bn J

I
=]

We next show that condition (5.5) implies (5.6).

Since
=
— Ti1 j —E _i.(o1 e :| >0
12kt B [0 T rgnts et} = Buere (L go1enny)]| 2
-1 = 5
C sup — [¢°T£1 o1 |<ebn} ~ Byoiw (PLfjgi<enat) || 2 7 ¢
iLz-JO in<k§(i+1)n bn ];L {W’ wl_E n} g
we obtain that, using again the equivariance, for P-a.e. w € (Q,
=
© — Ti1 E 1 } >
T\ ik b = [0 T jpomsicen, ) ~ By (@i )
-1 = 5
<ot = 79,1 —E i (61 ] > 2
14 - 5
< emmpr” s 173 [00 T oy e} ~ B (@Liasan)]| 2 5
]:
Thus, condition (5.5) implies (5.6), which concludes the proof. O

The analogue for the convergence to a stable law is the following.
Proposition 5.8. Suppose that for P-a.e. w € Q, we have
w d
Ny ((0,1] X +) = Ny ((0,1] % -).

If a € (0,1) (so ¢, =0), we require in addition that

(5.7) lim hmsupb ZEWW (1611 1¢/<ep,y) =0

e=0 nooo Op 4

If a € [1,2), we require instead of (5.7) that for all e > 0,

n—1

lim a XZ:O Eyojw((bl{\zb\gsbn}) —(cn = bncale)) || =0

n—oo
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and
1 .
LR N 0WOW@M%}—Eww<¢1ws§bn}>] 20 ) =0
=
Then

1 ! . d
b— Z(bng,—Cn _>X(a)(1)
n |50

under the probability measure v* for P-a.e. w € Q.

Proof. We check the conditions of Theorem 5.3.
The proof for « € (0, 1) is similar to the proof of Proposition 5.4, the proof of the case « € [1,2) is similar
to the proof of Proposition 5.7. g

5.3. The annealed transfer operator. We assume that the random dynamical system F : Q x [0,1] —
Q% [0,1],

F(w,z) = (ow, T, (x))

which can also be viewed as a Markov process on [0, 1], has a stationary measure v with density h. The map
F:Qx[0,1] = Q x [0,1] will preserve P x v. Recall that P := {(p1,...,pm)}%.

We use the notation P, ; for the transfer operator of T; : [0,1] — [0,1] with respect to a measure p on
[0,1], i.e.

/f ~goTidu = /(Pu,if)gdm for all f € L'(n), g € L ().
The annealed transfer operator is defined by
Pulf) = > piPui(f)
i=1
with adjoint
U(f):=Y pifoT
i=1
which satisfies the duality relation
[ #taovdn= [(Pun)gdu. for all 1 € L), g € L2,

As above, we assume there are sample measures dv*” = h,,dz on each fiber [0, 1] of the skew product such
that

Pwhw = ho’w

where P, is the transfer operator of T,,, with respect to the Lebesgue measure.

Therefore
v(A) = /Q[/A hy,dz]dP(w)

for all Borel sets A C [0, 1].
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5.4. Decay of correlations. We now consider the decay of correlations properties of the annealed systems
associated to maps satisfying (LY), (Dec) and (Min) and intermittent maps.

By [ANV15, Proposition 3.1] in the setting of maps satisfying (LY), (Dec) and (Min) we have exponential
decay in BV against L': there are C > 0, 0 < A < 1 such that

/fgoU"dZ/—/fdz//gdz/

In the setting of intermittent maps, by [BB16, Theorem 1.2], we have polynomial decay in Holder against
L°: there exists C' > 0 such that

/fgoU"dl/—/de//ng

We now consider a useful property satisfied by our class of random uniformly expanding maps.

<X fllsv gl

1——L1
< COn’ " Tmin

fllasider 9]l o (1) -

Definition 5.9 (Condition U). We assume that almost each v is absolutely continuous with respect to
the Lebesgue measure m, and

w

d
(5.8) for some C > 0, Pae weN = C 1 <h,:= % <C, m-a.e.
(5.9) the map w € Q +— hy, € L*(m) is Holder continuous.

Consequently, the stationary measure v is also absolutely continuous with respect to m, with density h €
L>®(m) gwen by h(z) = [, ho(x)P(dw) and satisfying (5.8).

Lemma 5.10. Properties (LY), (Min) and (Dec) imply Condition U. Namely, there exists a unique Hélder
map w € Q — hy, € BV such that P,h, = hyo and (5.8), (5.9) are satisfied by [ANV15].

Proof. By (Dec), and as all the operators P,, are Markov with respect to m, we have

(5.10) [Pk 1= P gy < Ck™11— PF () 1By < CK™,

o—(nt+k)y, oW
which proves that (P, 1),>0 is a Cauchy sequence in BV converging to a unique limit h,, € BV satisfying
P,hy, = hgy for all w. The lower bound in (5.8) follows from the condition (Min), while the upper bound
is a consequence of the uniform Lasota-Yorke inequality (LY), as actually the family {h.} ¢ is bounded
in BV. To prove the Holder continuity of w +— h,, with respect to the distance dy, we remark that if w and

w’ agree in coordinates |k| < n, then
lhe = horllBv = | PE-s i (ho—ky = ho—ker)[BY < CO™ < Cd(w, ).
O

Remark 5.11. Note that the density h of the stationary measure v also belongs to BV and is uniformly
bounded from above and below, as the average of h,, over €.

5.4.1. The sample measures h,. The regularity properties of the sample measures h,,, both as functions
of w and as functions of x on [0, 1] play a key role in our estimates. We will first recall how the sample
measures are constructed. Suppose w := (...,w_1,Wo,W1,...,Wn,...,) and define h,(w) =P, ,...P,_ 1
as a sequence of functions on the fiber I above w. In the setting both of random uniformly expanding maps
and of intermittent maps {h,(w)} is a Cauchy sequence and has a limit h,,.

In the setting of random expanding maps, h,, is uniformly BV in w as

[An(w) = 1 (W)|lBv <[ Pu_yPo_y - Pu_,(1 = Pu_,_,1)||Bv < CA".
In the setting of intermittent maps with e, = maxi<;<m{7:}, the densities h,, lie in the cone

L:={feC(0,1]))nL*(m), f=>0, fnon-increasing,
Xmast fincreasing, f(z) < az™ me=m(f)}
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where X (x) = x is the identity function and m(f) is the integral of f with respect to m. In [AHNT15]
it is proven that for a fixed value of V. € (0,1), provided that the constant a is big enough, the cone
L is invariant under the action of all transfer operators P,, with 0 < 7; < Ypmqs and so (see e.g. [NPT21,
Proposition 3.3], which summarizes results of [NTV18])

[ An(w) — hn-&-k(w)HLl(m) < ”Pcquwfz - 'own(l — Py, - P, 1)||L1(m)

<C nl_ ’Ym:,la,:c (log n) ’Y‘n‘}a,w

Ymaz

whence h, € L'(m). In later arguments we will use the approximation
(5.11) th(w) — thLl(m) <C

We mention also the recent paper [KL21] where the logarithm term in Equation (5.11) is shown to be
unnecessary and moment estimates are given.
We now show that h,, is a Holder function of w on (£2,dy) in the setting of random expanding maps.
For 0 € (0,1), we introduce on 2 the symbolic metric

g, ') = 0°)

where s(w,w’) =inf {k >0 : w # wj for some |¢| < k}.

Suppose w, w' agree in coordinates |k| < n (i.e. backwards and forwards in time) so that dg(w,w’) < "
in the symbolic metric on 2. Then

1P = horllBV SN[ Po_y Pay + - Po_yy (Bg—nt10) — ho—nt10n) BV
< C)\nfl _ Cldg(w,w,)bgg A

Recall that || fllec < C||fllzv, see e.g. [BGI7, Lemma 2.3.1].

That is, Condition U (see Definition 5.9) holds for random expanding maps.

The map w — h,, is not Holder in the setting of intermittent maps; in several arguments we will use the
regularity properties of the approximation h,(w) for h,.

However, on intervals that stay away from zero, all functions in the cone L are comparable to their mean.
Therefore, on sets that are uniformly away from zero, all the above densities/measures (dv = hdx, hy,, h,(w))

are still comparable.
Namely,

nlfﬁ(log n)ﬁ

max

for any 0 € (0,1) there is Cs > 0 such that
he L = 1/Cs < h(z)/m(h) < Cs for z € [§,1]

Indeed, h/m(h) is bounded below by [LSV99, Lemma 2.4], and the upper bound follows from the definition
of the cone.

(5.12)

6. ANCILLIARY RESULTS

Let zq € [0,1], and, for a € (0,2), recall we define the function ¢, (z) = |z — 20|~ =. It is easy to sce that
@4, 1s regularity varying with index o and that p = 1.

6.1. Exponential law and point process results. We denote by J the family of all finite unions of
intervals of the form (x,y], where —oo <z <y < oo and 0 ¢ [z,y].
For a measurable subset U C [0, 1], we define the hitting time of (w,z) € Q x [0,1] to U by

(6.1) Ry(w)(z) ==inf{k>1: Tk(z) e U}.
Recall that ¢, (z) := d(z,x) = depends on the choice of zo € [0,1]. Recall also that
D= UnZO UwEQ a-AZ

the set of discontinuities of all the maps 7).
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Theorem 6.1. In the setting of Section 2.1, assume (LY), (Min) and (Dec). If xo ¢ D is non-recurrent,
then, for P-a.e. w € Q and all 0 < s < t,

tim 7" (Ra, (017)w) > n(t — s)]) = ==,

n— oo

where Ay, == ¢, 1 (bpJ), J € J.

Theorem 6.2. In the setting of intermittent maps assume that Ymaer < % Then for m-a.e. xg for P-a.e.
weNand all0 < s < t,

lim Z/UL"SJw (RAn (JL"SJw) > |n(t — S)J) — o~ (t=)a(J)

n—oo
where Ay = ¢, (bnJ), J € J.
Theorem 6.3. In the setting of Section 2.1, assume (LY), (Min) and (Dec). If xo ¢ D is non-recurrent,
then for P-a.e. w € 2, then
NY 3 N,
under the probability v*.
Theorem 6.4. In the setting of intermittent maps for m-a.e. xg for P-a.e. w,

NE((0,1] x )5 Nioy ((0,1] % -

After some preliminary lemmas and results Theorem 6.1 is proved in Section 8.1, Theorem 6.2 in Section 8.2,
Theorem 6.3 in Section 9.1 and Theorem 6.4 in Section 9.2.

7. SCHEME OF PROOFS

7.1. Two useful lemmas. We now proceed to the proofs of the main results. We will use the following
technical propositions which are a form of spatial ergodic theorem which allows us to prove exponential and
Poisson limit laws.

Lemma 7.1. Assume Condition U and let x,, : Y — R be a sequence of functions in L'(m) such that
Eon(|xn]) = O(n~1L(n)) for some slowly varying function L. Then, for P-a.e. w € Q and for all £ > 1,

kn—1
lim sup Z (E,oiw(Xn) = Eu(xn))| = 0.

n—00 g<k<y | S
> ]_0

Therefore, given (s,t] C [0,00) and € > 0, for P-a.e. w there exists N(w) such that

[nt]
Z (]Euvjw(Xn) - EV(Xn)) <e

r=|ns]+1
for alln > N(w).

Proof. We obtain the second claim by taking the difference between two values of £ in the first claim.
Fix £ > 1. For § > 0, let

kn—1

Up(0)=qwe: Z (Epoiw(Xn) —Eu(xn))| =6 ¢,
j=0
and
kn—1

B"(§)=qwe: sup Z (IEW“(X") —Ey(xn)) >4
o<k<t| =7
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Note that
¢
n n
B () = |J Ur ).
k=0

We define f,(w) = Eyw(xyn) and f,, = Ep(f,). We claim that f, : @ — R is Holder with norm || f,|ls =
O(n~'L(n)). Indeed, for w € Q, we have

fﬁ(w)=:L/L;xn(x)dV”(w)

and for w,w’ € ), we have

< [Jhw]

Lo

m

C~
allie < =L(n),
xallzy, < ZL(n)

| fr(w) — fn(w/) =

/;;xn<x>dVW<x>—-j{,xn<x>duw<a»
s./;|xn<m>w|hw<m>—-hwwaauhn<x>

< lhe = horllzge xnll s,

g%i@ﬂd%w%

since w € Q — hy, € L®(m) is Holder continuous. In particular, we also have that f,, = O(n"'L(n)).
We have, using Chebyshev’s inequality,

kn—1
P(Ug(é)):ﬁ”({weﬂ : Z (faoo? —f,) 25})

j=0
2
1 kn—1 . B
S(S*QEIP’ Zo(fnoaj_fn)
j=

=0 0<i<j<kn—1

kn—1
552[§j<mwnoaf—fu2+2 > Ex((faoo' — F)(faoo? —F)

By the o-invariance of P, we have

EP‘fn ool 7?n|2 = E]P|fn 7?71‘23

and, since (2,P, o) admits exponential decay of correlations for Holder observables, there exist A € (0,1)
and C' > 0 such that

Ep((fnoo" = F)(fnod = F,) =Ee((fo — f)(fnoo? ™" = f,))
S ONT I fn = [olls-
We then obtain that

c — o _
PUF(0) < 55 |knllf = Fullis, +2 Y0 N7lfa =Tl

0<i<j<kn—1
nk 5
< 067||fn||9

<o Emy,
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which implies that
2o,
B(B"(3)) < O (E(n))”
Let n > 0. By the Borel-Cantelli lemma, it follows that for P-a.e. w € Q, there exists N(w,d) > 1 such
that w ¢ BLP""1(6) for all p > N(w, d).
Let now P = [p'*"] < n < P’ = [(p+ 1)'™] for p large enough. Let 0 < k < £. Then, since
[ falloe = O(n™"L(n)),

kP—1 ) B kn—1 ) _ kn—1 . B
Z (fn(O'](.U) - fn) - Z (fn(O'](U) - fn) S Z |fn(0jw) - fn|
§=0 §=0 j=kP
/ _ 7 141
<P =Py < cHP)
p
because on the one hand
PP+ -] (1
P Lp'*7) - \p/)’
and on the other hand, by Potter’s bounds, for 7 > 0,
~ ~ n T ~ P/ T ~
< — < — < .
L(n) < CL(P) (P) < CL(P) <P> < CL(P)
Since
kP—1 ‘ B
Y (falo?w) = Fa)| <
§=0
for all 0 < k < £, it follows that for P-a.e. w, there exists N(w,d) such that w ¢ B™(24) for all n > N(w,d),
which concludes the proof. O

We now consider a corresponding result to Lemma 7.1 in the setting of intermittent maps.

Lemma 7.2. Assume that Ymae < 1/2, and that x, € L*(m) is such that E,,(|xa]) = O(n71), |Xnlle =
O(1) and there is § > 0 such that supp(xy,) C [d, 1] for all n.
Then, for P-a.e. w € Q) and for all £ > 1,

kn—1
lim sup Z (B oiw(xn) = Eu(xn))| = 0.

n—oo 0<k<t| “—
7=0

Proof. In the setting of intermittent maps we must modify the argument of Lemma 7.1 slightly as h,, is not
a Holder function of w. Instead, we consider hf, = P:_, 1. and use that, by (5.11),
1

(7.1) R, = hosllLr(my < Cil~ maes (leaving out the log term).

Note that hl, is the i-th approximate to h,, in the pullback construction of h,. Let ¢ be the measure such
dui) 14
Consider
frll(w) = EVL (Xn) ) fn(w> = EV“’ (Xn)

By (5.12), on the set [§, 1] the densities involved (h” hy,, h = dv/dm) are uniformly bounded above and away
from zero. Thus ||fi|le = O(n™1).

Pick 0 < a <1 is such that 8 := (51— —1)a— 1> 0.
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For a given n take i = i,, = n*. By (7.1), for all w, n and i = n®

‘f;(w) - fn(w)| < ||hi, - hUJHLI(m)”XnHLw(m) = (’)(n—(ﬁ‘f‘l)).

Then ‘
f = Ful = O(n=#FD)
and
kn—1
ST fi(0"w) = falo"w)]| < Cln P
r=0

Given ¢, choose n large enough that for all 0 < k </,

kn—1 kn—1 )
{w €Q: Y (falo'w) = F,) >5} C {w €Q: Y (filo"w)—F,)| > ;}
r=0 r=0
By Chebyshev
kn—1 ‘ _ c 4 kn—1 ' 12
P( > (froo" = T1,) >2> <35> EP([f;oaf—fn] )
= 4 1n_li)n—l kn—1 ) =, ) _
+§ 2 Z Z ‘EP[(f:LOa'r_fn)(fraoau_fn)}”
r=0 u=r+1
We bound
kn—1 kn—1

;i ]2 i Cct
r=0 r=0
and note that if |r — u| > n® then by independence
Ep |[(fio0" = Fu)(faoo" = Fo)| =Ee |fi 00" = F,| Be |fioo" = F,] =0
and hence we may bound

kn—1 kn-—1 . . . B
S Y [Eelioom —Tfioat =T
Thus, for n large enough,

r=0 u=r+1
nt—%

The rest of the argument proceeds as in the case of Lemma 7.1 using a speedup along a sequence n = p'*7
where 1 > % since || f,|lco = O(n™1) still holds. O

1—a’

kn—1

Z [fn(o"w) = fol

r=0

7.2. Criteria for stable laws and functional limit laws. The next theorem shows that for regularly
varying observables, Poisson convergence and Condition U imply convergence in the J; topology if o € (0,1)
and gives an additional condition to be verified in the case a € [1,2).

Note that (7.2) is essentially condition (5.5) of Proposition 5.7.

Theorem 7.3. Assume ¢ is regularly varying, Condition U holds and that
NY S N
for P-a.e. w € Q.
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If a € [1,2), assume furthermore that for all § > 0, and P-a.e. w € Q
k—1
- 1 j
(7.2) lim lim sup v max |- Z [qb o Tw1{|¢oTj|§sbn} - Eyajw(¢1{|¢|§€bn}):| >45 ] =0.
= 0

€20 pooo k<n |0p £

Then X% A X(a) in D[0, 00) under the probability measure v* for P-a.e. w € Q.

Remark 7.4. From (5.8) and Theorem 5.1, it follows that the convergence of XY also holds under the
probability measure v.

Proof of Theorem 7.3. When « € (0,1), we check the hypothesis of Proposition 5.4. Using (5.8), we have

né—1
1 nl
o > " Eoin (1611 (61<eb,1) < CEu (|11 q61<ebn})

Using Proposition 3.2, we see that condition (5.3) is satisfied since o < 1, thus proving the theorem in this
case.

When « € [1,2), we consider instead Proposition 5.7. Firstly, we remark that condition (5.5) is implied
by (7.2) and (5.8). It remains to check condition (5.4), which constitutes the rest of the proof.

If a € (1,2) we have

[nt]—1
1
(73) 1S B (01 gizen) — Hen — bucale)) | | < A5(0) + BE.(1) + C2.(0)
with
1 [nt]—1
An() = |- > Eru(9) —teal|,
n ]:O
1 [nt]—1
By (t) = . Z E oiw(91{g>eb,}) — MEL(@1{|4|>eb,})
and
w nt
Cn,e(t): beu(¢1{\¢\>ebn})*tca(5) .

Since ¢ is regularity varying with index o > 1, it is integrable and the function w +— E,«(¢) is Holder.
Hence, it satisfies the law of the iterated logarithm, and we have for P-a.e. w € Q

Vlog logk)

1 k-1
P2 B0~ Bate)| =0 (Y

Thus, we have

£+/loglog(nt
sup A%(t) = O (\/n /loglog(n )) '
0<t<¢ by,
As a consequence, we can deduce that lim,, . supg<,< A5 (t) = 0 since b, = ne L(n) for a slowly varying
function E, with o < 2.

By Proposition 3.2, we also have

. 1 o
Jim nby, "By (61(jg)>cb,)) = Cale)-
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In particular, we have
lim sup CY_(t) =0.
n—oo 0<t<e ’
This also implies that Eq,(|xn|) = O(n~!) if we define x,, = b, '¢1{|4>cp,}- From Lemma 7.1, it follows
that lim7l_>oo Supoétge B:,a(t) =0.
Putting all these estimates together concludes the proof when « € (1, 2).

When o = 1, we estimate the RHS of (7.3) by Aj, _(¢) + By, (t) with

[nt]—1
w 1
Ay () = . z E, oiw(9l{g|<cb,y) — MEL (91 1g/<ch,})
and
w nt
By (1) = | -Eu (91 (e, <lpi<tny) — tale)] -

We define x,, = b, '¢1yj4<zb,}- By Proposition 3.2, we have E,(|xn]) = O(n~'L(n)) for some slowly
varying function L, and so by Lemma 7.1,
lim sup AY _(t) =0.
n—00 0<t<L ’

On the other hand, by Proposition 3.2, we have
nh—>HéQ nbglEu(¢1{sbn<\¢\§sbn}) = Ca (E)

and 80 lim,, ;o SUPg<;<¢ By (t) = 0 which completes the proof. O

8. AN EXPONENTIAL LAW

We denote by J the family of all finite unions of intervals of the form (z,y], where —oo < z <y < o0
and 0 ¢ [z,y]. For J € J, we will establish a quenched exponential law for the sequence of sets A, =
()"t (bpJ). Similar results were obtained in [CF20, FFV17, HRY20, RSV14, RT15].

Since ¢ is regularly varying, it is easy to verify that

lim nv(4,) = .(J).

n—oo
In particular, m(4,) = O(n™1).

Lemma 8.1. Assume Condition U and that ¢ is reqularly varying with index o.
If A, C [0,1] is a sequence of measurable subsets such that m(A,) = O(n=1), then for all 0 < s < t,

)
lim Z v (An)| = n(t—s)v(4,) | =0.

n— 00
i=lns)+1

The same result holds in the setting of intermittent maps if A, C [3,1] for some § > 0 with m(A,) = O(n™1).
In particular, if A, = QS;Ol(an) for J € J, then for all 0 < s < t.

Lnt] ,
lim > v (Ay) = (- 9)Ta(]).
j=lns]+1
Proof. For the first statement, it suffices to apply Lemma 7.1 or Lemma 7.2 with x, = 14,. The second
statement immediately follows since lim,, nv(4,) = I, (J). O
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Corollary 8.2. Assume the hypothesis of Lemma 8.1.
Let J € J, and set A, = ¢~ 1(b,J). Then for P-a.e. w € Q, and all 0 < s < t,
[nt] ,
lim H (1 _ Vajw(An)) _ e—(t—S)HQ(J).

n— 00
i=lns)+1

Proof. Since 1 (A,,) is of order at most n~! uniformly in w € Q, it follows that
|nt] v [nt] v
log H (1 - VUJ“’(AH)> =— Z v (A | +OnTY.
j=lns]+1 j=lns]+1

By Lemma 8.1,
|nt]—1

lim > vTE(A) = (- s)a()),
j=lns]
which yields the conclusion. O
Definition 8.3. For a measurable subset U CY = [0,1], we define the hitting time of (w,x) € A XY to U
by
Ry(w)(z):==inf{k>1: Tk (z) e U}.
and the induced measure by v on U by
v(ANU)
A= ———=
In order to establish our exponential law, we will first obtain a few estimates, based on the proof of
[HSV99, Theorem 2.1], to relate v*(R4, (w) > |nt]) to Z]Litoj_l v7’%(A,) so that we are able to invoke
Corollary 8.2.
The next lemma is basically [RSV14, Lemma 6].

Lemma 8.4. For every measurable set U C [0, 1], we have the bound

k ' k v j—1 v
v (Bu(w) > ) = [[(1 = ()] £ 307 W0) coralh = 3,0) [[ = v ()

V7 U) i (U)

-

<
Il
—

where
cw(k,U) :== v (Ry(w) > k) — v*(Ry(w) > k)]
and

cw(U) :=supcy,(k,U).
k>0

Proof. Note that {Ry(w) > k} = [T2]71(U*N{Ry(ow) > k—1}) and so, using the equivariance of {v“},cq,
VW(Ry(w) > k) =v°*(U°N{Ry(ow) >k —1}).
Hence
VW(Ry(w) > k) =v°*(Ry(ow) > k—1) —v°“({UN{Ry(ow) > k —1}).
We note that
v (Ry(w) > k) =v°(Ry(ow) >k —1) — v (U)[v°*(Ry(ow) >k — 1) + cou(k — 1,U)]
=1 -v*U)’*(Ry(ow) >k —1) — v (U)ceu,(k — 1,U).
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Iterating we obtain, using the fact that for P-a.e. w, v¥(Ry(w) > 1) =1,
k , , J—1 ‘
w o’ w olw . o'w
v(Ry(w) > k) = [T = v7(U) = Y v (U)coin(k = 5,0) [T(1 = v7*(0))
j=1 j=1 i=1
which yields the conclusion. O

We will estimate now the coefficients ¢, (U).

Lemma 8.5. For any measurable subset U C'Y such that 1y € BV, we have, for all N
1
(8.1) cw(U) <vi(Ry(w) < N) 4+ ¥ (Ry(w) < N) + ) [PY (o = v (U)]h) | 1 )

and

(8:2) v (Ru(w) < N) <

and therefore

For (8.1), note that

If j < N then

If j > N we write

vy (Ry(w) < j) = v*(Ru(w) <j) = vij(Ru(w) < j) = v (T; Y (Ru(c¥w) < j = N))
+ v (T, Y (Ru(oVw) < j — N)) = v*(T; Y (Ru(o™w) < j — N))
+ (T, M (Ry(oVw) < j = N)) — v (Ru(w) < )

To bound (a) and (c) note that
{Ru(w) <j} = {Ru(w) < NYUT;"({Ru(o™w) < j - N)})
(8.3) v (Ry(w) < j) — v (T; ¥ (Ru(ew) < j — N))| < v*(Ry(w) < N)

and similarly for vg.
To bound (b) we use the decay of P%. Setting V = {Ry(cVw) < j — N}, we have
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w (=N — (TN = !
(T (V) = v (T (V)] uw(U)/y
— Z/W:EU) /Ylvpf;v([lU—Vw(U)]hw)dm'

1y1y o TN hy,dm — VW(U)/

Y

1y o T;Vhwdm‘

O

8.1. Exponential law: proof of Theorem 6.1. We can now prove the exponential law for 4,, = ¢~1(b,J),

JeJ.

Proof of Theorem 6.1. Due to rounding errors when taking the integer parts, we have

l/atnsjw (RAn (ULnst) > |n(t — S)J)

— oyt (RAn (@!")w) > [nt] — [ns J)

and it is thus enough to prove the convergence of v "% (Ra, (ol™lw) > |nt] — |ns]).

By Lemmas 8.4 and 8.5, for all N > 1, we have

[nt]

(8.4)
j=Ins]+1
with
Lnt) _ ‘
M= > v (AN {Ra,(0'w) <N}),
j=|ns|+1
[nt] v v ‘
()= Y v79A)r7 “(Ra,(0'w) < N)
j=lns|+1
and

[nt)

>

j=lns)+1

(I11) = HPN ({1,% 7 (4,)

olw

o)

Li(m)

Lolmelu (RAW(GLMJW) > nt] — ULSJ) _ H (1—v7"“(4,))| < (1) + (IT) + (I11),

To estimate (I), we choose € > 0 such that J C {|z| > ¢} and we introduce V,, = {|¢| > ¢b, }. For a

measurable subset V' C Y, we also define the shortest return to V'

ralV) = inf Ry ()(e),

and we set

r(V) = Jrelgz ro(V).

by
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‘We have

J

o (4 N {Ra,(0’w) < N}) <7 (Vun {Ry,(c’w) < N})

N
< Y (VN (Th) TN (V)
i=r jw(v")

o

N

< > le,Lpﬁjw(lv,Lham)dm-

=755 (Vn)

It follows from (Dec) that

/ 1y, Pl (Ly s )dm — v (V) v® (V)
Y

<v i,

o ([0 )|

‘ {1% _ yajW(vn)} Boie,

Lge
< Cﬁim(Vn)
< C’@im(Vn)7

v

as BV is a Banach algebra, and both |1y, ||gv and |hy,||sv are uniformly bounded. .
Consequently,

[nt] N

(I) < Z Z {Vajw(vn)llgi”w(vn) +0 (Hlm(Vn))}

j=|ns]+1 i:rajw(Vn)
<C (m(Vn)QnN + m(Vn)nHT(V")> .

On the other hand, we have by (8.2),

[nt] , N
< S v Y v 4,
j=lns]+1 =1
< C’nNm(An)Q7
and it follows from (Dec) that
[nt] )
N o olw )
@mn < cov Y H [1,4" v (An)} hoia|
j=lns]+1
< Cno™,

since {hy }weq is a bounded family in BV, A,, is the union of at most two intervals and thus ||14, |y is
uniformly bounded. We can thus bound (8.4) by

C (m(Vn)QnN + m(Vn)nﬂr(V") + m(An)QnN + nHN) <C (n_lN +or(Vn) nHN) ,

and, assuming for the moment that r(V;,) — 400, we obtain the conclusion by choosing N = N(n) = 2logn
and letting n — co.

It thus remains to show that r(V,,) — +o00. Recall that V,, is the ball of centre zo and radius b=te~*n~1.
Let R > 1 be a positive integer. Since z( is assumed to be non-recurrent, and that the collection of maps

1Recall that, from the definition of ¢, it follows that Vi, is an open interval, and thus 1y, has a uniformly bounded BV
norm.
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T7 for w € Q and 0 < j < R is finite, we have that

Sg = inf inf |TY(w) —
R JIEIQOSI?<R|W(~T0) zo| >0

is positive. Since all the maps T£ are continuous at xg by assumption, there exists nyp > 1 such that for all
n>ng,j<RandweQ,
. . )
x € Vo = |Ti(x) = Ti(xo)| < 5

Increasing np if necessary, we can assume that b~'e~*n=' < 22 for all n > np.
Then, for all n > ng, w € Q, j < R and z € V,, we have

. . . ‘ 5
IT3(2) — wol 2 [T o) — ol — [T5(2) — Th(wo)| > 2 > b=,

and thus T (z) ¢ V,,.
This implies that r(V,,) > R for all n > ng, which concludes the proof as R is arbitrary. O

Remark 8.6. A quenched exponential law for random piecewise expanding maps of the interval is proved in
Theorem 7.1 [HRY?20, Section 7.1]. Our proof follows the same standard approach. We are able to specify
that Theorem 6.1 holds for non-recurrent xq, since our assumptions imply decay of correlations against L
observables, which is known to be necessary for this purpose, see [AFV15, Section 3.1]. Our proof is shorter,
as we consider the simpler setting of finitely many maps, which are all uniformly expanding. In addition we
use the exponential law in the intermittent case of Theorem 7.2 [HRY20, Section 7.2] to establish the short
returns condition of Lemma 8.7 below.

8.2. Exponential law: proof of Theorem 6.2. In order to prove the exponential law in the intermittent
setting, Theorem 6.2, we need a genericity condition on the point z in the definition (2.1) of ¢,.

Lemma 8.7. If Ymaz < %, for m-a.e. o and for P-a.e. w € Q)
[tn] ,_
dim 3 m(Ber(wo) N {RGS () < [n(logn) 7! }) = 0.
j=lsn]+1

forallc>0 and all 0 < s < t.

Proof. Let N = |n(logn)™!| an V,, = B,,-1(z0). First, we remark that for m-a.e. o and P-a.e. w,

(8.5) m (V, N{Ry, (w) < N})=o(n™1).

This is a consequence of [HRY?20, Theorem 7.2]. Their result is stated for two intermittent LSV maps both

with v < % but generalizes immediately to a finite collection of maps with a uniform bound of V4. < %

The exponential law for return times to nested balls imples that for a fixed ¢, for m-a.e zg and P-a.e. w
nh_)ngo my“’ (Vo N{Ry, (W) <nt})=1-—e"".

which shows in particular, since {Ry, (w) < N} C {Ry, (w) < nt} for all n large enough, that for all ¢ > 0,

m-a.e xg and P-a.e. w

1
(8.6) lim sup — W (Vo N{Ry, (w) < N}) <1l-e".

n—oo UV (Vn)
Using (5.12), taking the limit ¢ — 0 proves (8.5). Note that, even though the set of full measure of
and w such that (8.6) holds may depend on ¢, it is enough to consider only a sequence t; — 0.
Now, for & > 0 and ng > 1, we introduce the set

271{2
Qo = {weQ :m (V, N{Ry, (w) < N}) < — for alanno}.
n
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According to (8.5), we have for all k > 0,

lim PQ)=P| (] Q] =1

nog—o0
no>1

By the Birkhoff ergodic theorem, for al £ > 0, ng > 1 and P-a.e. w,

n—1
T = 3™ 1m0 (07w) = PO),
j=0
which implies that for all 0 < s < ¢,
1 [nt] ‘
lim ———— Y 1gn(olw) = P(Q).

noee (Int] ~lnsl) | _£=

Let ng = ng(w, k) such that P(Q}°) > 1 — 2% and for all n > ny,
[nt]

Y 1gr(ow) > P(OR°) —27".
j=lns|+1

o
([nt] = [ns])

Then, for all n > ng(w, k) we have
[nt]

Z I(QZO)C (UjW) S 2_(k_1).
i=lns)+1

b
([nt] = [ns])

Consequently,
[nt] 9—k
> m(Van{Ry,(w) < N}) < (Int] = [ns]) = + (|nt] — [ns]) 27 Dm(V,).
[ns]+1 n
This proves that
[nt]
lim sup Z m (V, N{Ry, (w) < N}) < C27F
n—00 Lns)+1

and the result follows by taking the limit & — oc.

Note that the set of £y and w for which the lemma holds depends a priori on ¢ > 0, but it is enough to
consider a countable and dense set of ¢, since for ¢ < ¢/,

{Bvseo) 0 {B5, oy <N} {Bons @) 0 {0y < V-

The exponential law for random intermittent maps follows from Lemma 8.7:

Proof of Theorem 6.2. We consider the three terms in (8.4) with N = [n(logn)~!].
Let V,, = {|@| > b, } where & > 0 is such that A, C V,, for all n > 1. Since V,, is a ball of centre z¢ and

-, —

radius b~1e~*n~!, and since V,, C [6, 1], the term

Lnt) ‘ ‘ [nt] )
M= 3 v AN {Ra, (@) SN SC 3 m (Ve {Ry, (0%w) < N})

j=|ns]+1 j=|ns]+1

tends to zero by Lemma 8.7 for m-a.e xg.
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The term
[nt] ‘ ‘
()= > v7A)r"“(Ra,(0'w) < N) < CnNm(A,)*
j=|ns]+1
also tends to zero since N = o(n). Lastly we consider

[nt]

=3 ‘

j=|ns|+1

B2 ([ -] o)

Li(m)

We approximate 14, by a C! function g such that ||g|lc1 <n", g=14, on A, and ||g — 14, r <n~7
(recall A, is two intervals of length roughly % so a simple smoothing at the endpoints of the intervals allows
us to find such a function g). Later we will specify 7 > 1 will suffice. By [NPT21, Lemma 3.4] with h = h,,
and ¢ = g — m(gh,,), for all w,

1 1
[P ([g = m(gho)lho)|| < On" N~ 70w (log N) e
< Cn " ez (log n)ﬁ_l
Using the decomposition 14, —v¥(A,) = (14, —g) — (v*(4,) —m(ghy)) + (9 —m(ghy)) we estimate, leaving
out the log term,
(I) < C |n'~ " + 0" Fnar

where the value of C' may change line to line. Taking 7,4 < % and 1 <71 < % — 2 suffices. g

9. POINT PROCESS RESULTS

We now proceed to the proof of the Poisson convergence. In Section 11 we will consider an annealed
version of our results.

9.1. Uniformly expanding maps: proof of Theorem 6.3. Recall Theorem 6.3: under the conditions
of Section 2.1, in particular (LY), (Min) and (Dec), if z¢ ¢ D is non-recurrent, then for P-a.e. w €
Ny 3 N,

under the probability measure v*.

Our proof of Theorem 6.3 uses the existence of a spectral gap for the associated transfer operators P,
and breaks down in the setting of intermittent maps. The use of the spectral gap is encapsulated in the
following lemma.

Lemma 9.1. Assume (LY). Then there exists C > 0 such that for all w € Q, all f, f, € BV with

sup || fjllnoo(m) <1 and sup||f;]lpv < oo,
j=>1 j=>1
we have

sup |[P5 [ f-J] fio T <C|fllsv (Sup fj||Bv)
n>0 ol v i>1

Proof. We proceed in four steps.
Step 1. We define

n
g =11 #io12,
7=0
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where we have set fy = 1. We observe that for all n > 0, there exists C,, > 0 such that for all w € €,

n+1
(9.1) P (sup|fj||Loo(m>) <1 and (g oy < Co (SupllijIBv>~
j>1 j>1

The first estimate is immediate, and the second follows, because

Var(gi ™) < Var(gh) | fasr 0 T5 o gny + 1950 £ow (my Var(fasn 0 T3
< Var(gsy) + Var(for1 0 Tj)
= Var(¢l) + D> Varr(for10T0™)
Te ALt

= Var(g2) Z Vargn+1py (fa+1)
IEAn+l

< Var(gy) + (#ALT) Var(fai1),

and so we can define by induction Cp41 = C), + sup,,cq #A%T which is finite, as there are only finitely
many maps in S.

Step 2. We first prove the lemma in the case where r = 1 in the condition (LY). Before, we claim that
for f € BV and sequences (f;) C BV as in the statement, we have

(9.2)  Var (FP7(fgs)) <ZP’||P” H(fa ™ M= @mll fa-jllBv
7=0

+DZP]||P" I D oy | e poe () -

j=0
This implies the lemma when r = 1, since
125 (f9i ™ Dllzeemy < N957 e @) 1P 1 f Il o (my < Clf BV,
and
P2 (F9i™ Dt omy < NF95 7t my < N lzoe oy 1957 L2 my < (1 F 1By
We prove the claim by induction on n > 0. It is immediate for n = 0, and for the induction step, we have,
using (LY),
Var(P)* (fgith))
= Var(P " (£l far1 o TLH)) = Var(PLFH(fg2) fusr)
< Var(P;"(fg ))Hf7z+1||L°° m) + 1P (F9o) Lo (m) Var(frs1)
(

< (pVar(PJ(fg2) + DIPL (fa) omy) | sl my + I1PSTH(F 90| oo () Var(frt1)
< pVar(P}(fg5)) + DIIEL (FID | Lromy | fatillzoe my + 1PSFH(Fa) e myll frt B,
which proves (9.2) for n + 1, assuming it holds for n.

Step 3. Now, we consider the general case r > 1 and we assume that n is of the particular form n = pr,
with p > 0. We note that the random system defined with 7 = {71} ., satisfies the condition (LY with
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r = 1. Consequently, by the second step and (9.1), we have

p
IPL(fa) ey = || Preorw oo PL | f T 9hsrw o T

i=1 BV

< Cllf oy (sup|g;jrwsv) < CC|flay <sup fjnBv) .
j>1 j>1

Step 4. Finally, if n =pr+gq, with p > 0 and ¢ € {0,...,r — 1}, as an immediate consequence of (LY,
we obtain

1B (fao)llBy = | Pfor P (f98 gdnre © TE ) IBY
= | Pl (PE(fg5 ) 9dor) BV < ClIPE (fg2)gaome BV

But, from Step 3, we have
1P (£95) garrwllLromy < N9gvrwllLos (m) 1PE(F9E ) 1 (m)

< 1P v < Cllay (sl )
7=

and, using (9.1),

Var(PL(f98")9gvrw) < 1L (F9EN) | oo () Var(ggor,) + Var(PL(f92 ) 9gorell Lo (m)

< (Gl i P2 v + €I Tov] (s 15
J1Z

<C (1 + max Cq> I fllBv (Sup ||fj||BV) ;
q=0,....m—1 i>1

,,,,,

which concludes the proof of the lemma. O

Proof of Theorem 6.3. We denote by R the family of finite unions of rectangles R of the form R = (s,t] x J

with J € J. By Kallenberg’s theorem, see [Kal76, Theorem 4.7] or [Res87, Proposition 3.22], N¥ gN(a) if
for any R € R,

(a) lim v*(N7(R) = 0) = P(N(R) =0),

n—oo
and
(b) lim E,.Ny(R) = EN(o (R).
We first prove (b). We write
k
R=|JR,
i=1

with Rz = (Sz,tl} X Jz dlSJOlnt
Then
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and

k k
Eyo Ny (R) = Z]EuwN;f((Siati] x J;) = Z Evo (L1, 0TI

i=1 1=1 ns;<j<nt;

k 1,
=Z Z R O (WA)

By Lemma 8.1, for P-a.e. w € €2, we have

1

nt; | —
S v (n (bni) = (t: — si)TTa(Jy),
[ns; |

k

L
lim
n— oo
=1 ]

which proves (b).
We next establish (a). We will use induction on the number of “time” intervals (s;,t;] C (0,00]. Let
R = (s1,t1] x Ji where J; € J. Define

A, = ¢;ol(an1).
Since
{NY(R) =0} ={x: T (z) & Ap,ns; < j+1<nt}
- {114% o T 140 o TP AL L1, o Tt 0}

[nt1]—1—|ns1|

H Ac o T Lnsljw © TuI}nSIJ (x) 7& O )
J=0

|
8

we have that,

(93) [V (B) = 0) = v (R, (07 w) > [t = s1)])|

Lnsy ]

<7 "Ry (o) = 0) = v e(A4,) < Omi(A,) — 0,

because, due to rounding when taking integer parts, |nt;| — [ns;| — 1 is either equal to |n(t; —s1)] — 1 or
to |n(ty — s1)]. By Theorem 6.1,

aL"Sle(RAn (ULTLSIJW) > Ln(tl _ Sl)J) —y g~ (ti=s)Ila(J)
as desired.

Now let R = U?Zl(si,ti] x J; with 0 < 81 <t < ... < 8 < tx and J; € J. Furthermore, define
st=s;—sand t; =t; — s1.

Observe that, accounting for the rounding errors when taking integer parts as for (9.3), we get

k k
v (Nro: (U(Sutz] X Ji) = 0) — e (Nfzftmuw (U( R AR J) >‘
i=1 i=1

k

<20 m(eg, (bafi)) = 0

=1

(9.4)
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so, after replacing w by ol™Jw, we can assume that s; = 0. Let

R1 = (O,tl] X J1

k
R2 = U(Siati] X Jz
=2
k
RIQ = U(S’ — Sg,ti — 52] X Ji
=2
Then, with A, = ¢} (b J1),
(9.5) V7 (N (Ry U Ra) = 0) = 07 [{Ra, () > [t [} 0 T, 152 (N7 (Ry) = 0)] | = 0

as n — oo, uniformly in 7 € 2, as in (9.4). Moreover, as we check below,

(9.6) |v7 [{Ra, () > [ntr ]} 0T o2 (NG (Ry) = 0)]

— V" (Ra, () > |nt1)) - v (N(Rz) = 0)| = 0
as n — oo, uniformly in 7 € Q. Therefore, setting = ol™*2w in (9.5) and (9.6), we have, by Theorem 6.1,
7SN (Ry U Ry) = 0) — MUy (N () = 0)] = 0

lim
n—oo

which gives the induction step in the proof of (a).
We prove now (9.6). Our proof uses the spectral gap for P’ and breaks down for random intermittent
maps.
Similarly to (9.4),
V1(NJI(Rg) = 0) —v(T,; ns2] (NgLWWJ"(R’Q) = O))‘ — 0 as n — oo, uniformly in 7.
We have, using the notation

U={Ra, () > Int: ]}, v ={N7""(m5) = 0},

that
v (U0, el (v)) = vy (1, (v)) |

_ ’/pntnsﬂ (1y — v"(U)hy) 1vdm‘

< C|[Pyed (o = v @)hy)|

-

S co [nsa|—|nty |

BV
PP (= v ()|

olntily

BV
[P (1o = v @my) |

where the last inequality follows from the decay, uniform in 7, of {P}}x in BV (condition (Dec)).
But

(9.7 sup su
n n

[P (L, > ity = V' (Ra, () > [t D) | < o,
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which proves (9.6). This follows from Lemma 9.1 below applied to f = h, and f; = 14, because
Lntl

J
LiRa, (m>lnti]} = Lag o T3,
Jj=1

and both ||A,||pv and |[14¢ ||pv are uniformly bounded. Note that for the stationary case the estimate (9.7)
is used in the proof of [TK10b, Theorem 4.4], which refers to [ADSZ04, Proposition 4]. O

9.2. Intermittent maps: proof of Theorem 6.4. We prove a weaker form of convergence in the setting
of intermittent maps, which suffices to establish stable limit laws but not functional limit laws.
In the setting of intermittent maps, we will show that for P-a.e. w,

NE((0,1] x )5 Niay ((0,1] % -

Proof of Theorem 6.4. We will show that for P-a.e. w € Q, the assumptions of Kallenberg’s theorem [Kal76,
Theorem 4.7] hold.

Recall that J denotes the set of all finite unions of intervals of the form (z,y] where z < y and 0 ¢ [z, y].
By Kallenberg’s theorem [Kal76, Theorem 4.7], N2[(0,1] x -) =% Ny ((0,1] x -) if for all J € 7,

(a) lim 12 (N2 ((0,1] x ) = 0) = P(Nia)((0,1] x J) = 0)

and
(b) nlingo E o NZ((0,1] x J) = E[N(a)((o, 1] x J)]

We prove first (b) following [TK10b, page 12]. Write

k
J:UL
i=1

with J; = (a, y;] disjoint.

Then .
EN()((0,1] x J) =Y Mo (Ji) = Ma(J)
=1
and
k n 4 n 4
EWNﬁmxﬂxJ):§:§:EWuw$wwm0734]ZE:EWuwxwﬂnoZﬁﬂ
i=1 j=1 j=1

‘We check that

n

ﬁg;}jmgw(lw%“%Jnojg):ILAJ)

j=1
for J =UF_ | J;.
Write A, := ¢! (bnJ). Then
E, o [1(¢;01(bn,])) 0TI =v7"“(Ay)

hence }
i J _
nh—>n;o Zl By [1((15;01(an¢)) °© Tw ($>] = Ha(J)
]:

by Lemma 7.2.
Now we prove (a), i.e.
lim v*(N,/((0,1] x J) = 0) = P(N(4)((0,1] x J) = 0)

n— oo

forall J € J.
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Let J € J and denote as above A, := ¢, 1(b,J) C X = [0,1]. Then
{N2((0,1] x J) =0} ={2: T/ (x) € Ap,0 < j+1<n}={Ra, (w) >n—1}NAS
Hence
[V (NZ((0,1] x J) =0) —v¥(Ra, (w) >n) < Cm(A,) =0
and by Theorem 6.2, for m-a.e. z¢
V¥ (Ra, (W) >n) — e Tl
This proves (a). O

10. STABLE LAWS AND FUNCTIONAL LIMIT LAWS

10.1. Uniformly expanding maps: proof of Theorem 2.4. In this section, we prove Theorem 2.4,
under the conditions given in Section 2.1, in particular (LY), (Dec) and (Min).
For this purpose, we consider first some technical lemmas regarding short returns. For w € Q, n > 1 and
€ >0, let
& (e) ={z €0,1] : |[T](x) —z[ <e}.

Lemma 10.1. There exists C > 0 such that for allw € Q, n>1 and e > 0,
m(EX(e)) < Ce.

Proof. We follow the proof of [HNT12, Lemma 3.4], conveniently adapted to our setting of random non-
Markov maps. Recall that A7 is the partition of monotonicity associated to the map 7;}. Consider I € A?.
Since infy [(T72)'| > A" > 1, there exists at most one solution #7 € I to the equation

(10.1) TM(zf) = af +e,
and since there is no sign change of (7))’ on I, we have

(10.2) EL(e)NI C a7, 2]
We have

To()) = To(a) =af —ap +2,
and by the mean value theorem,

T3 (7)) = T ()| = [(T) ()] |2 —2f

, for some c € I.

Consequently,
1 1
(10.3) T —z7| < (Sup ) ot —a |+ 2| <A |ah — 27|+ 2esup ———.
} I I| I |(T:})'| H I I| ] | I I 7 |(T:})/|
Note that if there is no solutions to (10.1), then the estimate (10.3) is actually improved. Rearranging (10.3)
and summing over I € A", we obtain thanks to (10.2)

2e 1
m(EZ(g)) < R Tl sup ——— < Ce.
2 ST 2 P gy

The fact that
1
(10.4) Z sup <C

for a constant C' > 0 independent from w and n follows from a standard distortion argument for one-
dimensional maps that can be found in the proof of part 3 of [ANV15, Lemma 8.5] (see also [AR16, Lemma
7]), where finitely many piecewise C? uniformly expanding maps with finitely many discontinuities are also
considered. Since it follows from (LY) that | P} fllsv < C| f|sv for some uniform C > 0, we do not have
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to average (10.4) over w as in [ANV15], but instead we can simply have an estimate that holds uniformly in
w. g

Recall that, for a measurable subset U, Rf(z) > 1 is the hitting time of (w, ) to U defined by (6.1).

Lemma 10.2. Leta > 0, 2 <9 < 1 and 0 < k < 3¢ — 2. Then there exist sequences (v1(n))n>1 and

(72(n))n>1 with y1(n) = O(n™") and vy2(n) = o(1), and for all w € Q, a sequence of measurable subsets
(A9)>1 of [0,1] with m(AY) < ~y1(n) and such that for all zo ¢ A%,
n—1
(logn) m (Bnﬂp (zo) N {R" “’_1/) o) < lalogn] }) < ya(n).
=0
Proof. Let
={ze[0,1] : |T)(x

Since B,,—w (o) N {R" @

—w(w)—

— 2| < 2n7¥ for some 0 < j < |alogn]}.

C B,-»(z0)N Egiw7 it is enough to consider

R/—’\_/

lalogn]

(logn) 1 m (Bnﬂp (zo)N EZ“’) .

7

n

I
=)

According to Lemma 10.1, we have
lalogn| 10g n
m(ES) < > m(Eren") <C—+ —
j=1
We introduce the maximal function

1 zo+t [/n—1 1 n—1 ;
M (zo) = sup — / Z Lggie dz = sup % Z m (Bt(xo) NE? “’)

t>0 2t >0 2t & -

By [Rud87, Equation (5) page 138], for all A > 0, we have

w C'& oiws . Clogn
(10.5) m(M® > \) Z lpeo| <5 > m(EZ) < ¥
L, i=0

Let p > 0 and £ > 0 to be determined later. We define
F) = {a?o €1[0,1] : m(Bp-v(zo)NEY) > Qnﬂp(1+p)} ,

so that we have

n—1 n—1
Z m (anw (zo) N EZ“) > (Z 1.0 (:Uo)> on~V+e),
i=0 1=0

By definition of the maximal function M, this implies that

MZ(xg) >n~ (Z 1F<7 » (o )

from which it follows, by (10.5) with A\ = (log n)ns~%*,
m(AY) <m (MY > (log n)ngﬂl’p) < O~ EFA=Pv=1) —. ) (n),

(o) o).

where
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If 29 ¢ A%, then

n?

(logn) Z ( v (x0) N EY] ““) (logn) (Z 1ot xo> m(B,-s(x0)) + 2(log n)n' ~¥(1+0)
=0

< C(logn) ((log n)n~ =8 4 n_(¢(1+p)_1)> =: 72(n).

Since % <1 < land0 < k < 3p—2, it is possible to choose p > 0 and £ > 0 such that k = £+ (1—p)p—1,

Y > € and ¥(1 + p) > 1 2, which concludes the proof. O
Lemma 10.3. Suppose that a > 0 and % <1 < 1. Then for m-a.e. zy € [0,1] and P-a.e. w € Q and , we
have )

7bli_>ngo(log n) 2 m (anw(xo) {RB " gy < lalogn] }) =0.

Proof. Let 0 < k < 31 — 2 to be determined later. Consider the sets (A%),>1 given by Lemma 10.2, with
m(AY) < vi(n) = O(n™"). Since k < 1, we need to consider a subsequence (nx),>1 such that Y, o, v1(ng) <
oo. For such a subsequence, by the Borel-Cantelli lemma, for m-a.e. xq, there exists K = K(xo, o;) such that
for all k > K, xo ¢ Ay, . Since limy o0 72(ng) = 0, this implies

neg—1

Jim (log ny,) > om <Bn;w(xo) {RB ’ a0y < LalognkJD =0.

i=0

We take ny = | k¢, for some ¢ > 0 to be determined later. In order to have > k>1 M1(ng) < oo, we need to
require that K¢ > 1. Set U (z9) = B,-v(z0) N {R‘g () S lalogn] } To obtain the convergence to 0 of
the whole sequence, we need to prove that

_ ni—1
(10.6) klgrolonk<iu<%k (log n) Z UU w (z0)) — (log k) Z (U;:kw( ))‘ =0.
+1 1=0 =0

For this purpose, we estimate

n—1 ) neg—1 )
(logn) Y m(U; “(x0)) = (lognx) D m(UF,*(x0))| < (1) + (1) + (III) + (IV) + (V).
=0 =0
where
n—1 ) n—1 )
(I) = [logn — log | Y m(U7 “(x0)), (1) = (logng) Y m(Uy “(x0)),
i=0 i=nyg
neg—1
(I1I) = (log n) Z ’m (Bn " {R[’f o (z0) < lalogn] }) —m (B"k O{ o) S < |lalogn| }) ,
=0
nkfl
(IV) = (logng) Z m (Bn {R" Y (o) < lalogn] }) —m (B )N {R‘TBI‘” (o) < lalogn] })’
(V) = ( (B —u(20) {R"él“;w(wo) < Lalogn]}) -m (B —y(x0 ﬁ{ " (o0) < Lalognkj})‘.
Before proceedlng to estimate each term, we note that |ng 1 —nx| = O(k~1=9), |nkf —n, Y = Ok~ (),

llog ngy1 —logng| = O(k™1) and m(U% (zg)) < m(B,—v(x0)) = O(k=%¥).

2For instance, take £ = ¢ — § and p =~ — 1+ 6~ ! with § = 31/;—22—»:.
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From these observations, it follows
(I) < Clognpy1 — logng| ngy k=% < Ck~=0=9)9),
(I1) < C(log g )|np 1 — gk~ < Cllog k)k~ (1= 1=9)9),

(IIT) < C(log ng)nem(B,, v (x0) \ By-v(20)) < C(log ng)ng|ng ) — ny Y| < C(log k)k~ (=090,

-4
1

nkfl

(IV) < C(logng) Z m <Bnk“" (xo) N {R%:;w (@B, _y (x0) < lalogn] })
=0 '
nk—l

< Cllogm) Y allognym (B, (w0) \ By-s (x0) )

i=0
< C(log k)Qk—(l—(l—w)C)
and

’I’kal

(V) < Cliogn) - m (B,oan) 0 {Latogra] < 752 s < latogn] })
1=0 d
nk—l

< C(logny) Z allogngy1 — logng| m(Bn;w(wo))
=0

< C(log k)k—(l—(l—w)é)_

To obtain (10.6), it is thus sufficient to choose £ > 0 and ¢ > 0 such that k < 3¢p — 2, k{ > 1 and
(1 — )¢ < 1, which is possible if ¢ > %. |

We can now prove the functional convergence to a Lévy stable process for i.i.d. uniformly expanding maps.

Proof of Theorem 2.4. We apply Theorem 7.3. By Theorem 6.3, we have N A N(q) under the probability
v for P-a.e. w € Q. It thus remains to check that equation (7.2) holds for m-a.e. g when a € [1,2) to
complete the proof. For this purpose, we will use a reverse martingale argument from [NTV18] (see also
[AR16, Proposition 13]). Because of (5.8), it is enough to work on the probability space ([0,1],v*) for
P-a.e. w € Q. Let B denote the o-algebra of Borel sets on [0, 1] and

Bk = (T5)~H(B)
To simplify notation a bit let
Jojn (@) = ¢aq (x)1{|¢m0\§sbn}($) - EVUJW(¢$01{|¢mO\§sbn})'

From (5.8), it follows that E,,(|fu jn|) < Ceby,, and from the explicit definition of ¢, we can estimate the
total variation of f, ;, and obtain the existence of C > 0, independent of w, €, n and j, such that

(10.7) | fu,jnllBY < Ceby.
We define

k—1
Sen = Y fujn 0 T8
j=0

and

(108) Hw,k,n o T:} = Eu“’ (Sw,k,n|8w,k)
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Hence H,, 1, = 0 and an explicit formula for H,, 1 . is

Hw,k},n =

g]w 2Jsm fﬂw)

From the explicit formula, the exponential decay in the BV norm of P:j_wj from (Dec), (5.8) and (10.7), we
see that ||Hy k.nllBv < Ceby,, where the constant C' may be taken as constant over w € Q. If we define

k
Mw,k,n = Lw,k,n — Hw,k,n o Tw

then the sequence {M,, 1 , }x>1 is a reverse martingale difference for the decreasing filtration B, = (T7*) 1 (B)
as

By (M kn|Bok) =0
The martingale reverse differences are
Mw,k+1,n - w k,n ww k.n w

where
ww,k,n = fw,k,n + Hw,k,n - Hw,k+1,n o Ta’“*luw
We see from the L bounds on ||Hy, i nllc < Cbye and the telescoping sum that

k—1 k—1
(10.9) D YujnoTL =D fujnoTI| < Cebn.
j=0 7=0

By Doob’s martingale maximal inequality

2
k—1 n—1
V) B, | 2 Y 0T 2 Bl < - 2 Vi ®
=0
Note that
n—1 ) n—1 ) 2
D Eue [l 0 T8 = B |3 tujmo T
Jj= J=0
by pairwise orthogonality of martingale reverse differences.
As in [HNTV17, Lemma 6]
n—1
Eye [(Sw,n,n)z} = Z By [1/@ gm © TJ] +Eye [Hw 1 n} —Epe [Hw n,n © Tn]
j=0
So we see that
= 1 9 C?e?
. w > < —FE,o _—
(10.10) v g e waon bud 0 < prsa B [(Senn)’] +275
=0
where we have used || H, wj nlloo < C?H262.
Now we estimate
n—1
(10.11) Eve [(Swnm)?] <O Bpe[f2, 0TI +2ZZEW furgm © Y+ furim © Th].

7=0 1=0 1<j
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Using the equivariance of the measures {v*},cq and (5.8), we have
n—1

(10.12) > Euelfl 0TI < CnEy(gﬁiol{‘%Olgab"}) ~ Ce2op?,

§=0
by Proposition 3.2 and that
lIm nv(|gg| > Ab,) =A"% for A >0,

n—oo
since ¢, is regularly varying.
On the other hand, we are going to show that for m-a.e. z

1 n—1 . )
(10.13) i tmsup 7 37 > Byl fuin 0T - fuiin 0 TE] = 0.
1=0 1<j
The first observation is that, due to condition (Dec),
By [wa,n © Tg ) fw,iﬂz ° Ti:] < Cejii||fw,i,n||BV||fw7j7n|
where 6 < 1. Hence there exists a > 0 independently of n and & such that
S Beelfayn o TY - fusno T < C2n 22

j—i>lalogn]

1 < Ce2b200

m

and it is enough to prove that for € > 0,

n—1i+|alogn]

S Y Euelfusin 0TS fuim o T3] = 0(b2) = o(n).

i=0 j=it1
By construction, the term Eyw[fi,in 0T fu jnoT?] is a covariance, and since ¢ is positive, we can bound
this quantity by Eye[f o Tf - f o TI] = E_,i[fn - fn o T2, ] where f, = ¢$01{|¢ |<ebn}- Then, since the
o |<eby,
densities are uniformly bounded by (5.8), we are left to estimate

n—1ti+|alogn]

(10.14) S Y Ealfa: fao TS

=0 j=it+l
Let 3 <4 <1 and U, = B,,—+(x0). We bound (10.14) by (I) + (II) + (III), where

n—1ti+|alogn]

m=> 2

i=0 j=i+1

/ C fafaoTiidm,
Unm(Ti;:)il(Un)

n—1i+|alogn]

w-y 3

i=0  j=i+1

/ fu+ fo T dm
UnN(T77) =1 (UR)
and

n—1i+|alogn]

(II1) = Z Z / fo o fno T2 Mdm.
i=0 j=i+1 “UR
Since || fn|loo < €by, it follows that
n—1i+|alogn]| o
O< Y 3 m (@) o)
=0 j=it+1
n—1
< ag®b? (logn) Z m (Un N {Rg;“ < alogn}) ,
i=0
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which by Lemma 10.3 is a o(b2) as n — oo for m-a.e. xo.
To estimate (II) and (III), we will use Holder’s inequality. We first observe by a direct computation that

2_1
(10.15) / ¢2 dm = O(n¥ (1),
We consider (IIT) first. Let A = US. We have

(10.16) fo - frno T ldm < / Gug + fn o T2 Hdm < (/ qﬁiodm) (/ f2oT?; Ojdm)

Ug A A

3 3

(10.17) <C (/A ¢>iodm> (/ fﬁdm>
By (10.15) ( )% n#(2-1) and by Proposition 3.2, (f fﬁdm)% < Cna=—2. Hence we may bound

(10.16) by Cn+) (a 3, N
To bound (II), let B = U, N (T%;))~*(U5). Then,

1 1

L. L. 2 L 2

o) | o fwoitan < [ o uy0niim < ([ f2am)" ([ 2,01 lam)
UnO(T25 )~ 1(UF) B B

1

As before (f fﬁdm)% < Cna~

1 1 3
2 G TiZigy ) < 90 dm) <cC 2 dm | <cont(3-1)
B¢Io O d5i,0m —= ¢ OLgiy (T] 1) H(Ug) m —= U d)ﬂio m =Ln

by (10.15), and so (10.18) is bounded by on+9(5-3),

It follows that (IT) + (IIT) < C(log n)n1+(1+’w)(é_%) = o(n?%), since ¢ < 1. This proves that (10.14) is a
o(b?2) and concludes the proof of (10.13).

Finally, from (10.11), (10.12) and (10.13), we obtain

|2 [(Sw,n,n)z} =0,

and

[N

1
(10.19) lim limsup —E

e=0 nooo b%

which gives the result by taking the limit first in n and then in € in (10.10). O

10.2. Intermittent maps: proof of Theorem 2.6. We prove convergence to a stable law in the setting
of intermittent maps when « € (0,1).

Proof of Theorem 2.6. We apply Proposition 5.8. By Theorem 6.4, it remains to prove (5.7), since o € (0, 1).
We will need an estimate for E, o (|¢z, |1 {2 <eb }) which is independent of w. For this purpose, we introduce
wo <ebn

the absolutely continuous probability measure vy, whose density is given by Amax(z) = k™~ max. Since all
densities h,, belong to the cone L, we have that h,, < £hpax for all w. Thus,

n—1
1 na

b Z]El,am ¢L01{|¢IO\<gb }) b*EEvmax(¢w01{\¢10|§5bn})-

We can easily verify that ¢$0 is regularly varying of index a with respect to vyax, with scaling sequence
equal to (b,)n>1 up to a multiplicative constant factor. Consequently, by Proposition 3.2, we have that, for

some constant ¢ > 0,
o, L1

EumEX(¢x01{|¢zO‘SEbn}) ~ C{-:l_ n o ,
which implies (5.7). O
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11. THE ANNEALED CASE

In this section, we consider the annealed counterparts of our results. Even though the annealed versions
do not seem to follow immediately from the quenched version, it is easy to obtain them from our proofs
in the quenched case. We take ¢, (x) = d(z, mo)_é as before we consider the convergence on the measure
space  x [0,1] with respect to vp(dw,dz) = P(dw)v*(dz). We give precise annealed results in the case of
Theorems 2.4 and 2.6, where we consider

[nt]—1

X’Z(w’x)(t) = Z ¢wO(TQJJ’r) - tCn ’ t Z Oa
7=0

viewed as a random process defined on the probability space (2 x [0, 1], v).

Theorem 11.1. Under the same assumptions as Theorem 2.4, the random process X2(t) converges in the
J1 topology to the Lévy a-stable process X (q)(t) under the probability measure v.

Proof. We apply [TK10b, Theorem 1.2] to the skew-product system (Q x [0, 1], F,v) and the observable ¢,
naturally extended to € x [0,1]. Recall that v is given by the disintegration v(dw, dz) = P(dw)v¥(dx).
We have to prove that

(a) Nni}N(Q),
(b) if a € [1,2), for all § > 0,

k—1

12 _
5 3 . J B _ —

tilimsup | (2) |72 3 [0 (B0, otz (0) = B0, )] | 28] =0
J

Il
o

where

Nalw,2)(B) i= N3 (2)(B) = # {j 1 (i ‘MTb(”C”) e B} a1

To prove (a), we take f € Cj-((0,00) x (R\ {0})) arbitrary. Then, by Theorem 6.3, we have for P-a.e. w

lim E,o(e” Vo)) = E(e= V).

n—oo

Integrating with respect to P and using the dominated convergence theorem yields

lim ]E,,(e_N"(f)) = E(e_N(f)),

n—oo

which proves (a).
To prove (b), we simply have to integrate with respect to P in the estimates in the proof of Theorem 2.4,
which hold uniformly in w € €2, and then to take the limits as n — oo and € — 0. O

Similarly, we have:

Theorem 11.2. Under the same assumptions as Theorem 2.6, X%(1) 4 X(ay(1) under the probability mea-
sure v.

Proof. We can proceed as for Theorem 11.1 in order to check the assumptions of [TK10b, Theorem 1.3] for
the skew-product system (€2 x [0,1], F,v) and the observable ¢, . O
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12. APPENDIX

The observation that our distributional limit theorems hold for any measures p < v* follows from
Theorem 1, Corollary 1 and Corollary 3 of Zweimiiller’s work [Zwe07].

Let

LIS poTi@) —an)
n 520

and suppose

Sn =, Y

where Y is a Lévy random variable.
We consider first the setup of intermittent maps. We will show that for any measure v with density A i.e.
dv = hdm in the cone L, in particular Lebesgue measure m with h =1,

S, =, Y

We focus on m. According to [Zwe07, Theorem 1] it is enough to show that

/w ')AV, — /w )dm — 0.

for any 1 : R — R which is bounded and uniformly Lipschitz.
Fix such a ¢ and consider

Since || P (h,,

/ W%[i 60 T4(x) — an]) (hy — L)dm

/w quoTJk (@) — an])P* (ho — 1)dm

S Hi/}lloollpf w = Dllzim
—1)|lzy — 0 in case of Example 2.2 and maps satisfying (LY), (Dec) and (Min) the assertion

is proved. By [Zwe07, Corollary 3], the proof for continuous time distributional limits follows immediately.
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