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Abstract. In this paper we consider random dynamical systems formed by concatenating maps acting on

the unit interval [0, 1] in an iid fashion. Considered as a stationary Markov process, the random dynamical

system possesses a unique stationary measure ν. We consider a class of non square-integrable observables

φ, mostly of form φ(x) = d(x, x0)−
1
α where x0 is a non-recurrent point (in particular a non-periodic point)

satisfying some other genericity conditions, and more generally regularly varying observables with index

α ∈ (0, 2). The two types of maps we concatenate are a class of piecewise C2 expanding maps, and a class of
intermittent maps possessing an indifferent fixed point at the origin. Under conditions on the dynamics and

α we establish Poisson limit laws, convergence of scaled Birkhoff sums to a stable limit law and functional

stable limit laws, in both the annealed and quenched case. The scaling constants for the limit laws for
almost every quenched realization are the same as those of the annealed case and determined by ν. This

is in contrast to the scalings in quenched central limit theorems where the centering constants depend in a

critical way upon the realization and are not the same for almost every realization.
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1. Introduction

In this paper we consider non square-integrable observables φ : [0, 1]→ R on two simple classes of random
dynamical system. One consists of randomly choosing in an iid manner from a finite set of maps which are
strictly polynomially mixing with an indifferent fixed point at the origin, the other consisting of randomly
choosing from a finite set of maps which are uniformly expanding and exponentially mixing. The main type
of observable we consider is of the form φ(x) = |x−x0|−

1
α , α ∈ (0, 2) which in the IID case lies in the domain

of attraction of a stable law of index α. For certain results the point x0 has to satisfy some nongenericity
conditions and in particular not be a periodic point for almost every realization of the random system (see
Definition 2.3). Some of our results, particularly those involving convergence to exponential and Poisson
laws hold for general observables that are regularly varying with index α.

The settings for investigations on stable limit laws for observables on dynamical systems tend to be of two
broad types: (1) “good observables” (typically Hölder) on slowly mixing non-uniformly hyperbolic systems;
and (2) “bad” observables (unbounded with fat tails) on fast mixing dynamical systems. As illustrative
examples of both settings we give two results.
Example of (1): The LSV intermittent map Tγ : [0, 1]→ [0, 1], γ ∈ (0, 1), is defined by

Tγ(x) =

{
x(1 + 2γxγ) if 0 ≤ x ≤ 1

2 ;
2x− 1 if 1

2 < x < 1.

The map Tγ has a unique absolutely continuous invariant measure µγ .
Gouëzel [Gou04, Theorem 1.3] showed that if γ > 1

2 and φ : [0, 1]→ R is Hölder continuous with φ(0) 6= 0,

Eµγ (φ) = 0 then for α = 1
γ

1

bn
1
α

n−1∑
j=0

φ ◦ T j →d Xα,β

(β has a complicated expression).
Example of (2): Gouëzel [Gou][Theorem 2.1] showed that if T : [0, 1]→ [0, 1] is the doubling map T (x) = 2x

(mod 1) with invariant measure m, Lebesgue, and φ(x) = x−
1
α , α ∈ (0, 2) then there exists a sequence cn

such that
2

1
α − 1

n
1
α

n−1∑
j=0

φ ◦ T j − cn →d Xα,1

For further results on the first type we refer to the influential papers [Gou04, Gou07] and [MZ15]. In
the setting of “good observables” (typically Hölder) on slowly mixing non-uniformly hyperbolic systems the
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technique of inducing on a subset of phase space and constructing a Young Tower has been used with some
success. “Good” observables lift to well-behaved observables lying in a suitable Banach space on the Young
Tower. This is not the case with unbounded observables with fat tails, though in [Gou04] the induction
technique allows an observable to be unbounded at the fixed point in a family of intermittent maps.

For further results on the second type we refer to the papers by Marta Tyran-Kaminska [TK10a, TK10b].
In the setting of Gibbs-Markov maps she shows, among other results, that functions which are measurable
with respect to the Gibbs-Markov partition and in the domain of attraction of a stable law with index α
converge (under the appropriate scaling) in the J1 topology to a Lévy process of index α [TK10b, Theorem
3.3, Corollaries 4.1 and 4.2].

For recent results on limit laws, though not stable laws, in the setting of skew-products with an ergodic
base map and uniformly hyperbolic fiber maps see also [DFGTV20a, DFGTV20b]. For a still very useful
survey of techniques and ideas in random dynamical systems we refer to [Kif98].

Our main results are given in Section 2. An introduction to stable laws and a discussion of modes of
convergence is given in Sections 3 and 4. The Poisson point approach and its application to our random
setting is detailed in Section 5. Results on convergence of return times to an exponential law and our point
processes to a Poisson process are given in Section 6 (though the proofs of these results are delayed until
sections 8.1, 8.2, 9.1 and 9.2). The proofs of the main results are given in Section 10. We conclude in Section
11 with results on stable laws for the corresponding annealed systems.

2. Main Results

For the sake of concreteness, we restrict ourselves to observables of the form

(2.1) φx0(x) = |x− x0|−
1
α , x ∈ [0, 1].

where x0 is a non-recurrent point (see Definition 2.3) and α ∈ (0, 2) but it is possible to consider more
general regularly varying observables φ which are piecewise monotonic with finitely many branches, see for
instance [TK10b, Section 4.2] in the deterministic case. Note that φx0

is regularity varying with index α.
We will be considering the following set-up, with (Ω, σ) the full two-sided shift on finitely many symbols.

In most of our settings we take Y = [0, 1].
Let σ : Ω→ Ω be an invertible ergodic measure-preserving transformation on a probability space (Ω,F ,P).

For a measurable space (Y,B), let σ : Ω→ Ω be the usual full shift and define

F : Ω× Y → Ω× Y
by

F (ω, x) = (σω, Tω(x))

We assume F preserves a probability measure ν on Ω× Y . We assume that ν admits a disintegration given
by ν(dω, dx) = P(dω)νω(dx). For all n ≥ 1, we have

Fn(ω, x) = (σnω, Tnω x),

where

Tnω = Tσn−1ω ◦ . . . ◦ Tω,
which satisfies the equivariance relations (Tnω )∗ν

ω = νσ
nω for P-a.e. ω ∈ Ω.

For each ω ∈ Ω, we denote by Pω the transfer operator of Tω with respect to the Lebesgue measure m:
for all φ ∈ L∞(m) and ψ ∈ L1(m),∫

[0,1]

(φ ◦ Tω) · ψ dm =

∫
[0,1]

φ · Pωψ dm.

We can then form, for ω ∈ Ω and n ≥ 1, the cocycle

Pnω = Pσn−1ω ◦ . . . ◦ Pω.
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Definition 2.1 (scaling constants). We consider a sequence (bn)n≥1 of positive real numbers such that

(2.2) lim
n→∞

nν(φx0
> bn) = 1.

Definition 2.2 (centering constants). We define the centering sequence (cn)n≥1 by

cn =


0 if α ∈ (0, 1)

nEν(φx0
1{φx0≤bn}) if α = 1

nEν(φx0
) if α ∈ (1, 2)

.

We now introduce two classes of random dynamical system (RDS) for which we are able to establish stable
limit laws.

2.1. Random uniformly expanding maps. We consider random i.i.d. compositions with additional
assumptions of uniform expansion. Let S be a finite collection of m piecewise C2 uniformly expanding maps
of the unit interval [0, 1]. More precisely, we assume that for each T ∈ S, there exist a finite partition AT of
[0, 1] into intervals, such that for each I ∈ AT , T can be continuously extended as a strictly monotonic C2

function on Ī and
λ := inf

I∈AT
inf
x∈Ī
|T ′(x)| > 1.

The maps Tω (determined by the 0-th coordinate of ω) are chosen from S in an i.i.d. fashion according to

a Bernoulli probability measure P on Ω := {1, . . . ,m}Z. We will denote by Aω the partition of monotonicity
of Tω, and by Anω = ∨n−1

k=0(T kω )−1(Aσkω) the partition associated to Tnω . We introduce

D = ∪n≥0 ∪ω∈Ω ∂Anω
the set of discontinuities of all the maps Tnω . Note that D is at most a countable set.

In the uniformly expanding case we also assume the conditions (LY),(Dec) and (Min). (LY) is the usual
Lasota-Yorke inequality while (Dec) and (Min) were introduced by Conze and Raugi [CR07].

(LY): there exist r ≥ 1, M > 0 and D > 0 and ρ ∈ (0, 1) such that for all ω ∈ Ω and all f ∈ BV,

‖Pωf‖BV ≤M‖f‖BV,

and
Var(P rωf) ≤ ρVar(f) +D‖f‖L1(m).

(Dec): there exists C > 0 and θ ∈ (0, 1) such that for all n ≥ 1, all ω ∈ Ω and all f ∈ BV with
Em(f) = 0:

‖Pnω f‖BV ≤ Cθn‖f‖BV

(Min): there exists c > 0 such that for all n ≥ 1 and all ω ∈ Ω,

inf
x∈[0,1]

(Pnω 1)(x) ≥ c > 0.

Definition 2.3. We say that x0 is non-recurrent if x0 satisfies the condition Tnω (x0) 6= x0 for all n ≥ 1 for
P-a.e. ω ∈ Ω.

Theorem 2.4. In the setting of exapnding maps assume (LY), (Min) and (Dec). Suppose that x0 /∈ D is
non-recurrent and consider the observable φx0 .

If α ∈ (0, 1) then for P-a.e. ω ∈ Ω, the Functional Stable Limit holds:

Xω
n (t) :=

1

bn
[

bntc−1∑
j=0

φx0
◦ T jω − tcn]

d→X(α)(t) in D[0,∞)

in the J1 topology under the probability measure νω, where X(α)(t) is the α-stable process with Lévy measure

dΠα(dx) = α|x|−(α+1) on [0,∞).
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If α ∈ [1, 2) then the same result holds for m-a.e. x0.

Example 2.5 (β-transformations). A simple example of a class of maps satisfying (LY), (Dec) and (Min) [CR07]
is to take m β-maps of the unit interval, Tβi(x) = βix (mod 1). We suppose βi > 1 + a, a > 0, for all βi,
i = 1, . . . ,m.

2.2. Random intermittent maps. Now we consider a simple class of intermittent type maps.
Liverani, Saussol and Vaienti [LSV99] introduced the map Tγ as a simple model for intermittent dynamics:

Tγ : [0, 1]→ [0, 1], Tγ(x) :=

{
(2γxγ + 1)x if 0 ≤ x < 1

2 ;
2x− 1 if 1

2 ≤ x ≤ 1.

If 0 ≤ γ < 1 then Tγ has an absolutely continuous invariant measure µγ with density hγ bounded away from
zero and satisfying hγ(x) ∼ Cx−γ for x near zero.

We form a random dynamical system by selecting γi ∈ (0, 1), i = 1, . . . ,m in an iid fashion and setting
Ti := Tγi . The associated Markov process on [0, 1] has a stationary invariant measure ν which is absolutely
continuous, with density h bounded away from zero.

We denote γmax := max1≤i≤m{γi} and γmin := min1≤i≤m{γi}.

Theorem 2.6. In the setting of iid random composition of intermittent maps suppose α ∈ (0, 1) and γmax <
1
3 . Then, for m-a.e. x0

1
bn

∑n−1
j=0 φx0

◦ T jω
d→X(α)(1) under the probability measure νω for P-a.e. ω (recall

that cn = 0 for α ∈ (0, 1)).

Remark 2.7 (Convergence with respect to Lebesgue measure). We state our limiting theorems with respect
to the fiberwise measures νω but by general results of Eagleson [Eag76](see also [Zwe07]) the convergence
holds with respect to any measure µ for which µ� νω, in particular our convergence results hold with respect
to Lebesgue measure m. Further details are given in the Appendix.

Our proofs are based on a Poisson process approach developed for dynamical systems by Marta Tyran-
Kaminska [TK10a, TK10b].

3. Probabilistic tools

In this section, we review some topics from Probability Theory.

3.1. Regularly varying functions and domains of attraction. We refer to Feller [Fel71] or Bingham,
Goldie and Teugels [BGT87] for the relations between domains of attraction of stable laws and regularly
varying functions. For φ regularly varying we define the constants bn and cn as in the case of φx0

.

Remark 3.1. When α ∈ (0, 1) then φ is not integrable and one can choose the centering sequence (cn) to
be identically 0. When α = 1, it might happen that φ is not integrable, and it is then necessary to define cn
with suitably truncated moments as above. If φ is integrable then center by cn = nEν(φ).

We will use the following asymptotics for truncated moments, which can be deduced from Karamata’s

results concerning the tail behavior of regularly varying functions. Define p by limx→∞
ν(φ>x)
ν(|φ|>x) = p.

Proposition 3.2 (Karamata). Let φ be regularly varying with index α ∈ (0, 2). Then, setting β := 2p − 1
and, for ε > 0,

(3.1) cα(ε) :=


0 if α ∈ (0, 1)

−β log ε if α = 1

ε1−αβα/(α− 1) if α ∈ (1, 2)

the following hold for all ε > 0:

(a) Eν(|φ|21{|φ|≤εbn}) ∼
α

2− α
(εbn)2ν(|φ| > εbn),
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(b) if α ∈ (0, 1),

Eν(|φ|1{|φ|≤εbn}) ∼
α

1− α
εbnν(|φ| > εbn),

(c) if α ∈ (1, 2),

lim
n→∞

n

bn
Eν(φ1{|φ|>εbn}) = cα(ε),

(d) if α = 1,

lim
n→∞

n

bn
Eν(φ1{εbn<|φ|≤bn}) = cα(ε),

(e) if α = 1,
n

bn
Eν(|φ|1{|φ|≤εbn}) ∼ L̃(n),

for a slowly varying function L̃,

3.2. Lévy α-stable processes. A helpful and more detailed discussion can be found, e.g., in [TK10a,
TK10b].
X(t) is a Lévy stable process if X(0) = 0, X has stationary independent increments and X(1) has an

α-stable distribution.
The Lévy-Khintchine representation for the characteristic function of an α-stable random variable Xα,β

with index α ∈ (0, 2) and parameter β ∈ [−1, 1] has the form:

E[eitX ] = exp

[
itaα +

∫
(eitx − 1− itx1[−1,1](x))Πα(dx)

]
where

• aα =

{
β α

1−α α 6= 1

0 α = 1
,

• Πα is a Lévy measure given by

dΠα = α(p1(0,∞)(x) + (1− p)1(−∞,0)(x))|x|−α−1dx

• p =
β + 1

2
.

Note that p and β may equally serve as parameters for Xα,β . We will drop the β from Xα,β , as is common
in the literature, for simplicity of notation and when it plays no essential role.

3.3. Poisson point processes. Let (Tn)n≥1 be a sequence of measurable transformations on a probability
space (Y,B, µ). For n ≥ 1 we denote

(3.2) Tn1 := Tn ◦ . . . ◦ T1.

Given φ : Y → R measurable, recall that we define the scaled Birkhoff sum by

(3.3) Sn :=
1

bn
[
n−1∑
j=0

φ ◦ T j1 − cn],

for some real constants bn > 0, cn and the scaled random process Xn(t), n ≥ 1, by

(3.4) Xn(t) :=
1

bn
[

bntc−1∑
j=0

φ ◦ T j1 − tcn], t ≥ 0,

For Xα(t) a Lévy α-stable process and B ∈ B((0,∞)× (R \ {0})) define

N(α)(B) := #{s > 0 : (s,∆Xα(s)) ∈ B}

where ∆Xα(t) := Xα(t)−Xα(t−).
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The random variable N(α)(B), which counts the jumps (and their time) of the Lévy process that lie in B,
is finite a.s. if and only if (m × Πα)(B) < ∞. In that case N(α)(B) has a Poisson distribution with mean
(m×Πα)(B).

Similarly define

Nn(B) := #

{
j ≥ 1 :

(
j

n
,
φ ◦ T j−1

1

bn

)
∈ B

}
, n ≥ 1,

Nn(B) counts the jumps of the process (3.4) that lie in B. When a realization ω ∈ Ω is fixed we define

Nω
n (B) := #

{
j ≥ 1 :

(
j

n
,
φ ◦ T j−1

ω

bn

)
∈ B

}
, n ≥ 1.

Definition 3.3. We say Nn converges in distribution to N(α) and write

Nn
d→N(α)

if and only if Nn(B)
d→N(α)(B) for all B ∈ B((0,∞)×(R\{0})) with (m×Πα)(B) <∞ and (m×Πα)(∂B) =

0.

4. Modes of Convergence

Consider the process Xα determined by the observable φ (that is, an iid version of φ which regularly
varying with the same index α and parameter p ). We are interested the following limits:

(A) Poisson point process convergence.

Nω
n

d→N(α)

with respect to νω for P a.e. ω where N(α) is the Poisson point process of an α-stable process with
parameter determined by ν, the annealed measure.

(B) Stable law convergence.

Sωn :=
1

bn
[
n−1∑
j=0

φ ◦ T jω − cn]
d→Xα(1)

for P-a.e. ω, with respect to νω, for φ regularly varying with index α and Xα(t) the corresponding
α-stable process, for suitable scaling and centering constants bn and cn.

(C) Functional stable law convergence.

Xω
n (t) :=

1

bn
[

bntc−1∑
j=0

φ ◦ T jω − tcn]
d→Xα(t)

in D[0,∞) in the J1 topology P-a.e. ω, with respect to νω for φ regularly varying with index α and
Xα(t) the corresponding α-stable process.

For the cases we are considering, the scaling constants bn are given by (2.2) in Definition 2.1, and the
centering constants cn are given in Definition 2.2 (see also Remark 3.1).

Remark 4.1. In the limit laws for quenched systems that we obtain of type (B) and (C), the centering
sequence cn does not depend on the realization ω. This is in contrast to the case of the CLT, where a
random centering is necessary; see [AA16, Theorem 9] and [NPT21, Theorem 5.3].
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5. A Poisson Point Process Approach to random and sequential dynamical systems

Our results are based on the Poisson point process approach developed by Marta Tyran-Kamińska [TK10a,
TK10b] adapted to our random setting (see Theorems 5.1 and 5.3). Namely, convergence to a stable law or
a Lévy process follows from the convergence of the corresponding (Poisson) jump processes, and control of
the small jumps.

A key role is played by Kallenberg’s Theorem [Kal76, Theorem 4.7] to check convergence of the Poisson

point processes, Nn
d→N(α). Kallenberg’s theorem does not assume stationarity and hence we may use it in

our setting.
In this section, we provide general conditions ensuring weak convergence to Lévy stable processes for non-

stationary dynamical systems, following closely the approach of Tyran-Kamińska [TK10b]. We start from
the very general setting of non-autonomous sequential dynamics and then specialize to the case of quenched
random dynamical systems, which will be useful to treat iid random compositions in the later sections.

5.1. Sequential transformations. Recall the notations introduced in Section 3.3. (Tn)n≥1 is a sequence
of measurable transformations on a probability space (Y,B, µ). For n ≥ 1, recall we define

Tn1 = Tn ◦ . . . ◦ T1.

The proof of the following statement is essentially the same as the proof of [TK10b, Theorem 1.1].
Note that the measure µ does not have to be invariant. Moreover (see [TK10b, Remark 2.1]), the

convergence Xn
d→X(α) holds even without the condition µ(φ ◦ T j1 6= 0) = 1, which is used only for the

converse implication of the “if and only if”.

Theorem 5.1 (Functional stable limit law, [TK10b, Theorem 1.1]). Let α ∈ (0, 2) and suppose that µ(φ ◦
T j1 6= 0) = 1 for all j ≥ 0. Then Xn

d→X(α) in D[0,∞) under the probability measure µ for some constants
bn > 0 and cn if and only if

• Nn
d→N(α) and

• for all δ > 0, ` ≥ 1, with cα(ε) given by (3.1),

(5.1) lim
ε→0

lim sup
n→∞

µ

 sup
0≤t≤`

∣∣∣∣∣∣ 1

bn

bntc−1∑
j=0

φ ◦ T j1 1{|φ◦T j1 |≤εbn} − t(cn − bncα(ε))

∣∣∣∣∣∣ ≥ δ
 = 0

Remark 5.2. In some cases the convergence Nn
d→N(α) does not hold, but one has convergence of the

marginals, Nn((0, 1] × ·) d→N(α)((0, 1] × ·). In this case, although unable to obtain a functional stable law
convergence of type (C), we can in some settings prove the convergence to a stable law for the Birkhoff sums
(convergence of type (B)).

In particular, we are unable to prove Nω
n

d→N(α) for the case of random intermittent maps. On the other

hand, in the setting of random uniformly expanding maps we use the spectral gap to show that Nω
n

d→N(α),
and then obtain the functional stable limit law.

The next statement is [TK10b, Lemma 2.2, part (2)], which follows from [TK10a, Theorem 3.2]. Again,
the measure does not have to be invariant.

Theorem 5.3 (Stable limit law, [TK10b, Lemma 2.2]). For α ∈ (0, 2), consider an observable φ on the
probability measure µ, and cα(ε) given by (3.1).

If

Nn((0, 1]× ·) d→N(α)((0, 1]× ·)
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and, for all δ > 0,

(5.2) lim
ε→0

lim sup
n→∞

µ

∣∣∣∣∣∣ 1

bn

n−1∑
j=0

φ ◦ T j1 1{|φ◦T j1 |≤εbn} − (cn − bncα(ε))

∣∣∣∣∣∣ ≥ δ
 = 0

then

1

bn
[
n−1∑
j=0

φ ◦ T j1 − cn]
d→X(α)(1)

under the probability measure µ.

5.2. Random dynamical systems. Let φ : Y → R be a measurable function such that νω(φ 6= 0) = 1.

Proposition 5.4 ([TK10b, proof of Theorem 1.2]).
Let α ∈ (0, 1). With bn as in Definition 2.1 and cn = 0, suppose that for P-a.e. ω ∈ Ω

(5.3) lim
ε→0

lim sup
n→∞

1

bn

n`−1∑
j=0

Eνσjω (|φ|1{|φ|≤εbn}) = 0 for all ` ≥ 1,

and

Nω
n

d→N(α).

Then Xω
n

d→X(α) in D[0,∞) under the probability measure νω for P-a.e. ω ∈ Ω.

Proof. We will check that the hypothesis of Theorem 5.1 are met for P-a.e. ω with Tn = Tσn−1ω, µ =
νω. Recall that cn = cα(ε) = 0 when α ∈ (0, 1). Using [KW69, Theorem 1] (see Theorem 5.6) and the
equivariance of the family of measures {νω}ω∈Ω, we have

νω

 sup
0≤t≤`

∣∣∣∣∣∣ 1

bn

bntc−1∑
j=0

φ ◦ T jω1{|φ◦T jω|≤εbn}

∣∣∣∣∣∣ ≥ δ
 ≤ 1

δbn

n`−1∑
j=0

Eνσjω (|φ|1{|φ|≤εbn})

which shows that condition (5.3) implies condition (5.1) for all δ > 0 and ` ≥ 1. �

Remark 5.5. One could replace condition (5.3) by one similar to (5.5), and use the argument in the proof
of Proposition 5.7.

Theorem 5.6 (Kounias and Weng [KW69, special case of Theorem 1 therein]).
Assume the random variables Xk are in L1(µ). Then

µ

(
max

1≤k≤n

∣∣∣∣∣
k∑
`=1

X`

∣∣∣∣∣ ≥ δ
)
≤ 1

δ

n∑
k=1

Eµ(|Xk|).

Proposition 5.7. Let α ∈ [1, 2).
With bn and cn as in Definitions 2.1 and 2.2, and cα(ε) as in (3.1), suppose that for all ε > 0 and all

` ≥ 1,

(5.4) lim
n→∞

sup
0≤t≤`

∣∣∣∣∣∣ 1

bn

bntc−1∑
j=0

Eνσjω (φ1{|φ|≤εbn})− t(cn − bncα(ε))

∣∣∣∣∣∣ = 0 for P-a.e. ω ∈ Ω,

and that for all δ > 0

(5.5) lim
ε→0

lim sup
n→∞

esssup
ω∈Ω

νω
(

max
1≤k≤n

∣∣∣ 1

bn

k−1∑
j=0

[
φ ◦ T jω1{|φ◦T jω|≤εbn} − Eνσjω (φ1{|φ|≤εbn})

]∣∣∣ ≥ δ
)

= 0.
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If Nω
n

d→N(α) for P-a.e. ω ∈ Ω, then Xω
n

d→X(α) in D[0,∞) under the probability measure νω for P-
a.e. ω ∈ Ω.

Proof. As in the proof of Proposition 5.4, we check the hypothesis of Theorem 5.1 with Tn = Tσn−1ω, µ = νω

for P-a.e. ω ∈ Ω. We will see that (5.1) follows from (5.4) and (5.5).
Using the equivariance of {νω}ω∈Ω, we see that condition (5.1) is implied by (5.4) and (5.6) below:

(5.6) lim
ε→0

lim sup
n→∞

νω

 sup
1≤k≤n`

∣∣∣∣∣∣ 1

bn

k−1∑
j=0

[
φ ◦ T jω1{|φ◦T jω|≤εbn} − Eνσjω (φ1{|φ|≤εbn})

]∣∣∣∣∣∣ ≥ δ
 = 0.

We next show that condition (5.5) implies (5.6).
Since sup

1≤k≤n`

∣∣∣∣∣∣ 1

bn

k−1∑
j=0

[
φ ◦ T jω1{|φ◦T jω|≤εbn} − Eνσjω (φ1{|φ|≤εbn})

]∣∣∣∣∣∣ ≥ δ


⊂
`−1⋃
i=0

 sup
in<k≤(i+1)n

∣∣∣∣∣∣ 1

bn

k−1∑
j=in

[
φ ◦ T jω1{|φ◦T jω|≤εbn} − Eνσjω (φ1{|φ|≤εbn})

]∣∣∣∣∣∣ ≥ δ

`

 ,

we obtain that, using again the equivariance, for P-a.e. ω ∈ Ω,

νω

 sup
1≤k≤n`

∣∣∣∣∣∣ 1

bn

k−1∑
j=0

[
φ ◦ T jω1{|φ◦T jω|≤εbn} − Eνσjω (φ1{|φ|≤εbn})

]∣∣∣∣∣∣ ≥ δ


≤
`−1∑
i=0

νσ
inω

 sup
1≤k≤n

∣∣∣∣∣∣ 1

bn

k−1∑
j=0

[
φ ◦ T jσinω1{|φ◦T j

σinω
|≤εbn} − Eνσj(σinω)(φ1{|φ|≤εbn})

]∣∣∣∣∣∣ ≥ δ

`


≤ ` · esssup

ω′∈Ω
νω
′

 max
1≤k≤n

∣∣∣∣∣∣ 1

bn

k−1∑
j=0

[
φ ◦ T jω′1{|φ◦T jω′ |≤εbn} − Eνσjω′ (φ1{|φ|≤εbn})

]∣∣∣∣∣∣ ≥ δ

`

 .

Thus, condition (5.5) implies (5.6), which concludes the proof. �

The analogue for the convergence to a stable law is the following.

Proposition 5.8. Suppose that for P-a.e. ω ∈ Ω, we have

Nω
n ((0, 1]× ·) d→N(α)((0, 1]× ·).

If α ∈ (0, 1) (so cn = 0), we require in addition that

(5.7) lim
ε→0

lim sup
n→∞

1

bn

n−1∑
j=0

Eνσjω (|φ|1{|φ|≤εbn}) = 0

If α ∈ [1, 2), we require instead of (5.7) that for all ε > 0,

lim
n→∞

∣∣∣∣∣∣ 1

bn

n−1∑
j=0

Eνσjω (φ1{|φ|≤εbn})− (cn − bncα(ε))

∣∣∣∣∣∣ = 0
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and

lim
ε→0

lim sup
n→∞

νω

∣∣∣∣∣∣ 1

bn

n−1∑
j=0

[
φ ◦ T jω1{|φ◦T jω|≤εbn} − Eνσjω (φ1{|φ|≤εbn})

]∣∣∣∣∣∣ ≥ δ
 = 0.

Then

1

bn

n−1∑
j=0

φ ◦ T jω − cn

 d→X(α)(1)

under the probability measure νω for P-a.e. ω ∈ Ω.

Proof. We check the conditions of Theorem 5.3.
The proof for α ∈ (0, 1) is similar to the proof of Proposition 5.4, the proof of the case α ∈ [1, 2) is similar

to the proof of Proposition 5.7. �

5.3. The annealed transfer operator. We assume that the random dynamical system F : Ω × [0, 1] →
Ω× [0, 1],

F (ω, x) = (σω, Tω(x))

which can also be viewed as a Markov process on [0, 1], has a stationary measure ν with density h. The map
F : Ω× [0, 1]→ Ω× [0, 1] will preserve P× ν. Recall that P := {(p1, . . . , pm)}Z.

We use the notation Pµ,i for the transfer operator of Ti : [0, 1] → [0, 1] with respect to a measure µ on
[0, 1], i.e. ∫

f · g ◦ Tidµ =

∫
(Pµ,if)gdµ, for all f ∈ L1(µ), g ∈ L∞(µ).

The annealed transfer operator is defined by

Pµ(f) :=

m∑
i=1

piPµ,i(f)

with adjoint

U(f) :=
m∑
i=1

pif ◦ Ti

which satisfies the duality relation∫
f(g ◦ U)dµ =

∫
(Pµf)gdµ, for all f ∈ L1(µ), g ∈ L∞(µ).

As above, we assume there are sample measures dνω = hωdx on each fiber [0, 1] of the skew product such
that

Pωhω = hσω

where Pω is the transfer operator of Tω0
with respect to the Lebesgue measure.

Therefore

ν(A) =

∫
Ω

[

∫
A

hωdx]dP(ω)

for all Borel sets A ⊂ [0, 1].



12 R. AIMINO, M. NICOL, AND A. TÖRÖK

5.4. Decay of correlations. We now consider the decay of correlations properties of the annealed systems
associated to maps satisfying (LY), (Dec) and (Min) and intermittent maps.

By [ANV15, Proposition 3.1] in the setting of maps satisfying (LY), (Dec) and (Min) we have exponential
decay in BV against L1: there are C > 0, 0 < λ < 1 such that∣∣∣∣∫ fg ◦ Undν −

∫
fdν

∫
gdν

∣∣∣∣ ≤ Cλn‖f‖BV ‖g‖L1(ν)

In the setting of intermittent maps, by [BB16, Theorem 1.2], we have polynomial decay in Hölder against
L∞: there exists C > 0 such that∣∣∣∣∫ fg ◦ Undν −

∫
fdν

∫
gdν

∣∣∣∣ ≤ Cn1− 1
γmin ‖f‖Hölder‖g‖L∞(ν).

We now consider a useful property satisfied by our class of random uniformly expanding maps.

Definition 5.9 (Condition U). We assume that almost each νω is absolutely continuous with respect to
the Lebesgue measure m, and

for some C > 0, P-a.e. ω ∈ Ω =⇒ C−1 ≤ hω :=
dνω

dν
≤ C, m-a.e.(5.8)

the map ω ∈ Ω 7→ hω ∈ L∞(m) is Hölder continuous.(5.9)

Consequently, the stationary measure ν is also absolutely continuous with respect to m, with density h ∈
L∞(m) given by h(x) =

∫
Ω
hω(x)P(dω) and satisfying (5.8).

Lemma 5.10. Properties (LY), (Min) and (Dec) imply Condition U. Namely, there exists a unique Hölder
map ω ∈ Ω 7→ hω ∈ BV such that Pωhω = hσω and (5.8), (5.9) are satisfied by [ANV15].

Proof. By (Dec), and as all the operators Pω are Markov with respect to m, we have

(5.10) ‖Pn+k
σ−(n+k)ω

1− Pnσ−nω1‖BV ≤ Cκn‖1− P kσ−(n+k)ω1‖BV ≤ Cκn,

which proves that (Pnσ−nω1)n≥0 is a Cauchy sequence in BV converging to a unique limit hω ∈ BV satisfying
Pωhω = hσω for all ω. The lower bound in (5.8) follows from the condition (Min), while the upper bound
is a consequence of the uniform Lasota-Yorke inequality (LY), as actually the family {hω}ω∈Ω is bounded
in BV. To prove the Hölder continuity of ω 7→ hω with respect to the distance dθ, we remark that if ω and
ω′ agree in coordinates |k| ≤ n, then

‖hω − hω′‖BV = ‖P kσ−kω(hσ−kω − hσ−kω′)‖BV ≤ Cθn ≤ Cdθ(ω, ω′).
�

Remark 5.11. Note that the density h of the stationary measure ν also belongs to BV and is uniformly
bounded from above and below, as the average of hω over Ω.

5.4.1. The sample measures hω. The regularity properties of the sample measures hω, both as functions
of ω and as functions of x on [0, 1] play a key role in our estimates. We will first recall how the sample
measures are constructed. Suppose ω := (. . . , ω−1, ω0, ω1, . . . , ωn, . . . , ) and define hn(ω) = Pω−1

. . . Pω−n1
as a sequence of functions on the fiber I above ω. In the setting both of random uniformly expanding maps
and of intermittent maps {hn(ω)} is a Cauchy sequence and has a limit hω.

In the setting of random expanding maps, hω is uniformly BV in ω as

‖hn(ω)− hn+1(ω)‖BV ≤ ‖Pω−1
Pω−2

. . . Pω−n(1− Pω−n−1
1)‖BV ≤ Cλn.

In the setting of intermittent maps with γmax = max1≤i≤m{γi}, the densities hω lie in the cone

L :=
{
f ∈ C0((0, 1]) ∩ L1(m), f ≥ 0, f non-increasing,

Xγmax+1f increasing, f(x) ≤ ax−γmaxm(f)
}
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where X(x) = x is the identity function and m(f) is the integral of f with respect to m. In [AHN+15]
it is proven that for a fixed value of γmax ∈ (0, 1), provided that the constant a is big enough, the cone
L is invariant under the action of all transfer operators Pγi with 0 < γi ≤ γmax and so (see e.g. [NPT21,
Proposition 3.3], which summarizes results of [NTV18])

‖hn(ω)− hn+k(ω)‖L1(m) ≤ ‖Pω−1
Pω−2

. . . Pω−n(1− Pω−n−1
. . . Pω−n−k1)‖L1(m)

≤ Cγmaxn
1− 1

γmax (log n)
1

γmax

whence hω ∈ L1(m). In later arguments we will use the approximation

(5.11) ‖hn(ω)− hω‖L1(m) ≤ Cγmaxn
1− 1

γmax (log n)
1

γmax .

We mention also the recent paper [KL21] where the logarithm term in Equation (5.11) is shown to be
unnecessary and moment estimates are given.

We now show that hω is a Hölder function of ω on (Ω, dθ) in the setting of random expanding maps.
For θ ∈ (0, 1), we introduce on Ω the symbolic metric

dθ(ω, ω
′) = θs(ω,ω

′)

where s(ω, ω′) = inf {k ≥ 0 : ω` 6= ω′` for some |`| ≤ k}.
Suppose ω, ω′ agree in coordinates |k| ≤ n (i.e. backwards and forwards in time) so that dθ(ω, ω

′
) ≤ θn

in the symbolic metric on Ω. Then

‖hω − hω′‖BV ≤ ‖Pω−1
Pω1

. . . Pω−n+1
(h(σ−n+1ω) − h(σ−n+1ω′))‖BV

≤ Cλn−1 = C ′dθ(ω, ω
′)logθ λ

Recall that ‖f‖∞ ≤ C‖f‖BV, see e.g. [BG97, Lemma 2.3.1].
That is, Condition U (see Definition 5.9) holds for random expanding maps.
The map ω 7→ hω is not Hölder in the setting of intermittent maps; in several arguments we will use the

regularity properties of the approximation hn(ω) for hω.
However, on intervals that stay away from zero, all functions in the cone L are comparable to their mean.

Therefore, on sets that are uniformly away from zero, all the above densities/measures (dν = hdx, hω, hn(ω))
are still comparable.

Namely,

(5.12)
for any δ ∈ (0, 1) there is Cδ > 0 such that

h ∈ L =⇒ 1/Cδ < h(x)/m(h) < Cδ for x ∈ [δ, 1]

Indeed, h/m(h) is bounded below by [LSV99, Lemma 2.4], and the upper bound follows from the definition
of the cone.

6. Ancilliary Results

Let x0 ∈ [0, 1], and, for α ∈ (0, 2), recall we define the function φx0(x) = |x−x0|−
1
α . It is easy to see that

φx0 is regularity varying with index α and that p = 1.

6.1. Exponential law and point process results. We denote by J the family of all finite unions of
intervals of the form (x, y], where −∞ ≤ x < y ≤ ∞ and 0 /∈ [x, y].

For a measurable subset U ⊂ [0, 1], we define the hitting time of (ω, x) ∈ Ω× [0, 1] to U by

(6.1) RU (ω)(x) := inf
{
k ≥ 1 : T kω (x) ∈ U

}
.

Recall that φx0
(x) := d(x, x0)−

1
α depends on the choice of x0 ∈ [0, 1]. Recall also that

D = ∪n≥0 ∪ω∈Ω ∂Anω
the set of discontinuities of all the maps Tnω .
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Theorem 6.1. In the setting of Section 2.1, assume (LY), (Min) and (Dec). If x0 /∈ D is non-recurrent,
then, for P-a.e. ω ∈ Ω and all 0 ≤ s < t,

lim
n→∞

νσ
bnscω

(
RAn(σbnscω) > bn(t− s)c

)
= e−(t−s)Πα(J).

where An := φ−1
x0

(bnJ), J ∈ J .

Theorem 6.2. In the setting of intermittent maps assume that γmax <
1
3 . Then for m-a.e. x0 for P-a.e.

ω ∈ Ω and all 0 ≤ s < t,

lim
n→∞

νσ
bnscω

(
RAn(σbnscω) > bn(t− s)c

)
= e−(t−s)Πα(J).

where An := φ−1
x0

(bnJ), J ∈ J .

Theorem 6.3. In the setting of Section 2.1, assume (LY), (Min) and (Dec). If x0 /∈ D is non-recurrent,
then for P-a.e. ω ∈ Ω, then

Nω
n

d→N(α),

under the probability νω.

Theorem 6.4. In the setting of intermittent maps for m-a.e. x0 for P-a.e. ω,

Nω
n ((0, 1]× ·) d→N(α)((0, 1]× ·)

After some preliminary lemmas and results Theorem 6.1 is proved in Section 8.1, Theorem 6.2 in Section 8.2,
Theorem 6.3 in Section 9.1 and Theorem 6.4 in Section 9.2.

7. Scheme of proofs

7.1. Two useful lemmas. We now proceed to the proofs of the main results. We will use the following
technical propositions which are a form of spatial ergodic theorem which allows us to prove exponential and
Poisson limit laws.

Lemma 7.1. Assume Condition U and let χn : Y → R be a sequence of functions in L1(m) such that

Em(|χn|) = O(n−1L̃(n)) for some slowly varying function L̃. Then, for P-a.e. ω ∈ Ω and for all ` ≥ 1,

lim
n→∞

sup
0≤k≤`

∣∣∣∣∣∣
kn−1∑
j=0

(
Eνσjω (χn)− Eν(χn)

)∣∣∣∣∣∣ = 0.

Therefore, given (s, t] ⊂ [0,∞) and ε > 0, for P-a.e. ω there exists N(ω) such that∣∣∣∣∣∣
bntc∑

r=bnsc+1

(
Eνσjω (χn)− Eν(χn)

)∣∣∣∣∣∣ ≤ ε
for all n ≥ N(ω).

Proof. We obtain the second claim by taking the difference between two values of ` in the first claim.
Fix ` ≥ 1. For δ > 0, let

Unk (δ) =

ω ∈ Ω :

∣∣∣∣∣∣
kn−1∑
j=0

(
Eνσjω (χn)− Eν(χn)

)∣∣∣∣∣∣ ≥ δ
 ,

and

Bn(δ) =

ω ∈ Ω : sup
0≤k≤`

∣∣∣∣∣∣
kn−1∑
j=0

(
Eνσjω (χn)− Eν(χn)

)∣∣∣∣∣∣ ≥ δ
 .
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Note that

Bn(δ) =
⋃̀
k=0

Unk (δ).

We define fn(ω) = Eνω (χn) and fn = EP(fn). We claim that fn : Ω → R is Hölder with norm ‖fn‖θ =

O(n−1L̃(n)). Indeed, for ω ∈ Ω, we have

|fn(ω)| =
∣∣∣∣∫
Y

χn(x)dνω(x)

∣∣∣∣ ≤ ‖hω‖L∞m ‖χn‖L1
m
≤ C

n
L̃(n),

and for ω, ω′ ∈ Ω, we have

|fn(ω)− fn(ω′)| =
∣∣∣∣∫
Y

χn(x)dνω(x)−
∫
Y

χn(x)dνω
′
(x)

∣∣∣∣
≤
∫
Y

|χn(x)| · |hω(x)− hω′(x)|dm(x)

≤ ‖hω − hω′‖L∞m ‖χn‖L1
m

≤ C

n
L̃(n)dθ(ω, ω

′),

since ω ∈ Ω 7→ hω ∈ L∞(m) is Hölder continuous. In particular, we also have that fn = O(n−1L̃(n)).
We have, using Chebyshev’s inequality,

P(Unk (δ)) = P

ω ∈ Ω :

∣∣∣∣∣∣
kn−1∑
j=0

(
fn ◦ σj − fn

)∣∣∣∣∣∣ ≥ δ



≤ 1

δ2
EP


kn−1∑

j=0

(
fn ◦ σj − fn

)2


≤ 1

δ2

kn−1∑
j=0

(EP|fn ◦ σj − fn|2 + 2
∑

0≤i<j≤kn−1

EP((fn ◦ σi − fn)(fn ◦ σj − fn))

 .
By the σ-invariance of P, we have

EP|fn ◦ σj − fn|2 = EP|fn − fn|2,

and, since (Ω,P, σ) admits exponential decay of correlations for Hölder observables, there exist λ ∈ (0, 1)
and C > 0 such that

EP((fn ◦ σi − fn)(fn ◦ σj − fn)) = EP((fn − fn)(fn ◦ σj−i − fn))

≤ Cλj−i‖fn − fn‖2θ.

We then obtain that

P(Unk (δ)) ≤ C

δ2

kn‖fn − fn‖2L2
m

+ 2
∑

0≤i<j≤kn−1

λj−i‖fn − fn‖2θ


≤ Cnk

δ2
‖fn‖2θ

≤ C k

nδ2
(L̃(n))2,
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which implies that

P(Bn(δ)) ≤ C `2

nδ2
(L̃(n))2.

Let η > 0. By the Borel-Cantelli lemma, it follows that for P-a.e. ω ∈ Ω, there exists N(ω, δ) ≥ 1 such

that ω /∈ Bbp1+ηc(δ) for all p ≥ N(ω, δ).
Let now P := bp1+ηc < n ≤ P ′ = b(p + 1)1+ηc for p large enough. Let 0 ≤ k ≤ `. Then, since

‖fn‖∞ = O(n−1L̃(n)),∣∣∣∣∣∣
kP−1∑
j=0

(
fn(σjω)− fn

)
−
kn−1∑
j=0

(
fn(σjω)− fn

)∣∣∣∣∣∣ ≤
kn−1∑
j=kP

∣∣fn(σjω)− fn
∣∣

≤ CP
′ − P
P

L̃(n) ≤ C L̃(p1+η)

p
,

because on the one hand
P ′ − P
P

=
b(p+ 1)1+ηc − bp1+ηc

bp1+ηc
= O

(
1

p

)
,

and on the other hand, by Potter’s bounds, for τ > 0,

L̃(n) ≤ CL̃(P )
( n
P

)τ
≤ CL̃(P )

(
P ′

P

)τ
≤ CL̃(P ).

Since ∣∣∣∣∣∣
kP−1∑
j=0

(
fn(σjω)− fn

)∣∣∣∣∣∣ < δ

for all 0 ≤ k ≤ `, it follows that for P-a.e. ω, there exists N(ω, δ) such that ω /∈ Bn(2δ) for all n ≥ N(ω, δ),
which concludes the proof. �

We now consider a corresponding result to Lemma 7.1 in the setting of intermittent maps.

Lemma 7.2. Assume that γmax < 1/2, and that χn ∈ L1(m) is such that Em(|χn|) = O(n−1), ‖χn‖∞ =
O(1) and there is δ > 0 such that supp(χn) ⊂ [δ, 1] for all n.

Then, for P-a.e. ω ∈ Ω and for all ` ≥ 1,

lim
n→∞

sup
0≤k≤`

∣∣∣∣∣∣
kn−1∑
j=0

(
Eνσjω (χn)− Eν(χn)

)∣∣∣∣∣∣ = 0.

Proof. In the setting of intermittent maps we must modify the argument of Lemma 7.1 slightly as hω is not
a Hölder function of ω. Instead, we consider hiω = P iσ−iω1. and use that, by (5.11),

(7.1) ‖hiω − hω‖L1(m) ≤ Ci1−
1

γmax (leaving out the log term).

Note that hiω is the i-th approximate to hω in the pullback construction of hω. Let νiω be the measure such

that
dνiω
dm = hiω.

Consider

f in(ω) = Eνiω (χn) , fn(ω) = Eνω (χn)

f
i

n = EP(f in) , fn = EP(fn).

By (5.12), on the set [δ, 1] the densities involved (hkω, hω, h = dν/dm) are uniformly bounded above and away
from zero. Thus ‖f in‖∞ = O(n−1).

Pick 0 < a < 1 is such that β := ( 1
γmax

− 1)a− 1 > 0.



STABLE LAWS FOR RANDOM DYNAMICAL SYSTEMS 17

For a given n take i = in = na. By (7.1), for all ω, n and i = na

|f in(ω)− fn(ω)| ≤ ‖hiω − hω‖L1(m)‖χn‖L∞(m) = O(n−(β+1)).

Then

|f in − fn| = O(n−(β+1))

and ∣∣∣∣∣
kn−1∑
r=0

[f in(σrω)− fn(σrω)]

∣∣∣∣∣ ≤ C`n−β .
Given ε, choose n large enough that for all 0 ≤ k ≤ `,{

ω ∈ Ω :

∣∣∣∣∣
kn−1∑
r=0

(fn(σrω)− fn)

∣∣∣∣∣ > ε

}
⊂

{
ω ∈ Ω :

∣∣∣∣∣
kn−1∑
r=0

(f in(σrω)− f in)

∣∣∣∣∣ > ε

2

}
.

By Chebyshev

P

( ∣∣∣∣∣
kn−1∑
r=0

(f in ◦ σr − f
i

n)

∣∣∣∣∣ > ε

2

)
≤ 4

ε2

kn−1∑
r=0

EP

([
f in ◦ σr − f

i

n

]2)

+
4

ε2

[
2

kn−1∑
r=0

kn−1∑
u=r+1

∣∣∣EP[(f in ◦ σr − f
i

n)(f in ◦ σu − f
i

n)]
∣∣∣]

We bound
kn−1∑
r=0

EP

([
f in − f

i

n

]2)
≤ C

kn−1∑
r=0

‖f in‖2∞ ≤
C`

n

and note that if |r − u| > na then by independence

EP

[
(f in ◦ σr − f

i

n)(fn ◦ σu − f
i

n)
]

= EP

[
f in ◦ σr − f

i

n

]
EP

[
f in ◦ σu − f

i

n

]
= 0

and hence we may bound

kn−1∑
r=0

kn−1∑
u=r+1

∣∣∣EP[(f in ◦ σr − f
i

n)(f in ◦ σu − f
i

n)]
∣∣∣ ≤ C`

n1−a .

Thus, for n large enough,

P

({
ω ∈ Ω :

∣∣∣∣∣
kn−1∑
r=0

[fn(σrω)− fn]

∣∣∣∣∣ > ε

})
≤ C`

n1−aε2
.

The rest of the argument proceeds as in the case of Lemma 7.1 using a speedup along a sequence n = p1+η

where η > a
1−a , since ‖fn‖∞ = O(n−1) still holds. �

7.2. Criteria for stable laws and functional limit laws. The next theorem shows that for regularly
varying observables, Poisson convergence and Condition U imply convergence in the J1 topology if α ∈ (0, 1)
and gives an additional condition to be verified in the case α ∈ [1, 2).

Note that (7.2) is essentially condition (5.5) of Proposition 5.7.

Theorem 7.3. Assume φ is regularly varying, Condition U holds and that

Nω
n

d→N(α)

for P-a.e. ω ∈ Ω.
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If α ∈ [1, 2), assume furthermore that for all δ > 0, and P-a.e. ω ∈ Ω

(7.2) lim
ε→0

lim sup
n→∞

ν

 max
1≤k≤n

∣∣∣∣∣∣ 1

bn

k−1∑
j=0

[
φ ◦ T jω1{|φ◦T jω|≤εbn} − Eνσjω (φ1{|φ|≤εbn})

]∣∣∣∣∣∣ ≥ δ
 = 0.

Then Xω
n

d→X(α) in D[0,∞) under the probability measure νω for P-a.e. ω ∈ Ω.

Remark 7.4. From (5.8) and Theorem 5.1, it follows that the convergence of Xω
n also holds under the

probability measure ν.

Proof of Theorem 7.3. When α ∈ (0, 1), we check the hypothesis of Proposition 5.4. Using (5.8), we have∣∣∣∣∣∣ 1

bn

n`−1∑
j=0

Eνσjω (|φ|1{|φ|≤εbn})

∣∣∣∣∣∣ ≤ Cn`bnEν(|φ|1{|φ|≤εbn})

Using Proposition 3.2, we see that condition (5.3) is satisfied since α < 1, thus proving the theorem in this
case.

When α ∈ [1, 2), we consider instead Proposition 5.7. Firstly, we remark that condition (5.5) is implied
by (7.2) and (5.8). It remains to check condition (5.4), which constitutes the rest of the proof.

If α ∈ (1, 2) we have

(7.3)

∣∣∣∣∣∣ 1

bn

bntc−1∑
j=0

Eνσjω (φ1{|φ|≤εbn})− t(cn − bncα(ε))

∣∣∣∣∣∣ ≤ Aωn(t) +Bωn,ε(t) + Cωn,ε(t)

with

Aωn(t) =

∣∣∣∣∣∣ 1

bn

bntc−1∑
j=0

Eνσjω (φ)− tcn

∣∣∣∣∣∣ ,
Bωn,ε(t) =

∣∣∣∣∣∣ 1

bn

bntc−1∑
j=0

Eνσjω (φ1{|φ|>εbn})− ntEν(φ1{|φ|>εbn})

∣∣∣∣∣∣
and

Cωn,ε(t) =

∣∣∣∣ntbnEν(φ1{|φ|>εbn})− tcα(ε)

∣∣∣∣ .
Since φ is regularity varying with index α > 1, it is integrable and the function ω 7→ Eνω (φ) is Hölder.

Hence, it satisfies the law of the iterated logarithm, and we have for P-a.e. ω ∈ Ω∣∣∣∣∣∣1k
k−1∑
j=0

Eνσjω (φ)− Eν(φ)

∣∣∣∣∣∣ = O
(√

log log k√
k

)
.

Thus, we have

sup
0≤t≤`

Aωn(t) = O

(√
n`
√

log log(n`)

bn

)
.

As a consequence, we can deduce that limn→∞ sup0≤t≤`A
ω
n(t) = 0 since bn = n

1
α L̃(n) for a slowly varying

function L̃, with α < 2.
By Proposition 3.2, we also have

lim
n→∞

nb−1
n Eν(φ1{|φ|>εbn}) = cα(ε).
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In particular, we have

lim
n→∞

sup
0≤t≤`

Cωn,ε(t) = 0.

This also implies that Em(|χn|) = O(n−1) if we define χn = b−1
n φ1{|φ|>εbn}. From Lemma 7.1, it follows

that limn→∞ sup0≤t≤`B
ω
n,ε(t) = 0.

Putting all these estimates together concludes the proof when α ∈ (1, 2).

When α = 1, we estimate the RHS of (7.3) by Aωn,ε(t) +Bωn,ε(t) with

Aωn,ε(t) =

∣∣∣∣∣∣ 1

bn

bntc−1∑
j=0

Eνσjω (φ1{|φ|≤εbn})− ntEν(φ1{|φ|≤εbn})

∣∣∣∣∣∣
and

Bωn,ε(t) =

∣∣∣∣ntbnEν(φ1{εbn<|φ|≤bn})− tcα(ε)

∣∣∣∣ .
We define χn = b−1

n φ1{|φ|≤εbn}. By Proposition 3.2, we have Em(|χn|) = O(n−1L̃(n)) for some slowly

varying function L̃, and so by Lemma 7.1,

lim
n→∞

sup
0≤t≤`

Aωn,ε(t) = 0.

On the other hand, by Proposition 3.2, we have

lim
n→∞

nb−1
n Eν(φ1{εbn<|φ|≤εbn}) = cα(ε)

and so limn→∞ sup0≤t≤`B
ω
n,ε(t) = 0 which completes the proof. �

8. An exponential law

We denote by J the family of all finite unions of intervals of the form (x, y], where −∞ ≤ x < y ≤ ∞
and 0 /∈ [x, y]. For J ∈ J , we will establish a quenched exponential law for the sequence of sets An =
(φx0

)−1(bnJ). Similar results were obtained in [CF20, FFV17, HRY20, RSV14, RT15].
Since φ is regularly varying, it is easy to verify that

lim
n→∞

nν(An) = Πα(J).

In particular, m(An) = O(n−1).

Lemma 8.1. Assume Condition U and that φ is regularly varying with index α.
If An ⊂ [0, 1] is a sequence of measurable subsets such that m(An) = O(n−1), then for all 0 ≤ s < t,

lim
n→∞

 bntc∑
j=bnsc+1

νσ
jω(An)

− n(t− s)ν(An)

 = 0.

The same result holds in the setting of intermittent maps if An ⊂ [δ, 1] for some δ > 0 with m(An) = O(n−1).
In particular, if An = φ−1

x0
(bnJ) for J ∈ J , then for all 0 ≤ s < t.

lim
n→∞

bntc∑
j=bnsc+1

νσ
jω(An) = (t− s)Πα(J).

Proof. For the first statement, it suffices to apply Lemma 7.1 or Lemma 7.2 with χn = 1An . The second
statement immediately follows since limn nν(An) = Πα(J). �
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Corollary 8.2. Assume the hypothesis of Lemma 8.1.
Let J ∈ J , and set An = φ−1(bnJ). Then for P-a.e. ω ∈ Ω, and all 0 ≤ s < t,

lim
n→∞

bntc∏
j=bnsc+1

(
1− νσ

jω(An)
)

= e−(t−s)Πα(J).

Proof. Since νω(An) is of order at most n−1 uniformly in ω ∈ Ω, it follows that

log

 bntc∏
j=bnsc+1

(
1− νσ

jω(An)
) = −

 bntc∑
j=bnsc+1

νσ
jω(An)

+O(n−1).

By Lemma 8.1,

lim
n→∞

bntc−1∑
j=bnsc

νσ
jω(An) = (t− s)Πα(J),

which yields the conclusion. �

Definition 8.3. For a measurable subset U ⊂ Y = [0, 1], we define the hitting time of (ω, x) ∈ Ω× Y to U
by

RU (ω)(x) := inf
{
k ≥ 1 : T kω (x) ∈ U

}
.

and the induced measure by ν on U by

νU (A) :=
ν(A ∩ U)

ν(U)

In order to establish our exponential law, we will first obtain a few estimates, based on the proof of

[HSV99, Theorem 2.1], to relate νω(RAn(ω) > bntc) to
∑bntc−1
j=0 νσ

jω(An) so that we are able to invoke
Corollary 8.2.

The next lemma is basically [RSV14, Lemma 6].

Lemma 8.4. For every measurable set U ⊂ [0, 1], we have the bound∣∣∣∣∣∣νω(RU (ω) > k)−
k∏
j=1

(1− νσ
jω(U))

∣∣∣∣∣∣ ≤
k∑
j=1

νσ
jω(U) cσjω(k − j, U)

j−1∏
i=1

(1− νσ
iω(U))

≤
k∑
j=1

νσ
jω(U) cσjω(U)

where
cω(k, U) := |νωU (RU (ω) > k)− νω(RU (ω) > k)|

and
cω(U) := sup

k≥0
cω(k, U).

Proof. Note that {RU (ω) > k} = [T 1
ω ]−1(U c∩{RU (σω) > k−1}) and so, using the equivariance of {νω}ω∈Ω,

νω(RU (ω) > k) = νσω(U c ∩ {RU (σω) > k − 1}).
Hence

νω(RU (ω) > k) = νσω(RU (σω) > k − 1)− νσω(U ∩ {RU (σω) > k − 1}).
We note that

νω(RU (ω) > k) = νσω(RU (σω) > k − 1)− νσω(U)[νσω(RU (σω) > k − 1) + cσω(k − 1, U)]

= (1− νσω(U))νσω(RU (σω) > k − 1)− νσω(U)cσω(k − 1, U).
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Iterating we obtain, using the fact that for P-a.e. ω, νω(RU (ω) ≥ 1) = 1,

νω(RU (ω) > k) =
k∏
j=1

(1− νσ
jω(U))−

k∑
j=1

νσ
jω(U)cσjω(k − j, U)

j−1∏
i=1

(1− νσ
iω(U))

which yields the conclusion. �

We will estimate now the coefficients cω(U).

Lemma 8.5. For any measurable subset U ⊂ Y such that 1U ∈ BV, we have, for all N

(8.1) cω(U) ≤ νωU (RU (ω) ≤ N) + νω(RU (ω) ≤ N) +
1

νω(U)

∥∥PNω ([1U − νω(U)]hω)
∥∥
L1(m)

and

(8.2) νωU (RU (ω) ≤ N) ≤ 1

νω(U)
νω(RU (ω) ≤ N), νω(RU (ω) ≤ N) ≤

N∑
i=1

νσ
iω(U)

Proof. The estimates (8.2) follow from

{RU (ω) ≤ N} =

N⋃
i=1

(T iω)−1(U).

and therefore

νω(RU (ω) ≤ N) ≤
N∑
i=1

νσ
iω(U)

For (8.1), note that

cω(U) = |νωU (RU (ω) ≤ j)− νω(RU (ω) ≤ j)|

If j ≤ N then

cω(U) ≤ νωU (R(ω) ≤ N) + νω(R(ω) ≤ N)

If j > N we write

νωU (RU (ω) ≤ j)− νω(RU (ω) ≤ j) = νωU (RU (ω) ≤ j)− νωU (T−Nω (RU (σNω) ≤ j −N))

+ νωU (T−Nω (RU (σNω) ≤ j −N))− νω(T−Nω (RU (σNω) ≤ j −N))

+ νω(T−Nω (RU (σNω) ≤ j −N))− νω(RU (ω) ≤ j)
= (a) + (b) + (c).

To bound (a) and (c) note that

{RU (ω) ≤ j} = {RU (ω) ≤ N} ∪ T−Nω ({RU (σNω) ≤ j −N)})

so

(8.3) |νω(RU (ω) ≤ j)− νω(T−Nω (RU (σNω) ≤ j −N))| ≤ νω(RU (ω) ≤ N)

and similarly for νωU .
To bound (b) we use the decay of P kω . Setting V =

{
RU (σNω) ≤ j −N

}
, we have
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|νωU (T−Nω (V ))− νω(T−Nω (V ))| = 1

νω(U)

∣∣∣∣∫
Y

1U1V ◦ TNω hωdm− νω(U)

∫
Y

1V ◦ TNω hωdm
∣∣∣∣

=
1

νω(U)

∣∣∣∣∫
Y

1V P
N
ω ([1U − νω(U)]hω)dm

∣∣∣∣
≤ 1

νω(U)

∥∥PNω ([1U − νω(U)]hω)
∥∥
L1(m)

.

�

8.1. Exponential law: proof of Theorem 6.1. We can now prove the exponential law for An = φ−1(bnJ),
J ∈ J .

Proof of Theorem 6.1. Due to rounding errors when taking the integer parts, we have∣∣∣νσbnscω (RAn(σbnscω) > bn(t− s)c
)
− νσ

bnscω
(
RAn(σbnscω) > bntc − bnsc

)∣∣∣
≤ νσ

bntcω(An) ≤ Cm(An)→ 0,

and it is thus enough to prove the convergence of νσ
bnscω

(
RAn(σbnscω) > bntc − bnsc

)
.

By Lemmas 8.4 and 8.5, for all N ≥ 1, we have

(8.4)

∣∣∣∣∣∣νσbnscω
(
RAn(σbnscω) > bntc − bnsc

)
−

bntc∏
j=bnsc+1

(1− νσ
jω(An))

∣∣∣∣∣∣ ≤ (I) + (II) + (III),

with

(I) =

bntc∑
j=bnsc+1

νσ
jω
(
An ∩

{
RAn(σjω) ≤ N

})
,

(II) =

bntc∑
j=bnsc+1

νσ
jω(An)νσ

jω(RAn(σjω) ≤ N)

and

(III) =

bntc∑
j=bnsc+1

∥∥∥PNσjω ([1An − νσjω(An)
]
hσjω

)∥∥∥
L1(m)

.

To estimate (I), we choose ε > 0 such that J ⊂ {|x| > ε} and we introduce Vn = {|φ| > εbn}. For a
measurable subset V ⊂ Y , we also define the shortest return to V by

rω(V ) = inf
x∈V

RV (ω)(x),

and we set

r(V ) = inf
ω∈Ω

rω(V ).
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We have

νσ
jω
(
An ∩

{
RAn(σjω) ≤ N

})
≤ νσ

jω
(
Vn ∩

{
RVn(σjω) ≤ N

})
≤

N∑
i=rσjω(Vn)

νσ
jω
(
Vn ∩ (T iσjω)−1(Vn)

)
≤

N∑
i=rσjω(Vn)

∫
Y

1VnP
i
σjω(1Vnhσjω)dm.

It follows from (Dec) that∣∣∣∣∫
Y

1VnP
i
σjω(1Vnhσjω)dm− νσ

jω(Vn)νσ
i+jω(Vn)

∣∣∣∣ ≤ ‖1Vn‖L1
m

∥∥∥P iσjω ([1Vn − νσjω(Vn)
]
hσjω

)∥∥∥
L∞m

≤ Cθim(Vn)
∥∥∥[1Vn − νσjω(Vn)

]
hσjω

∥∥∥
BV

≤ Cθim(Vn),

as BV is a Banach algebra, and both ‖1Vn‖BV and ‖hσjω‖BV are uniformly bounded. 1.
Consequently,

(I) ≤
bntc∑

j=bnsc+1

N∑
i=rσjω(Vn)

[
νσ

jω(Vn)νσ
i+jω(Vn) +O

(
θim(Vn)

)]
≤ C

(
m(Vn)2nN +m(Vn)nθr(Vn)

)
.

On the other hand, we have by (8.2),

(II) ≤
bntc∑

j=bnsc+1

νσ
jω(An)

N∑
i=1

νσ
i+jω(An)

≤ CnNm(An)2,

and it follows from (Dec) that

(III) ≤ CθN
bntc∑

j=bnsc+1

∥∥∥[1An − νσjω(An)
]
hσjω

∥∥∥
BV

≤ CnθN ,

since {hω}ω∈Ω is a bounded family in BV, An is the union of at most two intervals and thus ‖1An‖BV is
uniformly bounded. We can thus bound (8.4) by

C
(
m(Vn)2nN +m(Vn)nθr(Vn) +m(An)2nN + nθN

)
≤ C

(
n−1N + θr(Vn) + nθN

)
,

and, assuming for the moment that r(Vn)→ +∞, we obtain the conclusion by choosing N = N(n) = 2 log n
and letting n→∞.

It thus remains to show that r(Vn)→ +∞. Recall that Vn is the ball of centre x0 and radius b−1ε−αn−1.
Let R ≥ 1 be a positive integer. Since x0 is assumed to be non-recurrent, and that the collection of maps

1Recall that, from the definition of φ, it follows that Vn is an open interval, and thus 1Vn has a uniformly bounded BV

norm.
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T jω for ω ∈ Ω and 0 ≤ j < R is finite, we have that

δR := inf
ω∈Ω

inf
0≤j<R

|T jω(x0)− x0| > 0

is positive. Since all the maps T jω are continuous at x0 by assumption, there exists nR ≥ 1 such that for all
n ≥ nR, j < R and ω ∈ Ω,

x ∈ Vn =⇒ |T jω(x)− T jω(x0)| < δR
2
.

Increasing nR if necessary, we can assume that b−1ε−αn−1 < δR
2 for all n ≥ nR.

Then, for all n ≥ nR, ω ∈ Ω, j < R and x ∈ Vn, we have

|T jω(x)− x0| ≥ |T jω(x0)− x0| − |T jω(x)− T jω(x0)| > δR
2
> b−1ε−αn−1,

and thus T jω(x) /∈ Vn.
This implies that r(Vn) > R for all n ≥ nR, which concludes the proof as R is arbitrary. �

Remark 8.6. A quenched exponential law for random piecewise expanding maps of the interval is proved in
Theorem 7.1 [HRY20, Section 7.1]. Our proof follows the same standard approach. We are able to specify
that Theorem 6.1 holds for non-recurrent x0, since our assumptions imply decay of correlations against L1

observables, which is known to be necessary for this purpose, see [AFV15, Section 3.1]. Our proof is shorter,
as we consider the simpler setting of finitely many maps, which are all uniformly expanding. In addition we
use the exponential law in the intermittent case of Theorem 7.2 [HRY20, Section 7.2] to establish the short
returns condition of Lemma 8.7 below.

8.2. Exponential law: proof of Theorem 6.2. In order to prove the exponential law in the intermittent
setting, Theorem 6.2, we need a genericity condition on the point x0 in the definition (2.1) of φx0 .

Lemma 8.7. If γmax <
1
3 , for m-a.e. x0 and for P-a.e. ω ∈ Ω

lim
n→∞

btnc∑
j=bsnc+1

m
(
Bcn−1(x0) ∩

{
Rσ

jω
Bcn−1 (x0) ≤ bn(log n)−1c

})
= 0.

for all c > 0 and all 0 ≤ s < t.

Proof. Let N = bn(log n)−1c an Vn = Bcn−1(x0). First, we remark that for m-a.e. x0 and P-a.e. ω,

(8.5) m (Vn ∩ {RVn(ω) ≤ N}) = o(n−1).

This is a consequence of [HRY20, Theorem 7.2]. Their result is stated for two intermittent LSV maps both
with γ < 1

3 but generalizes immediately to a finite collection of maps with a uniform bound of γmax <
1
3 .

The exponential law for return times to nested balls imples that for a fixed t, for m-a.e x0 and P-a.e. ω

lim
n→∞

1

νω(Vn)
νω (Vn ∩ {RVn(ω) ≤ nt}) = 1− e−t.

which shows in particular, since {RVn(ω) ≤ N} ⊂ {RVn(ω) ≤ nt} for all n large enough, that for all t > 0,
m-a.e x0 and P-a.e. ω

(8.6) lim sup
n→∞

1

νω(Vn)
νω (Vn ∩ {RVn(ω) ≤ N}) ≤ 1− e−t.

Using (5.12), taking the limit t → 0 proves (8.5). Note that, even though the set of full measure of x0

and ω such that (8.6) holds may depend on t, it is enough to consider only a sequence tk → 0.
Now, for k ≥ 0 and n0 ≥ 1, we introduce the set

Ωn0

k =

{
ω ∈ Ω : m (Vn ∩ {RVn(ω) ≤ N}) ≤ 2−k

n
for all n ≥ n0

}
.
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According to (8.5), we have for all k ≥ 0,

lim
n0→∞

P(Ωn0

k ) = P

 ⋃
n0≥1

Ωn0

k

 = 1.

By the Birkhoff ergodic theorem, for al k ≥ 0, n0 ≥ 1 and P-a.e. ω,

lim
n→∞

1

n

n−1∑
j=0

1Ω
n0
k

(σjω) = P(Ωn0

k ),

which implies that for all 0 ≤ s < t,

lim
n→∞

1

(bntc − bnsc)

bntc∑
j=bnsc+1

1Ω
n0
k

(σjω) = P(Ωn0

k ).

Let n0 = n0(ω, k) such that P(Ωn0

k ) ≥ 1− 2−k, and for all n ≥ n0,

1

(bntc − bnsc)

bntc∑
j=bnsc+1

1Ω
n0
k

(σjω) ≥ P(Ωn0

k )− 2−k.

Then, for all n ≥ n0(ω, k) we have

1

(bntc − bnsc)

bntc∑
j=bnsc+1

1(Ω
n0
k )c(σ

jω) ≤ 2−(k−1).

Consequently,

bntc∑
bnsc+1

m (Vn ∩ {RVn(ω) ≤ N}) ≤ (bntc − bnsc) 2−k

n
+ (bntc − bnsc) 2−(k−1)m(Vn).

This proves that

lim sup
n→∞

bntc∑
bnsc+1

m (Vn ∩ {RVn(ω) ≤ N}) ≤ C 2−k,

and the result follows by taking the limit k →∞.
Note that the set of x0 and ω for which the lemma holds depends a priori on c > 0, but it is enough to

consider a countable and dense set of c, since for c < c′,{
Bcn−1(x0) ∩

{
RωBcn−1 (x0) ≤ N

}}
⊂
{
Bc′n−1(x0) ∩

{
RωBc′n−1 (x0) ≤ N

}}
.

�

The exponential law for random intermittent maps follows from Lemma 8.7:

Proof of Theorem 6.2. We consider the three terms in (8.4) with N = bn(log n)−1c.
Let Vn = {|φ| > εbn} where ε > 0 is such that An ⊂ Vn for all n ≥ 1. Since Vn is a ball of centre x0 and

radius b−1ε−αn−1, and since Vn ⊂ [δ, 1], the term

(I) =

bntc∑
j=bnsc+1

νσ
jω
(
An ∩

{
RAn(σjω) ≤ N

})
≤ C

bntc∑
j=bnsc+1

m
(
Vn ∩

{
RVn(σjω) ≤ N

})
tends to zero by Lemma 8.7 for m-a.e x0.
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The term

(II) =

bntc∑
j=bnsc+1

νσ
jω(An)νσ

jω(RAn(σjω) ≤ N) ≤ CnNm(An)2

also tends to zero since N = o(n). Lastly we consider

(III) =

bntc∑
j=bnsc+1

∥∥∥PNσjω ([1An − νσjω(An)
]
hσjω

)∥∥∥
L1(m)

.

We approximate 1An by a C1 function g such that ‖g‖C1 ≤ nτ , g = 1An on An and ‖g − 1An‖L1 ≤ n−τ

(recall An is two intervals of length roughly 1
n so a simple smoothing at the endpoints of the intervals allows

us to find such a function g). Later we will specify τ > 1 will suffice. By [NPT21, Lemma 3.4] with h = hω
and ϕ = g −m(ghω), for all ω,∥∥PNω ([g −m(ghω)]hω)

∥∥
L1 ≤ CnτN1− 1

γmax (logN)
1

γmax

≤ Cnτ+1− 1
γmax (log n)

2
γmax

−1.

Using the decomposition 1An−νω(An) = (1An−g)−(νω(An)−m(ghω))+(g−m(ghω)) we estimate, leaving
out the log term,

(III) ≤ C
[
n1−τ + nτ+2− 1

γmax

]
where the value of C may change line to line. Taking γmax <

1
3 and 1 < τ < 1

γmax
− 2 suffices. �

9. Point process results

We now proceed to the proof of the Poisson convergence. In Section 11 we will consider an annealed
version of our results.

9.1. Uniformly expanding maps: proof of Theorem 6.3. Recall Theorem 6.3: under the conditions
of Section 2.1, in particular (LY), (Min) and (Dec), if x0 /∈ D is non-recurrent, then for P-a.e. ω ∈ Ω

Nω
n

d→N(α)

under the probability measure νω.
Our proof of Theorem 6.3 uses the existence of a spectral gap for the associated transfer operators Pnω ,

and breaks down in the setting of intermittent maps. The use of the spectral gap is encapsulated in the
following lemma.

Lemma 9.1. Assume (LY). Then there exists C > 0 such that for all ω ∈ Ω, all f, fn ∈ BV with

sup
j≥1
‖fj‖L∞(m) ≤ 1 and sup

j≥1
‖fj‖BV <∞,

we have

sup
n≥0

∥∥∥∥∥∥Pnω
f · n∏

j=1

fj ◦ T jω

∥∥∥∥∥∥
BV

≤ C‖f‖BV

(
sup
j≥1
‖fj‖BV

)
Proof. We proceed in four steps.

Step 1. We define

gnω =
n∏
j=0

fj ◦ T jω,



STABLE LAWS FOR RANDOM DYNAMICAL SYSTEMS 27

where we have set f0 = 1. We observe that for all n ≥ 0, there exists Cn > 0 such that for all ω ∈ Ω,

(9.1) ‖gnω‖L∞(m) ≤
(

sup
j≥1
‖fj‖L∞(m)

)n+1

≤ 1 and ‖gnω‖BV ≤ Cn
(

sup
j≥1
‖fj‖BV

)
.

The first estimate is immediate, and the second follows, because

Var(gn+1
ω ) ≤ Var(gnω)‖fn+1 ◦ Tn+1

ω ‖L∞(m) + ‖gnω‖L∞(m)Var(fn+1 ◦ Tn+1
ω )

≤ Var(gnω) + Var(fn+1 ◦ Tn+1
ω )

= Var(gnω) +
∑

I∈An+1
ω

VarI(fn+1 ◦ Tn+1
ω )

= Var(gnω) +
∑

I∈An+1
ω

VarTn+1
ω (I)(fn+1)

≤ Var(gnω) +
(
#An+1

ω

)
Var(fn+1),

and so we can define by induction Cn+1 = Cn + supω∈Ω #An+1
ω which is finite, as there are only finitely

many maps in S.
Step 2. We first prove the lemma in the case where r = 1 in the condition (LY). Before, we claim that

for f ∈ BV and sequences (fj) ⊂ BV as in the statement, we have

(9.2) Var (Pnω (fgnω)) ≤
n∑
j=0

ρj‖Pn−jω (fgn−j−1
ω )‖L∞(m)‖fn−j‖BV

+D
n−1∑
j=0

ρj‖Pn−1−j
ω (fgn−1−j

ω )‖L1(m)‖fn−j‖L∞(m).

This implies the lemma when r = 1, since

‖Pn−jω (fgn−j−1
ω )‖L∞(m) ≤ ‖gn−j−1

ω ‖L∞(m)‖Pn−jω |f |‖L∞(m) ≤ C‖f‖BV,

and

‖Pn−jω (fgn−jω )‖L1(m) ≤ ‖fgn−jω ‖L1(m) ≤ ‖f‖L∞(m)‖gn−jω ‖L1(m) ≤ ‖f‖BV.

We prove the claim by induction on n ≥ 0. It is immediate for n = 0, and for the induction step, we have,
using (LY),

Var(Pn+1
ω (fgn+1

ω ))

= Var(Pn+1
ω (fgnωfn+1 ◦ Tn+1

ω )) = Var(Pn+1
ω (fgnω)fn+1)

≤ Var(Pn+1
ω (fgnω))‖fn+1‖L∞(m) + ‖Pn+1

ω (fgnω)‖L∞(m)Var(fn+1)

≤
(
ρVar(Pnω (fgnω)) +D‖Pnω (fgnω)‖L1(m)

)
‖fn+1‖L∞(m) + ‖Pn+1

ω (fgnω)‖L∞(m)Var(fn+1)

≤ ρVar(Pnω (fgnω)) +D‖Pnω (fgnω)‖L1(m)‖fn+1‖L∞(m) + ‖Pn+1
ω (fgnω)‖L∞(m)‖fn+1‖BV,

which proves (9.2) for n+ 1, assuming it holds for n.
Step 3. Now, we consider the general case r ≥ 1 and we assume that n is of the particular form n = pr,

with p ≥ 0. We note that the random system defined with T = {T rω}ω∈Ω satisfies the condition (LY) with
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r = 1. Consequently, by the second step and (9.1), we have

‖Pnω (fgnω)‖BV =

∥∥∥∥∥∥P rσr−1ω ◦ . . . ◦ P
r
ω

f p∏
j=1

grσjrω ◦ T
jr
ω

∥∥∥∥∥∥
BV

≤ C‖f‖BV

(
sup
j≥1
‖grσjrω‖BV

)
≤ CCr‖f‖BV

(
sup
j≥1
‖fj‖BV

)
.

Step 4. Finally, if n = pr+ q, with p ≥ 0 and q ∈ {0, . . . , r− 1}, as an immediate consequence of (LY),
we obtain

‖Pnω (fgnω)‖BV = ‖P qσprωP prω (fgprω g
q
σprω ◦ T prω )‖BV

= ‖P qσprω(P prω (fgprω )gqσprω)‖BV ≤ C‖P prω (fgprω )gqσprω‖BV.

But, from Step 3, we have

‖P prω (fgprω )gqσprω‖L1(m) ≤ ‖gqσprω‖L∞(m)‖P prω (fgprω )‖L1(m)

≤ ‖P prω (fgprω )‖L1(m) ≤ C‖f‖BV

(
sup
j≥1
‖fj‖BV

)
,

and, using (9.1),

Var(P prω (fgprω )gqσprω) ≤ ‖P prω (fgprω )‖L∞(m)Var(gqσprω) + Var(P prω (fgprω ))‖gqσprω‖L∞(m)

≤
[
Cq‖gprω ‖L∞(m)‖P prω |f |‖L∞(m) + C‖f‖BV

](
sup
j≥1
‖fj‖BV

)
≤ C

(
1 + max

q=0,...,r−1
Cq

)
‖f‖BV

(
sup
j≥1
‖fj‖BV

)
,

which concludes the proof of the lemma. �

Proof of Theorem 6.3. We denote by R the family of finite unions of rectangles R of the form R = (s, t]× J
with J ∈ J . By Kallenberg’s theorem, see [Kal76, Theorem 4.7] or [Res87, Proposition 3.22], Nω

n
d→N(α) if

for any R ∈ R,

(a) lim
n→∞

νω(Nω
n (R) = 0) = P(N(α)(R) = 0),

and

(b) lim
n→∞

EνωNω
n (R) = EN(α)(R).

We first prove (b). We write

R =
k⋃
i=1

Ri,

with Ri = (si, ti]× Ji disjoint.
Then

EN(α)(R) =

k∑
i=1

(ti − si)Πα(Ji)
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and

EνωNω
n (R) =

k∑
i=1

EνωNω
n ((si, ti]× Ji) =

k∑
i=1

∑
nsi<j≤nti

Eνω (1φ−1
x0

(bnJi)
◦ T j−1

ω )

=
k∑
i=1

∑
nsi<j≤nti

νσ
j−1ω(φ−1

x0
(bnJi))

=
k∑
i=1

bntic−1∑
j=bnsic

νσ
jω(φ−1

x0
(bnJi)).

By Lemma 8.1, for P-a.e. ω ∈ Ω, we have

lim
n→∞

k∑
i=1

bntic−1∑
j=bnsic

νσ
jω(φ−1

x0
(bnJi)) = (ti − si)Πα(Ji),

which proves (b).
We next establish (a). We will use induction on the number of “time” intervals (si, ti] ⊂ (0,∞]. Let

R = (s1, t1]× J1 where J1 ∈ J . Define

An = φ−1
x0

(bnJ1).

Since

{Nω
n (R) = 0} = {x : T jω(x) 6∈ An, ns1 < j + 1 ≤ nt1}

=
{

1Acn ◦ T
bns1c
ω · 1Acn ◦ T

bns1c+1
ω · . . . · 1Acn ◦ T

bnt1c−1
ω 6= 0

}
=

x :

bnt1c−1−bns1c∏
j=0

1Acn ◦ T
j

σbns1cω

 ◦ T bns1cω (x) 6= 0

 ,

we have that,

(9.3)
∣∣∣νω(Nω

n (R) = 0)− νσ
bns1cω

(
RAn(σbns1cω) > bn(t1 − s1)c

)∣∣∣
≤ νσ

bns1cω(RAn(σbns1cω) = 0) = νσ
bns1cω(An) ≤ Cm(An)→ 0,

because, due to rounding when taking integer parts, bnt1c − bns1c − 1 is either equal to bn(t1 − s1)c − 1 or
to bn(t1 − s1)c. By Theorem 6.1,

νσ
bns1cω(RAn(σbns1cω) > bn(t1 − s1)c)→ e−(t1−s1)Πα(J)

as desired.
Now let R = ∪kj=1(si, ti] × Ji with 0 ≤ s1 < t1 < . . . < sk < tk and Ji ∈ J . Furthermore, define

s′i = si − s1 and t′i = ti − s1.
Observe that, accounting for the rounding errors when taking integer parts as for (9.3), we get

(9.4)

∣∣∣∣∣νω
(
Nω
n

(
k⋃
i=1

(si, ti]× Ji

)
= 0

)
− νσ

bns1cω

(
Nσbns1cω
n

(
k⋃
i=1

(s′i, t
′
i]× Ji

)
= 0

)∣∣∣∣∣
≤ 2C

k∑
i=1

m(φ−1
x0

(bnJi))→ 0
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so, after replacing ω by σbns1cω, we can assume that s1 = 0. Let

R1 = (0, t1]× J1

R2 =
k⋃
i=2

(si, ti]× Ji

R′2 =
k⋃
i=2

(si − s2, ti − s2]× Ji

Then, with An = φ−1
x0

(bnJ1),

(9.5)
∣∣∣νη (Nη

n (R1 ∪R2) = 0)− νη
[
{RAn(η) > bnt1c} ∩ T−bns2cη

(
Nσbns2cη
n (R′2) = 0

)]∣∣∣→ 0

as n→∞, uniformly in η ∈ Ω, as in (9.4). Moreover, as we check below,

(9.6)
∣∣∣νη [{RAn(η) > bnt1c} ∩ T−bns2cη

(
Nσbns2cη
n (R′2) = 0

)]
− νη(RAn(η) > bnt1c) · νη(Nη

n(R2) = 0)
∣∣∣→ 0

as n→∞, uniformly in η ∈ Ω. Therefore, setting η = σbns2cω in (9.5) and (9.6), we have, by Theorem 6.1,

lim
n→∞

∣∣∣νσbns2cω(Nσbns2cω
n (R1 ∪R2) = 0)− e−t1Πα(J1)νσ

bns2cω(Nσbns2cω
n (R2) = 0)

∣∣∣ = 0

which gives the induction step in the proof of (a).
We prove now (9.6). Our proof uses the spectral gap for Pnω and breaks down for random intermittent

maps.
Similarly to (9.4),∣∣∣νη(Nη

n(R2) = 0)− νη(T−bns2cη (Nσbns2cη
n (R′2) = 0))

∣∣∣→ 0 as n→∞, uniformly in η.

We have, using the notation

U = {RAn(η) > bnt1c} , V =
{
Nσbns2cη
n (R′2) = 0

}
,

that ∣∣∣νη (U ∩ T−bns2cη (V )
)
− νη(U)νη

(
T−bns2cη (V )

) ∣∣∣
=

∣∣∣∣∫ P bns2cη ((1U − νη(U))hη) 1V dm

∣∣∣∣
≤ C

∥∥∥P bns2cη ((1U − νη(U))hη)
∥∥∥
BV

=
∥∥∥P bns2c−bnt1c

σbnt1cη
P bnt1cη ((1U − νη(U))hη)

∥∥∥
BV

≤ Cθbns2c−bnt1c
∥∥∥P bnt1cη ((1U − νη(U))hη)

∥∥∥
BV

where the last inequality follows from the decay, uniform in η, of {P kη }k in BV (condition (Dec)).
But

(9.7) sup
η

sup
n

∥∥∥P bnt1cη

(
(1{RAn (η)>bnt1c} − ν

η(RAn(η) > bnt1c))hη
)∥∥∥

BV
<∞,
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which proves (9.6). This follows from Lemma 9.1 below applied to f = hη and fj = 1Acn , because

1{RAn (η)>bnt1c} =

bnt1c∏
j=1

1Acn ◦ T
j
η ,

and both ‖hη‖BV and ‖1Acn‖BV are uniformly bounded. Note that for the stationary case the estimate (9.7)
is used in the proof of [TK10b, Theorem 4.4], which refers to [ADSZ04, Proposition 4]. �

9.2. Intermittent maps: proof of Theorem 6.4. We prove a weaker form of convergence in the setting
of intermittent maps, which suffices to establish stable limit laws but not functional limit laws.

In the setting of intermittent maps, we will show that for P-a.e. ω,

Nω
n ((0, 1]× ·) d→N(α)((0, 1]× ·)

Proof of Theorem 6.4. We will show that for P-a.e. ω ∈ Ω, the assumptions of Kallenberg’s theorem [Kal76,
Theorem 4.7] hold.

Recall that J denotes the set of all finite unions of intervals of the form (x, y] where x < y and 0 6∈ [x, y].
By Kallenberg’s theorem [Kal76, Theorem 4.7], Nω

n [(0, 1]× ·)→d N(α)((0, 1]× ·) if for all J ∈ J ,

(a) lim
n→∞

νω(Nω
n ((0, 1]× J) = 0) = P(N(α)((0, 1]× J) = 0)

and
(b) lim

n→∞
EνωNω

n ((0, 1]× J) = E[N(α)((0, 1]× J)]

We prove first (b) following [TK10b, page 12]. Write

J =

k⋃
i=1

Ji

with Ji = (xi, yi] disjoint.
Then

EN(α)((0, 1]× J) =

k∑
i=1

Πα(Ji) = Πα(J)

and

EνωNω
n ((0, 1]× J) =

k∑
i=1

n∑
j=1

Eνω [1(φ−1
x0

(bnJi))
◦ T j−1

ω ] =

n∑
j=1

Eνω [1(φ−1
x0

(bnJ)) ◦ T
j−1
ω ]

We check that

lim
n→∞

n∑
j=1

Eνω
(
1{φ−1

x0
(bnJ)} ◦ T

j
ω

)
= Πα(J)

for J = ∪ki=1Ji.
Write An := φ−1

x0
(bnJ). Then

Eνω [1(φ−1
x0

(bnJ)) ◦ T
j
ω] = νσ

jω(An)

hence

lim
n→∞

n∑
j=1

Eνω [1(φ−1
x0

(bnJi))
◦ T jω(x)] = Πα(J)

by Lemma 7.2.
Now we prove (a), i.e.

lim
n→∞

νω(Nω
n ((0, 1]× J) = 0) = P (N(α)((0, 1]× J) = 0)

for all J ∈ J .
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Let J ∈ J and denote as above An := φ−1
x0

(bnJ) ⊂ X = [0, 1]. Then

{Nω
n ((0, 1]× J) = 0} = {x : T jω(x) 6∈ An, 0 < j + 1 ≤ n} = {RAn(ω) > n− 1} ∩Acn

Hence

|νω(Nω
n ((0, 1]× J) = 0)− νω(RAn(ω) > n)| ≤ Cm(An)→ 0

and by Theorem 6.2, for m-a.e. x0

νω(RAn(ω) > n)→ e−Πα(J).

This proves (a). �

10. Stable laws and functional limit laws

10.1. Uniformly expanding maps: proof of Theorem 2.4. In this section, we prove Theorem 2.4,
under the conditions given in Section 2.1, in particular (LY), (Dec) and (Min).

For this purpose, we consider first some technical lemmas regarding short returns. For ω ∈ Ω, n ≥ 1 and
ε > 0, let

Eωn (ε) = {x ∈ [0, 1] : |Tnω (x)− x| ≤ ε} .

Lemma 10.1. There exists C > 0 such that for all ω ∈ Ω, n ≥ 1 and ε > 0,

m(Eωn (ε)) ≤ Cε.

Proof. We follow the proof of [HNT12, Lemma 3.4], conveniently adapted to our setting of random non-
Markov maps. Recall that Anω is the partition of monotonicity associated to the map Tnω . Consider I ∈ Anω.
Since infI |(Tnω )′| ≥ λn > 1, there exists at most one solution x±I ∈ I to the equation

(10.1) Tnω (x±I ) = x±I ± ε,
and since there is no sign change of (Tnω )′ on I, we have

(10.2) Eωn (ε) ∩ I ⊂ [x−I , x
+
I ].

We have

Tnω (x+
I )− Tnω (x−I ) = x+

I − x
−
I + 2ε,

and by the mean value theorem,∣∣Tnω (x+
I )− Tnω (x−I )

∣∣ = |(Tnω )′(c)|
∣∣x+
I − x

−
I

∣∣ , for some c ∈ I.
Consequently,

(10.3)
∣∣x+
I − x

−
I

∣∣ ≤ (sup
I

1

|(Tnω )′|

)[∣∣x+
I − x

−
I

∣∣+ 2ε
]
≤ λ−n

∣∣x+
I − x

−
I

∣∣+ 2ε sup
I

1

|(Tnω )′|
.

Note that if there is no solutions to (10.1), then the estimate (10.3) is actually improved. Rearranging (10.3)
and summing over I ∈ Anω, we obtain thanks to (10.2)

m(Eωn (ε)) ≤
∑
I∈Anω

∣∣x+
I − x

−
I

∣∣ ≤ 2ε

1− λ−n
∑
I∈Anω

sup
I

1

|(Tnω )′|
≤ Cε.

The fact that

(10.4)
∑
I∈Anω

sup
I

1

|(Tnω )′|
≤ C

for a constant C > 0 independent from ω and n follows from a standard distortion argument for one-
dimensional maps that can be found in the proof of part 3 of [ANV15, Lemma 8.5] (see also [AR16, Lemma
7]), where finitely many piecewise C2 uniformly expanding maps with finitely many discontinuities are also
considered. Since it follows from (LY) that ‖Pnω f‖BV ≤ C‖f‖BV for some uniform C > 0, we do not have
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to average (10.4) over ω as in [ANV15], but instead we can simply have an estimate that holds uniformly in
ω. �

Recall that, for a measurable subset U , RωU (x) ≥ 1 is the hitting time of (ω, x) to U defined by (6.1).

Lemma 10.2. Let a > 0, 2
3 < ψ < 1 and 0 < κ < 3ψ − 2. Then there exist sequences (γ1(n))n≥1 and

(γ2(n))n≥1 with γ1(n) = O(n−κ) and γ2(n) = o(1), and for all ω ∈ Ω, a sequence of measurable subsets
(Aωn)n≥1 of [0, 1] with m(Aωn) ≤ γ1(n) and such that for all x0 /∈ Aωn,

(log n)
n−1∑
i=0

m
(
Bn−ψ (x0) ∩

{
Rσ

iω
B
n−ψ (x0) ≤ ba log nc

})
≤ γ2(n).

Proof. Let

Eωn =
{
x ∈ [0, 1] : |T jω(x)− x| ≤ 2n−ψ for some 0 < j ≤ ba log nc

}
.

Since Bn−ψ (x0) ∩
{
Rσ

iω
B
n−ψ (x0) ≤ ba log nc

}
⊂ Bn−ψ (x0) ∩ Eσiωn , it is enough to consider

(log n)

n−1∑
i=0

m
(
Bn−ψ (x0) ∩ Eσ

iω
n

)
.

According to Lemma 10.1, we have

m(Eωn ) ≤
ba lognc∑
j=1

m
(
Eωj (2n−ψ)

)
≤ C log n

nψ
.

We introduce the maximal function

Mω
n (x0) = sup

t>0

1

2t

∫ x0+t

x0−t

(
n−1∑
i=0

1Eσiωn
(z)

)
dz = sup

t>0

1

2t

n−1∑
i=0

m
(
Bt(x0) ∩ Eσ

iω
n

)
By [Rud87, Equation (5) page 138], for all λ > 0, we have

(10.5) m(Mω
n > λ) ≤ C

λ

∥∥∥∥∥
n−1∑
i=0

1Eσiωn

∥∥∥∥∥
L1
m

≤ C

λ

n−1∑
i=0

m(Eσ
iω

n ) ≤ C

λ

log n

nψ−1

Let ρ > 0 and ξ > 0 to be determined later. We define

Fωn =
{
x0 ∈ [0, 1] : m (Bn−ψ (x0) ∩ Eωn ) ≥ 2n−ψ(1+ρ)

}
,

so that we have
n−1∑
i=0

m
(
Bn−ψ (x0) ∩ Eσ

iω
n

)
≥

(
n−1∑
i=0

1Fσiωn
(x0)

)
2n−ψ(1+ρ).

By definition of the maximal function Mω
n , this implies that

Mω
n (x0) ≥ n−ψρ

(
n−1∑
i=0

1Fσiωn
(x0)

)
,

from which it follows, by (10.5) with λ = (log n)nξ−ψρ,

m (Aωn) ≤ m
(
Mω
n > (log n)nξ−ψρ

)
≤ Cn−(ξ+(1−ρ)ψ−1) =: γ1(n),

where

Aωn =

{(
n−1∑
i=0

1Fσiωn

)
> (log n)nξ

}
.
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If x0 /∈ Aωn , then

(log n)
n−1∑
i=0

m
(
Bn−ψ (x0) ∩ Eσ

iω
n

)
≤ (log n)

(
n−1∑
i=0

1Fσiωn
(x0)

)
m(Bn−ψ (x0)) + 2(log n)n1−ψ(1+ρ)

≤ C(log n)
(

(log n)n−(ψ−ξ) + n−(ψ(1+ρ)−1)
)

=: γ2(n).

Since 2
3 < ψ < 1 and 0 < κ < 3ψ−2, it is possible to choose ρ > 0 and ξ > 0 such that κ = ξ+(1−ρ)ψ−1,

ψ > ξ and ψ(1 + ρ) > 1 2, which concludes the proof. �

Lemma 10.3. Suppose that a > 0 and 3
4 < ψ < 1. Then for m-a.e. x0 ∈ [0, 1] and P-a.e. ω ∈ Ω and , we

have

lim
n→∞

(log n)
n−1∑
i=0

m
(
Bn−ψ (x0) ∩

{
Rσ

iω
B
n−ψ (x0) ≤ ba log nc

})
= 0.

Proof. Let 0 < κ < 3ψ − 2 to be determined later. Consider the sets (Aωn)n≥1 given by Lemma 10.2, with
m(Aωn) ≤ γ1(n) = O(n−κ). Since κ < 1, we need to consider a subsequence (nk)k≥1 such that

∑
k≥1 γ1(nk) <

∞. For such a subsequence, by the Borel-Cantelli lemma, for m-a.e. x0, there exists K = K(x0, ω) such that
for all k ≥ K, x0 /∈ Aωnk . Since limk→∞ γ2(nk) = 0, this implies

lim
k→∞

(log nk)

nk−1∑
i=0

m

(
Bn−ψk

(x0) ∩
{
Rσ

iω
B
n
−ψ
k

(x0) ≤ ba log nkc
})

= 0.

We take nk = bkζc, for some ζ > 0 to be determined later. In order to have
∑
k≥1 γ1(nk) <∞, we need to

require that κζ > 1. Set Uωn (x0) = Bn−ψ (x0) ∩
{
RωB

n−ψ (x0) ≤ ba log nc
}

. To obtain the convergence to 0 of

the whole sequence, we need to prove that

(10.6) lim
k→∞

sup
nk≤n<nk+1

∣∣∣∣∣(log n)
n−1∑
i=0

m(Uσ
iω

n (x0))− (log nk)

nk−1∑
i=0

m(Uσ
iω

nk
(x0))

∣∣∣∣∣ = 0.

For this purpose, we estimate∣∣∣∣∣(log n)

n−1∑
i=0

m(Uσ
iω

n (x0))− (log nk)

nk−1∑
i=0

m(Uσ
iω

nk
(x0))

∣∣∣∣∣ ≤ (I) + (II) + (III) + (IV) + (V).

where

(I) = |log n− log nk|
n−1∑
i=0

m(Uσ
iω

n (x0)), (II) = (log nk)
n−1∑
i=nk

m(Uσ
iω

n (x0)),

(III) = (log nk)

nk−1∑
i=0

∣∣∣m(Bn−ψ (x0) ∩
{
Rσ

iω
B
n−ψ (x0) ≤ ba log nc

})
−m

(
Bn−ψk

(x0) ∩
{
Rσ

iω
B
n−ψ (x0) ≤ ba log nc

})∣∣∣ ,
(IV) = (log nk)

nk−1∑
i=0

∣∣∣∣m(Bn−ψk (x0) ∩
{
Rσ

iω
B
n−ψ (x0) ≤ ba log nc

})
−m

(
Bn−ψk

(x0) ∩
{
Rσ

iω
B
n
−ψ
k

(x0) ≤ ba log nc
})∣∣∣∣ ,

(V) = (log nk)

nk−1∑
i=0

∣∣∣∣m(Bn−ψk (x0) ∩
{
Rσ

iω
B
n
−ψ
k

(x0) ≤ ba log nc
})
−m

(
Bn−ψk

(x0) ∩
{
Rσ

iω
B
n
−ψ
k

(x0) ≤ ba log nkc
})∣∣∣∣ .

Before proceeding to estimate each term, we note that |nk+1−nk| = O(k−(1−ζ)), |n−ψk+1−n
−ψ
k | = O(k−(1+ζψ)),

|log nk+1 − log nk| = O(k−1) and m(Uωn (x0)) ≤ m(Bn−ψ (x0)) = O(k−ζψ).

2For instance, take ξ = ψ − δ and ρ = ψ−1 − 1 + δψ−1 with δ = 3ψ−2−κ
2

.
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From these observations, it follows

(I) ≤ C |log nk+1 − log nk|nk+1k
−ζψ ≤ Ck−(1−(1−ψ)ζ),

(II) ≤ C(log nk)|nk+1 − nk|k−ζψ ≤ C(log k)k−(1−(1−ψ)ζ),

(III) ≤ C(log nk)nkm(Bn−ψk
(x0) \Bn−ψ (x0)) ≤ C(log nk)nk|n−ψk+1 − n

−ψ
k | ≤ C(log k)k−(1−(1−ψ)ζ),

(IV) ≤ C(log nk)

nk−1∑
i=0

m

(
Bn−ψk

(x0) ∩
{
Rσ

iω
B
n
−ψ
k

(x0)\B
n−ψ (x0) ≤ ba log nc

})

≤ C(log nk)

nk−1∑
i=0

a(log n)m
(
Bn−ψk

(x0) \Bn−ψ (x0)
)

≤ C(log k)2k−(1−(1−ψ)ζ)

and

(V) ≤ C(log nk)

nk−1∑
i=0

m

(
Bn−ψk

(x0) ∩
{
ba log nkc < Rσ

iω
B
n
−ψ
k

(x0) ≤ ba log nc
})

≤ C(log nk)

nk−1∑
i=0

a |log nk+1 − log nk|m(Bn−ψk
(x0))

≤ C(log k)k−(1−(1−ψ)ζ).

To obtain (10.6), it is thus sufficient to choose κ > 0 and ζ > 0 such that κ < 3ψ − 2, κζ > 1 and
(1− ψ)ζ < 1, which is possible if ψ > 3

4 . �

We can now prove the functional convergence to a Lévy stable process for i.i.d. uniformly expanding maps.

Proof of Theorem 2.4. We apply Theorem 7.3. By Theorem 6.3, we have Nω
n

d→N(α) under the probability
νω for P-a.e. ω ∈ Ω. It thus remains to check that equation (7.2) holds for m-a.e. x0 when α ∈ [1, 2) to
complete the proof. For this purpose, we will use a reverse martingale argument from [NTV18] (see also
[AR16, Proposition 13]). Because of (5.8), it is enough to work on the probability space ([0, 1], νω) for
P-a.e. ω ∈ Ω. Let B denote the σ-algebra of Borel sets on [0, 1] and

Bω,k = (T kω )−1(B)

To simplify notation a bit let

fω,j,n(x) = φx0
(x)1{|φx0 |≤εbn}(x)− Eνσjω (φx0

1{|φx0 |≤εbn}).

From (5.8), it follows that Em(|fω,j,n|) ≤ Cεbn, and from the explicit definition of φ, we can estimate the
total variation of fω,j,n and obtain the existence of C > 0, independent of ω, ε, n and j, such that

(10.7) ‖fω,j,n‖BV ≤ Cεbn.

We define

Sω,k,n :=
k−1∑
j=0

fω,j,n ◦ T jω

and

(10.8) Hω,k,n ◦ Tnω := Eνω (Sω,k,n|Bω,k)
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Hence Hω,1,n = 0 and an explicit formula for Hω,k,n is

Hω,k,n =
1

hσkω

k−1∑
j=0

P k−jσjω (fω,j,nhσjω).

From the explicit formula, the exponential decay in the BV norm of Pn−jσjω from (Dec), (5.8) and (10.7), we
see that ‖Hω,k,n‖BV ≤ Cεbn, where the constant C may be taken as constant over ω ∈ Ω. If we define

Mω,k,n = Sω,k,n −Hω,k,n ◦ T kω
then the sequence {Mω,k,n}k≥1 is a reverse martingale difference for the decreasing filtration Bω,k = (Tnω )−1(B)
as

Eνω (Mω,k,n|Bω,k) = 0

The martingale reverse differences are

Mω,k+1,n −Mω,k,n = ψω,k,n ◦ T kω
where

ψω,k,n := fω,k,n +Hω,k,n −Hω,k+1,n ◦ Tσk+1ω.

We see from the L∞ bounds on ‖Hω,k,n‖∞ ≤ Cbnε and the telescoping sum that

(10.9)

∣∣∣∣∣∣
k−1∑
j=0

ψω,j,n ◦ T jω −
k−1∑
j=0

fω,j,n ◦ T jω

∣∣∣∣∣∣ ≤ Cεbn.
By Doob’s martingale maximal inequality

νω

 max
1≤k≤n

∣∣∣∣∣∣
k−1∑
j=0

ψω,j,n ◦ T jω

∣∣∣∣∣∣ ≥ bnδ
 ≤ 1

b2nδ
2
Eνω

∣∣∣∣∣∣
n−1∑
j=0

ψω,j,n ◦ T jω

∣∣∣∣∣∣
2

.

Note that

n−1∑
j=0

Eνω
[
ψ2
ω,j,n ◦ T jω

]
= Eνω

n−1∑
j=0

ψω,j,n ◦ T jω

2

by pairwise orthogonality of martingale reverse differences.
As in [HNTV17, Lemma 6]

Eνω [(Sω,n,n)2] =
n−1∑
j=0

Eνω [ψ2
ω,j,n ◦ T jω] + Eνω [H2

ω,1,n]− Eνω [H2
ω,n,n ◦ Tnω ].

So we see that

(10.10) νω

 max
1≤k≤n

∣∣∣∣∣∣
k−1∑
j=0

ψω,j,n ◦ T jω

∣∣∣∣∣∣ ≥ bnδ
 ≤ 1

b2nδ
2
Eνω [(Sω,n,n)2] + 2

C2ε2

δ2

where we have used ‖H2
ω,j,n‖∞ ≤ C2b2nε

2.
Now we estimate

(10.11) Eνω [(Sω,n,n)2] ≤
n−1∑
j=0

Eνω [f2
ω,j,n ◦ T jω] + 2

n−1∑
i=0

∑
i<j

Eνω [fω,j,n ◦ T jω · fω,i,n ◦ T iω].
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Using the equivariance of the measures {νω}ω∈Ω and (5.8), we have

(10.12)
n−1∑
j=0

Eνω [f2
ω,j,n ◦ T jω] ≤ CnEν(φ2

x0
1{|φx0 |≤εbn}) ∼ Cε

2−αb2n,

by Proposition 3.2 and that
lim
n→∞

n ν(|φx0 | > λbn) = λ−α for λ > 0,

since φx0
is regularly varying.

On the other hand, we are going to show that for m-a.e. x0

lim
ε→0

lim sup
n→∞

1

b2n

n−1∑
i=0

∑
i<j

Eνω [fω,j,n ◦ T jω · fω,i,n ◦ T iω] = 0.(10.13)

The first observation is that, due to condition (Dec),

Eνω [fω,j,n ◦ T jω · fω,i,n ◦ T iω] ≤ Cθj−i‖fω,i,n‖BV‖fω,j,n‖L1
m
≤ Cε2b2nθ

j−i

where θ < 1. Hence there exists a > 0 independently of n and ε such that∑
j−i>ba lognc

Eνω [fω,j,n ◦ T jω · fω,i,n ◦ T iω] ≤ Cε2n−2b2n

and it is enough to prove that for ε > 0,

n−1∑
i=0

i+ba lognc∑
j=i+1

Eνω [fω,j,n ◦ T jω · fω,i,n ◦ T iω] = o(b2n) = o(n
2
α ).

By construction, the term Eνω [fω,i,n ◦T iω ·fω,j,n ◦T jω] is a covariance, and since φ is positive, we can bound

this quantity by Eνω [f ◦ T iω · f ◦ T jω] = Eνσiω [fn · fn ◦ T j−iσiω ] where fn = φx0
1{|φx0 |≤εbn}. Then, since the

densities are uniformly bounded by (5.8), we are left to estimate

(10.14)
n−1∑
i=0

i+ba lognc∑
j=i+1

Em[fn · fn ◦ T j−iσiω ].

Let 3
4 < ψ < 1 and Un = Bn−ψ (x0). We bound (10.14) by (I) + (II) + (III), where

(I) =

n−1∑
i=0

i+ba lognc∑
j=i+1

∫
Un∩(T j−i

σiω
)−1(Un)

fn · fn ◦ T j−iσiω dm,

(II) =
n−1∑
i=0

i+ba lognc∑
j=i+1

∫
Un∩(T j−i

σiω
)−1(Ucn)

fn · fn ◦ T j−iσiω dm

and

(III) =

n−1∑
i=0

i+ba lognc∑
j=i+1

∫
Ucn

fn · fn ◦ T j−iσiω dm.

Since ‖fn‖∞ ≤ εbn, it follows that

(I) ≤ ε2b2n

n−1∑
i=0

i+ba lognc∑
j=i+1

m
(
Un ∩ (T j−iσiω )−1(Un)

)

≤ aε2b2n(log n)
n−1∑
i=0

m
(
Un ∩

{
Rσ

iω
Un ≤ a log n

})
,
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which by Lemma 10.3 is a o(b2n) as n→∞ for m-a.e. x0.
To estimate (II) and (III), we will use Hölder’s inequality. We first observe by a direct computation that

(10.15)

∫
Ucn

φ2
x0
dm = O(nψ( 2

α−1)).

We consider (III) first. Let A = U cn. We have∫
Ucn

fn · fn ◦ T j−iσiω dm ≤
∫
A

φx0
· fn ◦ T j−iσiω dm ≤

(∫
A

φ2
x0
dm

) 1
2
(∫

f2
n ◦ T

j−i
σiω dm

) 1
2

(10.16)

≤ C
(∫

A

φ2
x0
dm

) 1
2
(∫

f2
ndm

) 1
2

.(10.17)

By (10.15),
(∫
A
φ2
x0
dm
) 1

2 ≤ Cn
ψ
2 ( 2

α−1) and by Proposition 3.2,
(∫
f2
ndm

) 1
2 ≤ Cn 1

α−
1
2 . Hence we may bound

(10.16) by Cn(1+ψ)( 1
α−

1
2 ).

To bound (II), let B = Un ∩ (T j−iσiω )−1(U cn). Then,∫
Un∩(T j−i

σiω
)−1(Ucn)

fn · fn ◦ T j−iσiω dm ≤
∫
B

fn · φx0
◦ T j−iσiω dm ≤

(∫
f2
ndm

) 1
2
(∫

B

φ2
x0
◦ T j−iσiω dm

) 1
2

.(10.18)

As before
(∫
f2
ndm

) 1
2 ≤ Cn 1

α−
1
2 and(∫

B

φ2
x0
◦ T j−iσiω dm

) 1
2

≤
(∫

φ2
x0
◦ T j−iσiω1(T j−i

σiω
)−1(Ucn)dm

) 1
2

≤ C

(∫
Ucn

φ2
x0
dm

) 1
2

≤ Cn
ψ
2 ( 2

α−1)

by (10.15), and so (10.18) is bounded by Cn(1+ψ)( 1
α−

1
2 ).

It follows that (II) + (III) ≤ C(log n)n1+(1+ψ)( 1
α−

1
2 ) = o(n

2
α ), since ψ < 1. This proves that (10.14) is a

o(b2n) and concludes the proof of (10.13).
Finally, from (10.11), (10.12) and (10.13), we obtain

lim
ε→0

lim sup
n→∞

1

b2n
Eνω [(Sω,n,n)2] = 0,(10.19)

which gives the result by taking the limit first in n and then in ε in (10.10). �

10.2. Intermittent maps: proof of Theorem 2.6. We prove convergence to a stable law in the setting
of intermittent maps when α ∈ (0, 1).

Proof of Theorem 2.6. We apply Proposition 5.8. By Theorem 6.4, it remains to prove (5.7), since α ∈ (0, 1).
We will need an estimate for Eνω (|φx0

|1{φx0≤εbn}) which is independent of ω. For this purpose, we introduce

the absolutely continuous probability measure νmax whose density is given by hmax(x) = κx−γmax . Since all
densities hω belong to the cone L, we have that hω ≤ a

κhmax for all ω. Thus,

1

bn

n−1∑
j=0

Eνσjω (φx01{|φx0 |≤εbn}) ≤
n

bn

a

κ
Eνmax(φx01{|φx0 |≤εbn}).

We can easily verify that φx0
is regularly varying of index α with respect to νmax, with scaling sequence

equal to (bn)n≥1 up to a multiplicative constant factor. Consequently, by Proposition 3.2, we have that, for
some constant c > 0,

Eνmax
(φx0

1{|φx0 |≤εbn}) ∼ cε
1−αn

1
α−1,

which implies (5.7). �
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11. The annealed case

In this section, we consider the annealed counterparts of our results. Even though the annealed versions
do not seem to follow immediately from the quenched version, it is easy to obtain them from our proofs
in the quenched case. We take φx0(x) = d(x, x0)−

1
α as before we consider the convergence on the measure

space Ω × [0, 1] with respect to νF (dω, dx) = P(dω)νω(dx). We give precise annealed results in the case of
Theorems 2.4 and 2.6, where we consider

Xa
n(ω, x)(t) :=

1

bn

bntc−1∑
j=0

φx0(T jωx)− tcn

 , t ≥ 0,

viewed as a random process defined on the probability space (Ω × [0, 1], ν).

Theorem 11.1. Under the same assumptions as Theorem 2.4, the random process Xa
n(t) converges in the

J1 topology to the Lévy α-stable process X(α)(t) under the probability measure ν.

Proof. We apply [TK10b, Theorem 1.2] to the skew-product system (Ω× [0, 1], F, ν) and the observable φx0

naturally extended to Ω× [0, 1]. Recall that ν is given by the disintegration ν(dω, dx) = P(dω)νω(dx).
We have to prove that

(a) Nn
d→N(α),

(b) if α ∈ [1, 2), for all δ > 0,

lim
ε→0

lim sup
n→∞

ν

(ω, x) : max
1≤k≤n

∣∣∣∣∣∣ 1

bn

k−1∑
j=0

[
φx0(T jωx)1{|φx0◦T jω|≤εbn}(x)− Eν(φx01{|φx0 |≤εbn})

]∣∣∣∣∣∣ ≥ δ
 = 0,

where

Nn(ω, x)(B) := Nω
n (x)(B) = #

{
j ≥ 1 :

(
j

n
,
φx0(T j−1

ω (x))

bn

)
∈ B

}
, n ≥ 1.

To prove (a), we take f ∈ C+
K((0,∞)× (R \ {0})) arbitrary. Then, by Theorem 6.3, we have for P-a.e. ω

lim
n→∞

Eνω (e−N
ω
n (f)) = E(e−N(f)).

Integrating with respect to P and using the dominated convergence theorem yields

lim
n→∞

Eν(e−Nn(f)) = E(e−N(f)),

which proves (a).
To prove (b), we simply have to integrate with respect to P in the estimates in the proof of Theorem 2.4,

which hold uniformly in ω ∈ Ω, and then to take the limits as n→∞ and ε→ 0. �

Similarly, we have:

Theorem 11.2. Under the same assumptions as Theorem 2.6, Xa
n(1)

d→X(α)(1) under the probability mea-
sure ν.

Proof. We can proceed as for Theorem 11.1 in order to check the assumptions of [TK10b, Theorem 1.3] for
the skew-product system (Ω × [0, 1], F, ν) and the observable φx0

. �
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12. Appendix

The observation that our distributional limit theorems hold for any measures µ � νω follows from
Theorem 1, Corollary 1 and Corollary 3 of Zweimüller’s work [Zwe07].

Let

Sn(x) =
1

bn
[
n−1∑
j=0

φ ◦ T jω(x)− an].

and suppose

Sn →νω Y

where Y is a Lévy random variable.
We consider first the setup of intermittent maps. We will show that for any measure ν with density h i.e.

dν = hdm in the cone L, in particular Lebesgue measure m with h = 1,

Sn →ν Y

We focus on m. According to [Zwe07, Theorem 1] it is enough to show that∫
ψ(Sn)dνω −

∫
ψ(Sn)dm→ 0.

for any ψ : R→ R which is bounded and uniformly Lipschitz.
Fix such a ψ and consider ∫

ψ(
1

bn
[

n−1∑
j=0

φ ◦ T jω(x)− an])(hω − 1)dm

≤
∫
ψ(

1

bn
[
n−1∑
j=0

φ ◦ T j
σkω

(x)− an])P kω (hω − 1)dm

≤ ‖ψ‖∞‖P kω (hω − 1)‖L1(m).

Since ‖P kω (hω − 1)‖L1
m
→ 0 in case of Example 2.2 and maps satisfying (LY), (Dec) and (Min) the assertion

is proved. By [Zwe07, Corollary 3], the proof for continuous time distributional limits follows immediately.
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[AFV15] Hale Aytaç, Jorge Milhazes Freitas, and Sandro Vaienti. Laws of rare events for deterministic and random

dynamical systems. Trans. Amer. Math. Soc., 367(11):8229–8278, 2015.

[AHN+15] Romain Aimino, Huyi Hu, Matthew Nicol, Andrei Török, and Sandro Vaienti. Polynomial loss of memory for
maps of the interval with a neutral fixed point. Discrete Contin. Dyn. Syst., 35(3):793–806, 2015.

[ANV15] Romain Aimino, Matthew Nicol, and Sandro Vaienti. Annealed and quenched limit theorems for random expand-
ing dynamical systems. Probab. Theory Related Fields, 162(1-2):233–274, 2015.
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