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Over the last few decades, nonlinear optics has become significantly more nonlinear, traversing nearly a billionfold
improvement in energy efficiency, with ultrafast nonlinear nanophotonics in particular emerging as a frontier for com-
bining both spatial and temporal engineering. At present, cutting-edge experiments in nonlinear nanophotonics place
us just above the mesoscopic regime, where a few hundred photons suffice to trigger highly nonlinear dynamics. In con-
trast to classical or deep-quantum optics, the mesoscale is characterized by dynamical interactions between mean-field,
Gaussian, and non-Gaussian quantum features, all within a close hierarchy of scales. When combined with the inherent
multimode complexity of optical fields, such hybrid quantum-classical dynamics present theoretical, experimental,
and engineering challenges to the contemporary framework of quantum optics. In this review, we highlight the unique
physics that emerges in multimode nonlinear optics at the mesoscale and outline key principles for exploiting both
classical and quantum features to engineer novel functionalities. We briefly survey the experimental landscape and
draw attention to outstanding technical challenges in materials, dispersion engineering, and device design for accessing
mesoscopic operation. Finally, we speculate on how these capabilities might usher in some new paradigms in quantum
photonics, from quantum-augmented information processing to nonclassical-light-driven dynamics and phenomena
to all-optical non-Gaussian measurement and sensing. The physics unlocked at the mesoscale present significant chal-
lenges and opportunities in theory and experiment alike, and this review is intended to serve as a guide to navigating
this new frontier in ultrafast quantum nonlinear optics. © 2024 Optica Publishing Group under the terms of the Optica Open
Access Publishing Agreement
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1. INTRODUCTION distances [4-7], effectively lifting the micrometer-scale limitation
imposed by phase mismatch. The second advance came in the
form of waveguiding techniques [8—10], with which the tradeoff
between tight focusing and long interaction can be lifted. The
third advance was the advent of nonlinear nanophotonics [11-15],

Since the first demonstration of second-harmonic generation
(SHG) in 1961 [1], nonlinear optics has steadily become ever more
nonlinear and energy efficient, making it a ubiquitous driver of
progress across modern science and technology, from communica-

tions to metrology to sensing [2,3]. By one account, such advances where the lithographic definition of subwavelength structures
can be understood historically through four stages of technological in nonlinear materials enabled tight confinement of light with
innovation. The first advance came with the development of phase- strong index contrast, increasing the effective intensity and thus
matching techniques—and subsequently quasi-phase-matching the nonlinear efficiency.

in particular—which enabled the constructive addition of light- We are now experiencing, in a sense, a fourth development: by
waves emitted by the nonlinear interaction over long propagation combining all the techniques above with dispersion engineering in
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Review

nanophotonic waveguides, we can support thousands to millions
of frequency modes simultaneously interacting in a single device.
In the time domain, the collective excitation of broadband light
manifests as ultrashort (i.e., femtosecond-scale) pulses, producing
rich temporal dynamics and further enhancing the nonlinear
efficiency via tight confinement of the field in time. Ultrafast
nanophotonics has already opened up new regimes of physical
phenomena, device functionalities, and operational paradigms,
ranging from micrometer-scale optical frequency combs [16] to
ultra-efficient frequency conversion [17] to broadband quantum
light sources [18,19]. The result of all the above technological
innovations, as exhibited in Fig. 1, is an experimental trend in
nonlinear optics over the last several decades featuring a reduction
of nearly eight orders of magnitude in the energy scale needed to
access optical nonljearities.

Just as remarkably, however, these numbers are also approach-
ing the ultimate physical limit prescribed by quantum mechanics:
the energy scale of a single photon, which at 780 nm is on the order
of 0.1 aJ. We are therefore confronted with the tantalizing possibil-
ity that nonlinear photonics may be on the cusp of unlocking the
physics of strong coupling, a major milestone widely seen as essen-
tial for enabling novel quantum functionalities for applications
such as metrology, sensing, and information processing [41,42].
Strong coupling occurs when two quantum degrees of freedom
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(e.g., two optical fields or a field and an atom) interact so strongly
that the presence of a single quantum in one can affect the physics
of the other (within their mutual coherence time): for example, a
single excited atom in a cavity can set up a coherent interference
effect (photon blockade) that prohibits any external photon from
entering the cavity. Strong coupling has been realized in various
experimental platforms for “quantum electrodynamics” (QED),
such as superconducting-circuit QED [43], quantum-dot QED
[44,45], and atom-cavity QED [46,47], which are hotly pursued as
“testbeds” for developing new quantum functionalities. However,
as the field of quantum engineering advances towards the devel-
opment of scalable hardware, significant technical challenges on
many such platforms are coming into focus, such as the need for
cryogenic cooling and complex setups involving vacuum chambers
and many stabilized lasers. Technologically, it is tempting to ask
whether nonlinear nanophotonics might provide a promising
alternative or complement to these platforms for quantum science
and technology, offering a unique portfolio of room-temperature
operability, lithographic scalability, and compatibility with long-
distance telecommunications. Furthermore, just as how complex
ultrafast dynamics constitute a fountain of rich physics in classical
nonlinear optics [48—50], access to many terahertz of bandwidth
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Fig.1. Technological progression towards the quantum regime of nonlinear optics. (a) Advances in our ability to confine nonlinear-optical interactions
in both transverse and longitudinal directions. (b) Characteristic energy scales for nonlinear-optical devices. For concreteness, we compare the intracavity
pump energy E (left axis) or equivalent photon number (assuming 780 nm light; right axis) at the threshold of optical parametric oscillation; for studies
that do not report threshold, we provide our best estimate using the formula £ = fiw, (g /k,) =2, where g is the nonlinear coupling rate, w, is the pump
frequency, and «,, is the total signal (field) loss rate. Marker shapes and colors depict degrees of confinement in the transverse and longitudinal dimen-
sions, respectively; for pulse-pumped devices, the longitudinal extent is set to the pulse duration. Devices considered here include microring waveguide
resonators [14,15,20-28], whispering-gallery-mode resonators (WGMR) [29-31], Fabry—Perot waveguide resonators [32], free-space resonators [33-37],
reverse-proton-exchanged waveguide resonators with quasi-continuous-wave [38] and pulsed [39] pump, and a pulse-pumped nanophotonic resonator
[40]. Selected examples are pictured in (c): in order, (I) a silica WGMR [31] [reprinted figure with permission from Kippenberg ez a/., Phys. Rev. Lett. 93,
083904 (2004). Copyright 2004 by the American Physical Society]; (II) a periodically poled lithium niobate (PPLN) microring resonator [14] [figure
adapted from Lu ez al., Optica 7, 12 (2020). Copyright 2020 Optica Publishing Group); (III) an InGaP microring resonator [15] (figure adapted from
Zhao ez al., Optica 9, 2 (2022). Copyright 2022 Optica Publishing Group); and (IV) a pulse-pumped PPLN nanophotonic resonator [40]. Outset of
(b) illustrates a device realizing the objective of this review: ultrashort, 3D-confined pulses nonlinearly interacting in the mesoscopic quantum regime.



via advanced dispersion engineering may also enable unique quan-
tum functionalities emerging from the immensely multimode
dynamics of interacting photons.

With this motivation and in light of Fig. 1, one possible answer
might be to simply sit back and wait for experimental capabilities
to achieve true single-photon nonlinearity, at which point we can
jump into exploiting ultrafast quantum nonlinear optics as yet
another strongly coupled system, proceeding by analogy to the
aforementioned QED platforms. However, the reality is unlikely
to be quite so simple. For instance, how does the transition from
the macroscopic, classical domain to the microscopic, quantum
domain occur? On the two ends of the spectrum, our physical
descriptions of the dynamics take totally different forms: in the
classical limit, lightwave propagation is described by classical
coupled-wave equations, which are nonlinear differential equa-
tions, whereas in the microscopic limit, quantum wavefunctions
evolve under the Schrédinger equation, which is a /inear differen-
tial equation. These two physical pictures need to be reconciled
to understand the intermediate mesoscopic regime we inevitably
traverse as experimental energy scales continue to target the single-
photon level. Another challenge is the inherently multimode
nature of ultrafast nonlinear optics. Properly describing an ultrafast
pulse of light—even assuming a single transverse spatial mode—
can require thousands of (temporal or frequency) modes in the
longitudinal direction, depending on the complexity of the pulse’s
spectrum (in the frequency domain) or its envelope modulations
(in the time domain). This should be contrasted to, say, a Jaynes—
Cummings cavity-QED model consisting of a single optical mode
and a single two-level atom, i.e., a four-dimensional quantum
state for the single-excitation subspace: even using a moderate
1000 modes for the quantum pulse, with each mode populated
by at most one photon, quantum mechanics assigns the pulse a
219%0_dimensional state space. In other words, naively speaking, it
isahighly nontrivial task even to perform numerical simulations to
understand how broadband pulses behave in the quantum domain.
Consequently, many analyses of quantum pulse propagation are
based on simplified models drawn from semiclassical intuition, but
there are numerous cautionary lessons where failure to account for
multimode quantum interactions properly has led to qualitatively
wrong predictions [51-54]. To fully leverage and develop the tech-
nological opportunities forthcoming in the field, it is thus essential
to develop both a deep qualitative understanding of multimode
quantum dynamics as well as sophisticated model-reduction
capabilities to quantitatively bear it out.

In this paper, we explore the transition from classical to quan-
tum ultrafast nonlinear optics and provide one vision for how
that transition might experimentally play out in the near future.
In particular, we elucidate the essential physics that characterize
nonlinear optics in the mesoscopic regime, where both classical
and quantum features in the state coexist and dynamically interact.
The confluence of classical, quantum, and multimode physics
suggests a unique opportunity for engineering methodologies from
classical optics, quantum optics, and ultrafast optics to overlap
and synergize, and we argue that a new program of research should
be dedicated to exploring these opportunities. We discuss some
key experimental challenges and capabilities that need further
development to access this regime, and we highlight opportunities
for altogether new paradigms in quantum engineering, uniquely
enabled by the rich phenomenology of mesoscopic quantum
optics.
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2. MESOSCOPIC PHYSICS: NAVIGATING THE
CLASSICAL TO QUANTUM TRANSITION

A. Nonlinear Optics in Classical and Quantum Limits

Classically, the state of a mode can be represented by its complex
amplitude @ = x +ip, a single c-number; that is, every ampli-
tude measurement yields @ without fail. Quantum mechanically,
however, we know the electric field has no definite value, so two
independent amplitude measurements necessarily yield different
results, according to some well-defined statistics; that is, there
is variance (or perhaps even higher-order statistics) among the
measurements. To handle this, quantum mechanics assigns an
operator 2 to the mode, mathematically defined so that & = (2),
but (2?) (closely related to the variance of the amplitude mea-
surements) does not necessarily equal a?. Thus, (2?) is a physical
quantity independent from «. Naturally, this argument extends
to all higher-order moments too, e.g., (%), (4724?), and so on; in
general, knowing the full quantum state requires knowing every
possible statistic [55]. Furthermore, in quantum mechanics, the
order of operators in these moments matters, and noncommutativ-
ity leads to uniquely quantum effects, e.g., Heisenberg uncertainty,
vacuum fluctuations, and contextuality [56,57].

Box 1. Phase space and the Wigner function
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Fig.2. Illustration of various quantum states of light that an electro-
magnetic mode can assume, depicted as both stochastic snapshots of
the electric field [58] (left column) and phase-space portraits according
to their Wigner function (right column). (a) Classical description of
the electric field as a point-like phasor, (b) coherent state, (c) squeezed
vacuum state, and (d) Fock state. The states depicted all have the same
expected photon number of 5, with varying distributions around that
number.
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A mode of the electromagnetic field can be described by two
variables, namely its cosine and sine quadratures, respectively
denoted x and p. Thus, at least classically, the state of the
mode can be given a phasor representation as a point in two-
dimensional phase space with coordinates (x, p) [see Fig. 2(a)].
Quantum mechanically, however, any measurements of these
quadratures exhibit finite quantum fluctuations around their
mean values, which can be naturally captured as a (joint) prob-
ability distribution over phase space instead. Figure 2(b) shows
the phase-space distribution (or portrait) of a coherent state, a
type of quantum state produced in an ideal laser. The “width”
of the distribution along either axis corresponds to the inherent
uncertainty of the respective quadrature; for coherent states, this
is equal to /72/2 in all directions (the same as that of the vacuum,
the zero-amplitude coherent state). A little more exotically, in a
squeezed vacuum state, the uncertainty of one quadrature can
be reduced below that of the vacuum, at the expense of increased
uncertainty in the other quadrature. This can be seen in Fig. 2(c),
where the phase-space portrait takes on a Gaussian distribution
squeezed along one quadrature (hence the name squeezed states).

In fact, such phase-space representations can be constructed
more formally from the quantum state of the mode, as the
so-called Wigner quasi-probability distribution, or Wigner
function for short [59,60]. For semiclassical states, the Wigner
function is positive everywhere in phase space and can be inter-
preted as a joint probability distribution over the two quadrature
random variables, as we did above. However, for highly non-
classical quantum states, something strange can happen. For
instance, consider a Fock state, which has a definite number
of photons (and thus no energy uncertainty, at the expense of
completely indefinite phase). As shown in Fig. 2(d) for a five-
photon Fock state, the Wigner function (as formally computed)
takes on negative values, meaning that we cannot think of the
Wigner function as a joint probability distribution between two
random variables (thus the name guasi-probability distribution).
Quantum mechanically, measuring the value of x inevitably
disturbs that of p (and vice versa), and, thus, we cannot simulta-
neously assume values for these variables. Such negativities in the
Wigner functions are essential for the corresponding quantum
states to exhibit genuine quantum properties [61,62] (i.e., to be
quantum-contextual [56,57]).

Obviously, keeping track of all such moments is a daunting
task, so when studying deep-quantum phenomena in cavity QED,
we often turn to an entirely different representation based on
expansions in terms of photon-number states |7). In this approach,
the quantum state is [/) =Y o ¢,|n), where we keep track
of an infinite sequence ¢, instead. This is an excellent state rep-
resentation if the physics concerns only a microscopic number
of photons since the expansion can be truncated at small 7. But
the catch is that this confines the state |) to the deep-quantum
regime, making it particularly hard to see how the classical world
of many photons smoothly transitions to the quantum world
of very few: where, e.g., is a? For this purpose, it is much more
transparent to recall the statistical viewpoint above and treat the
quantum state instead as a distribution in phase space (a 2D space
comprising the real and imaginary parts, or quadratures, of the
amplitude). Just as a probability distribution can be used to cal-
culate all possible statistics for random variables, the phase-space
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Fig. 3. Illustration of the phase-space dynamics under Kerr nonlinear
interaction for (a) microscopic, (b) mesoscopic, and (c) macroscopic
coherent states. The bottom graph depicts distribution of photon num-
bers for each regime. The gray arrows represent phase-space flow of
corresponding classical mean-field theory, and the black arrows depict the
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distribution can be used to calculate all possible quantum mea-
surement statistics. Such phase-space portraits, or more technically
Wigner quasi-distribution distributions [59,60], are exhibited
and described further in Box 1, and they will be the main way
we visualize our quantum states in this review. In such plots, the
classical first-order moment o = (2) is simply the centroid of the
distribution and is referred to as the mean-field amplitude. But due
to quantum uncertainty, there exists a physical scale within which
the distribution is necessarily blurry: this scale is set by Planck’s
constant h.

By looking at the size and shape of the features in such phase-
space portraits, we can obtain visual intuition for how the impact
of quantum uncertainty and fluctuations can vary across differ-
ent energy scales. In Fig. 3(c), we show a “classical” state of the
mode, the celebrated coherent state, which consists simply of the
centroid @ and a symmetric Gaussian distribution around it—
the quantum statistics involve only a mean and a variance, from
which all other statistics can be computed. The scale of % is also
negligible compared to « in this classical limit, so it makes intuitive
sense that we just need to focus on the dynamics of « as the system
evolves.

At the other extreme, exotic quantum states such as that shown
in Fig. 3(a) are characterized by nontrivial features in their Wigner
distributions that are comparable or even larger in scale than their
mean. Nonlinear-optical dynamics that generate such features at
such scales generally involve strong photon—photon nonlineari-
ties, and this regime involves the proliferation of many nontrivial
higher-order moments. Remarkably, the Wigner distribution in
this regime can even feature negative values (subject to certain
mathematical constraints), which renders the distribution non-
sensical as a conventional probability distribution; in the language
of quantum statistics, this property is related to the contextual-
ity of quantum measurements (i.e., the order of operators in the
moments) [56,57]. Experimentally, the generation of such fea-
tures is seen as a holy grail towards procuring physical resources
for, e.g., exponential speedups and fault tolerance in quantum
computation [61,62].

B. Hierarchy of Scales in Quantum Nonlinear Optics

Intermediate between these two regimes, Fig. 3(b) depicts how
the natural dynamics found in nonlinear optics can take a classical
coherent state and zransform it to a more exotic quantum state.
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Fig.4. (a) In thelab frame, a quantum state generally contains classical
features (i.e., mean-field amplitude), semiclassical features (i.e., Gaussian
squeezing), and non-Gaussian quantum features. (b) Factoring out the
dynamics of former two as a Gaussian unitary, non-Gaussian quantum
features remain in a Gaussian interaction frame.

Looking at the Wigner distribution, the dynamics induce “Hows”
along phase space (in a similar sense as Liouville’s equation in
classical dynamics). These flows distort the distribution, which
directly translates into changes in the quantum fluctuations and
correlations. Finally, as these distortions become strong enough to
generate features on the scale of A, the laws of quantum mechanics
cause the Wigner distribution to exhibit nonclassical features such
as negativity.

This generic picture of what happens in phase space can give us
significant insight into how classical nonlinear optics transitions to
quantum nonlinear optics. In the former case, the field amplitudes
needed to trigger nonlinear effects comprise millions or billions of
photons, effectively washing out any observable quantum statis-
tics. As a result, there typically exists a clear hierarchy among the
dynamical rates of the following (from faster to slower):

(i) Mean field affecting mean field (e.g., classical SHG and
self-phase modulation)
(i) Mean field affecting quantum fluctuations (e.g., squeezing by
OPA and solitons)
(iii) Quantum fluctuations affecting mean field and quantum
fluctuations (e.g., pump depletion by amplified vacuum as in

parametric generation)

The lowest-order effect (i) is purely classical and corresponds
to motion of the centroid of the phase-space distribution, whereas
(i) is the lowest-order nonclassical effect and induces linear
squeezings and rotations of the distribution around the mean,
as might be captured by a local Jacobian linearizing the flow [see
Fig. 4(a)]. Finally, (iii) induces nonlinear deformations when
the flow develops a nontrivial gradient within the extent of the
distribution itself, generating the most exotic quantum fea-
tures. As shown in Fig. 4(b), such features are most clearly seen
as residual non-Gaussian quantum fluctuations after factoring
out classical amplitude and Gaussian squeezing. These visual
intuitions and the separation of scales motivate a hierarchical
representation of the quantum state itself, as discussed further in
Box 2.

Box 2. Gaussian interaction frame

Two of the most fundamental mathematical objects in quantum
optics are the displacement and symplectic operators, which, in
one characterization, act on the vacuum to produce coherent
states and squeezed states, respectively. Together, these two
families of unitary operators, denoted D and S, respectively,
can generate any pure Gaussian state starting from the vacuum
and are hence referred to collectively as the class of “Gaussian
unitaries” [63,64]. From the perspective of phase space, however,
they can also be given a geometric interpretation. By virtue
of its ability to shift the centroid of the vacuum state to some
other point & in phase space, D(r) (in a “passive coordinate
transformation” sense) corresponds to a rigid shift or transla-
tion of phase-space coordinates; indeed, for any (nonvacuum)
state |) with a given Wigner distribution, D(a)|1//) has a
Wigner distribution, which is simply translated by & in phase
space. Similarly, 8 can be viewed in the same way as being a
combination of a rigid rotation of phase space about the ori-
gin and/or a stretching of the coordinates along a given axis;
again, it turns out that these coordinate transformations apply
generally to any starting Wigner distribution (i.e., any state).
Mathematically, for a single-mode system with annihilation
operator 4, these operators are fully parameterized by their
action as

Stu, v)aS(u, v) = pa + vat,
(1)

DY )aD@) =4 +a,

wherea, w, v e Cand |u|?> — |v|> = 1.

From their interpretation as “generators” of Gaussian states, it
is reasonable to expect that they can also be used to “factor out” or
extract Gaussian features embedded in a quantum state. This can
be done without loss of generality by rewriting an arbitrary quan-
tum state |1/) using the decomposition [65,60]

l¥) = D(@) S, v)lg), ©)

such that knowledge of @, , v, and |@) suffices to recall |yr).
Alternatively, from a geometric interpretation, this equation says
that we can recover the Wigner distribution of |) starting from
the Wigner distribution of |¢) using a combination of rotation,
stretch, and translation parameterized by i, v, and «. Hence,
these parameters define a particular change of coordinates in phase
space, taking us from “lab frame” into the so-called “Gaussian
interaction frame.” As discussed in the main text, displacements
and squeezing occur naturally at the dynamical timescales (i)
and (ii), so in the Gaussian frame, these dynamics are concisely
described by specifying o and p, v, respectively, while the (non-
Gaussian) dynamics in (iii) are described by the evolution of the
residual quantum state |@). This key idea isillustrated in Fig. 4.

A natural choice for how D and § ought to change as a func-
tion of time is by associating them with the classical dynamics,
which approximates (i), and the linearized Gaussian dynam-
ics, which approximates (ii). More specifically, given a system
Hamiltonian A = H(4, 4"), the evolution of o can be chosen
to follow the classical wave equation

0,00 = —i0yx H(at, o). 3)

Then, the evolution of p and v can be obtained by a linear-
ized treatment: We collect the first- and second-order terms of




DYAD — D", D and denote them by Hg, which we can use to
obtain the equation of motion

an=ilST[ A, 218, 471,  0,v=—i[ST[Hg, 218, 4]. (4)

These equations define a moving Gaussian interaction frame
in which to view the quantum state evolution. In this moving
frame, the residual quantum state |@) evolves under an effective
Hamiltonian ]:leff= U AU — ifﬁa, U, where U = DS. From
this, we can also see that the effective dynamics of |¢) (in this
moving frame) has explicit dependence on the Gaussian unitary
U; i.e., the Gaussian features of the state influence the effective
non-Gaussian dynamics.

The emergence of a new Hamiltonian [:[eff should not be
seen as a mystery: it is directly analogous to the new forces that
arise when moving into a noninertial reference frame in classical
mechanics, e.g., the artificial gravity created by a rotating O’Neill
cylinder of an interstellar space colony. As in this example, being
able to identify and control these physical effects can lend new
perspective and methods for engineering the system at hand. In
mesoscopic nonlinear optics, the strategy that this perspective
suggests is to use the semiclassical dynamics of the Gaussian
frame U to control the non-Gaussian interactions I:[eff and
perform nontrivial quantum tasks (see Box 3 and 5 for concrete
examples).

C. Non-Gaussianity and the Classical-Quantum
Transition

This hierarchy of scales strongly shapes the ways in which the phys-
ics of (iii) can emerge in nonlinear-optical experiments, effectively
setting requirements on energy and timescales for generating and
observing non-Gaussian quantum features. When discussing
the relevance of quantum phenomena, it is useful to identify two
effective timescales in the system: a single-photon nonlinear rate
¢ and a decoherence rate k. Intuitively, ¢ captures how quickly
the presence of a photon in one mode can affect the dynamics of
photons in another mode, so the condition of strong coupling, at
least as conventionally understood, corresponds to the condition
g/k 2 1;i.e.,asingle photon can exert its influence before it decays
away.

The conventional wisdom is that if g/k < 1, we can ignore
the physics of (iii), because its dynamics only becomes appreciable
after a time 1/g, which is well beyond the coherence time 1/x.
Supposing this is the case, then the only states we can generate are
Gaussian states, so called because their Wigner distributions are
Gaussian distributions (see also the discussion in Box 2). Gaussian
states play a central role in modern quantum optics, not only
because of their simplicity, but also because they are, to date, the
only states that can be deterministically generated in optical experi-
ments with weak nonlinearities. As such, there is an entire subfield
of Gaussian quantum optics studying such states as a basic resource
[63,64,67-69].

To go beyond Gaussian quantum optics, then, we seem to run
up against the age-old strong-coupling problem: we need larger
optical nonlinearities to speed up the physics of (iii) so that non-
Gaussianity can arise within timescales faster than decoherence.
However, it is interesting to note that strong coupling, as con-
ventionally understood, concerns single-photon nonlinear rates,
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whereas it is well known in classical nonlinear optics that one can
accelerate nonlinear dynamics by simply driving the system harder,
with more photons. For example, we can enhance the power con-
version efficiency of SHG by increasing the input pump power.
Could this be a shortcut, unique to nonlinear optics, to generating
non-Gaussianity withoutstrong coupling?

The answer is both “yes” and “no.” Referring back to the hier-
archy of scales discussed in Section 2.B, while it is true that states
with larger amplitudes experience accelerated development of the
exotic quantum features in (iii), the hierarchy of scales implies that
the classical and Gaussian features in (i) and (ii) are accelerated also,
and even more so. Specifically, the problem is that dominance of
(ii) leads to a strong “Gaussian background” that makes the quan-
tum state prone to experimental imperfections, e.g., phase noise
and loss. For instance, in optical parametric generation (OPG),
pump depletion can occur even without a signal seed [70], due
solely to the brightness of amplified vacuum; this is certainly a
manifestation of beyond-Gaussian physics. However, the strong
antisqueezing required to deplete a macroscopic pump field means
that the phase-space distribution of the signal is stretched by
many orders of magnitude along the amplified quadrature. The
non-Gaussian features appear “on top” of this Gaussian one, so
they are also macroscopically stretched out in phase space, and
they consequently become highly sensitive to loss and noise. In
Section 4.A, we specifically explore how this issue quantitatively
affects experimental considerations for observing non-Gaussianity.

In short, nonlinear interactions involving more than one pho-
ton can enable the formation of non-Gaussian features without
the need for strong coupling at the single-photon level (g /x 2 1),
so long as g/ is not too small (say, within 107! to 10~%). This
condition enables a moderate number of photons (10 to 109 to
collectively enhance (iii) beyond the single-photon rate ¢, while
ensuring the corresponding growth in Gaussian background and
technical noise due to (ii) and (i) remains manageable; we provide
a more detailed discussion of this tradeoff in Section 4.A. Thus,
in a sense, mesoscopic non-Gaussian states (as opposed to single-
photon Fock states) are the most natural subjects for studying how
the concept of “nonlinear enhancement” extends from classical
nonlinear optics into the quantum domain.

D. Quantum Optics at the Mesoscale

These considerations motivate us to consider a mesoscopic regime
of nonlinear optics, where, in the OPG example, only hundreds
to thousands of pump photons per pulse suffice to induce pump
depletion by amplified quantum fluctuations. This perspective
complements the experimental situation, where rapid advances
in nonlinear photonics are pushing closer to this ultra-low energy
scale (see Fig. 1). In this regime, all of the features discussed
above—mean-field, Gaussian, and quantum non-Gaussian—
coexist: they are all significant (none can be neglected), and they
dynamically interact within a close hierarchy of scales.

As discussed in Section 2.B (and elaborated in Box 2), there
exist ways to represent the quantum state with this hierarchy built
in. From a modeling perspective, it is precisely in the mesoscopic
regime where such a “multi-scale” representation is the most
warranted, insightful, and efficient. In this representation, the
dynamics within each hierarchical level are driven by the ones
above it: simplifying somewhat, the onset of non-Gaussian physics
might look as follows. First, the mean field, which sits at the highest



level, simply follows classical equations of motion. The mean-field
dynamics then drive the growth of quantum fluctuations, whose
leading-order dynamics can be represented by the evolution of
a Gaussian phase-space distribution. Finally, the non-Gaussian
quantum features evolve under a Schrédinger equation (as usual)
but driven by nonlinear interactions that directly depend on the
dynamics of the previous two hierarchies. Crucially, the nature
of these nonlinear interactions can look dramatically different
depending on the exact trajectories taken by the mean-field and
Gaussian features. This process is more formally discussed in
Box 2, and we analytically walk through an explicit example of this
workflow in Box 3.

It is worth noting that the physics of the mesoscopic regime is
qualitatively distinct from the more conventional “microscopic”
regime of strongly coupled QED systems, where only a few pho-
tons are involved in the dynamics. In the microscopic regime,
even vacuum-level quantum fluctuations are comparable to
the mean field, and the hierarchy among mean-field, Gaussian,
and non-Gaussian quantum features collapses. As a result, the
“particle” nature of photons is more pronounced, motivating a
description of the physics via a discrete photon-number basis.
On the other hand, in the mesoscopic regime, the “oscillator”
aspect of photons remains pronounced, and the state of light is
best described via quadrature amplitudes but with non-Gaussian
features superimposed, making mesoscopic states a natural car-
rier of continuous-variable (CV) quantum information [63] (see
Section 5.B). Moreover, the mesoscopic regime might even be
where we can expect to see the greatest quantum complexity: in
the microscopic regime, each mode is only populated by a handful
of photons, which makes the Hilbert space dimension grow more
slowly than when each mode can accommodate dozens to hun-
dreds of photons, while in the macroscopic regime, as described
above, nonclassical features become prone to noise and deco-
herence. These considerations suggest the mesoscopic regime
is not simply a technological compromise (in the NISQ sense
[71]), tiding us over until we reach the strong-coupling regime of
microscopic cavity-QED-like physics. Rather, we argue it is an
inherently fertile and unique frontier of nonlinear optics that is
worthy of investigation in its own right.

E. Classical-Quantum Co-Engineering

The presence of strong mean-field and Gaussian features can
modify and enhance quantum aspects of nonlinear-optical inter-
actions. In fact, this idea of Gaussian Hamiltonian engineering
is well established in quantum photonics where mean-field and
Gaussian transformations have been used as powerful tools,
e.g., for nonlinear-optical quantum computation [72-75] and
the manipulation of quantum decoherence dynamics [76,77].
Reference [78] concisely explains, for example, how the presence of
squeezing can, in theory, enhance non-Gaussian quantum dynam-
ics. Recently, innovative quantum-state engineering protocols
using composite Gaussian operations, such as the echo condi-
tional displacement protocol [79], have also been demonstrated.
A common template for the design of such protocols is a fixed,
initial application of some useful Gaussian transformation prior
to the nonlinear interaction of interest, which means the Gaussian
transformations are largely static and occur in an external, gate-
like fashion; this essentially upholds a strong separation of scales
between Gaussian and non-Gaussian parts.
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In this context, the physics of mesoscopic nonlinear optics
may offer an interesting opportunity for classical-quantum co-
engineering, in which the functional roles played by mean-field,
Gaussian, and non-Gaussian physics are less stratified and more
coupled. For instance, non-Gaussian dynamics can often induce
residual displacement and squeezing effects, which then recouple
into the dynamics of the classical and Gaussian features as pertur-
bations; in the mesoscopic regime, such perturbations can be of
equal magnitude to the non-Gaussian effects, in contrast to the case
in Gaussian Hamiltonian engineering where such perturbations
are negligibly small. A concrete example of such a phenomenon
is pump depletion in OPG, where the non-Gaussian dynamics
induces a reduction in the mean-field displacement of the pump,
an effect of the same order as the emergence of non-Gaussian
features (see Box 3 and Ref. [80]). Consequently, the dynamics of
classical and quantum features can become coupled, potentially
translating to new control knobs for engineering devices and quan-
tum states; we elaborate more on such possibilities in Sec. 5.A. It
is worth noting that this form of co-engineering among all three
levels of the hierarchy is only possible due to the closeness of their
respective scales in the mesoscopic regime. Thus, an equivalent
characterization of the mesoscale is the regime in which such
classical-quantum co-engineering of photon dynamics can be
realized.

Box 3. Mesoscopic optical parametric amplification

A central theme in the mesoscopic regime is the interplay
between Gaussian and non-Gaussian quantum features, where
the former crucially determines how the latter emerges. As a
concrete example, we consider a single-mode degenerate x
interaction with the Hamiltonian

H= %(Whaz/}*) 4 84ta, )

where g is the nonlinear coupling rate, and 2 and b are annihila-
tion operators for the signal and pump modes, respectively. The
classical dynamics of OPA, described by the coupled equations

1
9,0 =ga*p + 8, i3,8= 3 ga’ (6)

are known to change their behavior qualitatively depending on
the value of phase mismatch 8. Does the same hold true in the
mesoscopic regime?

When § =0, OPA is phase matched, and the x quadrature
exponentially amplifies while the p quadrature deampli-
fies. As shown in Fig. 5(a), such dynamics can be understood
as phase-space flows following the equipotential lines of a
hyperbolic potential o (x,p, + p.x,), exponentially stretch-
ing the phase-space distribution along x and squeezing it
along p. In the limit of large gain, only quantum fluctuations
along x are significant, which is, more formally, the statement
that UaU=evVre'}, + e‘ﬁg’ﬁa ~evVreis, . Thus, the
interaction-frame Hamiltonian is approximately only a function
ofx,:

Hag~ geglzy, with ge(r) = ge?V8", 7)
That is, in this regime of phase-matched OPA, the quantum
nature of the pump-signal interaction takes the form of a direct
quadrature coupling, which is more insightful than the generic
form of Eq. (5). Additionally, the generation rates of non-

Gaussian features by Hu are enhanced by a dynamical factor
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¢2Vng! The Hamiltonian Eq. (7) is known as a cubic quan-
tum nondemolition (QND) interaction [81] and produces a
Schrédinger’s cat state conditioned on quadrature measurement
on the pump [80] [see Fig. 5(a)].
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Fig. 5. OPA dynamics in (a) phase-matched and (b) phase-

mismatched regimes. Upper row: phase-space flows induced by the
Gaussian part of OPA dynamics. Bottom row: typical signal states
produced when conditioned on the quadrature measurement on the
pump mode.

On the other hand, for 8§ > g+/7, OPA is phase-mismatched,
and the parametric gain periodically oscillates without expo-
nential growth. In this regime, the Gaussian part of the
phase-space dynamics corresponds to periodic orbits along
stretched ellipses as shown in Fig. 5(b). Mathematically, this
can be described as a detuning generated by squeezed opera-
tors, ie., U = exp(—iA/AlT/AIt), where A = coshus — sinhua™,
with z = %tanh_l(gﬁ/B) and A =./8%2 — g?n. Since the
rotational rate is much faster than the non-Gaussian quantum
dynamics in the mesoscopic regime, all the phase-sensitive
terms in the Hamiltonian average out, which effectively
projects the non-Gaussian dynamics into the eigenspace of
AA'A, i.e., squeezed photon-number states. As a result, the
interaction-frame Hamiltonian becomes [82,83]

[:[eff%geg;ﬁ;la?/,, with gef= gsinh(2u), (8)
where we have ignored terms that can be eliminated by addi-
tional trivial Gaussian transformations. The form of Eq. (8) is
known as ponderomotive coupling, which enables, e.g., photon-
number-resolving QND measurement. Conditioned on the
pump quadrature value, the signal is projected to a squeezed

Fock state [83] [see Fig. 5(b)].

3. MULTIMODE PHYSICS

Nonlinear optics is inherently multimode. Physically this is
because, to a first approximation, the nonlinear susceptibility
describes a spatially Jocal coupling between fields, whereas the
normal modes of many optical systems are usually nonlocal, for
example, the frequency modes of a resonator. Consequently, opti-
cal nonlinearity tends to scatter photons among many such normal

modes, and special engineering effort is required to obtain effective
single-mode nonlinear interactions.

This intrinsic multimodedness is both a blessing and a curse:
on one hand, multimode interactions complicate the dynamics,
resulting in significant deviations from the single-mode theory,
e.g., as observed in the efficiency of nonlinear frequency conversion
[84]. On the other hand, access to a massive number of modes is
central to some of the most unique physical mechanisms in the
physics of light, such as modulation instability [50], mode locking
[49], and supercontinuum generation [85], and it is also the key to
photonic technologies such as highly multiplexed communication
links, broadband spectroscopy [86], and frequency metrology
[87]. Furthermore, as our abilities to control and probe multi-
mode systems improve, there has been a resurgence of interest
in their quantum properties, as evidenced by recent interesting
experiments studying multimode Gaussian physics on platforms
amenable to linear analysis of quantum correlations, such as soliton
microcombs [88-90], supercontinuum generation [91,92], and
pulsed squeezing [93]. In the following subsections, we survey the
landscape ahead and discuss multimode nonlinear optics in the
context of mesoscopic non-Gaussian physics, drawing attention to
some recent developments and open questions.

A. Ultrashort Pulses Can Enable Strong Coupling

As noted before in this article, the realization of strong nonlin-
earites is an outstanding challenge in optics. To enhance nonlinear
coupling, it is essential to confine photons to a small volume,
e.g., via whispering-gallery disk resonators, microring waveguide
resonators, or photonic-crystal cavities. However, in most pho-
tonic platforms, there is an important empirical tradeoff between
the mode volume (and thus the nonlinear rate ¢) and the loss rate
Kk, in effect limiting the overall strong-coupling figure of merit
¢ /K. For instance, decreasing the size of a ring resonator increases
bending loss and surface roughness loss. Consequently, even the
best nonlinear coupling realized to date remains two orders of
magnitude from the strong-coupling threshold g /x ~ 1.

Ultrashort pulses offer an interesting way around this tradeoff.
Intuitively, it is natural to see an optical pulse as a “flying cavity”
whose size is set by the pulse duration. To the extent this is true—
i.e., up to caveats next discussed in Section 3.B—an ultrashort
pulse can therefore realize tight temporal (longitudinal) field
confinement without shrinking the size of the physical resonator,
circumventing the loss-nonlinearity tradeoff. Combined with
transverse field confinement enabled by nanophotonic wave-
guides, reaching the strong-coupling threshold g/« ~ 1 appears
plausible in principle, based on the state of the art in thin-film
lithium niobate (TFLN) (see Section 4.B); with more futuristic
parameters, ¢ /k ~ 100 may even be possible [94].

B. Quantum Multimode Effects Are More Subtle Than
Classical

While the use of multimode dynamics is standard in classical
nonlinear optics, quantum treatments of nonlinear optics have
historically been strongly influenced by cavity QED and are there-
fore often formulated as single-mode models. Such single-mode
quantum models can provide useful theoretical intuition, but
special care is needed when extrapolating that intuition to real
physical systems, particularly regarding when and how multimode
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effects can emerge. For an M-mode system, the classical mean field
consists only of O (M) parameters, while 7 th-order correlations of
the quantum fluctuations require O(M"), suggesting that in the
quantum regime, there are simply more ways in which multimode
effects can participate in the dynamics.

For example, consider vacuum squeezing in a waveguide,
pumped by continuous-wave light. While the mean-field dynam-
ics seem completely static and single-mode, the second-order
quantum correlations among signal photons exhibit highly multi-
mode squeezing with broadband correlations [69]. In other words,
we cannot use a single-mode Hamiltonian ];fsqz o (2™ + 2%
to describe travelling-wave squeezing. In fact, enforcing single-
modedness in squeezed light generation is known to be a nontrivial
and important task in quantum information science, which
requires appropriate pump pulse shaping, dispersion engineering,
poling apodization, and gain control [95-99].

There exist many other cautionary tales where failure to account
for multimode quantum effects can lead to qualitatively incor-
rect predictions. An illuminating case is provided by Shapiro in
Ref. [51] under the provocative title “Single-photon Kerr nonlin-
earities do not help quantum computation.” Preceding this work,
it was proposed that two-qubit entangling gates might be realized
in nonlinear optics using a Kerr cross-phase modulation (XPM)
Hamiltonian Hypy x 274676 [100]. However, Shapiro argued
that the XPM interaction as proposed is inherently multimode,
and hence the naive single-mode Hamiltonian ﬁXpM is not a
sufficient description. Using the proper broadband waveguide
Hamiltonian, Shapiro showed that multimode interactions act as
effective decoherence channels, preventing the realization of high-
fidelity quantum gates in that setup, no matter the strength of the
nonlinearity. Rather, as we further discuss below, more elaborate
techniques are required to confine the nonlinear interaction to a
single-mode subspace.

With these observations, we see that the analogy made in
Section 3.A between an ultrashort pulse and a “flying cavity” is not
entirely accurate, being based on a single-mode picture. Rather,
we must ask how single-mode physics might be recovered, and to
what extent. For instance, the quantum dynamics of an optical
soliton can exhibit approximately single-mode dynamics due to
the balance between multimode nonlinear interactions and linear
dispersion, but, at the same time, this is only true up to quantum
soliton evaporation [101-103]. Interactions between wavepackets
with large group-velocity mismatch can also be approximately
single-mode and can enable high-fidelity quantum-gate operations
[104-106]. In the mesoscopic regime, non-Gaussian quantum
features tend to first emerge along supermodes with strong lev-
els of squeezing, suggesting that non-Gaussianity could, at least
initially, be contained within a small subspace spanned by the
principal squeezing supermodes [66]. Finally, truly single-mode
pulse dynamics can be enforced in a state-independent way using
a temporal trap, which consists of an effective potential in the tem-
poral domain formed by the nonlinear phase shift imposed by an
auxiliary trapping pulse [94]. We emphasize that it is in the context
of this engineered single-mode dynamics that the arguments in
Sec. 3.A regarding temporal confinement and strong coupling
become valid.
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C. Model Reduction for Multimode Non-Gaussian
Dynamics

Numerical simulations play an indispensible role in elucidating the
essential behavior of complicated physical systems, but applying
numerical methods to study the quantum dynamics of photons in
the multimode and non-Gaussian regime can be quite challenging.
Naively, the quantum state space of M modes with at most N
photons in each mode is O (N™)-dimensional. It is therefore clear
that we need sophisticated model-reduction techniques to obtain
efficient numerical representations of quantum states and means of
computing their dynamics.

At a high level, the complexity of multimode quantum sys-
tems can be broken down into three key elements: the number of
modes, the degree of non-Gaussianity, and the degree of entan-
glement. When all three elements are present at significant levels
(e.g., within fault-tolerant quantum computers or simulators
at scale), quantum dynamics can be exponentially complicated
and intractable for conventional computers. However, practical
limitations or operational choices often place limits on one or more
of these elements, providing an opportunity to develop tractable
reduced models. In this context, multimode mesoscopic systems—
in which non-Gaussianity is naturally limited to an intermediate
level—are prime candidates for model-reduction methods. Below,
we review some numerical techniques that have proven useful
for initial forays into the multimode non-Gaussian dynamics of
mesoscopic nonlinear-optical systems.

Phase-space trajectory methods. In these methods, the
quantum state is given an alternative representation as a (possibly
quasi-probability) distribution in phase space. Then, the quantum
dynamics of the phase-space distributions can be reconstructed
using Monte-Carlo methods, e.g., in the form of stochastic
differential equations (SDEs). Among the possible choices of
phase-space methods, the positive- P method [107] and truncated-
Wigner method [108] are particularly well known. Technically,
the truncated-Wigner method cannot capture negativities in
phase space, whereas the positive- P method could. Both methods
become accurate under sufficiently large dissipation, which makes
them ideal for studying classical-quantum transitions in driven-
dissipative systems [109,110]. Note that the corresponding SDEs
can become unstable and chaotic when the states become strongly
non-Gaussian, leading to slower numerical convergence.

Truncated cumulant expansion. For a Gaussian quantum
state, all but first- and second-order cumulants vanish, suggesting
that slightly non-Gaussian states may be well captured by taking
a cumulant expansion and applying a finite truncation at some
order. For an M-mode system and an nth order cumulant expan-
sion, the state-space complexity of the model becomes O(M").
Such cumulant expansion has been successfully applied to few-
mode cavity-QED and nonlinear-optical systems [111-113].
However, even at fixed 7, the relatively expensive polynomial
scaling of O(M") makes such methods challenging for systems
with a large number of modes M. At the same time, as discussed
further in Section 5.C, the dynamics of such models also suggest
an interesting interpretation of quantum effects in terms of a
“quantum-augmented configuration space.”

Non-Gaussian supermode model. In this model-reduction
technique specifically developed for studying mesoscopic phys-
ics, we first approximately obtain the Gaussian dynamics of the
system. We then make use of the hierarchy of dynamical scales
discussed in Section 2.B to pick out a small set of modes that have
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strong Gaussian excitations, which we understand to be the most
likely modes in which non-Gaussian physics would arise. We can
then devote computational resources to performing quantum
simulations of these “principal squeezing supermodes,” while
approximating all other modes as being in Gaussian states. A full
quantum simulation of mesoscopic broadband OPG has been
demonstrated using this approach [66].

Matrix-product states. Unlike the other methods above, which
rely on limited non-Gaussianity, this approach aims at leveraging
limited entanglement. It is known that in one-dimensional quan-
tum many-body systems, the amount of entanglement generated
is limited, and an alternative representation of the quantum state
in the form of a matrix-product state (MPS) provides an efficient
description of that entanglement [114,115]. While the MPS
framework is intensively used in the field of many-body physics,
the one-dimensional nature of waveguide propagation makes it
also amenable to MPS simulation, and quantum nonlinear optics
in the few-photon (microscopic) regime can indeed by simulated
with such methods [116]. However, note that the presence of
strong squeezing in multimode dynamics incurs a high (though
polynomial) numerical cost, making MPS methods less suitable
for mesoscopic physics with stronger Gaussian features. It is an
interesting open question whether one can combine MPS meth-
ods with, say, the Gaussian interaction frame to obtain efficient
representations of just the non-Gaussian features.

While the techniques mentioned above have pushed the
boundaries of our understanding beyond conventional Gaussian
quantum optics, they are far from enough to fully cover all the
possible states of mesoscopic non-Gaussian light that might be
realized in future experiments. For instance, how might we model
mesoscopic supercontinuum generation where millions of modes
undergo complicated non-Gaussian quantum dynamics? Clearly,
further research in sophisticated model reduction is acutely needed
to even map out the landscape of possibilities in mesoscopic
nonlinear optics.

4. WHAT DOES THIS ALL MEAN FOR
EXPERIMENTS?

Our discussion thus far has focused on the generic features of mul-
timode mesoscopic physics in order to emphasize the fact that such
behavior can, in principle, arise in all nonlinear-optical systems.
However, to actually observe and harness these physics, a given
experimental setup must be able to access the energy scales defin-
ing the mesoscopic regime, support enough modes to produce
interesting complexity, and allow flexible access to and control of
its dynamics, all of which depend critically on device design and
hardware architecture. In this section, we survey the experimental
factors most relevant to achieving these prerequisites, highlighting
the main achievements that have taken us to the cusp of mesoscale
nonlinear optics, some known experimental challenges (particu-
larly in nanofabrication and dispersion engineering), and the need
for new techniques at the intersection of ultrafast, quantum, and
nonlinear optics.

We first translate the physical boundaries of the mesoscale
regime into concrete figures of merit for nonlinearity and loss that
can be applied to experimental devices; unsurprisingly in light of
the discussion thus far, mesoscopic physics arises in a “Goldilocks
zone” in pump energy and propagation time. Second, we review
some of the key challenges and successes in the nanofabrication of
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nonlinear-optical devices: this is a notoriously technical subject,
but we aim to give a glimpse by highlighting some established
milestone results—from low-loss waveguides to periodic poling
to wafer-scale fabrication—in thin-film lithium niobate, a major
candidate material platform for quantum nanophotonics. In a
similar spirit, we also review the main challenges in dispersion
engineering of nanophotonic waveguides and resonators, which
enables not only the rich physics of mesoscopic broadband fields
but also entirely new regimes of ultrawide-bandwidth operation
in quantum and coherent information processing, as discussed
later in Section 5.B. Finally, we discuss what we see as an interesting
opportunity in experimental photonics: the development of new
techniques and capabilities that can simultaneously manipulate
classical and quantum features in ultrafast pulses in the meso-
scopic regime, combining the spectral-temporal resolution of
ultrafast optics with the ultralow-power operability and coherence
of quantum optical operations. Taken together, we believe these
experimental challenges and opportunities represent a burgeoning
subfield of photonics that draws from the disciplines of analog
computation, quantum information, nonlinear optics, ultrafast
optics, and quantum optics.

A. Experimental Figures of Merits and Tradeoffs

Nonlinearity and loss. As discussed in Section 2, quantum fea-
tures arise by nonlinear interactions among photons, and the
degree of interaction is governed by the product between a non-
linear rate g and an interaction time t. This product 6 =g is
ultimately the figure of merit for the generation of non-Gaussian
quantum features, and there is some threshold value 8, after which
significant quantum features can arise in principle. On the other
hand, the decoherence is governed by the product between T and a
loss rate k', which gives a different figure of merit ¢ = k 7. Similarly,
there is also some threshold value &y, after which quantum fea-
tures cannot survive. The requirement for us to experimentally
observe non-Gaussian quantum features is that we generate
and measure such features before they decohere; i.e., we need
On/g < T < éewm/k,leading to g /k > O /€. In the single-photon
microscopic regime, non-Gaussian features only form when 6y, > 1,
while single-photon loss becomes nonnegligible as soon as £, > 1,
and this simple scenario leads to the conventional strong-coupling
requirement of g /k > 1. However, in the mesosopic regime, both
the effective nonlinear interaction rate and the effective loss rate
can be enhanced by Gaussian quantum features (as discussed
in Section 2), which can, in principle, lead to both 6,4 < 1 and
& < 1. As a result, determining the correct criterion for observ-
ing non-Gaussian features in the mesoscopic regime depends on
understanding the competing effects from both enhancements.
Interaction time. Even putting aside the question of loss,
0 =gt has to be larger than 6y, for non-Gaussian features to
form in principle, which is not always feasible in all devices.
For instance, some emerging two-dimensional systems feature
“giant” optical nonlinearity ¢ but only offer vanishingly small
interaction time 7, leading to insufficient 6 [117]. In single-pass
devices (e.g., a waveguide), the interaction time is set by the time
of flight and hence device length. Being experimentally simple
to implement, such single-pass devices can be among the first to
benefit from a mesoscopic reduction in 6y,, through the Gaussian
enhancements coming from stronger pumping (i.e., using more
photons). “Slow light” can also be an interesting approach, making



use of electromagnetically induced transparency where reso-
nant atomic transitions extend the photon—photon interaction
time [118]. In nanophotonics, the most prevalent approach is
to employ resonators, which can recycle the nonlinear waveguide
and obtain much longer interaction lengths for the same device
footprint. In such resonators, the practical limit to interaction time
almost invariably becomes the loss, i.e., T < &y,/k. The ability
to dynamically couple light in and out of a resonator, e.g., via
nonlinear-optical switching [119], can be a powerful technique to
extend 7 up to this limit, while still being able to input and extract
quantum states from the resonator.

Figures of merit from device parameters. To make this dis-
cussion more concrete, we can look at some classes of experimental
devices, based on nanophotonic resonators, to see how they go
about achieving state-of-the-art values of ¢ /k. Some of the most
promising numbers in x® nanophotonics involve microring
resonators supporting both fundamental and second harmonics,
with Hamiltonian %(Zzn; + 42b"). For these optical parametric
oscillators, we can derive that g/k o« Q/no/L, where ng is the
normalized efficiency of the waveguide (specifically, the SHG
slope efficiency), L is the longitudinal length of the resonator,
and Q is the Q-factor (here assumed to be limited by that of the
fundamental harmonic). For this class of devices, Ref. [15] has
recently demonstrated g/k ~ 0.06 on an InGaP microring res-
onator. On the other hand, if we consider x® Kerr resonators
with a Hamiltonian %ﬁu 42, the figure of merit takes on the rather
different form g /k o< Qyy/ L, where yj is the effective nonlinear
coefficient (related to the nonlinear index 7;). As mentioned in
Section 3.A, for the continuous-wave nanophotonic resonators
discussed here, reducing resonator volume (i.e., decreasing L)
enhances nonlinear coupling but in practice also decreases Q due
to, e.g., bend radius and surface roughness [15], leading to a trade-
off for g /ic. Their stronger scaling of g /k with L means that x®
resonators tend to favor smaller devices, and theoretical proposals
exist for reaching g /k ~ 0.1 using photonic-crystal x® cavities
with deep-subwavelength confinement [120,121].

Role of mesoscopic physics. It is important to emphasize
that the Gaussian enhancements of nonlinearity and loss, and
thus the overall effect on 6y, and &4, are highly dependent on the
mesoscopic quantum state and its dynamics. Depending on the
operational principles of the device (e.g., the nonlinear process
being leveraged, the non-Gaussian feature being measured, etc.),
experimental requirements on g /k are generally functions of the
dynamics and can even vary by orders of magnitude. For instance,
in mesoscopic OPA, the exponential squeezing of quantum fluctu-
ations leads to an exponential enhancement of nonlinear coupling
as a function of time, as discussed in Box 3. But as Box 4 further
elaborates, harnessing this enhancement entails a tradeoff with
noise and a corresponding amount of Gaussian-enhanced loss,
which inidally gives a net requirement of g/k > 6y,/&m ~ 1 for
mesoscopic photon numbers. Yet at the same time, the analysis also
indicates that simply adding moderate levels of pump squeezing
(see Box 4) can reduce this to g /k 2 0.1. Finally, due to the higher-
order nature of the nonlinearity, the effective nonlinear coupling
in x® systems can increase faster than the effective loss, and it
can be shown that a combination of squeezing and displacement
operations can assist in generating non-Gaussian features under
conditionsasrelaxedas g /x 2 1074 [75].
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Box 4. Experimental considerations for mesoscopic OPA

To elaborate on how mesoscopic physics can affect the experi-
mental figures of merit for observing non-Gaussian quantum
effects, let us consider again the example of a cubic QND
interaction in phase-matched OPA. In a typical setup for this
example, we are interested in resolving the conditional pump dis-
placement ¢ in the interaction exp(—i¢ 2%, ). Suppose we want
to achieve a nominal value of £ =1 (e.g., for reasonable single-
shot resolution under coherent-state statistics for the pump).
Considering the Gaussian-enhanced interaction rate in Eq. (7),
this goal is achieved after a time 7, & ﬁ log(24/n)—when
the photon number 7 > 1, this is notably shorter than the con-
ventional nonlinear time 1/g for single-photon nonlinearities.
So the threshold for generating mesoscopic non-Gaussianity is
Oh = gTul = ﬁ; log(2/).

As mentioned in the main text, however, the nonlinear-
ity is not the only quantity that is enhanced. We observe that
(anti)squeezing is the dominant Gaussian effect in this exam-
ple (there is no displacement for vacuum signal input). The
energy contained in this Gaussian feature is quantified by the
power gain G of the OPA, which is reached after an interac-
tion time Tg ~ ﬁ log G. Above some level of gain Gy,

there is so much antisqueezing that non-Gaussian quantum
features cannot survive experimentally reasonable levels of
noise. For example, phase sensitivity of quadrature-squeezed
states exhibits Heisenberg scaling [122,123], making the quan-
tum features extremely prone to phase noise. This condition
can be formulated as 7, < 7g,,,, which implies the pump
energy (used to enhance the nonlinearity) should not exceed
n~ Grzmx/4. For instance, with G,x = 100, corresponding
to 20 dB of gain or (anti)squeezing, we can tolerate 7 < 2500,
which marks the upper boundary of the mesoscopic regime
as depicted in Fig. 6 for this example. These considerations carve
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Fig.6. Gray shaded region indicates the parameter regime in which
robust non-Gaussian quantum features could in principle be observed
experimentally in mesoscopic OPA, provided low enough loss rates.
Red dotted line: upper tolerance limit of parametric gain Gy, = 100,
corresponding to 20 dB of squeezing. Green line: threshold (minimum)
interaction time g4, needed to develop non-Gaussianity. Purple line:
total interaction time set by the effective device length, due to hardware
limits or the effective decoherence rate. Inset: Wigner function of a typ-
ical signal state obtained after homodyne on the pump, for parameters
indicated by the yellow diamond.
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out a “Goldilocks zone” in Fig. 6, in which non-Gaussian quan-
tum features could in principle be observed robustly. All of
this, however, is assuming that photon losses are sufficiently
small; i.e., the required propagation time T, derived above is
also shorter than the effective decoherence time after factoring
in the mesoscopic enhancements to loss. Here, it is essential
to note that the decoherence rate of a quantum state increases
proportionally to the size of quantum fluctuations, and, thus,
states in the mesoscopic regime can actually decohere faster
than microscopic few-photon quantum states. Mathematically,
one can also view this as a Gaussian enhancement, not of the
nonlinear dynamics, but of the loss itself: starting from a native
single-photon loss rate «, the decoherence time for the cubic
QND example is shortened to Tjos & ﬁ log(2y/ng/xk + 1)
(for mesoscopic values of 72), so the threshold for losing quantum
coherence is &4, = K Tjoss = W log(24/ng /k +1). This
results in the condition g/k > 6y, /eq 1 — (24/n) 1. Yet in
spite of the enhanced loss, this condition is no worse than the
usual strong-coupling condition g/« > 1, as the enhanced loss
is precisely balanced by the enhanced nonlinearity. In fact, the
balance can even be made to tip in our favor: simply adding some
pump squeezing can relax this to g/k > 6y /em ~ 0.1 [80],
underscoring the subtlety of “nonlinear enhancements” at the
mesoscale.

B. Materials and Nanofabrication: Perspectives from
Thin-Film Lithium Niobate

Many promising platforms exist for quantum and ultrafast
nanophotonics, all taking advantage of the miniaturization of
photonic structures in materials with strong optical nonlinearity,
with some of the most established platforms being silicon-based
photonics [20,89,90,124-126] and III-V semiconductor systems
[15,21,127,128], as well as other emerging platforms [129-132].
Alongside these major players, thin-film lithium niobate (TFLN)
stands as a major emerging candidate material platform [133]
due to its strong x® and x® nonlinearities, the electro-optic
effect, wide materials transparency range, large index contrast for
compact waveguides, and experimental demonstrations of low-loss
waveguides. Many platforms exist for nonlinear nanophotonics,
but few materials encompass all of these features natively and
monolithically.

The material loss limit of TFLN wafers prepared with the ion
slicing technique has been measured to be around 0.2 dB/m in
the telecommunications band, which corresponds to a resonator
quality factor of 160 million [134]. Typical demonstrations of
strongly guided ring resonators feature quality factors between 1
million and 5 million [135], with outliers reporting greater than
10 million [136]. An exception to this trend is TFLN weakly
guided whispering gallery resonators, which are fabricated by
chemical-mechanical polishing techniques and can have quality
factor greater than 100 million [29]. However, these devices do not
readily allow for monolithic integration compared to wavelength-
scale nanophotonic waveguides, which are necessary for ultrafast
dispersion engineering.

Lithium niobate allows for periodic poling to provide quasi-
phase matched x @ interactions with millimeter to centimeter
interaction lengths. The grating is formed by periodically invert-
ing the orientation of the ferroelectric polarization of the crystal,

patterning the sign of the nonlinear susceptibility tensor, and
enabling ‘quasi-phase-matched’ interactions that compensate
for the momentum mismatch between nonlinearly interacting
waves (e.g., fundamental and second-harmonic) [137]. This is a
major advantage compared to other material platforms that either
entirely lack support for quasi-phase matching or rely upon ori-
entation patterning [138], which is less developed for nanoscale
waveguides. Gratings in TFLN with sub-micrometer periodicity
have been demonstrated [139], and many works with ~4 pm peri-
ods have been demonstrated for supporting telecom wavelengths
[13]. It now appears that periodic poling has the resolution to
support quasi-phase matched nonlinear optics from visible [140]
to mid-infrared [141] wavelengths.

Many of the most important functionalities have been demon-
strated in the TFLN platform with individual devices that are
fabricated with low-yield processes. Current efforts seek to expand
fabrication methods to scalable and repeatable wafer-scale fabrica-
tion techniques [135]. Major challenges of wafer-scale fabrication
are the uniformity of the lithium niobate film thickness across
the wafer [142] and uniformity of the etch processes. Carefully
dispersion-engineered nonlinear circuits are particularly sensitive
to such fabrication nonuniformity, but process improvements are
within reach to produce quantum nonlinear-optical circuits at
scale with 100 to 200 mm diameter wafers.

With respect to the figure of merit g/k & Qy/no/L dis-
cussed in Section 4.A for x® nonlinear resonators, the TFLN
state-of-the-art has seen a recent experimental demonstration
[14] of g/k~13x1072, with 1y~ 1000%W ' cm~?,
L~ 440 um, and Q~ 1.8 x 10°. The wide bandgap of LN
lends itself well to leveraging the strong scaling of 179 oc A% with
respect to the operational wavelength A, and, recently, continuous-
wave-pumped TFLN waveguides have demonstrated SHG with
o A~ 33 000% W~ lem™ at 456 nm second harmonic [140].
More speculatively, with strong enough transverse confinement
and operating near the bandgap with second harmonic at 390 nm,
efficiencies as high as 179 =140 000% W~ 'cm™2 may be pos-
sible [143]. As discussed in Section 3.A, further shrinking of
L can potentially be achieved without incurring a tradeoff in
Q using an ultrafast “flying cavity,” for which the technique of
quasi-phase matching importantly opens up significant design
freedom in dispersion engineering [143] (see also the following
Section 4.C). In principle, a temporal trap for 100 fs pulses could
realize L ~ 15 um; combined with a modest improvement to
1o A~ 4000% W~'cm™2 at 1550 nm and assuming Q ~ 5 x 10°,
there appears to be a viable, albeit technically challenging, route to
g/k ~ 1in TFLN nanophotonics [94].

C. Challenges and Opportunities in Dispersion
Engineering

For single-frequency devices in a given hardware platform, the
main experimental challenges are as described in Section 4.A:
loss rates must be decreased, and nonlinear coupling rates must
be increased. But as discussed in Section 3, the use of ultrafast
(i.e., broadband) pulses can offer many new advantages, from
conceptual ones such as the emergence of complex multimode
quantum physics to practical ones such as mitigating tradeoffs
between loss and mode volume in resonators. Such opportunities
come with new challenges. The broadband nature of ultrafast non-
linear optics means that the dispersion relations of the nonlinear
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waveguide now play a dominant role in the operation of the device;
indeed, as mentioned in Section 3, inadequate understanding or
control of the multimode physics can open up deleterious decoher-
ence channels [144] or disrupt quantum effects that are otherwise
expected to occur in a single-mode model [51].

Early work in ultrafast quantum optics established the for-
mal relationship between dispersion relations and the physics of
unsaturated (i.e., linearized) multimode dynamics, namely, the dis-
covery and characterization of pulsed (or temporal) eigenmodes.
These efforts led to a multimode, Gaussian quantum theory
for unsaturated processes such as SPDC, undepleted OPA, and
below-threshold OPOs pumped by ultrafast pulses, allowing us to
decompose their dynamics into a fixed basis of temporal waveforms
determined by the dispersion and pump spectrum. This formalism
also enables us to calculate and engineer the Gaussian entangle-
ment structure of broadband squeezed states of light generated in
such processes [69,145-149].

On the other hand, for saturated dynamics, even classical
reduced models for the design and control of dispersion relations
for useful behaviors are a relatively recent topic of study. Recent
experimental work has rapidly progressed towards a scale where
an interplay between saturation and quantum dynamics becomes
more relevant. In the context of traveling-wave devices with x ®
nonlinearities, early efforts have focused on enhancing the inter-
action lengths for pulsed SHG by utilizing dispersion engineering
to group-velocity match the fundamental and second harmonic;
experimental examples include SHG in both silicon [150] and
silicon nitride [151] with field-induced nonlinearities. More recent
work in TFLN managed to eliminate multiple dispersion orders
at once to realize quasi-static nonlinear interactions, where each
time-slice of the pulse acts as an independent temporal mode.
Subsequent efforts have demonstrated quasi-static OPA [152],
OPG [17], and OPOs with quasi-static gain sections [40]. These
devices achieve saturated behaviors with femrtojoules, rather than
the picojoule scale typical of ultrafast devices. As these devices
continue to scale to lower photon number, multimode Gaussian
models can be self-consistently extended to capture some nonlinear
effects induced by saturation [153], as suggested by the hierarchy
of scales discussed in Section 2.B. Such modeling techniques can
help guide efforts to engineer quantum noise and Gaussian entan-
glement in nonlinear ultrafast devices, at least up to the cusp of the
classical-to-quantum transition.

While quasi-static devices can achieve saturation with record-
low energy, Ref. [94] points out that these devices operate in a
highly multimode limit. From a quantum perspective, this mul-
timode behavior suggests that quasi-static devices might in fact
decohere very rapidly, thus underscoring an important distinction
between “classical” and “quantum” considerations for dispersion
engineering. In the latter case, we must pay close attention to how
dispersion and nonlinear saturation affect the way photons scat-
ter amongst different “pulsed supermodes.” These interactions
directly affect how quantum states of broadband pulses couple to
undesired modes and effectively decohere. Proposals for mitigating
these effects, such as the temporal trapping [94] scheme discussed
in Section 3.B, rely on complicated multi-wave interactions that
simultaneously leverage cross-phase modulation, large group-
velocity dispersion, and group-velocity matching between several
co-propagating pulses in order to confine an ultrashort-pulse quan-
tum state to a single mode. In this context, it becomes clear that
new design strategies are needed to realize control over multiple
dispersion orders at many disparate wavelengths.
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To this end, engineering the cross section of a simple ridge wave-
guide alone is not sufficient. Instead, we expect next-generation
devices to leverage any of a number of emerging new techniques
for dispersion engineering. These include inverse-dispersion
engineering of photonic-crystal waveguides [154], corrugated
waveguides [155], and coupled-core waveguides [156]. At heart,
all of these techniques share the same underlying principle; cou-
pling between two independent propagating modes modifies the
dispersion relations of the emergent supermodes. In the case of
Refs. [154,155], a forward-propagating mode can be coupled to
a backward-propagating mode either by engineering the pattern
of holes cut into a photonic crystal or by engineering the Fourier
components of a weak surface corrugation of the waveguide. In
the case of [156], dispersion engineering occurs by hybridizing
the forward-propagating modes of two waveguides. At the time of
this writing, these approaches have not yet been employed to con-
trol the dynamics of x® devices, and this subject is a wide-open
frontier.

D. Building out Our Quantum-Control Toolbox

The need to manipulate, detect, and control ultrafast mesoscopic
optical signals presents a unique combination of challenges point-
ing towards new experimental capabilities in quantum optics.
By nature, the quantum states and signals in this regime simul-
taneously possess important classical components that must be
precisely controlled alongside fragile quantum features that behave
nonintuitively under measurement and manipulation. On top of
this, the manifestation of such states in the form of ultrafast pulses
means that these classical and quantum features are encoded,
variously, in femtosecond-scale waveforms, terahertz-scale band-
widths, and thousands of optical channels. The control of classical
dynamics, manipulation of quantum states, and high-capacity
processing of optical signals are all experimentally mature capabil-
ities in the fields of nonlinear optics, quantum optics, and optical
communications, respectively. The challenge lies in unifying
these existing competencies to generate, manipulate, and process
mesoscopic quantum features.

Isolating and observing non-Gaussian features. Compared
to classical devices, the “measurement chain” for quantum devices
can be much more involved, as quantum features occupy a higher-
dimensional space often only accessible via phase-sensitive,
mode-selective, and high-efficiency detection methods, such
as Wigner tomography with a mode-matched, phase-stabilized
local oscillator [157] or with photon-number-resolving detec-
tors [158-160]. But while such measurements are routinely
done in cavity-QED optical systems, mesoscopic quantum states
also possess a strong classical component, which, as discussed
in Section 2.E, often plays a key role in the functionality of the
device. Because non-Gaussian features are expected to manifest
alongside and in the context of Gaussian ones, direct access to non-
Gaussianity likely requires the experimental capability to “cancel
out” classical features, e.g., using coherent- or squeezed-state (or
perhaps even nonlinear [161]) interferometers; such design pat-
terns need to separate non-Gaussian features from classical ones
at the output while still allowing dynamical interplay between
them in the intermediary. Finally, it is also worth mentioning that,
more generally, the detection, characterization, and validation
of non-Gaussian states, e.g., the calculation and measurement of
non-Gaussian witnesses, constitute an ongoing field of research,
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particularly in the ultrafast and multimode-entangled setting
[62,162-164].

Optical multiplexing of multimode quantum states. As
discussed in Section 3, one of the most exciting but challenging
aspects of working with optical signals, either quantum or clas-
sical, is the massive number of modes on which those signals can
be carried. For example, optical degrees of freedom may exist in
the time domain, distinguished by arrival times, or frequency
domain, distinguished by wavelength, or any of a multitude of
other encodings. Classically, multiplexing optical signals into and
out of such encodings is a straightforward application of signal
processing. In the quantum regime, however, these degrees of
freedom can be (and often are) strongly entangled, and the process
of (de)multiplexing involves quantum interference that reshuffles
the entanglement structure of the state relative to the encoding
[165]. Thus, it may be necessary to demultiplex quantum signals
all-optically, i.e., for the signal processing to happen before mea-
surements. Partially addressing this need, recent years have seen
significant advancements in the field of “quantum pulse gating”
[146-149], where photonic qubits are jointly encoded in temporal
modes multiplexed via mode-selective optical techniques based on
optical frequency conversion. Similar ideas for frequency-domain
photonic qubits have also recently been pursued [166,167],
while for continuous-variable Gaussian states, experiments
with multimode-selective all-optical OPA prior to detection are
becoming increasingly sophisticated [168]. As in all experimental
capabilities, the challenge will be in scaling up these techniques,
especially in the context of fully on-chip architectures that demand
small footprint. Frequency-domain techniques require the use of
complex and bulky dispersive elements, such as pump shapers,
wavelength-division-multiplexers, and reconfigurable optics. On
the other hand, optical multiplexing in the time domain often
requires long delay lines (for /V time bins, at least /V delays with
lengths scaling as V). Furthermore, any losses or noise incurred in
complex all-optical multiplexing operations directly translate into
irrecoverable decoherence of the fragile non-Gaussian features in
the quantum state.

Coherent manipulation of mesoscopic optical signals. The
hybrid quantum-classical nature of mesoscopic states suggests that
to realize their full potential, we likely require new ways of manipu-
lating them that are neither purely classical nor quantum. For
example, we might want to encode information in a classical fash-
ion, e.g., as the time-varying value of some simple observable, but
we might want to process that information in a way that preserves
quantum properties, i.e., using quantum channel operations that
preserve entanglement and interference. Furthermore, all-optical
manipulation inherently preserves the full bandwidth of optical
signals and allows terahertz-scale operation without electronic
bottlenecks. Recent years have seen rapid development of passive
linear functions [169-171]—beamsplitter networks, fan-in/out,
phase-stable links, etc.—though technical scaling challenges
remain, and a concerted effort is needed to develop these compo-
nents on material platforms compatible with nonlinear photonics
[171]. On top of this, the manipulation of mesoscopic signals will
likely also require nonlinear-optical processing; these functions can
be classical, such as coherent switches and analog multipliers, or
nonclassical, such as quantum nondemolition readout. Moving
forward, we expect to see a rapid proliferation of nanophotonic
devices that leverage efficient nonlinear optics to address these
needs. To wit, perusing a catalog of plausible additions to our
engineering toolbox:
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o Ultrafast optical switching and gating: Ref. [172] showed that
dispersion-engineered waveguides can be nonlinearly coupled, with
potential for {J-level operation and beyond. More sophisticated
switches, perhaps leveraging techniques such as adiabatic frequency
conversion [173], may eventually enable all-optical routing and
timing of signals on chip, for example, to implement the gated
resonators mentioned in Section 4.A.

o Electronics-free detection and feedback: Degenerate OPAs
can act as all-optical and high-bandwidth probes to access phase-
sensitive information without the use of balanced homodyne
detection [19,168,174-176]. The reencoding of sensitive quan-
tum signals into the antisqueezed quadrature also makes these
schemes remarkably robust against loss (see Section 5.B for poten-
tial applications). More generally, new design patterns are needed
to cascade and feed back signals from all-optical detection schemes
such as non-Gaussian quantum nondemolition measurements (see
Section 5.A).

o Optical units of computation: Beyond the holy grail of the
digital (bistable) optical transistor, computation with mesoscopic
nonlinear optics will likely incorporate features of analog and CV
quantum information processing as well, e.g., to support compu-
tational paradigms for photonic machine learning [177]; see also
Section 5.F. Cascading efficient sum/difference-frequency gen-
eration can be one way to realize all-optical multiply—accumulate
operations [178]. Ultra-low-threshold optical parametric ampli-
fiers and oscillators operating in the mesoscopic regime naturally
provide a source of quantum nonlinearity [144] to generate and
manipulate mesoscopic signals.

Nonlinear dynamics as a design framework. Finally, it is
worth emphasizing that, at its very core, ultrafast nonlinear optics
is rooted in dynamics, and, as described further in Section 5.C,
many useful functionalities in mesoscopic nonlinear-optical
devices will likely draw upon emergent behavior in quantized
coupled-wave equations. To enable quantum engineering in this
setting, we must develop comprehensive device models and design
principles for determining how multimode dynamics affect the
development of non-Gaussian physics. We have already seen
that dispersion can affect the entanglement structure in multi-
mode squeezing, that the Gaussian dynamics of these squeezing
supermodes can affect (and potentially enhance) the formation of
non-Gaussian features, and that nonlinear effects can lead to effec-
tive decoherence, among many other examples. On the hardware
level, these considerations propagate directly back to the design
of each device, e.g., into questions about waveguide design for
dispersion engineering, nanopatterning of electrodes for periodic
poling, design of couplers to properly route signals, and so on.
On the modeling side, coupled-wave equations are not limited
to simply describing multimode optical parametric interactions
but can also include dynamics arising from Raman scattering,
electro-optic effects, optical cascades, interactions with atomic
systems, etc. These effects are often taken for granted in classical
design, but subtleties in their quantum modeling certainly exist
(see Ref. [179] for a recent example), so how should we go about
reducing the correct quantum models to a point where they are
tractable enough to fit into design workflow? Ultimately, a success-
ful framework for mesoscale nonlinear-optical engineering needs
to draw upon sophisticated, multi-scale, and dynamical models of
both classical and quantum device physics and integrate such tools
to span the entire device-design cycle, from mechanical CAD, to
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electromagnetic simulation, to classical-quantum dynamics, and
finally to specification and function.

5. NEW OPPORTUNITIES AT THE MESOSCALE

Having oriented ourselves to the physics of mesoscopic quantum
nonlinear optics and considering some of the conceptual and
experimental challenges involved, in this section, we take the lib-
erty of speculating on some new opportunities ahead, revisiting
established paradigms in quantum optics to see what the mesoscale
has to offer.

A. Quantum Nondemolition Measurements

As hinted in Section 4.D, nonlinear optics can offer unique
opportunities for quantum measurement with strong enough
nonlinearities to access the mesoscale. In particular, nonlinear-
optical interactions can realize so-called quantum nondemolition
(QND) [180,181] measurements, known to provide a powerful
means for processing and manipulating quantum information. At
a high level, information about a signal observable is coherently
encoded onto a probe field, and the backaction induced by a sub-
sequent probe measurement is minimal in a particular sense [181].
Furthermore, by reusing the same probe across a sequence of QND
measurements, one can, for example, establish entanglement
among distant nodes upon measurement [72].

Traditionally, due to weak optical nonlinearities, only QND
measurements of linear observables (i.e., quadrature amplitudes)
have been accessible [182]. However, the advent of mesoscopic
nonlinear optics may enable QND measurements of nonlinear
observables (e.g., photon number), significantly extending the
space of QND functionality. In particular, by tailoring the inter-
play between mean-field, Gaussian, and non-Gaussian dynamics
in this regime, novel types of QND observables can be shown to
arise [80,83] (see also Box 3 for more detail). We can even realize
measurements that have no known electronics-based realizations
(see Box 5). Multimode physics could further enlarge the space
of possibilities. Reference [183] proposes a trapped-ion quantum
simulator to implement the QND measurement of a many-body
Hamiltonian A, in which measurement of the probe projects

the system to an energy eigenstate of /. When applied to optics,
QND measurement of such many-body observables could find
applications in multimode quantum state engineering, sensing,
and sampling [184].

We also emphasize that the concept of “nonlinear-optical
quantum measurement’ likely encompasses more than just QND
measurements: more generally, nonlinear-optical operations can
be thought of as providing a form of premeasurement process-
ing, coherently revealing information embedded in the state
that might be challenging to obtain otherwise [185]. A classical
example is frequency-resolved optical gating [186], where fre-
quency conversion extracts ultrahigh-resolution information
about the waveform of an ultrashort pulse and encodes it into
the intensity of the output field, which can then be read out by a
slow detector. In electro-optic sampling, the electric field profile
of difficult-to-measure (e.g., terahertz) waves is encoded into
easy-to-measure optical fields via electro-optic interactions [187].
We anticipate that general mesosopic nonlinear interactions can
perform analogous forms of coherent information processing in a
quantum-augumented feature space.

B. CV Nonlinear-Optical Quantum Computation

In linear-optical quantum computation (LOQC) [188-192],
the mainstream approach to optical quantum computation, the
non-Gaussian resources necessary for universal quantum gates
[193] are realized by effective nonlinearities induced by photon-
counting measurements. However, the inherently probabilistic
nature of such gate operations, the slow speed of single-photon
detectors, and the need for cryogenics critically limit the scalabil-
ity of existing architectures. As an alternative, nonlinear-optical
quantum computation (NLOQC) aims to realize deterministic
and measurement-free non-Gaussian quantum operations by
directly using nonlinear optics, which can, in principle, circum-
vent these difficulties, presuming high enough nonlinearity and
low enough losses. While NLOQC is traditionally formulated for
single-photon qubits undergoing microscopic nonlinear-optical
dynamics [72,74,100,194], recent studies have shown mesoscopic
nonlinear optics can offer unique opportunities for NLOQC
[75,83], specifically in the context of CV quantum computation
[63,192], which is the most natural formalism for manipulating
quantum information in mesosopic systems.

The non-Gaussian quantum operations enabled by meso-
scopic nonlinear optics can be weaved into existing architectures,
e.g., cluster-state-based quantum computation [195], using
quantum teleportation [196] and feedforward operations [197].
Notably, mesoscopic nonlinear optics may offer a means to
achieving the long-standing goal of all-optical quantum compu-
tation, enabling nonlinear-optical quantum measurements (see
Section 5.A), all-optical quantum teleportation [198], and opti-
cal computation [199] (also see Section 5.F). Such mechanisms
can be made free from electronics, potentially enabling full-scale
quantum operations at terahertz bandwidths.

Here, the main challenges lie in properly utilizing the double-
edged sword of multimode physics inherent to nonlinear optics.
On one hand, multimode interactions act as effective decoherence
channels, hindering high-fidelity quantum gate operations in naive
nonlinear-optical implementations [51], and elaborate techniques
are required to realize high-fidelity gates [94,104-106]. On the
other hand, the large bandwidth of optical fields enables highly
multiplexed information encodings, e.g., in frequency [200], spa-
tial [201], or temporal [67,202] degrees of freedom. As we develop
more techniques to manipulate multimode quantum states of light
[146-149] and more intuition for mesoscopic quantum dynamics,
it is not inconceivable that we may discover a massively scalable
approach to non-Gaussian quantum gates, uniquely enabled by
multimode nonlinear optics.

Box 5. Mesoscopic OPA for QND measurement of x p + px

In Ref. [203], it is shown that a non-Gaussian measurement in
the basis of operator X p + px is useful for optimally estimating
the phase shift of a Gaussian state. However, a concrete means
of realizing such a measurement has not yet been proposed to
our knowledge. Here, we show how a QND measurement of
% p + px can be realized by pumping a mesoscale OPA with a
squeezged state.

The construction is shown in Fig. 7. We consider again
the phase-matched OPA interaction A= % g™ b+ a2b"h,
acting for a time . Before and after the OPA interaction, we
apply a pair of opposite squeezing operations Sy and S'Z, respec-
tively. These squeezing operations are defined by their action
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S}68, =A%, 4+ irpy, where A > 1 is the squeezing factor.
The total unitary of the system is

S'Ze_iﬁtgb = e_iﬁffft, )
for an effective Hamiltonian
Ay = ghGapa + paka) ps +OGT). (10)

In the limit of strong squeezing A > 1, the dominant dynam-
ics under H is to induce x-displacement of the pump mode,
ie., x5(2) =x,(t =0)+ g%(a?aﬁﬂ + pu%,). Thus, by measur-
ing the x-displacement of the pump, we can infer the value of
X4 Pa + Pa¥a, realizinga QND measurement.

In the simplest construction where the initial pump state is
vacuum (as depicted in Fig. 7), the system can be seen as an OPA
pumped by a squeezed-vacuum state.
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Fig.7. Schematic of a QND measurement of ¥ p + px using meso-

scopic OPA and Gaussian Hamiltonian engineering. Conditional on
homodyne measurement of the pump quadrature %, the signal state is
projected to various postmeasurement states that have features related
to the eigenstates of X p + px [204]. Bottom images show Wigner
functions of the premeasurement state (leftmost) and postmeasurement
states. Here, A = 10 and g7 = 0.4.

C. Quantum-Augmented Complex Wave Phenomena

Wave equations are the physical basis for some of the most complex
dynamical phenomena in nature. As partial differential equa-
tions (PDEs), Maxwell’s equations in nonlinear media span wide
dynamic ranges in time, frequency, and space, allowing them to
naturally manifest multi-scale and emergent physics. Such spa-
tiotemporal phenomena, from a veritable zoo of solitons [49,205]
to the emergence of thermodynamic features [206] to literal chaos
[207], make classical nonlinear optics a clean and attractive exper-
imental platform to study the physics of complex systems. The
mesoscopic regime has interesting implications for this PDE-
driven view of nonlinear optics. In the context of Section 2, the
classical PDEs responsible for all the complexity discussed above
constitute the dynamics of only the first-order moments of the
quantum state, meaning that the remaining (quantum) observ-
ables comprise entirely new dynamical variables that can augment
the complexity of the classical dynamics.

This can be seen most readily in quantum models based on
truncated cumulant expansions (as discussed in Section 3.C),

where the higher-order moments of the quantum state are viewed
as dynamical quantities alongside the mean field [111-113]. For
example, Ref. [153] shows that one can self-consistently derive
coupled-wave equations for all the Gaussian (first- and second-
order) moments of the quantum state of a pulse as it propagates in
a nonlinear medium. These Gaussian wave equations can be seen
as straightforward generalization of the classical ones: starting with
a classical system of M interacting mode amplitudes, we can arrive
at a new system of O(M?) interacting moments. Importantly,
however, they also take a step beyond the linearized approxima-
tions usually taken in Gaussian quantum optics, as the dynamics
of the second-order moments are nonlinearly coupled to the mean
field, meaning such models can, in principle, exhibit complex
behavior in a quadratically larger “configuration space” than clas-
sically possible. As the contributions from quantum fluctuations
become more significant, this configuration space enlarges rapidly;
there are O(M") interacting moments when up to nth-order
moments contribute. Physically, the evolution of such higher-
order moments describes the dynamics of quantum noise and its
correlations, including entanglement, in the state of the lightwave.
Finally, the presence of mesoscopic non-Gaussian features [208]
(e.g., Wigner negativity) would further augment the complexity
accessible by the dynamics, adding elements of, e.g., quantum
contextuality [56,57] and wavefunction interference [209], that
no classical theory cannot explain.

It is interesting to consider to what extent such augmented
dynamics can lead to distinctively new phenomena in nonlinear
optics. For instance, optical solitons, which are classically stable
waveforms, are known to become unstable and diffuse (or evapo-
rate) due to quantum fluctuations [88,210,211], a phenomenon
whose explanation has required semiclassical theories of solitons.
Conversely, analyzing the quantum-augumented equations of
motion for soliton propagation may then point towards novel types
of solitons (not based on coherent or squeezed states, for exam-
ple) that are more robust to quantum diffusion. Another possible
direction is to study systems where classical dynamics exhibit high
sensitivity to initial conditions; under such conditions, it may
be possible for even mesoscopic (or even microscopic) quantum
features to have an outsized effect on macroscopic dynamics. For
instance, it has been demonstrated that the bifurcation dynamics
of an OPO can be sensitively biased by even single-photon-level
quantum fluctuations [212]. In the most extreme setting, chaotic
dynamics exhibit exponential sensitivity to initial conditions, butit
is also well known classically that intermediate between stable and
chaotic regimes, there can exist sweet spots at the “edge” of chaos
[213]. Here, the dynamics are sensitive enough that small quantum
perturbations can give rise to rich and emergent phenomena,
yet remain insensitive enough that they can still be controllably
engineered.

D. Non-Gaussian Quantum Light-Matter Interactions

The advent of coherent light generated by lasers revolutionized
our ability to study the interactions between light and matter, trig-
gering rapid developments in both basic science and technology.
For instance, coherent light is able to efficiently drive narrowband
optical transitions in atoms and molecules, enabling core aspects
of modern atomic, molecular, and optical (AMO) physics. As
coherent states comprise just one specific subclass among many
different quantum states of light, what more could we do with
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access to an even greater variety of states? In this context, there is
growing interest in how the quantum nature of light changes the
ways optical and matter degrees of freedom interact, with examples
of pioneering work in atom-cavity QED [214,215], molecular
spectroscopy [216], second-harmonic generation [217], and
ultrafast electron dynamics [218].

For example, Ref. [219] studied high-harmonic generation
driven by coherent, squeezed, Fock, and thermal states, finding
that the threshold critically depends on the photon statistics of the
pump. Such quantum phenomena can lead to novel functions.
When an OPA is driven by a squeezed state (instead of a coherent
state), we can realize a QND measurement of a product operator
xp + px, which is completely different from the conventional
function of parametric amplifier (see Box 5). At the same time,
it is worth noting that the states mentioned here constitute only
the more well-known (and named) classes of quantum-optical
states, while there clearly exist many (perhaps uncountably many)
more “unnamed” non-Gaussian states, each of which potentially
interacts with matter in a unique way.

Moreover, the volume of this state space increases rapidly
with the number of modes, suggesting that multimode physics,
in particular, plays an important role in opening up this space.
For example, specific spatiotemporal entanglement structures
in of quantum light might act as efficient probes into nonlocal
structure in quantum matter. This can be seen concretely in super-
absorption, where an atomic cloud selectively absorbs light with
a particular temporal entanglement structure (i.e., a superradiant
photonicstate) much more strongly than other states of light [220].
The advent of new quantum light sources based on mesoscopic
ultrafast optics could enable a new frontier for studying quantum
light—matter interactions spanning over the entire electromagnetic
spectrum.

E. Nonlinear Dissipation in Multimode Photonics

Generally, linear dissipation (i.e., photon loss), which decoheres
quantum states, is viewed as detrimental to quantum experiments.
On the other hand, nonlinear dissipation can generate nonclassical
features and be a valuable resource for quantum engineering, even
enabling universal quantum computation without any unitary
components [221]. In nonlinear photonics, Ref. [222] shows that
nonlinear dissipation of an optical cavity can be engineered so that
the cavity is only loss-free when a specific number of photons are
present; consequently, the system deterministically evolves into a
Fock state. In a singly resonant degenerate OPO, two-photon loss
induced by pump depletion above threshold has long been known
to generate Schrddinger cat states via dissipative dynamics [223].
More generally, in the theory of open quantum systems, dis-
sipation arises whenever we partition our physics into “system”
and “reservoir” degrees of freedom, followed by an assumption
that we have no access to (i.e., we partial-trace out) the reservoir.
While the system-reservoir boundary is often naturally identified,
e.g., a mirror separating an optical cavity and the rest of the world,
the idea is more general [224]: in a multimode quantum field, we
can just as well identify certain modes (e.g., a particular waveform
or band of frequencies) as the “system” with all the other “irrel-
evant” modes as the reservoir, and nonlinear coupling between
the two can therefore lead to notions of nonlinear dissipation. For
instance, for broadband x @ interactions in a waveguide, second-
harmonic (SH) modes are nonlinearly coupled to a continuum of
fundamental-harmonic (FH) modes. Thus, the parametric down-
conversion of SH photons to FH can, in certain circumstances,

be viewed as dissipative decay to a continuum reservoir of FH
modes [179]. Other effects in quantum ultrafast optics, such as
quantum soliton evaporation, may also be understood as a mani-
festation of effective system-reservoir physics in this sense. Notably,
depending on the nature of the multimode nonlinear couplings,
such system-reservoir interactions can even be non-Markovian
[225], giving rise to rich dynamical features that may be difficult to
engineer otherwise. Because mesoscopic ultrafast nonlinear optics
features a unique combination of strong nonlinearity, inherent
multimodedness, and Gaussian engineerability of the interactions,
we expect it to serve as an interesting platform to explore novel
forms of nonlinear dissipation and ideas for how to engineer them.

F. Top-Down Approach to Optical Computing at the
Mesoscale

Despite decades of research, photonics has yet to replace or even
complement the singular role that CMOS electronics occupy in
digital computation. The crux of the challenge is there are several
and serious engineering obstacles to realizing a competitive optical
transistor, at least one that possesses all the desired properties of
the CMOS incumbent [226]; this holds true even considering
the rapid improvements in energy scale reflected in Fig. 1. In
fact, there is little reason to believe that the transistor is the most
natural abstraction of how a photon “computes” [227]; comparing
an abstract photonic device to its electronic counterpart, they
are quite disparate, from their typical length scale (micrometers
versus nanometers) and timescale (terahertz versus gigahertz) to
the nature of their interactions (linear versus Coulomb). Rather
than trying to enforce the bottom-up approach to computing
borrowed from semiconductors—transistors, instruction sets, and
algorithms—we should instead reconsider which computational
paradigms might be more natural for light.

In this context, the recent revolution of machine learning and
neuromorphic computing as viable alternatives to traditional com-
putation represents an opportunity to revisit optical computation
from a top-down approach. That is, high-level and hardware-
agnostic techniques such as training [228] and feedback [229,230]
can be used to fulfill specific and powerful zasks, in contrast to com-
piling programs to implement algorithms. (It is also worth noting
that the tasks themselves are quite general, encompassing both clas-
sical and quantum objectives; see, for example, some recent work
in top-down engineering of quantum gates [79,231].) In terms of
using physical systems for top-down computing, one rudimen-
tary example can be seen in the work surrounding coherent Ising
machines [232-234], where a feedback loop harnesses the optical
dynamics of a nonlinear oscillator network to approximately solve
hard combinatorial optimization problems, using concurrent
applications of linear coupling and local nonlinearities in a fashion
reminiscent of recurrent neural networks and neural ODEs [235].
Another example, explicitly evoking the concept of training, can
be seen in recent attempts to use the complex wave dynamics of
nonlinear waveguides as a reservoir computer [236]. Such systems
can potentially achieve unprecedented levels of computational
throughput by combining the native speed of all-optical reservoirs
with the prospect of directly training parameters of the physical
system (e.g., the refractive index distribution, via electro-optic
effects) to eliminate digital pre- or post-processing [199,228,237].

We argue that the same top-down approach can be used to
harness guantum behavior for computation as well, at least in the
mesoscopic regime. As discussed in Section 5.C, quantum features
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such as non-Gaussianity can be seen as simply increasing the con-
figuration space of a physical system, in a sense placing quantum
and classical features on equal footing as resources. In contrast to
traditional quantum computing, where the realization of a desired
quantum algorithm depends critically on the precise structure of
a quantum circuit, the use of feedback or training in top-down
computing can make them inherently robust to variations in the
underlying physics, even when complex multimode and meso-
scopic dynamics are involved. In this way, although we likely give
up the theoretical possibility of obtaining provable “exponential
speedups,” we gain a straightforward way to deploy quantum
mechanics for computation; when properly trained or controlled,
such “quantum-augmented machines” almost self-evidently have
the potential to improve the performance of learning tasks (in
terms of time or energy consumed). Their physical embodiment
as a quantum-optical system also enables coherent interactions
with the room-temperature environment, expanding the scope of
signals they can process.

G. Quantum Sensing and Metrology

By leveraging the quantum nature of photons in sensing and
metrology, one can achieve performance that exceeds classical limi-
tations. Broadly speaking, such quantum advantage can arise from
the use of either (1) nonclassical states or (2) nonclassical measure-
ments. A well-known example of (1) is the Laser Interferometer
Gravitational-Wave Observatory (LIGO), where using a squeezed
state of light enabled them to push the measurement noise below
the classical limit [238]. Depending on the parameter one wishes
to measure, certain quantum states are known to provide quantum
advantage, e.g., squeezed states for phase shifts and the grid states
for general displacements [239]. Interestingly, quantum advantage
can also be realized using (2) nonclassical measurements, even
when the probe state is completely classical. This is exemplified
in Ref. [240], where it is shown that the separation between two
incoherent light sources can be measured beyond the classical
resolution limit using spatially multiplexed photon-counting
measurements. In this approach, it is essential to perform non-
Gaussian quantum measurements in a specific spatial or temporal
mode basis.

Mesoscopic nonlinear optics provide unique ways of realizing
both types of resources for quantum sensing and metrology. In
quantum light sources, mesoscopic devices can deterministically
generate not only well known non-Gaussian quantum states but
also “unnamed” non-Gaussian states, which could provide new
quantum advantages for precision spectroscopy in light—matter
interactions (see also Section 5.D). In non-Gaussian measure-
ments, the interplay between Gaussian and non-Gaussian features
in mesoscopic nonlinear optics can enable flexible engineering
of the measurement basis, generating useful quantum measure-
ments that are challenging to realize otherwise (see Box 5 for a
concrete example). Such measurements can be implemented in a
QND manner, which is a unique advantage over electronics-based
measurements (see Section 5.A).

6. TOWARDS QUANTUM OPTICS, IN OPTICS

While optical science and technology has always enjoyed a central
place in advancing our understanding of quantum mechanics,
the field of quantum optics itself has heavily relied on light’s inter-
action with nonoptical systems (from atoms to superconducting

single-photon detectors) for the most critical operations at the
heart of quantum engineering. The progression of nonlinear
optics into the mesoscale energy regime, however, offers a chance
to disrupt this status quo, potentially opening a route towards
non-Gaussian quantum physics with purely nonlinear-optical
means, i.e., guantum optics, in optics. As illustrated in Fig. 8, we can
view opportunities on this front as extending nonlinear optics into
another dimension in the space of possibilities, departing from the
limitations of Gaussian quantum states. Because nonlinear optics
has already demonstrated the capability for large bandwidth (or
equivalently alarge number of modes) and rich Gaussian dynamics
(e.g., multimode entanglement), this progression can be expected
to naturally engender phenomena at scales of complexity otherwise
inaccessible in other non-Gaussian platforms.

While the complex nature of mesoscopic multimode physics
may present challenges for constructing a complete engineering
framework, it is also our view that this is a prime opportunity to
rethink our approach to quantum engineering as a whole—looking
at features and dynamics rather than states and gates, or phenom-
ena and functions rather than protocols and algorithms. Nonlinear
optics, historically, has been a field propelled by hardware-driven,
often bespoke, solutions to concrete problems, from light sources
to metrology and sensing. We expect this legacy to persist through
the classical-quantum transition.

Considering such potential, in this mini-review, we have pro-
vided one perspective on how non-Gaussian quantum physics
might naturally emerge in the near future of nonlinear optics,
and we have introduced theoretical tools for conceptualizing
the interplay between Gaussian and non-Gaussian features in
mesoscopic quantum dynamics. We have drawn attention to what
we see as important experimental and technical challenges, with
implications for advancing our ability to manipulate and exploit
quantum ultrafast nonlinear optics in this regime. Finally, we
have also elaborated, with varying degrees of speculation, on some
new opportunities to establish new approaches and applications
to quantum science driven by mesoscopic, non-Gaussian, and
multimode physics, from quantum information and metrology to
analog and neuromorphic computing. While the present status of
this effort is admittedly theoretical and speculative, we hope that
the topics presented herein can inspire new research and researchers
in both theory and experiment at this unique frontier of quantum
nonlinear optics.
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Fig. 8. Illustration of physical phenomena and systems with various
quantum states of light that they incorporate, where we qualitatively
depict the nominal amounts of non-Gaussianity, entanglement, and
multimodeness.
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