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Abstract—Federated learning (FL) is a promising distributed
learning framework in terms of privacy protection and com-
munication saving. Most existing FL techniques are developed
for independent-and-identically-distributed (IID) datasets, but
suffer from performance degradation under Non-IID datasets. To
cope with this issue, most existing work designs solutions from
data perspectives (e.g., sharing some data samples between local
devices) to eliminate the heterogeneity of distributed datasets,
which causes extra communication overhead and may expose
user privacy that contradicts FL’s original intention. Unlike the
existing data-based methods, we propose a generative adversarial
network (GAN) based FL, named as GANFed, which is designed
from a feature perspective. Specifically, we embed a discriminator
into the FL network, which works with the shallow layers as
a generator to form a GAN in FL. By incorporating such a
GAN, the output of the shallow layers tends to present more IID
features compared with the original Non-IID input data. These
extracted features from the shallow layers are then used to train
the deep layers of the FL network. In this way, the proposed
GANFed reduces the weight divergence of the local models, and
hence improves the performance of FL. Without data exchange,
our GANFed avoids the leakage of user privacy and reduces the
communication overhead. Experimental results show that our
GANFed outperforms the standard FedAvg on Non-IID dataset
in terms of improved test accuracy.

Index Terms—Federated learning, Non-IID data, generative
adversarial network, FedAvg, edge IoTs.

I. INTRODUCTION

With the rapid development of wireless communication

technologies, a large number of IoT devices have emerged

in edge networks, generating a large amount of data [1]–[3].

By utilizing artificial intelligence technologies (e.g., machine

learning), extracting effective information from these data can

stimulate many potential applications, such as unmanned driv-

ing, home automation, smart forestry and telemedicine [4], [5].

Traditional centralized machine learning requires distributed

devices to transmit all raw data to a parameter server (PS),

which not only increases communication overhead and di-

vulges privacy, but also challenges the storage and computing

capabilities of the PS [6], [7]. Alternatively, federated learning

(FL) is proposed to train a global model by using a Federated

Averaging (FedAvg) algorithm [8]–[12]. FedAvg provides a

possibility for edge-intelligent devices to cooperatively learn

a global model without raw data transmission. FedAvg only

involves model updates between distributed devices and the

PS, which not only saves communications, but also protects

user privacy [13]–[15].

While FedAvg is an emerging approach in distributed learn-

ing, it encounters many challenges when applied in practice

[16], [17]. One critical issue is that the performance of

FL is inevitably deteriorated when FedAvg is applied on

non-independent-and-identically-distributed (non-IID) datasets

[18]–[20]. This is because that the heterogeneous nature of the

distributed non-IID datasets drives the weights of the local

models updated at the distributed devices to divergence [21].

According to [19], even though local models are trained from

the same initial shared global model, they would converge

to different optimal local models due to the heterogeneity in

distributions of local datasets. When the PS aggregates the

updated local model parameters from the distributed devices,

the divergence between the aggregated model and the ideal

one slows down the convergence speed and degrades the

learning performance. Such issue can be partially compensated

by exchanging data samples between local workers, which

however may lead to excessive communication overhead and

privacy leakage [22], [23].

In this work, we seek for a privacy-preserving and

communication-efficient approach to deal with the non-IID

issues in FL. Specifically, we propose a generative adversarial

network (GAN) based FL, named as GANFed, which includes

a new neural network model architecture and an new iterative

training method for distributed learning. The key idea of

GANFed is to incorporate a GAN that enforces the output

of the shallow layers of the distributed model to present IID

features on heterogeneous data. In GANFed, we introduce

a classifier model (discriminator) into the target FL model,

which is also trained in a distributed manner. Meanwhile,

the shallow layers of the target FL model play the role of a

generator and work together with the implanted discriminator

to form a GAN. In GANFed, the target FL and GAN models

are trained alternately until convergence. Without exchanging

any data samples, the communication cost in our GANFed

depends on the model size regardless the data samples, which

is communication-efficient and privacy-preserving, compared

with the methods relying on data sample exchanges [22],

[23]. Our main contributions of this work are summarized as

follows.
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• We propose a neural network model architecture for

distributed learning, which embeds GAN into the target

FL model. The components of GAN can assist in the

training of the target FL model in a supervised mode.

• We propose a distributed training method that alternately

trains GAN and target FL. Such an alternating training

is carried out in the form of a tripartite game, which

can respectively achieve the convergence of the three part

network parameters.

• We investigated the supervisory role of GAN in our pro-

posed GANFed through empirical studies. By adjusting

the balance ratio of GAN in GANFed, our GANFed

achieves a better learning performance than the classic

FedAvg.

The rest of the paper is as follows. We first review the

relevant literature in Section II. Then we develop our GANFed

algorithm in Section III, which is evaluated by experiments on

an image dataset in Section IV. Finally, we make conclusions

and discuss some open problems in Section V.

II. RELATED WORK

For standard FL, the heterogeneity in distributions of lo-

cal datasets causes degradation in learning performance. To

overcome such a non-IID issue, some data-based approaches

are proposed by modifying the distributions of local datasets.

There are two main solutions for data-based approaches,

including data sharing and data argumentation.

A. Data Sharing

In [19], the authors propose to use a globally shared dataset

with a uniform distribution to alleviate the negative effect

of non-IID datasets. A part of globally shared dataset is

downloaded to local devices so that local models are trained

with both the globally shared data and their own local training

data. This approach can improve the learning performance in

the presence of non-IID datasets. To obtain such a uniformly

distributed global dataset, some researchers propose to share

some local data with the server to form a global dataset

[22], [23]. Exchanging data samples can improve the global

model performance on non-IID datasets, but it violates the

requirement of privacy preserving in FL and leads to excessive

communication overhead for data sharing.

B. Data Argumentation

Data argumentation is another option that can increase the

diversity of training data so as to mitigate local data imbalance

issues in FL. In [24], the authors displace some pixels of the

original data samples to get the augmented data samples for

local devices. Both the augmented data and the original local

data samples are used to update the local model parameters.

In [25], the authors propose to use GAN to generate the

augmented data samples for local devices. The server collects

some local seed data samples from local devices to train a good

generator. This pre-trained generator is downloaded to local

devices for reproducing the data samples, so as to make local

datasets IID. Data argumentation also relies on data sharing,

exposing data privacy.

Compared with the above data-based approaches, our GAN-

Fed is to make features IID rather than make data IID.

Without data sharing, our GANFed is communication-efficient

and privacy-preserving. Meanwhile, there are some other ap-

proaches to addressing the non-IID data issues in FL, such

as local fine-tuning [26], [27], personalization layer [28]–

[30] and so on [18]. These approaches improve the learning

performance by adjusting the algorithm or model structure of

FL, some of which can be combined with our GANFed. Here,

we do not discuss them in depth.

III. GANFED ALGORITHM

A. System Model

Let Di = {xi,k,yi,k}Ki

k=1 denote the local training dataset

at the i-th worker, i = 1, . . . , U , where xi,k is the input data

vector, yi,k is the labeled output vector, k = 1, 2, ...,Ki, and

Ki = |Di| is the number of data samples available at the i-th
worker. Note that the local datasets Di, ∀i are non-IID in this

work. With K =
∑U

i=1 Ki samples in total, these U workers

seek to collectively train a learning model parameterized by

a global model parameterized by w = [w1, . . . , wD] ∈ RD

of dimension D, by minimizing the loss function F (w) :=
E[f(w;xi,k,yi,k)], i.e.,

P1: w∗ = argmin
w

F (w). (1)

The minimization of F (w) is typically carried out through

the stochastic gradient descent (SGD) algorithm. The model

parameter wt at the t iteration is updated as

(Model updating) wt = wt−1 − α

∑U
i=1 gi,t

U
, (2)

where α is the learning rate and gi,t = ∇f(wt−1;xi,k,yi,k)
is the local gradient computed at the i-th local worker using

its randomly selected the k-th data sample.

Considering the local gradients are updated based on the

non-IID datasets, the model weights suffer from divergence,

which then degrades the performance and convergence of the

overall distributed learning. To solve such a problem efficiently

and effectively, we next develop a GAN-based FL (GANFed)

solution for efficient distributed learning without any data

sample exchange.

B. Algorithm

As shown in Fig 1, we introduce a discriminator D im-

planted with the shallow layers of our GANFed model to

form a generator-discriminator pair as the GAN module of the

proposed distributed learning framework. The shallow layers

of our GANFed model is regarded as a feature extractor G
that is also a generator in GAN. The discriminator is defined

by the parameter θ = [θ1, ..., θDD ] with the dimension DD.

The shallow layers are parameterized by w = [w1, . . . , wDG ]
with the dimension DG. Then, the parameters of the target

global model can be written as the concatenation of shallow

and deep layers: w = [w1, . . . , wDG , . . . , wD].
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Fig. 1: GAN-based federated learning from Non-IID datasets.

The basic idea of our GANFed is to make the outputs of the

shallow layers at all local workers tend to present IID features

and then facilitate the training of the deep layers with such

IID features. We aim to achieve that:

• The features (as transformed versions of the input data)

extracted from different input data are expected to retain

the useful information for training, i.e., the classifier can

still classify different features as the same as their input

data, the entire model still achieves the training objective

as if it is given raw input data samples;

• The features extracted from different local workers are

tend to IID, i.e., the discriminator cannot distinguish

which local worker the features come from.

To this end, we introduce two types of labels for each input

sample xi,k, ∀i, k, including the valid label yvalidi and the

fake label yfake, which are used to train the GAN. By the

two types of labels, all the input data samples are categorized

by the index of local worker i. Thus, the dimension of yvalidi

and yfake are both U .

Specifically, the valid label yvalidi carries the ground truth

for data xi,k and is used for updating the discriminator so

that the discriminator can classify which worker the input data

comes from. The elements of yvalidi are all 0 except for the

i-th element which is 1. The fake label yfake is used for

updating the feature extractor to fool the discriminator that

cannot distinguish which worker the features after passing

through the feature extractor comes from, the elements of

which are all 1. The binary cross entropy (BCE) loss func-

tions for training the discriminator and the feature extractor

are given by FD(w,θ) := E[fD(w,θ;xi,k,y
valid
i )] and

FG(w,θ) := E[fG(w,θ;xi,k,y
fake)], which are used for

updating the parameters of the discriminator and the feature

extractor, respectively.

Denote the extracted feature that the generator extracts from

the input data xi,k as G(xi,k) = xf
i,k. From the labels and

the loss functions, we can see that, if we use (xf
i,k,y

valid
i )

to train the discriminator with the BCE loss function FD, the

discriminator would adjust its parameters θ to reduce the BCE

loss so that it can classify the different extracted feature xf
i,k.

On the other hand, if we use (xf
i,k,y

fake) to train the generator

with the BCE loss function FG, the generator would adjust its

parameters w to reduce the BCE loss so that xf
i,k belongs to

all classes in the discriminator’s eyes. This adversarial training

will make the extracted features tend to IID. The loss function

of GAN is given by

min
G�w

max
D�θ

V (G,D) =
∑

i

∑

k

yvalidi log(D(G(xi,k)))

+
∑

i

∑

k

yfake log(1−D(G(xi,k))).

(3)

To retain the useful information in the extracted feature xf
i,k,

the generator should be trained together with the classifier by

using (xi,k,yi,k) with the loss function F .

In order to obtain a global model (including the feature ex-

tractor, classifier, and discriminator) cooperatively, all workers

and the PS train the learning model together in a distributed

manner. The training procedure of the tripartite game has the

following steps:

1) Step 1: The local workers download the global model

(w and θ) from the PS.

2) Step 2: The local workers train the feature extractor and

classifier using the loss function F (w) and the input

data xi,k, ∀i, k with the label yi,k, and then update the

parameters of the feature extractor and classifier w.

3) Step 3: The local workers train the feature extractor

and discriminator using the loss function FD(w,θ) and

the input data xi,k, ∀i, k with the label yvalidi , and

then only update the parameters of the discriminator

θ, but keep the parameters of the feature extractor w
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unchanged.

4) Step 4: The local workers train the feature extractor and

discriminator using the loss function FG(w,θ) and the

input data xi,k, ∀i, k with the label yfake, and then only

update the parameters of the feature extractor w, but

keep the parameters of the discriminator θ unchanged.

5) Step 5: The local workers send their own local updated

parameters w and θ to the PS.

6) Step 6: The PS averages all the received parameters

from the local workers as the current global update

wt = 1
U

∑U
i=1 wi,t, and θt = 1

U

∑U
i=1 θi,t, which are

ready to download for distributed workers for next round

iteration.

The above steps 1 - 6 are repeated until a predefined

convergence condition is satisfied. The proposed GANFed is

implemented as Algorithm 1.

Algorithm 1 GANFed

Initiation:
w0, θ0.

1: for t = 1 : T do
2: At the workers:
3: Download global model from the PS.

4: Update the feature extractor and classifier:
wi,t = wi,t−1 − α∇f(wt−1;xi,k,yi,k).

5: Update discriminator:
θi,t = θi,t−1 − α∇fD(θt−1;xi,k,y

valid
i ).

6: Update feature extractor:
wi,t = wi,t−1 − α∇fG(wt−1;xi,k,y

fake).
7: Communication: Send θi,t and wi,t to the PS.

8: At the PS:
9: Average the parameters received from local workers as

wt =
1
U

∑U
i=1 wi,t, θt =

1
U

∑U
i=1 θi,t.

10: Break if a convergence condition is satisfied.

11: end for

IV. EXPERIMENTS

This section presents the experimental results of the pro-

posed GANFed1, compared with the standard FedAvg in both

IID and non-IID scenarios.

A. System Setting

We evaluate the performance of the proposed GANFed

for the image classification tasks on the MNIST dataset2.

In MNIST dataset, there are 60000 training samples and

10000 test samples.Unless otherwise specified, the system and

parameter settings are as follows.

We set the total number of the local workers be 10. We

first sort all the 60000 training samples based on their labels

(the digits). Then we divide the 60000 training samples into

20 shards, each of which consists 3000 samples. We randomly

1The simulation code of this work can be found at: https://github.com/
fuanxiyin/GANFed.git

2http://yann.lecun.com/exdb/mnist/

0 20 40 60 80
Communication rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
es

t a
cc

ur
ac

y

FedAvg
GANFed

Fig. 2: Test accuracy as the number of communication rounds varies under
the IID scenario.

distribute two shards to the 10 local workers for the distributed

learning problem.

B. Neuron Network Setting

The feature extractor consists of a 28*28-neuron input layer,

a 128-neuron hidden layer, a 256-neuron hidden layer, a

512-neuron hidden layer, a 1024-neuron hidden layer, and a

28*28-neuron Tanh output layer. The leaky rectified linear unit

(LeakyReLU) is the activation function. All the hidden layers

are with batch normalization.

The discriminator consists of a 28*28-neuron input layer, a

512-neuron hidden layer, a 256-neuron hidden layer, and a 10-

neuron Sigmoid output layer. The LeakyReLU is the activation

function.

The classifier consists of a 28*28-neuron input layer, a 64-

neuron hidden layer, and a 10-neuron softmax output layer.

The rectified linear unit (ReLU) is the activation function. The

hidden layers is with a dropout layer.

In all the training procedures, the loss functions are BCE,

the SGD with the momentum=0.5 is adopted and the learning

rates are all set to 0.01. We use FedAvg as a base line to

compare with our proposed GANFed. Note that, considering

the fairness, it is not suitable to compare our scheme to the

existing approaches that handle non-IID data by adjusting the

algorithm or model structure of FL. Actually, those existing

approaches can be combined with our GANFed.

C. Results on IID

For IID scenarios, we randomly divide the 60000 training

samples into 1200 shards, each of which consists 50 samples.

We randomly distribute some shards to the 10 local workers

(the number of shards distributed to each worker is at least

one and maximum 30). The experiment results are shown in

Fig. 2. As we can see, GANFed and FeDAvg have almost the

same performance.
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Fig. 3: Test accuracy as the number of communication rounds varies under
the scenario where the ratio between the losses of FL and GAN is 1 : 1.
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D. Results on Non-IID

The experiment results on non-IID datasets are shown in

Fig. 3. As we can see in Fig. 3, the performance of the non-IID

scenario is worse than that of IID scenario in both GANFed

and FedAvg. However, our GANFed is superior than FedAvg

in the non-IID scenario. The accuracy of GANFed is almost

10% higher than that of FedAvg.

In Fig. 4, we show how the weight divergence varies as the

increase of the number of communication rounds. We calculate

the weight divergence as

Weight Divergence =

∑U
i=1 ‖wt −wi,t‖2

‖wt‖2 . (4)

As we can see, the weight divergences of both the shallow

and the deep layers in GANFed are lower than that of FedAvg.

This result explains the reason why our GANFed can improve

performance.

In Fig. 5, we explore the supervisory role of GAN and

provide the results. Under the same Non-IID setting as Fig. 3,

we first well train GAN and then train the classifier keeping
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Fig. 5: Test accuracy as the number of communication rounds varies under
the scenario where we first well train GAN.
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Fig. 6: Test accuracy as the number of communication rounds varies under
the scenario where the ratio between the losses of FL and GAN is 1 : 10.

GAN unchanging. As we can see, GANFed can not work.

Thus, we conclude that GAN can improve the performance of

FL but it can also destroy the usability of data. We should

adjust the ratio between the losses of FL and GAN when

backward them in the training proceed, so that determine the

appropriate level of supervision for GAN. It is better to train

GAN and the classifier iteratively, rather than well pre-train

GAN and then train the classifier.

In order to strengthen the supervisory role of GAN, we

raise the loss of training GAN, i.e., we backward 10 times

loss when training GAN. As we can see from Fig. 6, the

performance of GANFed is weaker than FedAvg at the begin-

ning, but GANFed is superior than FedAvg afterwards. This

is because, the feature extractor is not trained very well at the

beginning, results in a decline in data availability. Afterwards,

the feature extractor is trained better so that it can make the

features passed through it IID, which leads to an increase in

performance. It is obvious that the performance of the non-

IID scenario is worse than that of IID scenario. And our
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GANFed is superior than FeDAvg in the non-IID scenario.

The accuracy of GANFed is almost 30% higher than that

of FedAvg, which is better than that of Fig. 3 where the

ratio between the losses of FL and GAN is 1 : 1. However,

along with the training proceed, GANFed is worsening. This is

because GAN’s supervisory role is too strong, which destroys

the usability of data. Thus, we can conclude that it is important

to set a proper ratio to balance the backward loss of FL and

GAN, which can be our future work.

V. CONCLUSION AND DISCUSSION

In this paper, we introduce GAN into FL and propose a

novel GANFed algorithm for handling the challenging non-IID

issue in distributed learning scenarios. Empirical studies show

that our GANFed achieves higher accuracy than FedAvg on

distributed non-IID datasets. More importantly, our GANFed

can save communication and avoid privacy leakage, due to

without data sharing. In addition, our study indicates that GAN

makes features tend to IID, while it also reduces the usability

of data as well. That is, GAN is a supervisor for adjusting

the shallow layers of the FL to improve the learning accuracy.

However, if the supervision is too strong, it will reduce the

accuracy of the final global model. In future work, we will

study the balance ratio between GAN and FL in the training

proceed of GANFed.
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