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Abstract—Federated learning (FL) is a promising distributed
learning framework in terms of privacy protection and com-
munication saving. Most existing FL techniques are developed
for independent-and-identically-distributed (IID) datasets, but
suffer from performance degradation under Non-IID datasets. To
cope with this issue, most existing work designs solutions from
data perspectives (e.g., sharing some data samples between local
devices) to eliminate the heterogeneity of distributed datasets,
which causes extra communication overhead and may expose
user privacy that contradicts FL’s original intention. Unlike the
existing data-based methods, we propose a generative adversarial
network (GAN) based FL, named as GANFed, which is designed
from a feature perspective. Specifically, we embed a discriminator
into the FL network, which works with the shallow layers as
a generator to form a GAN in FL. By incorporating such a
GAN, the output of the shallow layers tends to present more IID
features compared with the original Non-IID input data. These
extracted features from the shallow layers are then used to train
the deep layers of the FL network. In this way, the proposed
GANFed reduces the weight divergence of the local models, and
hence improves the performance of FL. Without data exchange,
our GANFed avoids the leakage of user privacy and reduces the
communication overhead. Experimental results show that our
GANFed outperforms the standard FedAvg on Non-IID dataset
in terms of improved test accuracy.

Index Terms—Federated learning, Non-IID data, generative
adversarial network, FedAvg, edge IoTs.

I. INTRODUCTION

With the rapid development of wireless communication
technologies, a large number of IoT devices have emerged
in edge networks, generating a large amount of data [1]-[3].
By utilizing artificial intelligence technologies (e.g., machine
learning), extracting effective information from these data can
stimulate many potential applications, such as unmanned driv-
ing, home automation, smart forestry and telemedicine [4], [5].
Traditional centralized machine learning requires distributed
devices to transmit all raw data to a parameter server (PS),
which not only increases communication overhead and di-
vulges privacy, but also challenges the storage and computing
capabilities of the PS [6], [7]. Alternatively, federated learning
(FL) is proposed to train a global model by using a Federated
Averaging (FedAvg) algorithm [8]-[12]. FedAvg provides a
possibility for edge-intelligent devices to cooperatively learn
a global model without raw data transmission. FedAvg only
involves model updates between distributed devices and the

PS, which not only saves communications, but also protects
user privacy [13]-[15].

While FedAvg is an emerging approach in distributed learn-
ing, it encounters many challenges when applied in practice
[16], [17]. One critical issue is that the performance of
FL is inevitably deteriorated when FedAvg is applied on
non-independent-and-identically-distributed (non-1ID) datasets
[18]—[20]. This is because that the heterogeneous nature of the
distributed non-IID datasets drives the weights of the local
models updated at the distributed devices to divergence [21].
According to [19], even though local models are trained from
the same initial shared global model, they would converge
to different optimal local models due to the heterogeneity in
distributions of local datasets. When the PS aggregates the
updated local model parameters from the distributed devices,
the divergence between the aggregated model and the ideal
one slows down the convergence speed and degrades the
learning performance. Such issue can be partially compensated
by exchanging data samples between local workers, which
however may lead to excessive communication overhead and
privacy leakage [22], [23].

In this work, we seek for a privacy-preserving and
communication-efficient approach to deal with the non-IID
issues in FL. Specifically, we propose a generative adversarial
network (GAN) based FL, named as GANFed, which includes
a new neural network model architecture and an new iterative
training method for distributed learning. The key idea of
GANFed is to incorporate a GAN that enforces the output
of the shallow layers of the distributed model to present IID
features on heterogeneous data. In GANFed, we introduce
a classifier model (discriminator) into the target FL model,
which is also trained in a distributed manner. Meanwhile,
the shallow layers of the target FL model play the role of a
generator and work together with the implanted discriminator
to form a GAN. In GANFed, the target FL. and GAN models
are trained alternately until convergence. Without exchanging
any data samples, the communication cost in our GANFed
depends on the model size regardless the data samples, which
is communication-efficient and privacy-preserving, compared
with the methods relying on data sample exchanges [22],
[23]. Our main contributions of this work are summarized as
follows.
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o We propose a neural network model architecture for
distributed learning, which embeds GAN into the target
FL model. The components of GAN can assist in the
training of the target FL. model in a supervised mode.

o We propose a distributed training method that alternately
trains GAN and target FL. Such an alternating training
is carried out in the form of a tripartite game, which
can respectively achieve the convergence of the three part
network parameters.

o We investigated the supervisory role of GAN in our pro-
posed GANFed through empirical studies. By adjusting
the balance ratio of GAN in GANFed, our GANFed
achieves a better learning performance than the classic
FedAvg.

The rest of the paper is as follows. We first review the
relevant literature in Section II. Then we develop our GANFed
algorithm in Section III, which is evaluated by experiments on
an image dataset in Section I'V. Finally, we make conclusions
and discuss some open problems in Section V.

II. RELATED WORK

For standard FL, the heterogeneity in distributions of lo-
cal datasets causes degradation in learning performance. To
overcome such a non-IID issue, some data-based approaches
are proposed by modifying the distributions of local datasets.
There are two main solutions for data-based approaches,
including data sharing and data argumentation.

A. Data Sharing

In [19], the authors propose to use a globally shared dataset
with a uniform distribution to alleviate the negative effect
of non-IID datasets. A part of globally shared dataset is
downloaded to local devices so that local models are trained
with both the globally shared data and their own local training
data. This approach can improve the learning performance in
the presence of non-IID datasets. To obtain such a uniformly
distributed global dataset, some researchers propose to share
some local data with the server to form a global dataset
[22], [23]. Exchanging data samples can improve the global
model performance on non-IID datasets, but it violates the
requirement of privacy preserving in FL and leads to excessive
communication overhead for data sharing.

B. Data Argumentation

Data argumentation is another option that can increase the
diversity of training data so as to mitigate local data imbalance
issues in FL. In [24], the authors displace some pixels of the
original data samples to get the augmented data samples for
local devices. Both the augmented data and the original local
data samples are used to update the local model parameters.
In [25], the authors propose to use GAN to generate the
augmented data samples for local devices. The server collects
some local seed data samples from local devices to train a good
generator. This pre-trained generator is downloaded to local
devices for reproducing the data samples, so as to make local

datasets IID. Data argumentation also relies on data sharing,
exposing data privacy.

Compared with the above data-based approaches, our GAN-
Fed is to make features IID rather than make data IID.
Without data sharing, our GANFed is communication-efficient
and privacy-preserving. Meanwhile, there are some other ap-
proaches to addressing the non-IID data issues in FL, such
as local fine-tuning [26], [27], personalization layer [28]-
[30] and so on [18]. These approaches improve the learning
performance by adjusting the algorithm or model structure of
FL, some of which can be combined with our GANFed. Here,
we do not discuss them in depth.

III. GANFED ALGORITHM
A. System Model

Let D; = {xi,k,yi,k}f:il denote the local training dataset
at the i-th worker, ¢« = 1,...,U, where x; , is the input data
vector, y;  is the labeled output vector, k = 1,2, ..., K;, and
K; = |D;| is the number of data samples available at the i-th
worker. Note that the local datasets D;, V7 are non-IID in this
work. With K = E?:I K; samples in total, these U workers
seek to collectively train a learning model parameterized by
a global model parameterized by w = [w!,..., wP] € RP
of dimension D, by minimizing the loss function F'(w) :=
Ef(W; Xk, Yik)]s i€

Pl: w*=argmin F(w). (D)

The minimization of F'(w) is typically carried out through
the stochastic gradient descent (SGD) algorithm. The model
parameter w; at the ¢ iteration is updated as

Zzl']:l it

U )
where « is the learning rate and g;; = V f(W;_1;X; k, Yi k)
is the local gradient computed at the ¢-th local worker using
its randomly selected the k-th data sample.

Considering the local gradients are updated based on the
non-I1ID datasets, the model weights suffer from divergence,
which then degrades the performance and convergence of the
overall distributed learning. To solve such a problem efficiently
and effectively, we next develop a GAN-based FL (GANFed)
solution for efficient distributed learning without any data
sample exchange.

B. Algorithm

As shown in Fig 1, we introduce a discriminator ® im-
planted with the shallow layers of our GANFed model to
form a generator-discriminator pair as the GAN module of the
proposed distributed learning framework. The shallow layers
of our GANFed model is regarded as a feature extractor G
that is also a generator in GAN. The discriminator is defined
by the parameter @ = [9',....,0PP] with the dimension Dp.
The shallow layers are parameterized by w = [w!, ... wP¢]
with the dimension Dg. Then, the parameters of the target
global model can be written as the concatenation of shallow
and deep layers: w = [w!,... wPe ... wP].

2

(Model updating) w; =w;_1 —«
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Fig. 1: GAN-based federated learning from Non-IID datasets.

The basic idea of our GANFed is to make the outputs of the
shallow layers at all local workers tend to present IID features
and then facilitate the training of the deep layers with such
IID features. We aim to achieve that:

o The features (as transformed versions of the input data)
extracted from different input data are expected to retain
the useful information for training, i.e., the classifier can
still classify different features as the same as their input
data, the entire model still achieves the training objective
as if it is given raw input data samples;

o The features extracted from different local workers are
tend to IID, i.e., the discriminator cannot distinguish
which local worker the features come from.

To this end, we introduce two types of labels for each input
sample X; j, Vi, k, including the valid label y72'*¢ and the
fake label y©2*¢, which are used to train the GAN. By the
two types of labels, all the input data samples are categorized
by the index of local worker 4. Thus, the dimension of yy'*<
and y*2*¢ are both U.

Specifically, the valid label y; carries the ground truth
for data x;j and is used for updating the discriminator so
that the discriminator can classify which worker the input data
comes from. The elements of yy2'*® are all 0 except for the
i-th element which is 1. The fake label yf2*¢ is used for
updating the feature extractor to fool the discriminator that
cannot distinguish which worker the features after passing
through the feature extractor comes from, the elements of
which are all 1. The binary cross entropy (BCE) loss func-
tions for training the discriminator and the feature extractor
are given by Fp(w,0) := E[fp(w,0;x;,y/***?)] and
Fo(w,0) = E[fc(w,0;x; 1,y )], which are used for
updating the parameters of the discriminator and the feature
extractor, respectively.

Denote the extracted feature that the generator extracts from
the input data x; as G(x; ) = xZ - From the labels and

valid

the loss functions, we can see that, if we use (xl oo Y7

to train the discriminator with the BCE loss function F' 'p, the
discriminator would adjust its parameters 6 to reduce the BCE

loss so that it can classify the different extracted feature xlf .

On the other hand, if we use (x/ , , y**®) to train the generator

with the BCE loss function Fi;, the generator would adjust its
parameters w to reduce the BCE loss so that xlf ;. belongs to
all classes in the discriminator’s eyes. This adversarial training
will make the extracted features tend to IID. The loss function

of GAN is given by
Z Z Y log(D(G(xi1)))

n Z > ytelog(l — D(G(xi.k)))-
ik
3)

mlnmaXV (G,D)
giw D20

To retain the useful information in the extracted feature x{ 0
the generator should be trained together with the classifier by
using (X; ., yi k) with the loss function F.

In order to obtain a global model (including the feature ex-
tractor, classifier, and discriminator) cooperatively, all workers
and the PS train the learning model together in a distributed
manner. The training procedure of the tripartite game has the
following steps:

1) Step 1: The local workers download the global model
(w and 60) from the PS.

2) Step 2: The local workers train the feature extractor and
classifier using the loss function F(w) and the input
data x; ,, Vi, k with the label y; ;, and then update the
parameters of the feature extractor and classifier w.

3) Step 3: The local workers train the feature extractor
and discriminator using the loss function Fp(w, 8) and
the input data x;, Vi,k with the label yy2'*¢ and
then only update the parameters of the discriminator
6, but keep the parameters of the feature extractor w
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unchanged.

4) Step 4: The local workers train the feature extractor and
discriminator using the loss function F(w, ) and the
input data x; j,, Vi, k with the label y*2*¢, and then only
update the parameters of the feature extractor w, but
keep the parameters of the discriminator @ unchanged.

5) Step 5: The local workers send their own local updated
parameters w and 6 to the PS.

6) Step 6: The PS averages all the received parameters
from the local workers as the current global update
Wy = % Zgﬂ Wi, and 6; = % ijzl 0.+, which are
ready to download for distributed workers for next round
iteration.

The above steps 1 - 6 are repeated until a predefined

convergence condition is satisfied. The proposed GANFed is
implemented as Algorithm 1.

Algorithm 1 GANFed

Initiation:
Wo, 90.
I: fort=1:T do
2: At the workers:
3:  Download global model from the PS.
4. Update the feature extractor and classifier:
Wit =Wit—1— Olvf(Wtfl;Xi,knyk)-
5. Update discriminator:
0ir =011 —aV[p(0i_1;%k, y 2.
6:  Update feature extractor:
Wit =W, 1 — OévfG(ﬂt_ﬁ Xik,Y
Communication: Send 6; ; and w; ; to the PS.
At the PS:
Average the parameters received from local workers as
W= Wi 0 =300,
10:  Break if a convergence condition is satisfied.
11: end for

fake).

IV. EXPERIMENTS

This section presents the experimental results of the pro-
posed GANFed', compared with the standard FedAvg in both
IID and non-IID scenarios.

A. System Setting

We evaluate the performance of the proposed GANFed
for the image classification tasks on the MNIST dataset?.
In MNIST dataset, there are 60000 training samples and
10000 test samples.Unless otherwise specified, the system and
parameter settings are as follows.

We set the total number of the local workers be 10. We
first sort all the 60000 training samples based on their labels
(the digits). Then we divide the 60000 training samples into
20 shards, each of which consists 3000 samples. We randomly

The simulation code of this work can be found at: https:/github.com/
fuanxiyin/GANFed.git
Zhttp://yann.lecun.com/exdb/mnist/

=
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Fig. 2: Test accuracy as the number of communication rounds varies under
the IID scenario.

distribute two shards to the 10 local workers for the distributed
learning problem.

B. Neuron Network Setting

The feature extractor consists of a 28*28-neuron input layer,
a 128-neuron hidden layer, a 256-neuron hidden layer, a
512-neuron hidden layer, a 1024-neuron hidden layer, and a
28*28-neuron Tanh output layer. The leaky rectified linear unit
(LeakyReLU) is the activation function. All the hidden layers
are with batch normalization.

The discriminator consists of a 28*%28-neuron input layer, a
512-neuron hidden layer, a 256-neuron hidden layer, and a 10-
neuron Sigmoid output layer. The LeakyReLU is the activation
function.

The classifier consists of a 28*28-neuron input layer, a 64-
neuron hidden layer, and a 10-neuron softmax output layer.
The rectified linear unit (ReLU) is the activation function. The
hidden layers is with a dropout layer.

In all the training procedures, the loss functions are BCE,
the SGD with the momentum=0.5 is adopted and the learning
rates are all set to 0.01. We use FedAvg as a base line to
compare with our proposed GANFed. Note that, considering
the fairness, it is not suitable to compare our scheme to the
existing approaches that handle non-IID data by adjusting the
algorithm or model structure of FL. Actually, those existing
approaches can be combined with our GANFed.

C. Results on IID

For IID scenarios, we randomly divide the 60000 training
samples into 1200 shards, each of which consists 50 samples.
We randomly distribute some shards to the 10 local workers
(the number of shards distributed to each worker is at least
one and maximum 30). The experiment results are shown in
Fig. 2. As we can see, GANFed and FeDAvg have almost the
same performance.
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Fig. 3: Test accuracy as the number of communication rounds varies under
the scenario where the ratio between the losses of FL and GAN is 1 : 1.
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D. Results on Non-1ID

The experiment results on non-IID datasets are shown in
Fig. 3. As we can see in Fig. 3, the performance of the non-IID
scenario is worse than that of IID scenario in both GANFed
and FedAvg. However, our GANFed is superior than FedAvg
in the non-IID scenario. The accuracy of GANFed is almost
10% higher than that of FedAvg.

In Fig. 4, we show how the weight divergence varies as the
increase of the number of communication rounds. We calculate
the weight divergence as

ZiU:1 [wi — Wz‘,t||2

[[w][>

Weight Divergence = 4

As we can see, the weight divergences of both the shallow
and the deep layers in GANFed are lower than that of FedAvg.
This result explains the reason why our GANFed can improve
performance.

In Fig. 5, we explore the supervisory role of GAN and
provide the results. Under the same Non-IID setting as Fig. 3,
we first well train GAN and then train the classifier keeping
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Fig. 5: Test accuracy as the number of communication rounds varies under
the scenario where we first well train GAN.
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Fig. 6: Test accuracy as the number of communication rounds varies under
the scenario where the ratio between the losses of FL and GAN is 1 : 10.

GAN unchanging. As we can see, GANFed can not work.
Thus, we conclude that GAN can improve the performance of
FL but it can also destroy the usability of data. We should
adjust the ratio between the losses of FL and GAN when
backward them in the training proceed, so that determine the
appropriate level of supervision for GAN. It is better to train
GAN and the classifier iteratively, rather than well pre-train
GAN and then train the classifier.

In order to strengthen the supervisory role of GAN, we
raise the loss of training GAN, i.e., we backward 10 times
loss when training GAN. As we can see from Fig. 6, the
performance of GANFed is weaker than FedAvg at the begin-
ning, but GANFed is superior than FedAvg afterwards. This
is because, the feature extractor is not trained very well at the
beginning, results in a decline in data availability. Afterwards,
the feature extractor is trained better so that it can make the
features passed through it IID, which leads to an increase in
performance. It is obvious that the performance of the non-
IID scenario is worse than that of IID scenario. And our
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GANFed is superior than FeDAvg in the non-IID scenario.
The accuracy of GANFed is almost 30% higher than that
of FedAvg, which is better than that of Fig. 3 where the
ratio between the losses of FL. and GAN is 1 : 1. However,
along with the training proceed, GANFed is worsening. This is
because GAN’s supervisory role is too strong, which destroys
the usability of data. Thus, we can conclude that it is important
to set a proper ratio to balance the backward loss of FL and
GAN, which can be our future work.

V. CONCLUSION AND DISCUSSION

In this paper, we introduce GAN into FL and propose a
novel GANFed algorithm for handling the challenging non-IID
issue in distributed learning scenarios. Empirical studies show
that our GANFed achieves higher accuracy than FedAvg on
distributed non-IID datasets. More importantly, our GANFed
can save communication and avoid privacy leakage, due to
without data sharing. In addition, our study indicates that GAN
makes features tend to IID, while it also reduces the usability
of data as well. That is, GAN is a supervisor for adjusting
the shallow layers of the FL to improve the learning accuracy.
However, if the supervision is too strong, it will reduce the
accuracy of the final global model. In future work, we will
study the balance ratio between GAN and FL in the training
proceed of GANFed.
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