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ABSTRACT

This paper considers the problem of decentralized resource alloca-
tion in the presence of Byzantine attacks. Such attacks occur when
an unknown number of malicious agents send random or carefully
crafted messages to their neighbors, aiming to prevent the honest
agents from reaching the optimal resource allocation strategy. We
characterize these malicious behaviors with the classical Byzantine
attacks model, and propose a class of Byzantine-resilient decentral-
ized resource allocation algorithms augmented with dual-domain de-
fenses. The honest agents receive messages containing the (possibly
malicious) dual variables from their neighbors at each iteration, and
filter these messages with robust aggregation rules. Theoretically,
we prove that the proposed algorithms converge to a neighborhood
of the optimal resource allocation strategy, given that the robust ag-
gregation rules are properly designed. Numerical experiments are
conducted to corroborate the theoretical results.

Index Terms— Resource allocation, decentralized multi-agent
network, Byzantine-resilience

1. INTRODUCTION

Decentralized resource allocation has found wide applications in
various fields, such as smart grids, transportation systems, to name a
few [1,2]. Mathematically speaking, it minimizes the average cost of
decentralized agents subject to local and global resource constraints,
where the optimization variable is the resource allocation strategy.
Decentralized Resource Allocation Algorithms. In a decentralized
resource allocation problem, the primary challenge is to satisfy the
global resource constraint. Weighted gradient methods have been
proposed to guarantee global constraint satisfaction with the aid of
feasible initialization [3–5], but they are sensitive to perturbations.
Among them, [3] considers time-varying networks, while [4] consid-
ers static networks. The work of [5] utilizes historical information to
accelerate the algorithm. On the other hand, primal-dual algorithms
handle the global resource constraint via introducing a dual vari-
able [6–10]. The works of [6, 7] develop decentralized Lagrangian
methods, which precisely solve the primal sub-problems while per-
form a dual gradient step at each iteration. The work of [8] employs
a push-pull gradient method to solve the dual problem and proposes
a dual gradient tracking algorithm for unbalanced networks. For
non-smooth resource allocation problems, decentralized proximal
primal-dual algorithms are developed in [9, 10].

The decentralized resource allocation algorithms discussed
above perform well when all the agents are honest. However, ma-
licious agents, either spontaneously or by manipulation, are always
threats to decentralized networks. These agents do not follow the
given algorithmic protocol, but send random or crafted messages
to their honest neighbors for the sake of misleading the optimiza-
tion process. To characterize such behaviors, we use the classical
Byzantine attack model and term the malicious agents as Byzantine

agents [11, 12]. We briefly review some general Byzantine-resilient
decentralized optimization algorithms and few Byzantine-resilient
resource allocation algorithms, as follows.
Byzantine-resilient Algorithms. In a general Byzantine-resilient
decentralized optimization problem, honest agents cooperate for
reaching a consensual optimal solution that minimizes their average
cost function. This is different to the resource allocation problem,
where the honest agents are expected to obtain different optimal
solutions (namely, allocated resources). A common feature in the
existing algorithms is to let each honest agent aggregate possibly
malicious messages (namely, optimization variables) received from
its neighbors in a robust manner. When the cost functions are deter-
ministic and the optimization variable is a scalar, [13, 14] uses the
trimmed mean (TM) robust aggregation rule, with which each hon-
est agent discards the smallest b and the largest b messages received
from its neighbors, followed by averaging the remaining messages
and its own. Here b is an estimated upper bound of the number
of Byzantine neighbors. For high-dimensional problems, [15, 16]
extends TM to coordinate-wise TM (CTM), such that each honest
agent performs the TM operation at each dimension. When the cost
functions are stochastic, TM and CTM are also applicable. Besides,
the work of [17] proposes iterative outlier scissor (IOS), in which
each honest agent iteratively discards b messages that are the far-
thest from the average of the remaining received messages. The
work of [18] proposes self-centered clipping (SCC), in which each
honest agent uses its own optimization variable as the center, clips
the received messages, and then runs weighted average.

Although the aforementioned Byzantine-resilient algorithms are
proved to be effective, they cannot be directly applied to solve the
resource allocation problem. The local optimization variables of the
honest agents are coupled with a consensus constraint in the former
but with a global resource constraint in the latter. To fill this gap, [19]
proposes a primal-dual Byzantine-resilient resource allocation algo-
rithm, but the proposed algorithm is only applicable in a distributed
network with a central server. A Byzantine-resilient decentralized
resource allocation (BREDA) algorithm is developed in [20]. In ad-
dition to the updates of primal and dual variables, each honest agent
maintains an auxiliary variable that dynamically tracks the average
of all honest agents’ primal variables. Then, CTM is applied to ag-
gregate the neighboring auxiliary variables.
Our Contributions. This paper focuses on the challenging and less-
studied Byzantine-resilient decentralized resource allocation prob-
lem, and makes the following contributions:
C1) We propose a class of primal-dual Byzantine-resilient decen-
tralized resource allocation algorithms with dual-domain defenses.
The key intuition is that the honest agents should reach a consensual
dual variable. Therefore, we let each honest agent fuse the received
neighboring dual variables with a properly designed robust aggrega-
tion rule, including but not limited to CTM, IOS and SCC.
C2) Compared with BREDA that defends against Byzantine attacks
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in the primal domain [20], the proposed algorithms utilize dual-
domain defenses, and have the following advantages: (i) maintaining
less variables and simpler updates; (ii) allowing more general robust
aggregation rules than CTM; (iii) being able to reach dual consensus.
C3) Theoretically, we prove that if the robust aggregation rules are
properly designed, the proposed algorithms converge to neighbor-
hoods of the optimal primal-dual pairs, and the honest agents are
guaranteed to reach consensus in the dual domain even at pres-
ence of Byzantine attacks. With numerical experiments, we verify
Byzantine-resilience of the proposed algorithms and its advantages
over BREDA.

2. PROBLEM FORMULATION

We consider a decentralized resource allocation problem that in-
volves a network of autonomous agents. The network is modeled
as an undirected, connected graph G̃(J , Ẽ) with the set of vertices
J := {1, · · · , J} and the set of edges Ẽ . If (i, j) ∈ Ẽ , then the two
agents i and j are neighbors and can communicate with each other.
For agent i, define the set of neighbors as Ni = {j | (i, j) ∈ Ẽ}.
Each agent i possesses a local cost function fi (θi), where θi ∈ RD

stands for the amount of local resources and belongs to a compact,
convex set Ci. The average amount of local resources, denoted as
1
J

∑J
i=1 θi, equals to a constant vector s ∈ RD . When all the

agents are honest, the decentralized resource allocation problem is
formulated as

min
Θ̃

f̃(Θ̃) =
1

J

∑
i∈J

fi (θi) ,

s.t.
1

J

∑
i∈J

θi = s, θi ∈ Ci, ∀i ∈ J ,

(1)

where Θ̃ = [θ1, · · · ,θJ ] ∈ RJD concatenates all the local vari-
ables and C̃ is the Cartesian product of Ci for all i ∈ J .

When some of the agents are Byzantine, solving (1) is an impos-
sible task, because they will not collaborate with the honest agents
during the optimization process. Denote the set of Byzantine agents
as B and the set of honest agents as H := J \ B. The num-
bers of Byzantine agents and honest agents are denoted as B and
H , respectively. Note that the number and identities of Byzantine
agents are not known in advance, but we can roughly estimate an
upper bound of the number. For notational convenience, we num-
ber the honest agents from 1 to H , and the Byzantine agents from
H + 1 to H +B. Consider a subgraph G(H, E) of G̃(J , Ẽ), where
E = {(i, j) ∈ Ẽ ; i, j ∈ H} is the set of edges between the honest
agents. We assume G(H, E) to be connected too so that the honest
agents can cooperate. The goal of the honest agents is to solve

min
Θ

f (Θ) :=
1

H

∑
i∈H

fi (θi) ,

s.t.
1

H

∑
i∈H

θi = s, θi ∈ Ci, ∀i ∈ H,

(2)

where Θ = [θ1, · · · ,θH ] ∈ RHD concatenates all the local vari-
ables of the honest agents and C is the Cartesian product of Ci for
all i ∈ H.

However, solving (2) is still challenging since the honest agents
cannot distinguish their Byzantine neighbors, while the latter can
send arbitrarily malicious messages during the optimization process.
Therefore, we focus on developing Byzantine-resilient decentralized
resource allocation algorithms to approximately solve (2).

3. ATTACK-FREE DECENTRALIZED RESOURCE
ALLOCATION

Algorithm Review. We begin with reviewing an attack-free decen-
tralized resource allocation algorithm, which operates in the dual
domain, to solve (1). The dual problem of (1) is given by

min
λ∈RD

∑
i∈J

g̃i(λ), (3)

where λ is the dual variable, g̃i(λ) := 1
J
F ∗
i (−λ) + 1

J
λ⊤s and

F ∗
i (−λ) := max

θi∈Ci

{−λ⊤θi − fi(θi)}.

Because (3) is separable across the agents i ∈ J , it can be
solved through a decentralized gradient method [6, 21, 22]. Intro-
ducing local dual variable λi to each agent i, we have the following
updates

θk
i = arg min

θi∈Ci

{θ⊤
i λk

i + fi(θi)}, (4)

λ
k+ 1

2
i = λk

i − γk∇g̃i(λ
k
i ) = λk

i − γk(
1

J
s− 1

J
θk
i ), (5)

λk+1
i =

∑
j∈Ni∪{i}

ẽijλ
k+ 1

2
j . (6)

Therein, γk > 0 is the step size and ẽij ≥ 0 is the weight assigned
by agent i to agent j. Note that ẽij > 0 if and only if (i, j) ∈ Ẽ
or i = j. We collect these weights in Ẽ = [ẽij ] ∈ RJ×J , which is
assumed to be doubly stochastic.
Failure of (4)–(6) under Byzantine Attacks. When all the agents
are honest, the decentralized resource allocation algorithm outlined
in (4)–(6) can effectively solve (1) [6,21,22]. However, it fails in the
presence of Byzantine attacks. At iteration k + 1, each honest agent

i ∈ H updates λk+1
i based on λ

k+ 1
2

i from its own and λ
k+ 1

2
j from

its neighbors j ∈ Ni. An honest neighbor j ∈ Ni ∩ H faithfully

sends the message λ
k+ 1

2
j , but a Byzantine neighbor j ∈ Ni∩B may

send an arbitrarily malicious message ∗ instead of the true message

λ
k+ 1

2
j . We define the message sent by agent j as

λ̌
k+ 1

2
j =

{
λ

k+ 1
2

j , j ∈ H,
∗, j ∈ B.

(7)

By sending the malicious messages, the Byzantine agents can easily
prevent the honest agents from obtaining the optimal dual variable
and corresponding resource allocation strategy.

4. BYZANTINE-RESILIENT DECENTRALIZED
RESOURCE ALLOCATION

Algorithm Development. As we have shown in Section 3, the de-
centralized resource allocation algorithm outlined in (4)–(6) fails in
the presence of Byzantine attacks. This is due to the vulnerabil-
ity of the weighted average aggregation in (6) to Byzantine attacks.
To address this issue, we replace the weighted average aggrega-
tion with some proper robust aggregation rules, and propose a class
of Byzantine-resilient decentralized resource allocation algorithms.
The updates of each honest agent i ∈ H are given by

θk
i = arg min

θi∈Ci

{θ⊤
i λk

i + fi(θi)}, (8)

λ
k+ 1

2
i = λk

i − γk(
1

J
s− 1

J
θk
i ), (9)

λk+1
i = AGGi(λ

k+ 1
2

i , {λ̌k+ 1
2

j }j∈Ni), (10)
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where AGGi(·) denotes a robust aggregation rule of honest agent i.
In this paper, we mainly consider the applications of three well-

appreciated robust aggregation rules: CTM, IOS and SCC. Further
we will show that a wide class of robust aggregation rules enable
the updates of (8)–(10) to converge to a neighborhood of the opti-
mal resource allocation strategy of (2). The remaining design is to
delineate the conditions for “proper” robust aggregation rules.
Robust Aggregation Rules. Intuitively, for an honest agent i, we

expect that the output of AGGi(λ
k+ 1

2
i , {λ̌k+ 1

2
j }j∈Ni) is close to a

proper weighted average of the messages from its honest neighbors
and its own local dual variable. We denote such a weighted average

as λ̄
k+ 1

2
i :=

∑
j∈(Ni∩H)∪i eijλ

k+ 1
2

j , with the weights {eij}j∈H

satisfying
∑

j∈(Ni∩H)∪i eij = 1. We use the maximal value of

{∥λk+ 1
2

j − λ̄
k+ 1

2
i ∥}j∈(Ni∩H)∪i as the metric to quantify the prox-

imity. Therefore, we follow [17, 23] to characterize a set of robust
aggregation rules with a weight matrix and a contraction constant.

Definition 1. Consider a set of robust aggregation rules denoted as
{AGGi}i∈H. If there exist a constant ρ ≥ 0 and a matrix E ∈
RH×H whose elements satisfy eij ∈ (0, 1] when j ∈ (Ni ∩H) ∪ i,
eij = 0 when j /∈ (Ni ∩H)∪ i, and

∑
j∈(Ni∩H)∪i eij = 1 for any

i ∈ H, such that it holds

∥AGGi(λi, {λ̌j}j∈Ni)− λ̄i∥ ≤ ρ max
j∈(Ni∩H)∪i

∥λj − λ̄i∥ (11)

for any i ∈ H, then ρ is the contraction constant and E is the
weight matrix associated with the set of robust aggregation rules
{AGGi}i∈H. Here λ̄i :=

∑
j∈(Ni∩H)∪i eijλj .

It has been shown in [23] that CTM, IOS, SCC, as well as a
number of other robust aggregation rules, all satisfy Definition 1.
Advantages over BREDA. Our proposed algorithms have several
advantages over BREDA [20]: simplicity, generality and dual con-
sensus. First, at each iteration of BREDA, each honest agent needs
to update a primal variable, a dual variable, and an auxiliary variable
that tracks the average of the honest primal variables. By contrast,
at each iteration of our proposed algorithms, each honest agent only
updates two local variables, one is primal and the other is dual. Sec-
ond, the robust aggregation rule of BREDA is confined to CTM;
using other robust aggregation rules lacks convergence guarantee.
However, CTM does not fit for the scenario that an honest agent has
a large number of Byzantine neighbors, because the number of dis-
carded messages has to be at least twice. This is unfavorable espe-
cially when the underlying network is sparse. Instead, our proposed
algorithms allow a wide class of robust aggregation rules that satisfy
Definition 1. Third, BREDA guarantees the local auxiliary variables
to be nearly consensual, but the local dual variables are not neces-
sarily so. We will validate this fact in the numerical experiments.
Since the optimal dual variable stands for the shadow price of the
resources [24], reaching consensus of the local dual variables is im-
portant in various applications. Our proposed algorithms have such
a guarantee, as shown in the next section.

5. CONVERGENCE ANALYSIS

Here we establish convergence of the Byzantine-free and Byzantine-
resilient decentralized resource allocation algorithms, outlined in
(4)–(6) and (8)–(10), respectively. Due to the page limit, we omit
the detailed proofs. We begin with several assumptions.

Assumption 1. For any i ∈ J , the local cost function fi(·) is uf -
strongly convex and Lf -smooth, and the local constraint set Ci is
compact and convex.

Assumption 2. There exists Θ̃ and Θ in the relative interiors
of C̃ and C, such that the constraints 1

J

∑
i∈J θi = s and

1
H

∑
i∈H θi = s satisfy, respectively.

Assumption 3. The graphs G̃(J , Ẽ) and G(J , E) are both undi-
rected and connected. The weight matrices Ẽ and E are doubly
stochastic and row stochastic, respectively, and satisfy κ̃ := ∥Ẽ −
1
J
1̃1̃⊤∥2 < 1 and κ := ∥E − 1

H
11⊤E∥2 < 1, where 1̃ :=

[1, · · · , 1] ∈ RJ and 1 := [1, · · · , 1] ∈ RH .

Attack-free Decentralized Resource Allocation. Denote (Θ̃∗, λ̃∗)

as the optimal primal-dual pair of (1), in which Θ̃∗ ∈ RJD and
λ̃∗ ∈ RD . The following theorem shows the convergence of the
attack-free decentralized allocation algorithm (4)–(6).

Theorem 1. Consider Θ̃k+1 and {λk+1
i }i∈J generated by the

attack-free decentralized resource allocation algorithm (4)–(6) and
suppose that no Byzantine agents are present. If Assumptions 1–3
hold, then with a proper decreasing step size γk = O( 1

k
), we have

a) limk→+∞ ∥Θ̃k+1 − Θ̃∗∥ = 0,
b) limk→+∞

∑
i∈J ∥λk+1

i − λ̃∗∥ = 0.

Theorem 1 shows that the local primal and dual variables gener-
ated by (4)–(6) converge to their optima. This matches the classical
conclusion for the decentralized gradient method [6, 21, 22]. They
assume convex and possibly non-smooth cost functions, while we
assume strongly convex and smooth cost functions, with which we
have performance guarantee for the Byzantine-resilient algorithms.
Byzantine-resilient Decentralized Resource Allocation. Simi-
larly, denote (Θ∗,λ∗) as the optimal primal-dual pair of (2), in
which Θ∗ ∈ RHD and λ∗ ∈ RD . The following theorem shows
the convergence of the Byzantine-resilient decentralized allocation
algorithm (8)–(10).

Theorem 2. Consider Θk+1 and {λk+1
i }i∈H generated by the

Byzantine-resilient decentralized resource allocation algorithm (8)–
(10). Suppose that Byzantine agents are present but the used robust
aggregation rule satisfies (11) in Definition 1. If Assumptions 1–3
hold and the contraction constant ρ satisfies ρ < 1−κ

8
√
H
, then with a

proper decreasing step size γk = O( 1
k
), we have

a) lim supk→+∞ ∥Θk+1 −Θ∗∥ ≤ ∆
uf

,

b) lim supk→+∞
∑

i∈H ∥λk+1
i − λ∗∥ ≤ ∆,

c) limk→+∞
∑

i∈H ∥λk
i − λ̄k∥ = 0,

where λ̄k := 1
H

∑
i∈H λk

i and ∆ ∈ R is in the order of O(ρ2+χ2),
with χ2 := 1

H
∥E⊤1−1∥2 quantifying the non-doubly stochasticity

of E.

Theorem 2 demonstrates that if the robust aggregation rule is
properly designed such that the associated contraction constant ρ is
sufficiently small, then the local primal and dual variables generated
by (8)–(10) converge to neighborhoods of their optima. Sizes of the
neighborhoods are determined by the associated contraction constant
ρ and weight matrix E (more precisely, χ2). Notably, the local dual
variables are guaranteed to reach consensus under Byzantine attacks.

Compared to the proof of Theorem 1, that of Theorem 2 is more
challenging. First, under the Byzantine attacks and with the ro-
bust aggregation rule, dual-domain consensus is no longer merited.
Therefore, we discover that ρ must be sufficiently small for reaching
consensus. Second, due to the imperfectness during the aggregation,
each iteration incurs an error determined by ρ and χ2. We have to
handle such an error during the analysis. Note that when ρ = 0 and
E is doubly stochastic, Theorem 2 reduces to Theorem 1.
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Table 1. BOUNDS OF ρ2 AND χ2

ρ2 χ2 ρ2 + χ2

CTM 0.44 0.0031 0.44

IOS 0.11 0 0.11

SCC 2.75 0 2.75

Table 2. DUAL CONSENSUS ERRORS
∑

i∈H ∥λk
i − λ̄k∥2

large-value small-value large-value Gaussian small-value Gaussian
BREDA 105.70 121.09 / /

proposed+CTM 1.20e-02 1.07e-02 1.20e-02 1.07e-02
proposed+IOS 1.09e-02 1.09e-02 1.09e-02 1.09e-02
proposed+SCC 3.36e-02 3.16e-02 3.36e-02 3.16e-02

Our analysis is related to but significantly different from that
in [17]. The work of [17] considers a general Byzantine-resilient
decentralized stochastic non-convex optimization problem, and ana-
lyzes robust aggregation rules that satisfy Definition 1 in the primal
domain. We consider a strongly convex resource allocation problem,
and analyze in the dual domain. The different assumptions lead to
different convergence metrics, and the corresponding technical tools
are different, too.

6. NUMERICAL EXPERIMENTS

We consider a synthetic and scalar case with D = 1. Due to the
page limit, more results are left to the extended version of this paper
[25]. The code is available online.1 Consider a randomly generated
network consisting of J = 100 agents, where each agent has 15
neighbors. The weight ẽij is set to 1

16
if and only if (i, j) ∈ Ẽ or

i = j. The total amount of resources is 5000 such that s = 50.
The local constraint of each agent i is θi ∈ Ci = [0, 100]. Each
agent i has a local cost function fi (θi) = ai(θi − bi)

2, in which
ai ∼ U(1, 2) and bi ∼ N (2, 0.62) with U(·, ·) standing for uniform
distribution and N (·, ·) for Gaussian distribution. Such quadratic
cost functions is also used in [4, 7, 8].

We randomly select B = 6 Byzantine agents, but allow each
agent to have at most 4 Byzantine neighbors. For the proposed algo-
rithms, we test four types of Byzantine attacks: large-value, small-
value, large-value Gaussian, and small-value Gaussian. With large-
value attacks, a Byzantine agent sets its message as −0.01. With
small-value attacks, a Byzantine agent sets its message as −600.
With large-value Gaussian attacks, a Byzantine agent sets its mes-
sage from a Gaussian distribution with mean −30 and variance 52.
With small-value Gaussian attacks, a Byzantine agent sets its mes-
sage from a Gaussian distribution with mean −300 and variance 402.

We use the attack-free decentralized resource allocation algo-
rithm (4)–(6) and BREDA as baselines. Note that BREDA defends
against Byzantine attacks in the primal domain, whereas our pro-
posed algorithms defend in the dual domain. To enable fair com-
parisons, for the dual-domain large-value attacks, we generate the
corresponding primal-domain attacks such that their effects on the
primal variables are almost the same, for our proposed algorithms
and BREDA, respectively. Similarly, we also generate the corre-
sponding primal-domain small-value attacks. Thus, with large-value
and small-value attacks in BREDA, a Byzantine agent sets its mes-
sage as 100 and 0, respectively. Note that it is difficult to generate the
corresponding primal-domain large-value and small-value Gaussian
attacks, and we do not compare with BREDA under these attacks.

Figs. 1 illustrates that the attack-free decentralized resource al-
location algorithm (4)–(6) fails under all Byzantine attacks. By con-
trast, the proposed algorithms and BREDA demonstrate satisfactory
Byzantine-resilience. Among the robust aggregation rules used in
our proposed algorithms, IOS performs the best and CTM is better
than SCC in terms of primal optimality, dual optimality, cost opti-
mality, and constraint violation. To see the reason, recall that The-

1https://github.com/RunhuaWang

orem 2 shows the primal optimality and dual optimality are both in
the order of O(ρ2 + χ2). We calculate the corresponding bounds of
ρ2+χ2 in Table 1 according to [23]. From the smallest to the largest
are IOS, CTM and SCC, which validates our theoretical findings.

Fig. 1. Primal optimality ∥Θk−Θ∗∥, dual optimality
∑

i∈H ∥λk
i −

λ∗∥, cost optimality ∥f(Θk) − f(Θ∗)∥ and constraint violation
∥ 1
H

∑
i∈H θk

i − s∥ of the compared algorithms.

From Figs. 1, we find that BREDA is worse than the proposed
algorithms with proper robust aggregation rules. To further high-
light the advantages of our proposed algorithms, we list the dual
consensus errors in Table 2. No matter the types of Byzantine at-
tacks and robust aggregation rules, the proposed algorithms are all
able to achieve nearly perfect dual consensus. By contrast, BREDA
cannot guarantee dual consensus. This phenomenon reveals the ben-
efits of the dual-domain defenses.
Conclusions. This paper investigates decentralized resource allo-
cation under Byzantine attacks. We propose a class of Byzantine-
resilient algorithms equipped with robust aggregation rules, featured
in dual-domain defenses. Given that the robust aggregation rules are
properly designed, we prove that the generated primal and dual vari-
ables of the honest agents converge to neighborhoods of their optima,
while the dual variables are able to reach consensus. The numerical
experiments show the resilience of the proposed algorithms to vari-
ous Byzantine attacks.
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