IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

235

Byzantine-Robust Distributed Online Learning:
Taming Adversarial Participants

in An Adversarial Environment
Xingrong Dong . Graduate Student Member, IEEE, Zhaoxian Wu ®, Qing Ling ©, Senior Member, IEEE,

and Zhi Tian ¢

Abstract—This paper studies distributed online learning un-
der Byzantine attacks. The performance of an online learning
algorithm is often characterized by (adversarial) regret, which
evaluates the quality of one-step-ahead decision-making when
an environment incurs adversarial losses, and a sublinear regret
bound is preferred. But we prove that, even with a class of state-
of-the-art robust aggregation rules, in an adversarial environment
and in the presence of Byzantine participants, distributed online
gradient descent can only achieve a linear adversarial regret
bound, which is tight. This is the inevitable consequence of
Byzantine attacks, even though we can control the constant of
the linear adversarial regret to a reasonable level. Interestingly,
when the environment is not fully adversarial so that the losses
of the honest participants are i.i.d. (independent and identically
distributed), we show that sublinear stochastic regret, in contrast
to the aforementioned adversarial regret, is possible. We develop
Byzantine-robust distributed online momentum algorithms to
attain such sublinear stochastic regret bounds for a class of
robust aggregation rules. Numerical experiments corroborate our
theoretical analysis.

Index Terms—Distributed optimization, Byzantine-robustness,
online learning.

I. INTRODUCTION

NLINE learning is a powerful tool to process streaming
data in a timely manner [2], [3], [4]. In response to
an environment that provides (adversarial) losses sequentially,
an online learning algorithm makes one-step-ahead decisions.
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Its performance is characterized by (adversarial) regret, which
measures the accumulative difference between the losses of
the online decisions and those of the overall best solution in
hindsight. It is preferred that the adversarial regret increases
sublinearly in time, which would lead to asymptotically van-
ishing performance degradation. When the streaming data are
separately collected by multiple participants and data privacy is
a concern, distributed online learning becomes a natural choice
[51, [6], [7]. [8]. Each participant makes a local decision, and a
server aggregates all the local decisions to a global one [9], [10].
Exemplary applications include online web ranking and online
advertisement recommendation, etc. [11], [12], [13], [14].

In addition to the sequential losses caused by the adversarial
environment, distributed online learning faces a new challenge
in terms of robustness, because not all the participants are guar-
anteed to be trustworthy. Some participants may intentionally or
unintentionally send wrong messages, instead of true local deci-
sions, to the server. These adversarial participants are termed
as Byzantine participants following the notion in distributed
systems to describe the worst-case attacks [15]. Therefore, an
interesting question arises: Is it possible to develop a
Byzantine-robust distributed online learning algorithm with
provable sublinear adversarial regret, in an adversarial env-
ironment and in the presence of adversarial participants?

In this paper, we provide a rather negative answer to this
question. We show that even equipped with a class of state-
of-the-art robust aggregation rules, distributed online gradient
descent algorithms can only achieve linear adversarial regret
bounds, which are tight. This rather negative result highlights
the difficulty of Byzantine-robust distributed online learning.
The joint impact from the adversarial environment and the ad-
versarial participants leads the online decisions to deviate from
the overall best solution in hindsight, no matter how long the
learning time is. Nevertheless, we stress that it is the necessary
price for handling arbitrarily malicious Byzantine attacks from
the adversarial participants, and with the help of the state-of-
the-art robust aggregation rules, we can control the constant of
linear adversarial regret to a reasonable value.

On the other hand, we further show that if the environment is
not fully adversarial so that the losses of the honest participants
are i.i.d. (independent and identically distributed), then sub-
linear stochastic regret [16], in contrast to the aforementioned

1053-587X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authonzed licensed use limited to: George Mason University. Downloaded on September 21,2024 at 17:51:33 UTC from IEEE Xplore. Restrictions apply.



236

adversarial regret, is possible. Accordingly, we develop a fam-
ily of Byzantine-robust distributed online gradient descent
algorithms enhanced with momentum to attain such sublinear
stochastic regret bounds.

The rest of this paper is organized as follows. We briefly
survey the related works in Section II, and give the problem
statement in Section III. The linear adversarial regret bounds of
Byzantine-robust distributed online gradient descent are estab-
lished in Section IV, and the sublinear stochastic regret bounds
of Byzantine-robust distributed online momentum are shown in
Section V. We conduct numerical experiments in Section VI,
followed by conclusions in Section VIL

II. RELATED WORKS

Online learning aims at sequentially making one-step-ahead
decisions in an environment that provides (adversarial) losses.
Classical online learning algorithms include but are not limited
to online gradient descent [17], online conditional gradient
[18], online mirror descent [19], adaptive gradient [20]. We
focus on online gradient descent and its variants in this paper.
Their performance is often characterized by (adversarial) regret,
which measures the accumulative difference between the losses
of the online decisions and those of the overall best solution
in hindsight. These algorithms have provable adversarial regret
bounds of O(v/T) and O(log T') for convex and strongly con-
vex losses, respectively, where 7" is the time horizon. When
T goes to infinity, such sublinear adversarial regret bounds
imply asymptotically vanishing performance degradation in the
long run.

When the streaming data are separately collected by multiple
participants, data privacy becomes a big concern. Therefore,
distributed online learning, which avoids transmitting raw data
from the participants to the server, has attracted extensive re-
search attention [5], [6]. Similar to their centralized counter-
parts, the distributed online gradient descent algorithms have
provable adversarial regret bounds of O(v/T) and O(log T') for
convex and strongly convex losses, respectively [21], [22].

However, in a distributed online learning system, some of
the participants can be adversarial. They do not follow the
prescribed algorithmic protocol but send arbitrarily malicious
messages to the server. We characterize these adversarial par-
ticipants with the classical Byzantine attacks model [15]. In-
terestingly, Byzantine-robust distributed online learning, which
investigates reliable decision-making in an adversarial environ-
ment and in the presence of adversarial participants, is rarely
studied. The work of [23] focuses on the case that the envi-
ronment provides linear losses, which is different to ours. The
proposed asynchronous distributed online learning algorithm
in [23] also lacks regret bound analysis. The work of [24]
considers online mean estimation over a decentralized network
without a server. There is only one malicious participant, which
has a limited budget to attack and only pollutes a faction of
its messages to be transmitted. The performance metric is the
Euclidean distance between the true mean and the estimate.
In contrast, our work considers a general distributed online
learning problem, the Byzantine participants have unlimited
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budgets to attack and can pollute all of their messages to be
transmitted, and the performance metrics are adversarial and
stochastic regrets. The work of [25] considers decentralized
online learning, but relaxes the problem to minimizing a convex
combination of the losses. Accordingly, an O(log? T') relaxed
adversarial regret bound is established. In our work, we do not
introduce any relaxation and the O(log® T') relaxed adversarial
regret bound in [25] is not comparable to ours. The work of [26]
also considers decentralized online learning, but confines the
number of Byzantine participants to be small so as to establish
a dynamic regret bound. In contrast, our analysis on the static
regret bounds allows nearly up to half of the participants to
be Byzantine. Byzantine-robust decentralized meta learning is
investigated in [27], and a stochastic regret bound is established.

Several recent works investigate distributed bandits under
Byzantine attacks. Different from online learning, participants
receive values of losses, instead of gradients or functions,
from an environment. It has been shown in [28] that the pro-
posed Byzantine-robust algorithms have linear adversarial re-
gret bounds for multi-armed and linear-contextual problems.
This is consistent with our result. Some works make the i.i.d.
assumption [29], [30], [31]. The work of [29] proves O(T3/4)
regret for linear bandits with high probability. The work of
[30] reaches O(y/T) regret but requires the action set to be
finite. Our proposed algorithm, with the aid of momentum,
attains the O(v/T) stochastic regret bound. The work of [31]
considers multi-armed bandits, and uses historic information to
reach O(logT') regret, which is consistent with our stochastic
regret bound established for Byzantine-robust distributed online
momentum. The work of [32] is free of the i.i.d. assumption,
but the regret for multi-armed bandits is defined with respect
to a suboptimal solution other than the optimal one. Therefore,
the derived O(log T") sublinear regret bound is not comparable
to others.

Another tightly related area is Byzantine-robust distributed
stochastic optimization [33], [34], [35]. Therein, the basic idea
is to replace the vulnerable mean aggregation rule in distributed
stochastic gradient descent with robust aggregation rules, in-
cluding coordinate-wise median [36], trimmed mean [36], [37],
geometric median [38], Krum [39], centered clipping [40], Pho-
cas [41], FABA [42], etc. Most of them belong to the category
of robust bounded aggregation rules (see Definition 1). We
will incorporate these robust bounded aggregation rules with
distributed online gradient descent and momentum to enable
Byzantine-robustness.

In Table I, we compare the adversarial regret bounds of dis-
tributed online gradient descent with the mean aggregation rule
and without Byzantine attacks, the derived adversarial regret
bounds of Byzantine-robust distributed online gradient descent
with robust bounded aggregation rules, as well as the derived
stochastic regret bounds of Byzantine-robust distributed online
momentum with robust bounded aggregation rules.

III. PROBLEM STATEMENT

Consider n participants in a set N, among which h are
honest and in subset H, while b are Byzantine and in subset B.
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TABLE I
REGRET BOUNDS OF DIFFERENT ALGORITHMS

constant step size  diminishing step size

Byzantine-free mean' O(VT) OllogT)
Byzantine-robust? o(T) o(T)
Byzantine-robust momentum? O(VT) O(logT)

1 Adversarial regret bounds of distributed online gradient descent with
the mean aggregation rule and without Byzantine aftacks.

2 Adversarial regret bounds of Byzantine-robust distributed online gradi-
ent descent with robust bounded aggregation rules.

3 Stochastic regret bounds of Byzantine-robust distributed online momen-
tum with robust bounded aggregation rules.

We know n = h + b, but the identities of Byzantine participants
are unknown and we can only roughly estimate an upper bound
of b. At step ¢, each honest participant j makes its local de-
cision of the model parameters wf €R? and sends it to the
server, while each Byzantine participant j sends an arbitrarily
malicious message to the server. For notational convenience,
denote z; € R as the message sent by participant j to the server
at step £, no matter whether it is from an honest or Byzantine
participant. Upon receiving all zg , the server aggregates them
to yield a global decision of the model parameters w; € R9.
The quality of the sequential decisions over T  steps is often
evaluated by adversarial regret with respect to the overall best
solution in hindsight, given by

T T
Rri=)_ fi(w) - min }  fi(w), (1)
t=1 i=1
where
fe(w) = % > (), (2)
JEH

and f] is the loss revealed to j €  at the end of step .
For distributed online gradient descent, each honest partici-
pant j € H makes its local decision following

wly =w, — V] (wy), 3)

where 7, > 0 is the step size, and sends zg 1= w] 41 to the
server. The server aggregates the messages z; 41 to yield the
mean value

1y .4
W=7 Z ZE?-H- “)
j=1

However, messages zf 1 from the Byzantine participants j € B
are arbitrarily malicious, such that w; ; can be manipulated to
reach arbitrarily large adversarial regret.

Motivated by the recent advances of Byzantine-robust dis-
tributed stochastic optimization, one may think of using robust
aggregation rules to replace the vulnerable mean aggregation
rule in (4). Denote AGG as a proper robust aggregation rule.

Now, the server makes the decision as
_ 1 2
w1 = AGG(241, 241, 5 241)- )

Below we introduce two exemplary robust aggregation rules.
More examples can be found in the extended version of this
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paper [43]. For notational convenience, we denote Z;,q :=
{zf,1,22, 1, 121} as the set of the n received messages
and Z;y1[K] := {2}, [k], 22,1 [K], -+ , 2041 [K]} as the set of
their k-th elements, where k € [d].

Coordinate-wise median. It yields the median for each
dimension, given by

coomed(Z;,1)
:= [med (24 1[1]); med(Z;44[2]); - - - ;med (2444 [d])]Eﬁ)

where med(-) calculates the median of the input scalars.

Trimmed mean. It is also coordinate-wise. Let ¢ < § be
the estimated number of Byzantine participants. Given Z; 4 [k],
trimmed mean removes the largest g inputs and the smallest g
inputs, and then averages the rest to yield trimean(Z;,1[k]).
The results of the d dimensions are stacked to yield

trimean(Z; 1)
:= [trimean(Z;,1[1]); trimean(Z;1[2]);
-+« ;trimean(Z; 1 [d])]. @)

IV. LINEAR ADVERSARIAL REGRET BOUNDS
OF BYZANTINE-ROBUST DISTRIBUTED ONLINE
GRADIENT DESCENT

Robust aggregation rules have been proven effective in
distributed stochastic optimization, given that the fraction of
Byzantine participants ae= £ is less than £ [36], [37], [38],
[39], [40], [41], [42]. Thus, one may wonder whether the
Byzantine-robust distributed online gradient descent updates
(3) and (5) can achieve sublinear adversarial regret.

Our answer is negative. Even with a wide class of robust
bounded aggregation rules, the tight adversarial regret bounds
are linear.

Definition 1: (Robust bounded aggregation rule). Consider n
messages z;, 22, -- ,z]* € R? from h honest participants in 1
and b Byzantine participants in B. The fraction of Byzantine
participants oo = 2 < 1. An aggregation rule AGG is a robust
bounded aggregation rule, if the difference between its output
and the mean of the honest messages is bounded by

lwe — 2|1 = AGG(2;, 22, - - - ,27') — &|* < C3¢7,
where Z; := £ 3, 71 is the mean of the honest messages, ¢
is the largest deviation of the honest messages such that ||z; —
27|12 <¢? for all j€H, and C, is an aggregation-specific
constant determined by a.

In Definition 1, ¢? characterizes the heterogeneity of the
messages to be aggregated. For a robust bounded aggrega-
tion rule, the difference between its output and the mean of
the honest messages is bounded by C2(2. Therefore, a robust
bounded aggregation rule with a smaller C2 can better handle
the heterogeneity of the messages to be aggregated.

We show that a number of state-of-the-art robust aggregation
rules, including coordinate-wise median [36], trimmed mean
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TABLE IT
CONSTANTS C, OF ROBUST BOUNDED
AGGREGATION RULES, WITH o BEING THE
FRACTION OF BYZANTINE PARTICIPANTS

Cq
coordinate-wise median O(ﬁ)
trimmed mean “(f(lza?
geometric median O({= 2‘:2
Krum o1+ 1 =
centered clipping O(Va)
Phocas 0(1;‘14—(11(_12;;‘)%]
FABA O(=52)

[36], [37], geometric median [38], Krum [39], centered clip-
ping! [40], Phocas [41], and FABA? [42], all belong to robust
bounded aggregation rules. Their corresponding constants C,
are listed in Table II and the derivations of these constants are
left to the extended version of this paper [43].

Note that z; is only used for the purpose of theoretical analy-
sis. The server does not need to calculate the value of z; during
implementing a robust bounded aggregation rule.

To analyze the adversarial regret bounds, we make the fol-
lowing standard assumptions on the losses of any honest par-
ticipant j € H.

Assumption 1: (L-smoothness). ff is differentiable and has
Lipschitz continuous gradients. For any i,y € R?, there exists
a constant L > 0 such that

IV £ (z) = V£ ()l < Lz — yll. ®)

Assumption 2: (p-strong convexity). ff is strongly convex.
For any =,y € R4, there exists a constant ;> 0 such that

(VA @)z 2 fi@) - F)+ 5l -y ©

Assumption 3: (Bounded deviation). Define V f;(w;) :=
# 2 ;jen V [ (w). The deviation between each honest gradient

V 7 (w;) and the mean of the honest gradients is bounded by
IVF (we) = Vfe(we)|]” < 0”. (10)

Assumption 4: (Bounded gradient at the overall best solu-
tion). Define w* = arg min,, cga 2;1 ft(w) as the overall best
solution. The mean of the honest gradients at this point is upper
bounded by

I 32 VA P <€

JjeEH

(11

These assumptions are common in the analysis of online
learning algorithms. Some works make stronger assumptions
[21, [3], [4], for example, bounded variable or bounded gradient
that yields Assumptions 3 and 4.

Next, we show that the Byzantine-robust distributed online
gradient descent algorithm with a robust bounded aggregation

I Centered clipping requires o < 0.1.
ZFABA requires o < 3.
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rule can only reach a linear adversarial regret bound under
Byzantine attacks. The proof is left to Appendix A. In con-
trast, the distributed online gradient descent algorithm with the
mean aggregation rule can achieve a sublinear adversarial regret
bound without Byzantine attacks, as shown in Appendix C of
[43]. To distinguish the adversarial regret bounds with different
step sizes, we denote Rr.,, Rp. 1, Rr.1 as the adversarial
regrets with a constant step size 7, a specia] constant step size
). and a diminishing step size O(1), respectively.
7%703' em 1: Suppose that the fraction of Byzantine par-
ticipants o = % < % Under Assumptions 1, 2, 3, and 4, the
Byzantine-robust distributed online gradient descent updates
(3) and (5) with a robust bounded aggregation and a constant
step size n; =n € (0, ﬁ] have an adversarial regret bound

By <=l — w2 + (2 1. )£2T+ 2020°T.
n p p
(12)

In particular, if 5, =n= = where c is a sufficiently small
positive constant, then the adversarial regret bound becomes

2.2 L b
Ry <2 Sy (”wl ] +2c£2)\/21_” (13)

+ —c'f;o?T.
M

7__

If we use a diminishing step size n; =
adversarial regret bound is

nmn{4L, =}, then the

481
Rp.y <4L||w; — w* 12+ ﬁ_2£2 logT (14)

2
4 —C25 T,
y7s

We construct the following counter-example to show that the
derived O(a2T) linear adversarial regret bound is tight.

Example 1: Consider a distributed online learning system
with 3 participants, among which participant 3 is Byzantine.
Thus, N'={1,2,3}, H={1,2} and B = {3}. Suppose that at
any step £, the losses of participants 1 and 2 are respectively
given by

fi (w) fiw)=

It is easy to check that these losses satisfy Assumptions 1, 2, 3,
and 4. To be specific, the overall best solution w* =0, L =1,
p=1and £2=0

Take geometric median as an exemplary aggregation rule.
Suppose that the algorithm is initialized by w; = o. At step
2, participant 1 sends z4 = w} = wy — 51 (w; — o) = o, while
participant 2 sends 22 = w2 = w; — g1 (w1 +0) =0 — 2m0.
In this circumstance, participant 3, who is Byzantine, can send
z3 = o so that the aggregation result is wy = o. As such, for any
step t, wy = o, fi(we) = 02, fe(w*) = 302, and the adversarial
regret is £027".

For other robust bounded aggregation rules, we can observe
that the mean of the honest messages is Z;11 = (1 — 1¢)o and
the largest deviation is (2 = n202. According to Definition 1,
participant 3 can always manipulate its message so that the

1 1
=5(w—0a), 5w +0)”

Authonzed licensed use limited to: George Mason University. Downloaded on September 21,2024 at 17:51:33 UTC from IEEE Xplore. Restrictions apply.



DONG et al.: BYZANTINE-ROBUST DISTRIBUTED ONLINE LEARNING

aggregation result is in the order of o, which eventually yields
linear adversarial regret. If the aggregation rule is majority-
voting-based, such as coordinate-wise median and trimmed
mean, sending z3 ' 1 =0 is effective. For centered clipping,
participant 3 can send z§+1 = o + 2n,0 instead.

Note that Example 1 holds for both constant and diminishing
step sizes. Meanwhile, Example 1 can be extended to a larger
number of participants.

The linear adversarial regret bound seems frustrating, but is
the necessary price for handling arbitrarily malicious Byzantine
attacks from the adversarial participants. With the help of robust
bounded aggregation rules, we are able to control the constant
of linear adversarial regret to a reasonable value 2C202, which
is determined by the property of losses, the robust bounded
aggregation rule, the fraction of Byzantine participants, and the
gradient deviation among honest participants.

V. SUBLINEAR STOCHASTIC REGRET BOUNDS OF
BYZANTINE-ROBUST DISTRIBUTED ONLINE MOMENTUM

According to Theorem 1, the established linear adversarial
regret bounds are proportional to o2, the maximum between
the honest gradients and the mean of the honest gradients. This
makes sense as the disagreement among the honest participants
is critical, especially in an adversarial environment. This ob-
servation motivates us to investigate whether it is possible to
attain sublinear regret bounds when the disagreement among
the honest participants is well-controlled.

To this end, suppose that the environment provides all the
honest participants with independent losses from the same dis-
tribution D at all steps. Define the expected loss F(w) =
Epf(w) for all j €M and all t. Then, stochastic regret is
defined as

T

Sp = IE;F(wt) T - min, F(w), (15)
where the expectation is taken over the stochastic process [16].
In such an i.i.d. setting, the notion of stochastic regret is nat-
ural and has been widely adopted [16], [44], [45]. Note that
the works of [29] and [30], which investigate the problem
of Byzantine-robust distributed bandits, also make a similar
i.i.d. assumption.

However, naively applying robust bounded aggregation rules
to (3) and (5) cannot guarantee sublinear stochastic regret, since
the random perturbations of the honest losses still accumulate
over time and the disagreement among the honest participants
does not diminish. Motivated by the successful applications of
variance reduction techniques in Byzantine-robust distributed
stochastic optimization [40], [46], [47], [48], [49], we let each
honest participant perform momentum steps, instead of gradient
descent steps, to gradually eliminate the disagreement during
the learning process.

In Byzantine-robust distributed online gradient descent with
momentum, each honest participant j; maintains a momen-
tum vector

mizv;fo(w¢)+(1 _Vt)m‘g——lz (16)
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where v; € (0,1) is the momentum parameter. Then, it makes
the local decision following

a7

s J
Wi = We— T,

instead of (3) and sends to the server. The server still aggregates
the messages and makes the decision as (5).

The ensuing analysis needs the following assumptions on
the expected loss, in lieu of Assumptions 1, 2 and 3 on the
individual losses.

Assumption 5: (L-smoothness). F' is differentiable and has
Lipschitz continuous gradients. For any x,y € RY, there exists
a constant L > 0 such that

IIVF(z) = VF(y)l| < Lllz —yl|. (18)

Assumption 6: (p-strong convexity). F' is strongly convex.
For any x,y € RY, there exists a constant z > 0 such that

(VF(e).x—y) 2 Fz) = F@w) + Sllz =l (19)

Assumption 7: (Bounded variance). The variance of each
honest gradient V 7 (w;) is bounded by

E||\V ] (w) — VF(w)|]* < o> (20)

In the investigated i.i.d. setting, the overall best solution w* =
arg min , s F'(w) makes V F(w*) = 0, such that we no longer
need to bound the gradient at the overall best solution as in
Assumption 4.

Theorem 2: Suppose that the fraction of Byzantine partici-
pants o = % ] % and that each honest participant j draws its
loss ff at step ¢ from distribution D with expectation F :=
Epf]. Under Assumptions 5, 6 and 7, the Byzantine-robust
distributed online momentum updates (16), (17) and (5) with
a robust bounded aggregation rule, a constant step size 7; =

n € (0, 74=) and a constant momentum parameter v =v =
83L?

% 0 have a stochastic regret bound

T .. vg= 1A
e Sl Bl 20% Y )
Srin <O (n + = (1 +h2C2) ﬁw’r) @1)

In particular, if 7, =n= O(%) and vy =v= O(%) are
properly chosen, then the stochastic regret bound becomes
Sy =0 (VT+Z (140262 L VT
g = +=(1+ Q)F @
If we use a proper diminishing step size n; = O(%) and a proper
momentum parameter v; = O(+), then the stochastic regret
bound is

02 e L4

Sr.1=0 (?(li—h CQ)FlogT). 23)

The proof is left to Appendix B. With proper constant and
diminishing step sizes, Theorem 2 establishes the O(+/T) and
O(logT) stochastic regret bounds of Byzantine-robust dis-
tributed online momentum in the i.i.d. setting. In the sublinear
stochastic regret bounds (22) and (23), the coefficient "—: is
inversely proportional to h, the number of honest participants,
which highlights the benefit of collaboration. The constant is
also determined by C, that characterizes the defense ability of
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the robust bounded aggregation rule. Smaller C,, yields smaller
stochastic regret. Besides, some robust bounded aggregation
rules, including trimmed mean, centered clipping and FABA,
have C, =0 when a =0, namely, no Byzantine participants
are present. In this case, the derived stochastic regret bounds re-
spectively degenerate to O((o2/h)/T) and O((0?/h)logT).

The i.i.d. assumption is essential to the sublinear stochas-
tic regret bound. Without the i.i.d. assumption, we show that
Byzantine-robust distributed online momentum has a tight lin-
ear stochastic regret bound in Example 2, similar to the con-
struction in Example 1.

Example 2: Consider a distributed online learning system
with 3 participants, among which participant 3 is Byzantine.
Thus, N' = {1,2,3}, H = {1,2} and B = {3}. Suppose that at
any step t, the losses of participants 1 and 2 are respectively
given by

1 1
fiw)=5w=0)%, fiw)=g(w+o)

The losses of participants 1 and 2 are non-i.i.d. and the expected
loss of the honest participants is

Fi(w)= % (%(w e %(w + o)?) = %(w?‘ +0?).

It is easy to check that these losses satisfy Assumptions 5, 6
and 7. To be specific, the overall best solution w* =0, L =1,
and p=1.

Take geometric median as an exemplary aggregation rule.
Suppose that the algorithm is initialized by w; = o, mi =0
and m2 = 2¢. Thus, mi = vy (wy — o) + (1 — v1)m} =0 and
m? = vy (w1 + o) + (1 — v1)m2 = 20. At step 2, participant
1 sends z1 = wl = w; — nym! = o, while participant 2 sends
22 =w? =w; — mym? = o — 2y 0. In this circumstance, par-
ticipant 3, who is Byzantine, can send 23 = o so that the
aggregation result is wg = cr As such, for any step t, w; =
o, Ft(w ) =02, F(w*)=102, and the stochastic regret is
EZt:z{Ft(wt) — Fy(w")) = QJQT-

For other robust bounded aggregation rules, we can observe
that the mean of the honest messages is z; 1 = (1 — n;)o and
the largest deviation is (% = n?a2. According to Definition 1,
participant 3 can always manipulate its message so that the
aggregation result is in the order of o, which eventually yields
linear stochastic regret. If the aggregation rule is majority-
voting-based, such as coordinate-wise median and trimmed
mean, sending zt3+1 = o is effective. For centered clipping,
participant 3 can send 2} 1 =0 + 20 instead.

But on the other hand, the momentum technique is critical
to the sublinear stochastic regret bound. In contrast, we can
show that Byzantine-robust distributed online gradient descent
without momentum has an undesired tight linear stochastic
regret bound even with the i.i.d. assumption; see Example 3.

Example 3: Consider a distributed online learning system
with 3 participants, among which participant 3 is Byzan-
tine. Thus, V"= {1,2,3}, H ={1,2} and B= {3}. Suppose
that at any step t, the losses of participants 1 and 2 are

IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 72, 2024

independently sampled from the following two functions with
the same probability:

fi(w) = —(w —0)’, fa(w)=

The losses of participants 1 and 2 are i.i.d. and the expected
loss of honest participants is

1
§(w+ o).

Fi(w) :% (%{w -0+ %(wg)z) = %(wz +o?).

It is easy to check that these losses satisfy Assumptions 5, 6
and 7. To be specific, the overall best solution w* =0, L =1,
and p=1.

Take geometric median as an exemplary aggregation rule.
Suppose that the algorithm is initialized by w;=73. At
step 2, participant 1 sends z3 = wil =w; —ny(w; — o) = (1 —
m)wi +mo or z3 =wj =w; —ni(w1 +0) = (1 —n)w; —
mo, each with a 50% probability. Participant 2 sends 22 whose
distribution is the same as that of z3. In this circumstance,
participant 3, who is Byzantine, can send 25 = (1 — 11 )w; +
mo so that the aggregation result is ws = (1 — m)w1 +mo
with a 75% probability or wg = (1 — n1)wy — 1o with a 25%
probability. Thus, the expected aggregation result at step 2 is
Ewy = (1 —m)w1 +m$.

Atstep 3, participant 1 sends 21 = wl = wy — pp(wy — o) =
(1 —m2)wa + mao or Z=wl=w—m(ws+o)=
(1 — m2)wa — m20, each with a 50% probability. Participant
2 sends z3 whose distribution is the same as that of zi.
In this circumstance, participant 3, who is Byzantine,
can send z3 = (1—1)wy +1po so that the aggregation
result is w3 = (1 —ng)ws +npo with a 75% probability

or wy=(1—mg)wy —meo with a 25% probability.
Thus, the expected aggregation result at step 3 is
Ewz = (1 — n2)Ews + 125

As such, for any step £+ 1, we have Ew, ;= (1—
nt)Ew; + ny 5. With the initialization wy = §, for any step t,

we get Ewy, = %, Fy(we) = 3(w? + 02), Fe(w*) = 102, and
the stochastic regret is at least
T 1 X
EZ(F;(HJ;) — F(w")) = EEZU’E
t=1 . ;—
52 (Bw,)? = =o2T.

For other robust bounded aggregation rules, we can observe
that the expected mean of the honest messages is Ez; 1 =
(1 —m)5 and the largest deviation is {* = nfo?. According
to Definition 1, participant 3 can always manipulate its mes-
sage so that the expected aggregation result is in the order
of o, which eventually yields linear stochastic regret. If the
aggregation rule is majority-voting-based, such as coordinate-
wise median and trimmed mean, sending 23, ; = (1 — n)w; +
mcr is effective. For centered clipping participant 3 can send
z:+1 = (1 — ne)we + 3neo if zH_l # zH_l or zH_l = z31+1 if
zt+1 — thr1 instead.

Remark 1: When the environment provides all the honest
participants with independent losses from the same distribution
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Fig. 1. Byzantine-robust distributed online gradient descent for least-squares regression on synthetic i.i.d. data with constant step size.
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Fig. 2.

D, the online learning and stochastic optimization formulations
share similarities. However, they are from different perspec-
tives, one is sequentially making decisions against a possibly
adversarial environment with the objective of minimizing the
regret, while another is actively sampling losses to approach
the minimizer of the expected loss. In addition, from the online
learning perspective, we can adopt different performance met-
rics, such as dynamic regret when the underlying distribution
is time-varying [2]. Our results can also be extended to new
online learning algorithms, such as online conditional gradient
[18], online mirror descent [19], adaptive gradient [20], etc.

VI. NUMERICAL EXPERIMENTS

In this section, we show the performance of the Byzantine-
robust distributed online gradient descent and momentum algo-
rithms through numerical experiments, including least-squares

Byzantine-robust distributed online gradient descent for least-squares regression on synthetic i.i.d. data with diminishing step size.

regression on synthetic datasets, softmax regression on the
MNIST dataset and Resnet18 training on the CIFAR10 dataset.
Due to the page limit, we left Resnet18 training on the CIFAR10
dataset to the extended version of this paper [43]. The source
code is available online>.

In addition to the non-robust mean aggregation rule, we test
seven robust bounded aggregation rules, including coordinate-
wise median, trimmed mean, geometric median, Krum,
centered clipping, Phocas, and FABA. We consider the
following three commonly-used Byzantine attacks.

Sign-flipping attack. Each Byzantine participant sends a
negative multiple of its true message, and the coefficient is
set as —3, —1 and —1 for the three numerical experiments,
respectively.

3htlps:f.-“giﬂ1uh.curn.~‘wanger52] /0GD
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Gaussian attack. Each Byzantine participant sends a ran-
dom message, where each element follows the Gaussian dis-
tribution A/(0,500), A(0,200) and N(0,200) for the three
numerical experiments, respectively.

Sample-duplicating attack. The Byzantine participants
jointly choose one honest participant, and duplicate its mes-
sage to send. This amounts to that the Byzantine participants
duplicate the samples of the chosen honest participant.

A. Least-Squares Regression on Synthetic Datasets

We start with least-squares regression on synthetic datasets,
each of which contains 60,000 training samples. The di-
mensionality of decision variable is d =10. During train-
ing, the batch size is 1. We launch one server and 30

participants. Under Byzantine attacks, 5 randomly chosen par-
ticipants are adversarial.

We take into account two data distributions. In the i.i.d.
setting, each element of the regressors is drawn from the Gaus-
sian distribution A/(0,1). We also randomly generate each
dimension of the ground-truth solution from the Gaussian dis-
tribution A'(0,1). Then, the labels are obtained via multi-
plying the regressors by the ground-truth solution, followed
by adding Gaussian noise A/(0,0.1). These training samples
are evenly distributed to all participants. In the non-i.i.d. set-
ting, each element of the regressors and the ground-truth
solution is evenly drawn from three pairs of Gaussian distri-
butions: (M(0,1), g+ N(0,0.5)), (N (1,1), 9+ N(0.2,0.5)),
and (M(2,1),g9 +N(0.4,0.5)), where g ~ N (0, 1). The added
Gaussian noise is still from A(0,0.1). For each of the

Authonzed licensed use limited to: George Mason University. Downloaded on September 21,2024 at 17:51:33 UTC from IEEE Xplore. Restrictions apply.



DONG et al.: BYZANTINE-ROBUST DISTRIBUTED ONLINE LEARNING

245

10 without attack sign-flipping attack Gaussian attack sample-duplicating attack
g et
3 0.8 .-
<
c 06
.
S o4
Y
s
=02
s
= 00
O
e
<
o 0.8
L
-4
— 06
¥
[
E 0.4 -
™ -
g 0.2 ﬁﬁw e
=
< g0
0 2500 5000 7500 10000 O 2500 5000 7500 10000 O 2500 5000 7500 10000 O 2500 5000 7500 10000
Iteration Iteration Iteration Iteration
—s— mean * trimmed mean —=— Krum +  Phocas
—~- coordinate-wise median  —+- geometric median —-+- centered clipping - FABA

Fig. 12. Byzantine-robust distributed online momentum for softmax regression on MNIST i.i.d. data with diminishing step size.
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Fig. 13. Byzantine-robust distributed online gradient descent for softmax regression on MNIST non-i.i.d. data with constant step size.

three classes, the training samples are evenly distributed to
10 participants.

The performance metrics are adversarial regret and stochas-
tic regret for the ii.d. setting, and adversarial regret for the
non-i.i.d. setting. We repeat generating the datasets and con-
ducing the experiments for 10 times to calculate the regrets.
This way, taking the average approximates the stochastic regret
bound, while choosing the worst approximates the adversarial
regret bound.

When the step size i and the momentum parameter v are
constant, they are set to 0.01 for the i.i.d. setting and 0.005
for the non-i.i.d. setting. For the diminishing step size 7; and
momentum parameter v, they are set to 0.008 in the first 500
iterations, and # afterwards.

Numerical experiments on i.i.d. data. As shown in Figs. 1
and 2, the Byzantine-robust distributed online gradient descent
algorithms equipped with robust bounded aggregation rules

demonstrate trends of linear regret bounds, no matter using
constant or diminishing step size. Take Fig. 2 as an exam-
ple. Although trimmed mean, Phocas, coordinate-wise median,
geometric median and FABA show sublinear regret bounds
under the Gaussian and sample-duplicating attacks, they yield
to linear regret bounds under the sign-flipping attack. This
validates the tightness of Theorem 1 even on i.i.d. data. The
Byzantine-robust distributed online momentum algorithms sig-
nificantly improves the regret bounds, as shown in Figs. 3 and
4. Their regret bounds are all sublinear, which corroborate with
Theorem 2.

Numerical experiments on non-i.i.d. data. On the non-
i.i.d. data, the environment is more adversarial than that on
the i.i.d. data. As shown in Figs. 5 and 6, the Byzantine-
robust distributed online gradient descent algorithms, whether
under attack or not, exhibit linear adversarial regret bounds.
The Byzantine-robust distributed online momentum algorithms,
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as shown in Figs. 7 and 8, may have even larger regrets than
those without momentum. This phenomenon underscores the
importance of i.i.d. data distribution to Byzantine-robustness.

B. Softmax Regression on the MNIST Dataset

We next consider softmax regression on the MNIST dataset,
which contains 60,000 training samples and 10,000 testing sam-
ples. The batch size is set to 32 during training. We launch one
server and 30 participants, and consider two data distributions.
In the i.i.d. setting, all the training samples are randomly and
evenly allocated to all participants. In the non-ii.d. setting,
each class of the training samples are randomly and evenly dis-
tributed to 3 participants. Under Byzantine attacks, 5 randomly
chosen participants are adversarial.

The performance metrics are classification accuracy on the
testing samples and adversarial regret on the training samples.

Byzantine-robust distributed online momentum for softmax regression on MNIST non-i.i.d. data with constant step size.

Since accurately calculating the adversarial and stochastic regret
bounds is computationally demanding on such a large dataset,
we only conduct the numerical experiments once, and calculate
the adversarial regret to approximate its bound. Note that in the
i.i.d. setting, adversarial regret is an approximation of stochastic
regret, but there is still a substantial gap between the two.

When the step size 7 is constant, it is set to 0.01 and the
momentum parameter v is also set to 0.01. For the diminishing
step size 73; and momentum parameter 1/, they are set to 0.1 in
the first 500 steps and % afterwards.

Numerical experiments on i.i.d. data. As shown in
Figs. 9 and 10, on the ii.d. data, Byzantine-robust dis-
tributed online gradient descent equipped with robust bounded
aggregation rules all perform well when no attack presents or
under the sample-duplicating attack. Under the sign-flipping
and Gaussian attacks, the algorithm with mean aggregation

Authonzed licensed use limited to: George Mason University. Downloaded on September 21,2024 at 17:51:33 UTC from IEEE Xplore. Restrictions apply.



DONG et al.: BYZANTINE-ROBUST DISTRIBUTED ONLINE LEARNING

without attack

sign-flipping attack

247

Gaussian attack sample-duplicating attack

T 10
o v g R e e e S B L 2T o ) e = oo
5 | I a0 A I 06 e Sl s
(v ,ﬁ-?l_:éwnd—ﬂ—d‘—-ﬂ'ﬂ
g
P 0.6 ? |8 e =—— = e
B=l \ /
& " i i i . e
= | £
7 02 1
@
5 oo

le5
i L0 T I |
o | '3 | [ v
o081 | o fi e
7] | ( r v
X e b A
8 I|I / . i §of |
G 04{ [/ o= g
i | L ¥

| ¥ | P
L 02 s o prepeme tv i
g A W"“ X JEPEB S e PRBU L o

0 2500 5000 7500 10000 O 2500 5000 7500 10000 O 2500 5000 7500 10000 O 2500 5000 7500 10000
Iteration Iteration Iteration Iteration
—— mean trimmed mean —=— Krum + Phocas
—~- coordinate-wise median  —+- geometric median —-+- centered clipping - FABA

Fig. 16.

fails, and the others demonstrate satisfactory robustness. The
sign-flipping attack turns to be slightly stronger than the Gaus-
sian attack; under the former, the algorithm with centered clip-
ping performs worse, but is still much better than the one with
mean aggregation.

The Byzantine-robust distributed online gradient descent al-
gorithms with momentum improve over the ones without mo-
mentum in terms of classification accuracy and adversarial
regret, as shown in Figs. 11 and 12. However, no sublinear
adversarial regret bound is guaranteed, which confirms our
theoretical prediction.

Numerical experiments on non-i.i.d. data. On the non-
i.i.d. data, the environment is more adversarial than on the i.i.d.
data. In this case, Byzantine-robust distributed online gradi-
ent descent, no matter with or without momentum, does not
perform well, as in Figs. 13, 14, 15, and 16. This observation
matches our conclusion on the hardness of handling adversarial
participants in the adversarial environment.

VII. CONCLUSION

This paper is among the first efforts to investigate the
Byzantine-robustness of distributed online learning. We show
that Byzantine-robust distributed online gradient descent has
linear adversarial regret, and the constant of the linear term
is determined by the robust aggregation rule. On the other
hand, we also establish the sublinear stochastic regret bound
for Byzantine-robust distributed online momentum under the
i.i.d. assumption.

Our future focus is to improve the Byzantine-robustness of
distributed online learning algorithms in the non-i.i.d. setting,
which is of practical importance in processing streaming data.
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