

1 **Making In-the-Moment Learning Visible: A framework to identify and compare**
2 **various ways of learning through continuity and discourse change**

3 DOI link to publication: <https://doi.org/10.1002/sce.21874>

4 Jessica M. Karch¹, Nicolette M. Maggiore¹, Jennifer R. Pierre-Louis¹, Destiny Strange¹, Vesal
5 Dini², Ira Caspari-Gnann^{1,3*}

6 ¹Department of Chemistry, Tufts University

7 ²Department of Physics, Tufts University

8 ³Department of Education, Tufts University

9
10 **Correspondence**

11 Ira Caspari-Gnann, Department of Chemistry & Department of Education, Tufts University,
12 Medford, MA 02155
13 Email: ira.caspari@tufts.edu

14

15 **Abstract**

16 Small group interactions and interactions with near-peer instructors such as learning assistants
17 serve as fertile opportunities for student learning in undergraduate active learning classrooms.
18 To understand what students take away from these interactions, we need to understand how
19 and what they learn during the moment of their interaction. This study builds on practical
20 epistemology analysis to develop a framework to study this in-the-moment learning during
21 interactions by operationalizing it through the lens of discourse change and continuity toward
22 three ends. Using video recordings of students and learning assistants interacting in a variety
23 of contexts including remote, in-person, and hybrid classrooms in introductory chemistry and
24 physics at two universities, we developed an analytical framework that can characterize
25 learning in the moment of interaction, is sensitive to different kinds of learning, and can be
26 used to compare interactions. The framework and its theoretical underpinnings are described

27 in detail. In-depth examples demonstrate how the framework can be applied to classroom data
28 to identify and differentiate different ways in which in-the-moment learning occurs.

29 Keywords: learning, sociocultural theory, framework development, undergraduate science,
30 learning assistants, chemistry, physics

31

32 1. Introduction

33 Enacting active learning pedagogies in STEM classrooms can create spaces for students to interact
34 with each other, collaboratively grapple with concepts, and further their scientific understandings
35 and practices. However, identifying and characterizing what “counts” as learning in these
36 interactions is often challenging for both instructors and researchers. The social spaces in which
37 these learning moments occur are complicated since they are mediated by complex interpersonal
38 dynamics during which students navigate and negotiate competing social and cognitive needs and
39 a heterogeneity of knowledge resources and starting points (Barron, 2003; Brookes et al., 2021;
40 Keen & Sevian, 2022; Lo & Ruef, 2020; Ryu & Sikorski, 2019; Sohr et al., 2018). This complexity
41 may impede understanding whether and what students are learning. This begs the question: how
42 do we make learning in interaction visible? To answer this question, we develop an analytical
43 framework that characterizes learning in complex interactions in a way that does not reduce the
44 importance of these complexities and is robust enough that it can be used to meaningfully compare
45 across interactions.

46 To situate our framework, we will primarily draw on literature related to the context of our study:
47 undergraduate learning and discipline-based education research, particularly that which
48 investigates learning assistants, supporting it with research from K-12 science education. We
49 sought to better understand what this part of the research community knows about learning during
50 interaction, in particular: when do we assess student learning, what do we pay attention to in these

51 moments, and how do we identify the mechanism of learning? We will demonstrate how different
52 research traditions have contributed to answering these questions and what limitations remain to
53 situate our framework within this broader landscape.

54 *1.1 When do researchers assess whether students learned during an interaction?*

55 Science education research and practice have established different methods to find evidence of
56 learning from classroom interactions. Learning outcomes are often evaluated after an interaction
57 via assessments or post-tests. Different strategies can be used to relate these post-tests with the
58 interaction. In one strategy, learning from interaction is generally assessed at the whole-class level,
59 by evaluating how including certain kinds of interactions in the classroom impacts student learning
60 outcomes. This approach is commonly taken in studies with pseudo-experimental designs that
61 compare an active learning intervention with a traditionally taught “control” (e.g., Herrera et al.,
62 2018; Van Dusen & Nissen, 2020), or in large survey reviews that evaluate learning outcomes
63 across active learning models (e.g., Bennett et al., 2010; Hartikainen et al., 2019; Theobald et al.,
64 2020). These approaches are useful for a birds-eye view of student learning, but neglect what
65 happens during interactions.

66 In another strategy, researchers may connect what happens during an interaction to the learning
67 outcomes. Connections to discourse in small groups can be made by characterizing the quality or
68 frequency of a single student’s classroom talk, and seeing whether that corresponds to their
69 learning outcomes (Almahrouqi & Scott, 2012; Bianchini, 1997; Ryu & Sikorski, 2019; Sedova et
70 al., 2019; Zhang, 2008). Other approaches may involve gathering additional sources of data to
71 capture students’ classroom experiences—for example, Kornreich-Leshem and colleagues (2022)
72 used surveys to collect information about students’ individual and social experiences in small
73 group discussions with learning assistants, to assess what kinds of experiences predicted

74 metacognitive learning and identity development. However, the relationship between interaction
75 and post hoc learning outcomes can be complex, because interactions involve competing social
76 needs (Barron, 2003; Keen & Sevian, 2022; Sohr et al., 2018), and the complexity or quality of
77 student reasoning during a group discussion may not be reflected by immediate post-assessments
78 like clicker questions (Knight et al., 2015). Thus, to understand student learning during
79 discussions, we need an approach that can capture and characterize student learning in-the-moment
80 of interaction.

81 *1.2 What do researchers consider learning in small-group interactions?*

82 The complexity we describe above introduces a second challenge: students may have a variety of
83 cognitive and affective learning outcomes during small-group interactions, and determining which
84 we focus on depends in part on our perspective and values as researchers. For example, approaches
85 that center conceptual disciplinary understanding might focus on how students and instructors co-
86 construct knowledge and meaning in interaction (e.g., Grimes et al., 2019; Scott et al., 2006; Siry
87 et al., 2012), and how students sense make when faced with new ideas (e.g., Kapon, 2017; Odden
88 & Russ, 2019). Learning might be seen in how students productively engage with disciplinary
89 substance (Engle & Conant, 2002). What students learn might include deeper understanding of
90 concepts or fluency in disciplinary ways of thinking.

91 Other approaches center developing scientific practices as one important object of learning science
92 (Berland et al., 2016). These approaches might focus on how students act like scientists or do
93 science by carrying out investigations, modeling, posing arguments, or by acting as an epistemic
94 agent (Chinn & Malhotra, 2002; Ford & Forman, 2006; Hutchison & Hammer, 2010; National
95 Research Council, 2011; Zhang et al., 2022). Learning in this perspective might be seen as how
96 students become enculturated into and fluent in the practice and discourses of science (Airey &

97 Linder, 2009; Lave & Wenger, 1991; Lemke, 1990) or how they develop disciplinary identity
98 (Kornreich-Leshem et al., 2022).

99 These perspectives are often entangled; for example, Grimes et al. (2019) analyzed how students
100 engaged in argumentation arrive at conceptual convergence during interactions. One reason for
101 this entanglement may be that certain discursive practices, such as sense-making, are seen both as
102 a form of discourse, which supports students in figuring out the world in productive ways, and a
103 way of reaching conceptual coherence (e.g., Odden & Russ, 2019). Another is that the structure of
104 scientific knowledge does not just include facts and concepts, but also methods and values which
105 are enacted through practices (Ford, 2008). Scientific practices, then, are both an object of learning,
106 and something that supports learning.

107 These lenses give researchers useful frameworks to identify valuable discourse and ways of acting
108 in the classroom. However, the limitation of these approaches is that they, by necessity, often
109 narrow the scope of what is attended to in science learning to specific scientific concepts or
110 practices. While this may be productive for understanding students' conceptual development and
111 development as scientists, it may limit our ability to see how and what students learn in unexpected
112 ways (Park et al., 2016; Graham et al., 2013; Lee et al., 2021).

113 *1.3 How do researchers identify the mechanism of learning?*

114 To understand how learning occurs, we can attend to the discourse during an interaction. A great
115 body of literature has attended closely to what makes interactions productive or not productive for
116 learning (Barron, 2003; Engle & Conant, 2002; Keen & Sevian, 2022; Sohr et al., 2018). We will
117 focus on two approaches: identifying specific discursive activities and characterizing learning
118 through changes in discourse.

119 One common approach has been to attend to students' engagement in certain discursive activities
120 that are assumed to lead to meaningful science learning, as opposed to other types of activities
121 which may be less productive. For example, researchers compare sense-making, where students
122 grapple with concepts and negotiate their understandings (e.g., Kapon, 2017; Lo & Ruef, 2020;
123 Odden & Russ, 2019), with playing a "classroom game," in which students recite rote content to
124 get the "correct" answer (Hutchison & Hammer, 2010; Lemke, 1990; Oh et al., 2022; Russ et al.,
125 2012). This framing implies that sense-making is more productive for meaningful scientific
126 learning than playing the "classroom game." Similar stances are taken in works that focus on other
127 meaningful kinds of scientific activity, such as argumentation (e.g., Grimes et al., 2019),
128 productive disciplinary engagement (e.g., Engle & Conant, 2002; Koretsky et al., 2021), and
129 problem solving (e.g., Karch & Sevian, 2022; Rodriguez, Bain, & Towns, 2020; Sevian & Couture,
130 2018). It is important not to conflate these constructs with learning as a general phenomenon, as
131 Odden and Russ (2019) cautioned in their work on sense-making, because while these activities
132 are productive for learning science, other mechanisms for learning exist. For example, rote
133 memorization is also a way of learning—just not one necessarily endorsed by instructors in active
134 learning classrooms.

135 An alternative to these approaches is to characterize the learning mechanism directly from student
136 discourse, rather than identifying meaningful activities. This approach characterizes learning as
137 changes in discourse, and typically builds from sociocultural theories that conceptualize learning
138 as occurring in the social plane (Vygotsky & Cole, 1978). For example, in practical epistemology
139 analysis (PEA), learning is conceptualized through how students' discourse changes during an
140 interaction, and what pieces of their prior experience are picked up during that interaction (Hamza
141 & Wickman, 2013; Karlsson et al., 2020; Kelly et al., 2012; Wickman, 2006; Wickman & Östman,

142 2002). Similar to PEA, transactional approaches examine continuity of prior experiences by
143 focusing on the interplay between the individual and the environment and how the person-in-
144 setting is transformed (Jornet et al., 2016; Östman & Öhman, 2022). Activity theoretical
145 approaches, which are often focused on changes in systems, view learning as a cycle of
146 internalization and externalization initiated by experiencing contradictions (Engeström, 2000). For
147 example, Keen and Sevian (2022) focused on how students experienced struggles in the chemistry
148 lab, which they operationalized as contradictions within the activity system (e.g., between
149 students' rule that the TA should check their work, and the TA's role to help students figure things
150 out on their own). In their dissertation, Keen (2021) found evidence of externalized learning
151 outcomes when students repeated certain productive actions that had helped them overcome that
152 struggle. Studies conducted based on this premise are often sensitive to the highly contextualized
153 nature of discourse (Hamza & Wickman, 2013; Karlsson et al., 2020; Keen, 2021). For example,
154 they often take the form of deep case studies elucidating how learning may occur in a single
155 interaction (e.g., Hamza & Wickman, 2013). This sensitivity is both an affordance and a limitation;
156 while it provides a high-resolution picture of how learning occurs, it is often challenging to
157 compare across interactions and across the contexts these interactions occur in.

158 *1.4 Research Question*

159 The dilemmas named in the previous section suggest three important takeaways for our
160 framework: to understand students' in-the-moment learning, it is important to understand what is
161 happening in the moment of the learning, not just to analyze it post hoc. Second, it is important to
162 be aware that there may be a range of learning outcomes in interactions. Students are not just
163 learning content, they may be learning practices, or habits, or [in]equitable ways of working with
164 each other and interacting with the world. Third, there is a need for a framework that can be used

165 to compare multiple interactions, and which grapples with the complexity of a general definition
166 of in-the-moment learning that is sensitive to context. Our research study aims to fill this gap by
167 developing an analytical framework for making different mechanisms for in-the-moment learning
168 visible and facilitating comparisons across different interactions. The study is guided by the
169 following overarching questions: *How can learning in interactions be made visible? And more*
170 *specifically, how can this be done in a way that captures a range of learning outcomes and ways*
171 *of learning as well as comparison across multiple contexts?*

172 *1.5 Limitations of the scope of our work*

173 Suárez and collaborators (2023) named three scales at which learning in interaction occurs:
174 cognitive interactions within an individual (e.g., the activation of resources); interactions within
175 groups between individuals (e.g., social dynamics); and interactions with political and social
176 systems (e.g., cultural context or institutional racism). This work is situated at the border of
177 interactions within an individual and between individuals, to identify how learning progresses in
178 interaction, as evidenced by the use of disciplinary ideas. It is important to acknowledge that our
179 data corpus primarily consists of English-language interactions in formal undergraduate science
180 classrooms that use normative Western scientific discourses, and thus our understanding of
181 learning is primarily developed from these Western-centric discourses. From that lens, our
182 analytical framework enables high-resolution microanalyses of the progression of ideas in
183 discourse. However, the current work does not foreground or examine some sociopolitical factors
184 that may influence interaction dynamics, such as how racism influences whose voices and ideas
185 are attended to over others or how the dominance of Western scientific discourse diminishes other
186 ways of speaking and thinking. This is a limitation that we need to address in future scholarship.

188 2. Theoretical Background

189 This study aims to develop an approach for characterizing *in-the-moment learning* during
190 interactions. We define in-the-moment learning as the collaborative process of negotiating
191 meanings, understanding, and knowledge as they come into contact with discursive and physical
192 mediating artifacts that lead to changes in ways of speaking. To meet the criteria for an analytical
193 framework on learning we named in 1.4, we build on pragmatist and sociocultural theories of
194 learning. These conceptualize learning as the transformation of meaning that can be seen through
195 an analysis of social and discursive practices, and which is mediated by tools and discourse
196 (Dewey, 1938; Engeström, 2000; Kelly et al., 2012; Vygotsky & Cole, 1978; Wertsch, 1998;
197 Wickman & Östman, 2002).

198 A pragmatist lens for in-the-moment learning attends to the moment-to-moment practice of
199 learners achieving “a change of old meaning in light of new experiences” (Wickman & Östman,
200 2002, p.602). Wickman (2004) characterizes in-the-moment learning as having two parts: how it
201 is connected to, or made continuous with, prior experience; and how it is a process of change and
202 transformation, as evidenced by changes in discourse through the introduction of new ideas and
203 ways of speaking. These two pieces, continuity and discourse change, exist in a dialectic tension
204 as learners simultaneously draw on and leverage familiar experiences and ways of thinking and
205 transform them into something new. Over time, learners develop new habits that shape how they
206 interact with the world (Kelly et al., 2012).

207 2.1 *Learning as Continuity and Discourse Change*

208 Continuity bridges between the contingent nature of encounters and the continual nature of
209 learning (Kelly et al., 2012; Wickman, 2004). Wickman (2004) names three facets that characterize

210 continuity: the utterances that are taken for granted as shared (“stand fast”), the “prior experiences
211 that people relate to” (p. 329), and the formation of habits as practices are made continuous across
212 multiple encounters. This illustrates continuity’s contingent nature: it is shaped by the shared
213 expectations and language in the encounter, which is in turn shaped by the sociohistorical context
214 in which the encounter occurs. For example, in the classroom this can play out when learners bring
215 unique cultural or linguistic resources and prior experiences that are not part of the dominant
216 culture, which may lead to them experience discontinuity in their learning (Karlsson et al., 2020).
217 Continuity is also established when learners bridge across different arenas of their life and ways
218 of interacting with the world, for example bringing aesthetics and ideas about beauty into their
219 learning of science (Wickman, 2006).

220 Focusing on continuity can allow an expansive, asset-based view of learning centered on the
221 resources, ideas, feelings, and epistemological norms students bring to bear in a learning encounter
222 rather than on the acquisition of canonically correct ideas and prescribed ways of thinking and
223 speaking. A shift from deficit- to asset-oriented theories of learning allows space for the diverse
224 and heterogeneous resources students bring to learning encounters, such as language and cultural
225 resources (Barton & Tan, 2009; González-Howard & Suárez, 2021; Karlsson et al., 2020; Suárez,
226 2020). Research on emotion and aesthetics has also highlighted the importance of attending to
227 non-cognitive resources to fully understand learning (Appleby et al., 2021; Park et al., 2016;
228 Wickman et al., 2022). These bodies of work speak to the importance of expanding our definition
229 of learning beyond the acquisition of canonical scientific content or practices.

230 In tandem with continuity, discourse change accounts for in-the-moment learning. Discourse
231 change is the change in mediated action and meaning in encounter with the world when one is
232 engaged in purposeful practice (Kelly et al., 2012; Wertsch, 1998; Wickman & Östman, 2002).

233 All learners have habits and ways of speaking that allow them to interact with the world and that
234 provide a framework to cope and make sense of their reality. These habits may transform and adapt
235 in response to new situations (Kelly et al., 2012; Wickman, 2006; Wickman & Östman, 2002).

236 Changes in discursive practices do not necessarily reflect conceptual change. They may occur
237 because a given discourse is particularly useful to reason about certain concepts in a situation or
238 because of the interaction's social dynamics (Hamza & Wickman, 2008; Hutchison & Hammer,
239 2010; Russ et al., 2012; Sohr et al., 2018). At the same time, the continual practice of certain kinds
240 of discourse can lead to fluency in using that discourse, as it becomes an acquired habit for working
241 with the world, and other ways of speaking become less useful (Östman & Öhman, 2022).

242 Depending on one's analytical lens, continuity and discourse change can be looked at in several
243 different time scales and grain sizes. The most granular (our focus) may look at the introduction
244 of new ideas (discourse change) within a single interaction, over the span of minutes, and attend
245 to what ideas are picked up and which are not (continuity). Longer time scales may give insight
246 into how students change their habits through new ways of speaking (discourse change), which
247 may only be visible over time as students work on new but similar tasks, drawing on their prior
248 experiences (continuity).

249 Together, discourse change and continuity allow us as researchers to grapple with the push-and-
250 pull of in-the-moment learning: its connection to prior experience (something known) and its
251 transformation toward something new (something learned). The contingent nature of in-the-
252 moment learning creates opportunities for new habits to be put into practice and tested against
253 familiar and unfamiliar situations that reveal the boundaries of their utility. By making these
254 processes visible in encounters, we can document them and examine how one moment influences

255 or is disconnected from the next. To do so, we build on an analytical framework grounded in these
256 two facets of learning: practical epistemology analysis.

257 *2.2. Practical Epistemology Analysis as a Foundational Analytical Framework*

258 Practical epistemology analysis (PEA) is an analytical framework that has been used extensively
259 in science education (Hamza & Wickman, 2013; Karlsson et al., 2020; Lidar et al., 2006, 2010;
260 Lundqvist et al., 2009; Manneh et al., 2018; Piqueras & Achiam, 2019). It enables a high-resolution
261 analysis of discourse. PEA studies learning by attending to students' practical epistemologies, e.g.,
262 "what *they* count as knowledge and how *they* get knowledge as *acting participants*" in a social
263 practice (Wickman, 2004, p.327). This allows us to analyze students' knowledge-in-use by
264 attending to how their discourse changes and is continuous with prior experience (Wickman &
265 Östman, 2002).

266 PEA operationalizes the progression of learning in an interaction through several constructs
267 (italicized below) (Wickman & Östman, 2002). The first is *encounter*, or an interaction amongst
268 multiple individuals or between an individual and a material or epistemic artifact within a
269 sociohistorical context. The use of the word "encounter" emphasizes the contingent and situated
270 nature of learning, as it occurs when one comes into contact with these artifacts.

271 Within an encounter, certain meanings *stand fast*, i.e., they are immediately intelligible and not
272 open to interpretation in that moment. What stands fast depends on the nature of the interaction.
273 For example, three chemistry students may be discussing the substance, "NaCl." One might refer
274 to the "atoms" in the substance to indicate the composite parts "Na" and "Cl." If this meaning is
275 understood by the others in the interaction, the word "atom" stands fast, because it is part of the
276 shared repertoire of the encounter.

277 The third construct of PEA is *gap*. A gap is an agent's need to make something intelligible during
278 the conversation. A gap does not imply a cognitive gap in knowledge, but rather a socially situated
279 and contextually dependent need for sense making, which can be expressed directly through asking
280 questions, or indirectly through being filled. In the example above, as the students continue
281 forward in the encounter, they may talk about the behavior of the individual parts, Na^+ and Cl^- .
282 This may lead one student to wonder, "Are these atoms or ions?" Here, the concept of "atom"
283 stood fast for most of the encounter, until there was a need to figure out the distinction between
284 atom and ion—i.e., when a gap was noticed by the students and opened for discussion.

285 These gaps are filled with *relations* between ideas or actions whose meanings stand fast. These
286 relations address the need to make something intelligible by building connections between ideas.
287 To fill the gap from the above example, "Are these atoms or ions?" one student may respond:
288 "They're ions, because they have charges, and atoms are uncharged." The relations are the
289 connections between each idea that collectively respond to the need and can be represented as
290 follows using dashes to indicate relations between each idea: "ions—have charges — atoms —
291 uncharged." We will use this formalism to represent relations throughout this paper.

292 Finally, we introduce the concept of *piece*, which refers to the individual meaning units that are
293 used to construct a relation. Pieces stand fast and may consist of one or multiple words that hold a
294 meaning within the encounter. For example, in the relation "ions—have charges — atoms —
295 uncharged," each term separated by the dashes would be considered a piece.

296 These five constructs facilitate the analysis of continuity and discourse change at the granular level
297 of in-the-moment learning within an interaction. By attending to gaps and relations, we can pay
298 attention to how students shape needs that drive a learning encounter and make connections
299 between their past experiences (establishing continuity) and form new relations and shape the

300 discursive space around new ideas (establishing discourse change). Attending to pieces and what
301 stands fast helps make clear which shared prior experiences the students draw upon or call into
302 question. Finally, by looking at these through the lens of an encounter, we can pay attention to the
303 nature of learning in the moment of the interaction and center students' perceptions of their own
304 learning and needs. In doing so, we can characterize learning through their experience rather than
305 in relation to prescribed scientific canon or practices.

306

307 3. Methods

308 *3.1 Study Context: The Learning Assistant Model*

309 This study is part of a larger one that seeks to understand the facilitation practices of learning
310 assistants (e.g., Walsh, Karch, & Caspari-Gnann, 2022; Carlos et al., 2023). The Learning
311 Assistant (LA) model is a near-peer active learning model where more advanced undergraduate
312 students, or LAs, assist in courses to support student engagement and increase the number of
313 facilitators with whom students have contact (Barrasso & Spiliros, 2021; Otero et al., 2006, 2010).
314 It is well documented that the presence of LAs leads to positive cognitive and affective outcomes
315 in the classroom, such as higher course and exam grades (Alzen et al., 2017, 2018; Sellami et al.,
316 2017), conceptual understanding (Herrera et al., 2018; Kiste et al., 2017; Miller et al., 2013; Talbot
317 et al., 2015; White et al., 2016), and sense of belonging (Clements et al., 2022), particularly for
318 marginalized students (Sellami et al., 2017; Van Dusen et al., 2016; Van Dusen & Nissen, 2020).

319 LA-facilitated interactions offer a fruitful context to study learning within a wide range of
320 interaction types. The deep body of evidence about the positive impact LAs have on student
321 learning outcomes suggests productive and meaningful learning happens in these interactions.
322 How exactly these interactions play out varies. Interactions with LAs can range from very

323 authoritative, in which the LA is positioned as an arbiter of content, to very dialogic, in which the
324 LA may behave more like a student or take a backseat role and remain completely silent (Carlos
325 et al., 2023). This may provide a broader range of interactions to characterize undergraduate in-
326 the-moment learning than interactions with students alone or with someone with a more rigidly
327 authoritative social positioning, such as a TA or a professor, and thus may give insight into learning
328 that occurs in various contexts. In the study at hand, we will attend to how LAs and students
329 collectively negotiate and establish discourse change and continuity while solving problems.

330 3.1.1 Specific Classroom Contexts

331 We collected data from 12 LA-facilitated introductory undergraduate physics and chemistry
332 courses over two academic years at two institutions (see Table 1): Institution A, an R2, highly
333 diverse, mid-sized public university and Institution B, an R1, highly privileged, mid-sized private
334 university. These included six chemistry courses at Institution A and two chemistry and four
335 physics courses at Institution B. Of the 12 courses, six were taught remotely, five in-person, and
336 one synchronous hybrid. All courses were at least partially flipped, large-lecture classes served by
337 LAs, whose primary role was to facilitate group learning during active learning sessions. To recruit
338 these 12 study classrooms, we contacted all instructors teaching with LAs in chemistry and physics
339 at the two institutions and invited them to participate in the study. Seven professors agreed, and
340 some participated in multiple semesters. Data were collected with approval from the Institutional
341 Review Boards of both institutions.

342 The courses had some broad commonalities and differences that can help contextualize data
343 collection. All classes in the study were taught by instructors trained in science education research.
344 All chemistry classrooms used the same reformed chemistry curriculum, *Chemical Thinking*
345 (Talanquer & Pollard, 2010), which emphasizes learning how to think like a chemist based on

346 common cross-cutting practices rather than being organized by content (e.g., atoms-first). 3 of the
347 4 physics courses were taught by the same instructor, and both physics instructors taught physics
348 from the stance of responsive teaching (Hammer et al., 2012). All classes had planned problem-
349 solving sessions, during which LAs worked with students to help facilitate their learning. On
350 average, the classes taught at Institution A tended to have a lower LA-to-student ratio and a higher
351 lecture-to-problem solving ratio compared to the classes at Institution B. The purpose of the
352 interactions and how interactions were carried out varied broadly from context to context (Karch,
353 Mashhour, & Caspari-Gnann, 2023). On one end of the spectrum, in one course (Chem A, Fall
354 2021) LAs had very frequent, and very brief interactions with students, which consisted of
355 approaching students with their hands raised and answering their questions before moving on. At
356 the other end of the spectrum, in one course (Physics B, Fall 2021) LAs were assigned to specific
357 sections of the classroom for which they were responsible, and would work with a single group
358 for an entire problem. Sometimes, these LAs were completely silent during interactions; their
359 contribution to the learning was their presence and attention. Encounters in most classes fell within
360 these two extremes and were modulated by features of the class such as the instructors' pedagogy,
361 the course modality, the relationship the LA had with a given group of students, and the specifics
362 of a given problem.

363 3.1.2. Participants

364 Study participants included both LAs and students. 843 students and 37 different LAs participated
365 in the research study. Participant demographics and numbers are shown in Table 1. Anywhere
366 from half to all LAs in each course and as many of the students as possible were recruited to
367 participate. LAs were recruited via their supervising professor and received a \$500 stipend for
368 participating in the study. Students were recruited via an announcement in lecture from a study

369 team member and electronically via their course management system and received either a \$10
 370 stipend or a small amount of extra credit not exceeding 2% of their final grade. All participants
 371 consented via an online Qualtrics form.

372 **Table 1.** This table shows the racial and gender demographics for our participant pool from each university and the
 373 institutional demographics as a whole, in order to contextualize our population and findings. A few caveats on our
 374 comparison: All institutional data are presented as the federal categories for degree-seeking undergraduates enrolled
 375 in Fall 2021. In our survey, we allowed students to select multiple racial categories. In processing our data to make
 376 them comparable to institutional demographics and to add up to 100%, we included those students who selected
 377 multiple categories under “Two or more races.” For example, 1.8% of our participant pool self-selected Native
 378 American, but all selected additional races; thus, in the table below, they are counted towards the category “Two or
 379 more races” and 0% are shown for Native American. We processed the Latino/Latinx/Hispanic category similarly to
 380 institutional data and included all students who marked “Latino/Latinx” as a racial category and/or said yes to a
 381 question about Hispanic origin. Additionally, one racial category in the institutional data for Institution A was “Cape
 382 Verdean;” we are reporting this category here as part of Black to make the numbers comparable between the two
 383 different institutions as well as between the institutional data and the data we collected from our participants. This
 384 categorization may or may not accurately represent those students’ racial identities. For the institutional data, students’
 385 international status was reported with racial demographics, whereas we asked about it separately. For our participant
 386 pool, we report international students’ self-identified race, while including them with “other” for the institutional
 387 comparison. For categories that were directly comparable between the different institutions and our survey data, we
 388 display here the language of the actual answer choices that students could self-identify with. We recognize that this
 389 language choice in some instances is not just (e.g., the use of “Female” and “Male” for gender rather than “Woman”
 390 and “Man” or the use of “Native American/Alaskan Native” rather than “First Nations”). Finally, demographics are
 391 reported for a subset of the entire participant pool (85.7%, n=714) because in one semester of data collection,
 392 demographic surveys were sent at the end of the semester and there was a low response rate.

	Institution A (Public University) (n = 353)		Institution B (Private University) (n = 527)	
	Participant Pool	Institution A	Participant Pool	Institution B
Race/Ethnicity				
Native American American/Alaskan Native	0%	<1%	0%	<1%
Asian	20.1%	15.4%	24.8%	15.5%
Black	16.6%	16.7%	8.6%	5.2%
Latino/Latinx or Hispanic	24.2%	18.9%	7.3%	9.1%
Pacific Islander	0.6%	<1%	0%	<1%
White	26.8%	34.4%	47.0%	47.9%
Two or more races	5.7%	3.8%	11.4%	6.9%

Other / Prefer not to answer	5.4%	10.7% (includes non-resident alien)	0.9%	14% (includes international)
Gender				
Female	75.5%	58%	66.6%	55%
Male	22.0%	42%	30.5%	44%
Nonbinary / Genderqueer / Other	1.0%	<1%	0.7%	1%
Prefer not to answer	1.6%	<1%	2.3%	<1%

393

394 *3.2 Data Generation and Selection*

395 Data were collected in the form of video recordings of student-LA interactions. LAs recorded their
 396 interactions with groups of students from their perspective, via a cell phone camera mounted by a
 397 body harness with a secondary audio recorder for quality purposes during in-person instruction or
 398 via Zoom breakout room recording during remote instruction. Each LA recorded their interactions
 399 in three class sessions near the beginning, middle, and end of the semester. This allowed us to see
 400 not only many problem and content contexts, but also as many student groups as possible. Each
 401 recording day yielded an average of 2-4 videos per LA ranging from 1-20 minutes each, depending
 402 on the number of group work sessions and on how often the LAs switched groups. Because of the
 403 nature of our recordings being from the LA's perspective, all encounters in our data set began
 404 when an LA approached a group (began recording) and ended when they moved onto another
 405 group (ceased recording). After recording dates, interactions were transcribed either by a member
 406 of the research team or a professional transcriptionist, and names or any identifying details were
 407 removed from the transcript and replaced with codenames selected by the participants.
 408 Because our data corpus is so large (302 interactions total), and our analysis was time intensive
 409 (8-10 hours per interaction, including time for consensus discussion) we analyzed a small subset

410 of the data, and made decisions to prioritize having as many different kinds of LA-facilitated
411 interactions as possible. We analyzed data from half of the LAs and prioritized data from at least
412 one LA per course. The decision of which LAs' data to include was deeply informed by the
413 development of our coding and will thus be discussed in section 3.3. For each LA, we only
414 considered data that the LA had seen in retrospective interviews (227 interactions; 1416 minutes),
415 because we needed these specific interactions to be analyzed for other parts of the larger study
416 (Carlos et al., 2023, Karch et al., 2023). Overall, we analyzed two interactions from 18 LAs, for
417 a total of 36 interactions (see Table 2), which represented 220 minutes of interaction data
418 (approximately 16% of the data seen by LAs in retrospective interviews).

419 These two interactions per LA were selected from all interactions an LA was interviewed about
420 based on a criterion we called the “intuitive effectiveness of learning”. In order to mitigate biasing
421 our analysis toward interactions we thought were “better,” three of the authors watched and rated
422 each LA’s interaction videos and wrote detailed memos about their rating. The first author selected
423 one interaction that was rated “more effective” and one that was rated “less effective” for each LA
424 that were representative of that LA’s practice. We considered the following metrics for
425 “effectiveness:” (1) the extent to which all students were involved versus one or two students
426 dominating the conversation; conversations where all students spoke were considered “better” than
427 if a single student explained their answer, or if the students seemed to be mostly talking to the LA
428 and not to each other. (2) The balance of LA-student talk; interactions that were more student-
429 centered were considered intuitively “better”, e.g., when the students were the primary speakers
430 and question posers. Interactions led by the LA, particularly when the LA was guiding the students
431 through a stepwise way to solve the problem, or when it felt like they asked confusing questions
432 were rated as “less effective.” (3) The extent to which students made progress in their thinking.

433 Progress was considered not in terms of progress made toward a canonically correct answer, but
434 progress in considering different questions of disciplinary substance.

435 Each author came into this process with bias about what constituted an “effective” interaction
436 based on our prior experiences as instructors or students, and sometimes we disagreed. For
437 example, the fourth author (an undergraduate student) rated one interaction we analyzed as
438 effective because “[the LA did a] great job listening to the students’ responses and helping them
439 work toward an answer. Asked good questions to clear up their confusions and broke it down for
440 them.” The first author (a postdoctoral researcher) rated this same interaction as less effective
441 because “[it was] very guiding, lots of unproductive feeling confusion until LA gave them answer
442 at the end; disregards what the students had already done to that point.” Ultimately, the purpose of
443 this sorting was not done to claim that the learning in these interactions was more or less effective
444 (our understanding of the interactions often changed with closer analysis), but rather to capture a
445 range of typical interactions within each class, and to mitigate biasing our analysis toward
446 interactions we thought were “better” by selecting the same number of interactions we thought
447 were less effective.

448 **Table 2.** This table shows the number of interactions included in analysis from each context. “In-person” and “remote”
449 refer to the modality of the interaction. From the one hybrid class in our dataset, all interactions selected were in-
450 person interactions.

	Chemistry - A	Chemistry - B	Physics - B
In-Person	6	4	8
Remote	8	4	6

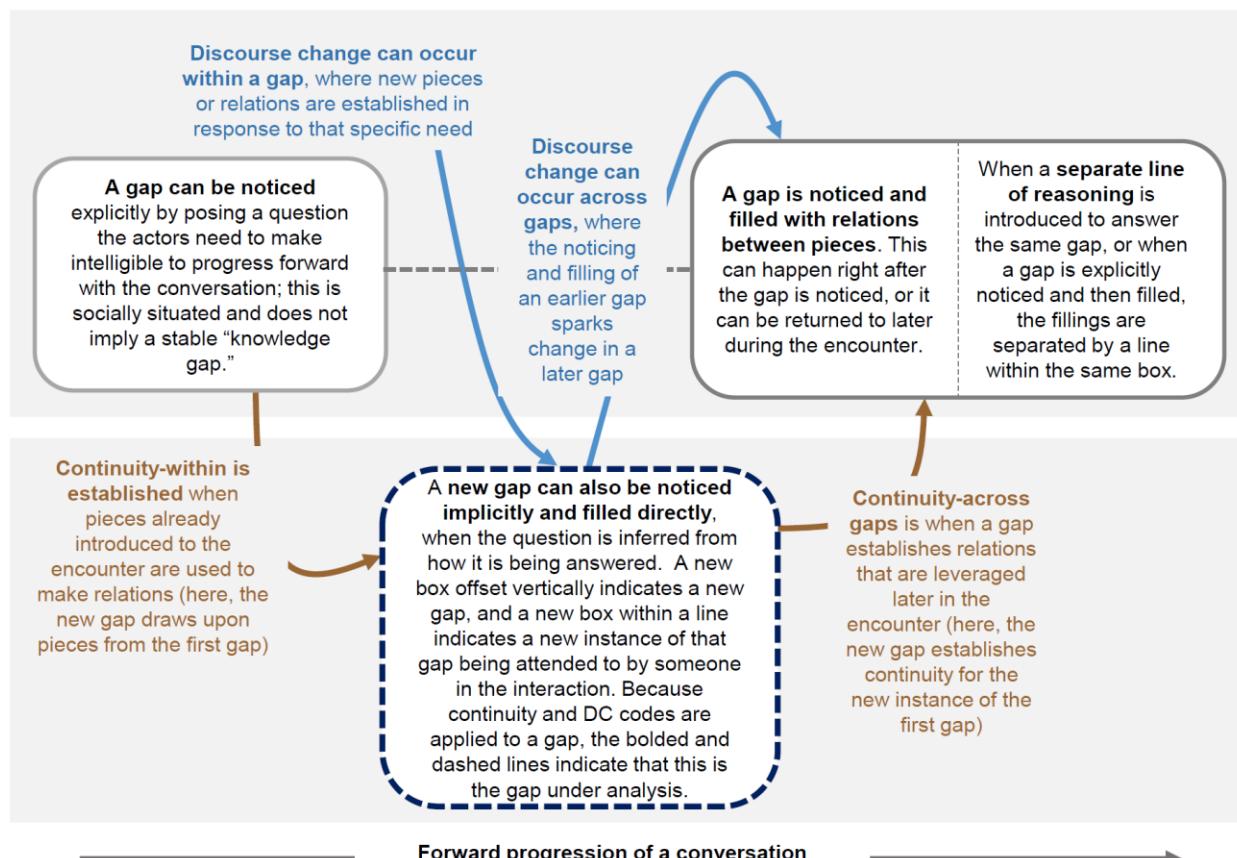
451

452 *3.3 Analyzing for Continuity and Discourse Change*

453 To analyze the data, we used PEA to capture how the conversation progressed by reducing the
454 encounter to what gaps were opened, what relations were established to fill these gaps, and who

455 contributed to the conversation through noticing or filling gaps (Walsh et al., 2022; Wickman &
456 Östman, 2002). We started this process by reading each transcript alongside the video. Then we
457 identified gaps, guided by the question, “What needs to be made intelligible here?” and identified
458 what relations filled the gaps. We coded for gaps, pieces, and relations within a Google sheet (see
459 Supporting Information 1 for a sample). In the spreadsheet, each cell represented one instance of
460 a gap being noticed and filled using a single line of reasoning. New lines of reasoning were put in
461 separate cells to indicate that they may or may not have built on prior relations. Gaps were
462 organized by row, numbered in the order in which they were first noticed in the encounter, and
463 could be returned to multiple times. Columns represented the progression forward in the
464 conversation. In this way, we systematized our coding process such that multiple coders could
465 engage in it, and to visualize the conversation’s progression.

466 After coding the data using this first level gap analysis, we analyzed the Google sheets to examine
467 how continuity and discourse change were established over the course of an entire interaction. To
468 do so, we traced how the pieces were used throughout the encounter to track how already present
469 pieces were picked up (establishing continuity), and how new pieces and ideas were introduced
470 (establishing discourse change). We assigned each gap four qualitative codes that captured how
471 the gap affected the encounter in terms of (a) establishing continuity, and (b) changing discourse,
472 as well as whether that effect occurred within the noticing and filling of that gap itself, or during a
473 gap later on during the interaction (see Supporting Information 2 for a sample analysis). These 4
474 codes were called: discourse change within gap, discourse change across gaps, continuity within
475 gap, and continuity across gaps.

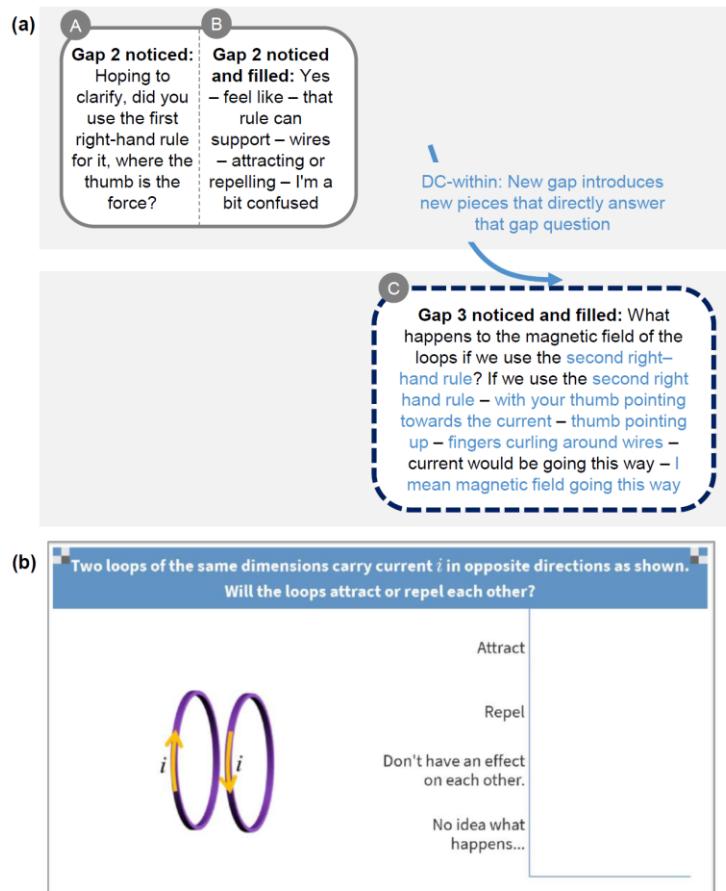

476 To develop these codes, we started with the first-level gap analysis from a small number of LAs
477 and engaged in a collaborative and reflexive process, where the author team met weekly and

478 discussed the developing codes. To refine the codes and ensure they were applicable to different
479 contexts, we coded interactions from more LAs, always ensuring that the next LA was in a different
480 classroom context and facilitated student learning in a different way as characterized by our
481 previous work on dialogic and authoritative facilitation (Carlos et al., 2023). Based on our deep
482 familiarity with the interactions, we further ensured that learning in interactions with the next LA
483 analyzed seemed to progress in a different way than for the previous LA. We stopped adding
484 interactions from more LAs when the codes completely stabilized and we had included at least 1
485 LA from each context (the total of 36 interactions from 18 LAs described in Section 3.2).

486 In the following sections, we illustrate the codes by including visualizations of each alongside the
487 transcript excerpt (see Figure 1). These visualizations resemble our first-level Google sheet
488 analysis. We track the progression of the interaction using graphics placed left to right. Because
489 we apply codes to gaps as the unit of analysis, we specify the gap under analysis with a dashed
490 and bolded box in each figure. Since gaps often linger and are returned to, we place them on
491 different horizontal levels and demarcate them with grey boxes. A gap lingering is indicated by a
492 dashed line that connects multiple boxes. Within the boxes, we present our first level analysis,
493 where we show the gaps (the need to make something intelligible) that were noticed and the pieces
494 and relations (indicated by short phrases or words connected by dashes) that filled the gaps. When
495 gaps are explicitly noticed (e.g., a direct question is asked), we use the language “Gap Noticed;”
496 when gaps are implicitly noticed (e.g., the question is inferred from what the group says without
497 asking a specific question), we use the language “Gap noticed and filled.” When different lines of
498 reasoning are used to fill a gap, we separate them with a dashed line within a single box.

499 We represent the continuity and discourse change codes with arrows: blue arrows represent
500 discourse change codes and are supported with blue text; and brown arrows represent continuity

501 codes and are supported with brown text. We place references to the codes next to transcript lines
 502 in the excerpt tables, so the reader can directly map the analysis to the transcript. For the sake of
 503 clarity, we only demarcate pieces directly relevant to the example at hand in this way. Additionally,
 504 we omit lines for brevity in a way that does not materially change the story of the encounter (see
 505 Supporting Information 2 for an example of a whole interaction represented with these
 506 visualizations). To keep track of the gaps, we use the numbering from our original analysis. It is
 507 important to emphasize that for each of these codes, the unit of analysis is a single gap, which may
 508 be returned to multiple times throughout an interaction. All examples are presented with
 509 pseudonyms.



510
 511 **Figure 1.** Representation of how the first-level gap analysis and the second level DC/continuity analysis will be
 512 depicted, with definitions for each code. The depiction of the gaps was developed from our initial coding method
 513 using excel spreadsheets to keep track of instances of gaps being noticed and filled. The dashed line between two
 514 instances of a single gap indicates that the gap lingers, e.g., is not fully resolved.

515 3.3.1 Discourse change within gap

516 Discourse change within gap (DC-within) was coded when new pieces that had not been
517 previously used up to that point were introduced to notice and/or fill the gap at hand. DC-within
518 could happen for many different reasons. For example, students could start talking about a different
519 part of the problem, which also could induce a shift in the ideas and relations they were discussing.
520 Another example: students could open a gap because the conversation had not fulfilled a need they
521 had to make something intelligible, and thus they brought in new ideas from class. Graphically,
522 DC-within will be represented as a blue arrow pointing toward the gap under analysis.

523 To describe DC-within further, consider Gap 3 (Figure 2a, Table 3) from an interaction in a remote
524 physics class at Institution B, in which two students, Noor and Josephine, were trying to decide
525 which right-hand rule was appropriate to figure out whether two loops with opposite currents
526 would attract or repel each other (see Figure 2b).

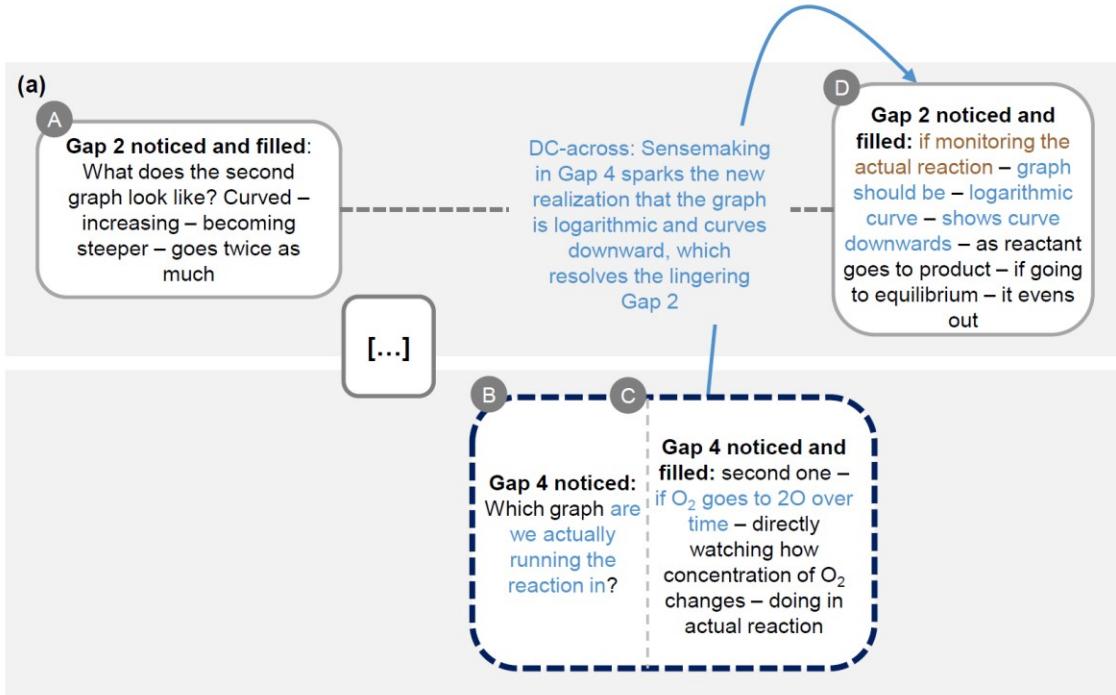
527

528 **Figure 2. (a)** Representation of DC-within coding, shown with the blue arrow pointing toward the gap. **(b)** Problem
529 context for the example interaction illustrating the code.

530

531 **Table 3.** Transcript excerpt for the example used to illustrate DC-within.

Transcript Line	Coding (with reference to Figure 2a)
LA Shin: All right, so I'm just trying to clarify for— Did you use the first right-hand rule for it, where the thumb is the force, Noor?	Gap 2 noticed (Box A)
Noor: Yeah. But I feel like that rule, that rule can support the wires attracting and repelling, so I'm a bit confused about that part.	Gap 2 noticed and filled (Box B)
Josephine: Well, if we were— Well if we were to use the second right-hand rule with your thumb, like your thumb pointing towards the current, and the— For that one? Okay, so if your thumb— Like do you guys want to use the second right-hand rule for it? Cause like for that one, your thumb would be pointing up, and your fingers will be curling around the wires, so the current would be going this way, I mean the magnetic field will be going this way. Can you guys see it?	Gap 3 noticed and filled (Box C)


532

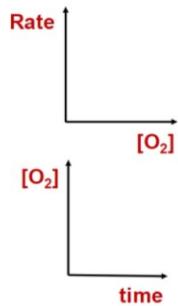
533 Gap 3 (Figure 2a, Box C) was coded with DC-within because Josephine constructed an argument
534 based on the second right-hand rule, which had not been part of the discussion before this point in
535 time, as the conversation had been revolving around the first right-hand rule. A comparison
536 between the pieces used to fill the prior gap, Gap 2 (Figure 2a, Boxes A and B), and Gap 3
537 demonstrates this change in discourse as new pieces such as “with your thumb pointing towards
538 the current” and “fingers curling around the wires” were brought into the discussion space (blue
539 text in Figure 2a, Box C).

540 3.3.2 Discourse change across gaps

541 Discourse change across gaps (DC-across) was coded when the noticing and filling of a gap was
542 the impetus for discourse change during a later point of the interaction, i.e., when introducing new
543 pieces to notice or fill a later gap was directly influenced by the noticing or filling of an earlier
544 gap. For example, this could happen when an earlier gap introduced or problematized a piece that
545 sparked a student to wonder about something different, or it could be because filling the earlier
546 gap established the relations necessary to provide an entry point into a need that was lingering.
547 DC-across will be represented as a blue arrow pointing away from the gap under analysis.

548 To describe DC-across further, consider Gap 4 (Figure 3a, Table 4) from an interaction in a remote
549 chemistry class at Institution B, in which a student group was tasked with drawing two plots to
550 represent (1) how reaction rate changes with the changing concentration of a reactant, and (2) how
551 the concentration of a reactant changes over time (see Figure 3b).

(b)



Let's Think 2

Consider this step in a reaction mechanism: $O_2 \rightarrow 2O$

Chemical Thinking

- ❖ Write the RATE LAW for this reaction step
- ❖ Sketch a graph that shows how the reaction rate changes with increasing concentration of O_2
- ❖ Sketch a graph that shows how the concentration of O_2 changes as a function of time in the reaction

552

553 **Figure 3. (a)** Representation of DC-across coding, shown with the blue arrow pointing away from the gap. **(b)** Problem context for the example interaction illustrating the code.

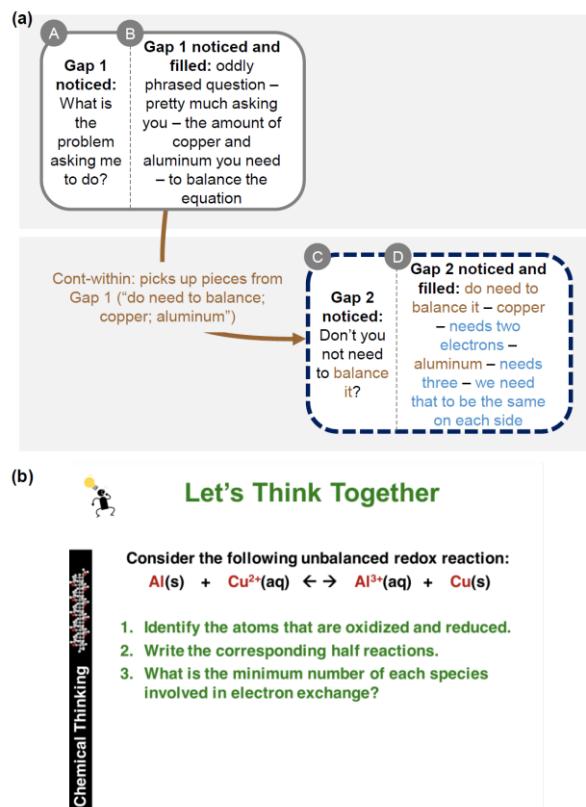
555

556 **Table 4.** Transcript excerpt for the example used to illustrate DC-across.

Transcript Line	Coding (with reference to Figure 3a)
Anby: And then isn't it going to be like a little, it's just going to go like in a curve, sort of, but like increasing, but like increasing more as—Like sort of like twice as much, if that makes sense? [shows increasing with her hands]	Gap 2 noticed and filled (Box A)
[...the students become confused about what Graph 2 represents and grapple with what happens to the concentration over time]	Omitted from figure for clarity
LA John: Well let me ask you this. In the first graph versus the second graph, which one are we actually running the reaction in?	Gap 4 noticed (Box B)
Catherine: The second one, right? [...] Cause that would be, I mean, if you think of O ₂ going to 2O as time goes on, you're directly watching how the concentration of O ₂ changes, which it would be doing in an actual reaction, I guess.	Gap 4 noticed and filled (Box C)
[...the LA asks the rest of the group their thoughts, and everyone agrees]	Omitted from figure for clarity
Catherine: Um, if we're just thinking of it like we're monitoring the actual reaction, then I feel like it would be like a logarithmic type curve [shows curve downwards, but cutting off], because as the reactant's going to the product, if it's going to equilibrium, then it should even out, maybe.	Gap 2 noticed and filled (Box D)

557

558 Gap 4 (Fig. 3a, Boxes B and C) was coded with DC-across because the gap drew the group's
 559 attention to new ideas such as which graph they are "actually running the reaction in" (blue text in
 560 Fig. 3a, Box B and C), which led to discourse change in Gap 2, such as realizing the graph is
 561 logarithmic and curves downward (blue text in Fig. 3a, Box D). In part, this is evidenced by the
 562 construction of an "if-then" logic, where the conclusions they made in Gap 4 were picked up and
 563 built on in Gap 2 (brown text in Fig. 3a, Box D). In this way, DC-across and DC-within can be
 564 pairs, where DC-across coded in one gap (e.g., Gap 4) leads to DC-within in another (e.g., Gap 2).


565

566

567 3.3.3 Continuity within gaps

568 While the DC codes focus on how new pieces are introduced, the continuity codes focus on how
569 old pieces are picked up. Continuity-within was coded when pieces that had already been
570 introduced to the encounter were used to make relations to notice or fill the gap at hand. This could
571 occur, e.g., when students were focused on making sense of a common idea that they continually
572 revisited, or when a student or LA picked up a piece or relation established by someone else.
573 Continuity-within will be represented as a brown arrow pointing toward the gap under analysis.

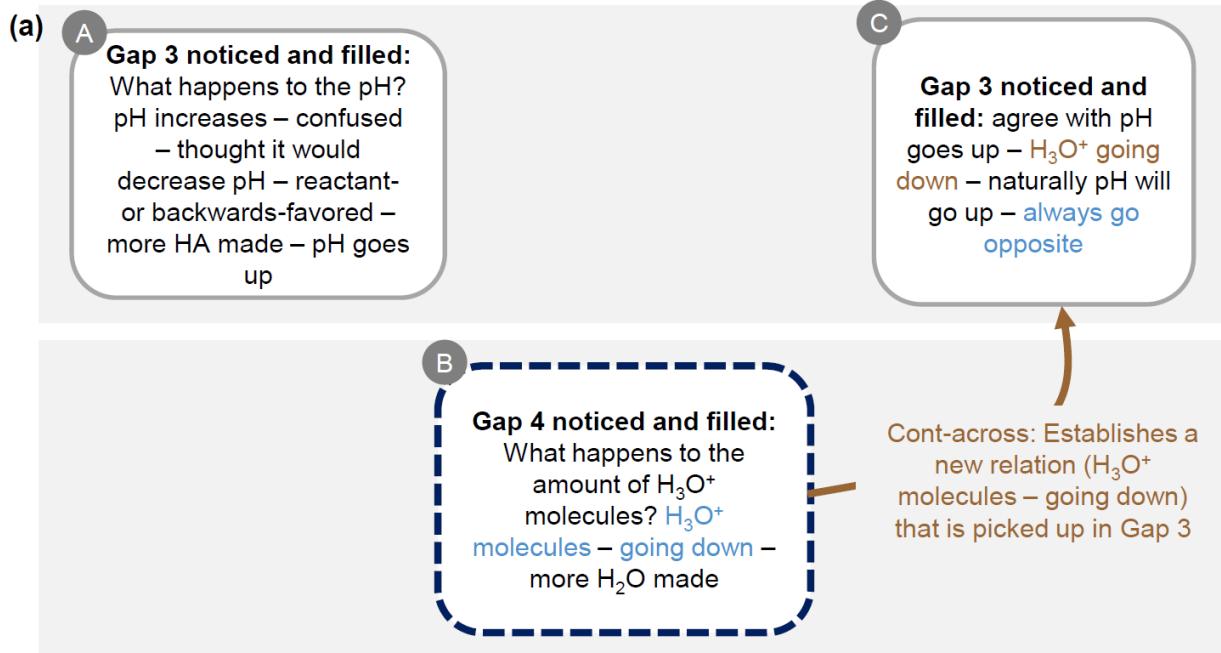
574 To describe continuity-within further, consider Gap 2 (Figure 4a, Table 5) from an interaction in
575 an in-person chemistry class at Institution A, in which a student, Pedro, was working with an LA
576 on a problem about balancing a redox reaction (see Figure 4b).

577

578 **Figure 4.** (a) Representation of continuity-within coding, shown with the brown arrow pointing toward the gap. (b)
579 Problem context for the example interaction illustrating the code.

580 **Table 5.** Transcript excerpt for the example used to illustrate continuity-within.

Transcript Line	Coding (with reference to Figure 4a)
Pedro: So I don't understand what it means by like what's the minimum number of each species. Like I don't understand what's on the board.	Gap 1 noticed (Box A)
LA Mango: For these species. It's an oddly phrased question. Oh, I see. So that's um, that's pretty much asking you the amount of copper and aluminum you would need to balance the equation.	Gap 1 noticed and filled (Box B)
Pedro: Oh, okay. So would it be like, don't you like not need to balance it?	Gap 2 noticed (Box C)
LA Mango: You do need to balance it. So you could see copper needs two electrons. Here you could see this aluminum needs three. We need that to be the same on each side.	Gap 2 noticed and filled (Box D)


581

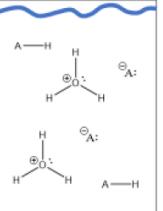
582 Gap 2 (Fig. 4a, Boxes C and D) was coded with continuity-within because the new gap questioned
583 and built on pieces introduced in Gap 1 (Fig. 4a, Boxes A and B). Pedro opened the gap by picking
584 up on pieces like balancing from the LA's explanation (brown text in Fig. 4a, Box C), and the
585 LA's response in filling the gap further picked up on pieces from Gap 1 (brown text in Fig. 4a,
586 Box D). Comparing the pieces used in Gaps 2 and Gaps 1 shows that the noticing and filling of
587 Gap 2 (Fig. 4a, Boxes C and D) builds on these old pieces introduced earlier.

588 3.3.4 Continuity across gaps

589 Continuity-across gaps was coded when the noticing or filling of a gap established an experience
590 that was later drawn upon, e.g., by establishing relations or pieces that were leveraged later during
591 the interaction or first establishing a discursive habit. For example, this could happen when an
592 established relation is later used to support a different argument or is called into question, or when
593 an LA started to frame noticing gaps in a particular way that was repeated by the students.
594 Continuity-across will be represented as a brown arrow pointing away from the gap under analysis.

595 To describe continuity-across further, consider Gap 4 (Figure 5a, Table 6) from an interaction in
 596 an in-person chemistry class at Institution B, in which two students, Salsa and Pastel, were
 597 discussing what happens to a system when water evaporates out of it (see Figure 5b).

(b)



Consider a solution of aspirin (HA) in water at equilibrium:

$$\text{HA(aq)} + \text{H}_2\text{O(l)} \rightleftharpoons \text{A}^-(\text{aq}) + \text{H}_3\text{O}^+(\text{aq})$$

What will happen if water is evaporated?


A) $[\text{H}_3\text{O}^+]$ will go down; pH will go up; net amount (=number) of H_3O^+ molecules will go down
 B) $[\text{H}_3\text{O}^+]$ will go down; pH will go up; net amount (=number) of H_3O^+ molecules will go up
 C) $[\text{H}_3\text{O}^+]$ will go up; pH will go down; net amount (=number) of H_3O^+ molecules will go up
 D) $[\text{H}_3\text{O}^+]$ will go up; pH will go down; net amount (=number) of H_3O^+ molecules will go down

System at equilibrium

System at disturbance

System at new equilibrium

To attack this problem, it will help to engage in the following equitable chemical practices:

- Draw a submicroscopic representation at the initial equilibrium, at the disturbance, and at the new established equilibrium
- Discuss confusions and value different perspectives

598

599 **Figure 5. (a)** Representation of continuity-across coding, shown with the brown arrow away from the gap. **(b)**
 600 Problem context for the example interaction illustrating the code.

601

602

603 **Table 6.** Transcript excerpt for the example used to illustrate continuity-across.

Transcript Line	Coding (with reference to Figure 5a)
Salsa: And in terms of other things, I think that sort of increases the pH. I was a bit confused on that part. I had assumed that it would decrease the pH, but since it is more backwards reac-, backwards-favored or reactant-favored, then more HA is being made, and that's why the pH would go up.	Gap 3 noticed and filled (Box A)
Salsa: And in terms of like overall the H_3O [sic] molecules are going down because more H_2O is being made. So that's what I said here.	Gap 4 noticed and filled (Box B)
Pastel: Yeah, I agree with that, and as for the pH will go up, honestly, since like the H_3O^+ is going down, I was just like, naturally the pH will go up, because they are always going opposite of each other.	Gap 3 noticed and filled (Box C)

604

605 Gap 4 (Fig. 5a, Box B) was coded with continuity-across because it established relations that were

606 picked up and used as something that stood fast in Gap 3 (Fig. 5a, Box C). Salsa made a relation

607 between two new pieces that established that the number of H_3O^+ molecules should be going down

608 (blue text in Fig. 5a, Box B), the first time this relation was made. Pastel picked up these pieces to

609 help fill the lingering Gap 3, leveraging the relation Salsa established between H_3O^+ molecules

610 and “going down” as something that stood fast (brown text in Fig. 5a, Box C). Thus, Gap 4

611 established continuity-across, because it introduced the pieces and ideas that were used when

612 Pastel brought the encounter back to Gap 3. Continuity-within and continuity-across can be

613 considered pairs: when Gap 3 picked up pieces from Gap 4, Gap 3 established continuity-within

614 (picked up pieces) and Gap 4 established continuity-across (provided pieces).

615 To summarize, our approach introduces four qualitative codes: discourse change-within, discourse

616 change-across, continuity-within, and continuity-across (See Table 7 for summary definitions of

617 all parts of our analysis). We coded every gap in an encounter for the presence or absence of these

618 four codes. That is, a single gap could be assigned up to four codes depending on its impact on the

619 rest of the interaction.

620 **Table 7.** A summary of all relevant constructs for our analysis. The definitions of gap and relation are adopted from
621 the original PEA literature (Wickman & Ostman, 2002); all other constructs presented in this table are presented in
622 this paper.

Code	Definition	Representation in Figures
Gap (from PEA)	The socially situated need to make something intelligible, which can be noticed explicitly (through the direct asking of a question) or implicitly (inferred from how someone answers an unspoken question)	Rounded box; gap under analysis demarcated by a dashed border
Relation (from PEA)	Connections between pieces of knowledge or actions whose meanings stand fast and which help address (fill) a gap	Dash connecting two pieces within a box
Piece	Individual meaning units that are used to construct a relation	Short phrase or word connected by a dash within a box
DC-within	Introduction of new pieces to notice and/or fill the gap under analysis	Blue arrow with the head pointing toward the gap under analysis
DC-across	Introduction of new pieces to notice and/or fill a later gap that was directly sparked by the noticing and/or filling of the gap under analysis	Blue arrow originating at the gap under analysis
Cont-within	Picking up pieces that were already introduced to make relations to notice and/or fill the gap under analysis	Brown arrow with the head pointing toward the gap under analysis
Cont-across	Establishing relations or pieces in the gap under analysis that are used in a later gap, or establishing some kind of discursive habit	Brown arrow originating at the gap under analysis

623

624 *3.4 Researcher Positionality and Trustworthiness*

625 Our research team held multiple positionalities with regards to our perspectives on learning, our
626 relationship to the data, and our positions of power within systems of oppression. All members of
627 the author team are situated at a predominantly white university. The first author identifies as a
628 queer, white Chicana who is a postdoc and who previously taught chemistry with LAs and
629 collected a large proportion of the data. Her familiarity with and proximity to the study course
630 professors' intentions and her own orientation toward learning as asset-based gave a bigger
631 perspective on what the grain size of a gap was, and how it differed from context-to-context, which
632 also led to tension in figuring out whose perspective (e.g., the professor's) she privileged during
633 analysis. The second author identifies as a white woman first-generation college student trained at

634 a large state university, who has previously been a student in courses with LAs, worked as an LA
635 herself, and conducts research on LAs. Her prior training and lived experience as a first-generation
636 student and current position as a graduate student at a privileged PWI provided her an insider-
637 outsider perspective on both learning contexts, which at first manifested as a learning curve in
638 viewing gaps as socially situated rather than related to canonical correctness, and later manifested
639 as viewing many ways of learning as equally valuable and contextually situated. The third author
640 identifies as a Haitian-American woman who has been a student in LA-facilitated undergraduate
641 courses. As a student who is typically quiet in the class, she finds it hard to express her thoughts
642 and what she is confused about. By working on the data analysis, she not only learned to pay close
643 attention to her own learning and thoughts but also focused on the thoughts of the students whose
644 voice may not be directly heard in order to have no thoughts overlooked and that our analysis
645 matched closely what the students were saying to not accidentally misinterpret them. The fourth
646 author identifies as a queer Black woman who has been a student in LA-facilitated undergraduate
647 courses. As a student who experienced marginalization in STEM spaces, she paid close attention
648 during data analysis to whose contributions were attended to over others' and how group dynamics
649 influenced who felt empowered to contribute. The fifth author identifies as white male who is a
650 faculty member teaching physics with LAs. He has familiarity with the physics context that led to
651 bias in deciding on gaps being slanted toward the disciplinary substance. The corresponding author
652 identifies as a white, international woman who is a faculty member teaching chemistry with LAs
653 and the LA pedagogy course. Since she teaches chemistry with a strong focus on making sense of
654 different student perspectives while also being the principal investigator for the larger research
655 project, her focus on data analysis was directed towards interpreting what students meant when
656 they were speaking and towards the meaningfulness of the analysis for the broader project. Due to

657 her focus on supporting her LAs to prioritize the student perspective over their own, she was biased
658 when coding data from classrooms that emphasized stepwise problem solving towards the correct
659 solution. She experienced challenges valuing the learning in these contexts and following small
660 grain size gaps when coding the data.

661 Rather than following a single method to establish trustworthiness in our analysis, we used a
662 combination of strategies to incorporate multiple perspectives at all stages of project development,
663 including researcher reflexivity, incorporating multiple voices and positionalities through
664 collaboration, and consensus processes (Cian, 2021; Creswell & Miller, 2000; Saldaña, 2013). For
665 the PEA coding, all interactions were separately analyzed by 2-3 coders, including all 6 authors
666 and other group members, and then discussed to consensus. Because of our different positionalities
667 toward the data, including forms of membership (Creswell & Miller, 2000), we brought different
668 interpretations and perspectives to bear on how we viewed the data. Including multiple voices at
669 the critical first level of analysis helped us come to consensus about what was happening and to
670 center the students' perspectives, rather than our own. During development of the discourse change
671 and continuity coding, 4 of the authors participated in weekly meetings led by the first author to
672 discuss the developing data analysis procedures and interpretations of the interactions. This
673 grounded the development of the data analysis procedure in its utility to explain the phenomena
674 present in the data and allowed us to incorporate multiple epistemological perspectives into
675 development. After this collaborative development phase, the first author coded all interactions,
676 and the second and corresponding authors coded 22% of the data independently (8 interactions).
677 We discussed the independent analyses in several meetings until we reached 100% agreement in
678 coding interactions. The first author revised the codebook and coding of all interactions based on
679 our discussions.

680 *3.5 Methodological Limitation*

681 There are three limitations related to our methods. First, our framework is developed solely using
682 LA-facilitated interactions. Although we believe that these interactions are comparable to learning
683 in other contexts, the framework would need to be applied in those contexts to affirm that. Second,
684 although we tried to select a range of interactions, we were limited by our capacity in how many
685 interactions and contexts we could analyze. Finally, although we did as much as possible to
686 mitigate disruption when collecting classroom recordings, our data collection approach may have
687 changed the way students behave in class. Students did not always work in their usual groups, and
688 they interacted with LAs wearing an obvious body camera. In post-interviews, students and LAs
689 reflected that these disruptions sometimes changed the way they interacted—they would talk more,
690 stay on topic longer than usual, and generally tried to be on their “best behavior” for the recording.
691 However, they also reflected that despite these changes, video recordings were accurate
692 representations of their interactions in class, thus we believe that our framework was developed
693 from authentic learning encounters.

694 4. Findings and Discussion

695 The goal of this study was to develop an analytical framework for learning that meets three
696 fundamental criteria we named in the introduction: ability to identify learning in the moment of
697 the interaction and not post hoc, ability to characterize different kinds of learning, and
698 comparability across multiple interactions that remains sensitive to context. The following sections
699 will be organized around each of these criteria to show how analyzing for discourse change and
700 continuity can help us see and conceptualize in-the-moment learning. The example introduced in
701 4.1 will serve as a point of comparison for the other two sections.

702 4.1 Identifying Learning in-the-Moment of Interaction

703 The first feature for our analytical framework on learning is the ability to characterize learning
704 from the discourse of the interaction rather than from post hoc assessment, and to do so by finding
705 evidence directly from the discourse rather than by identifying different types of meaningful
706 scientific activities. We will use an example from our dataset to illustrate how our framework
707 operationalizes learning through two fundamental mechanisms, continuity and discourse change
708 (Kelly et al., 2012; Östman & Öhman, 2022; Wertsch, 1998; Wickman & Östman, 2002), and how
709 it provides meaningful insight into the progression of learning.

710 In the interaction, a group working with LA Ayaoba in an in-person chemistry course at Institution
711 B was tasked with increasing the voltage of a galvanic cell by making the reaction more product-
712 favored (see Figure 6). To help the reader follow our analysis, a part of the interaction is depicted
713 graphically in Figure 7 and the corresponding portion of the transcript is provided in Supporting
714 Information 3 in Table S2, with references to Figure 7 to corroborate the analysis with the
715 transcript excerpt. This part of the interaction was typical for how learning in this interaction
716 progressed more generally. In Figure 7, the first-level gap analysis is shown in the boxes, which
717 can be read left to right, to follow the progression of the conversation. The second level continuity
718 and discourse change analyses are depicted over the arrows. Continuity and discourse change
719 codes are shown in relation to Gap 4 as the unit of analysis, indicated by the dashed box.

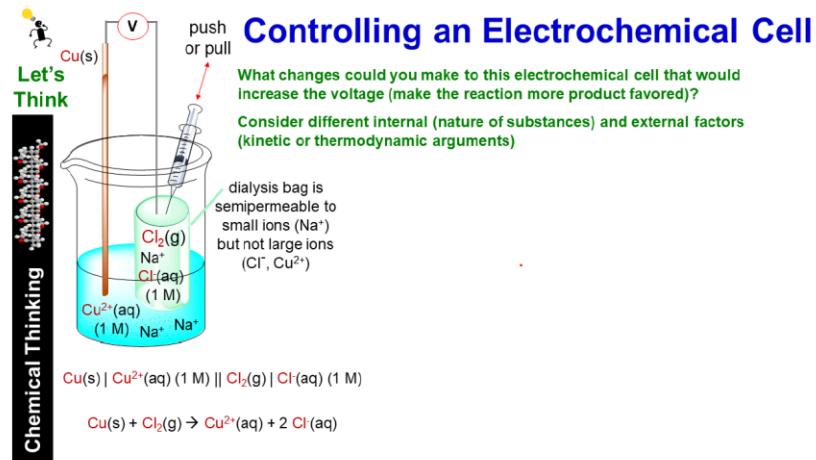
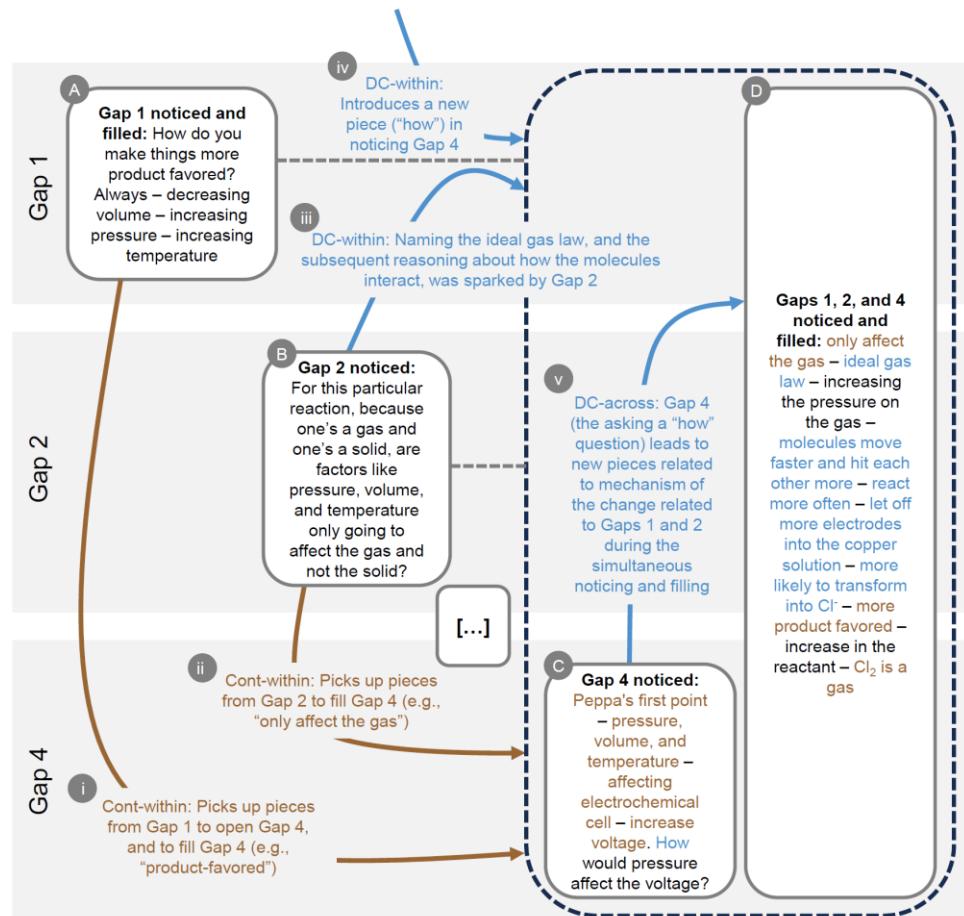



Figure 6. Problem context for the interaction with LA Ayaoba presented in 4.1.

722

723

724

725

726

727

Figure 7. Diagram depicting our analysis of an interaction involving a group working with LA Ayaoba. Gaps are shown in Boxes. Continuity and discourse change codes are depicted over arrows. Brown arrows represent continuity codes, and brown text represents pieces associated with those codes (picked up from earlier parts of the encounter). Blue arrows represent discourse change codes, and blue text represents pieces associated with those codes (new ideas introduced to the encounter).

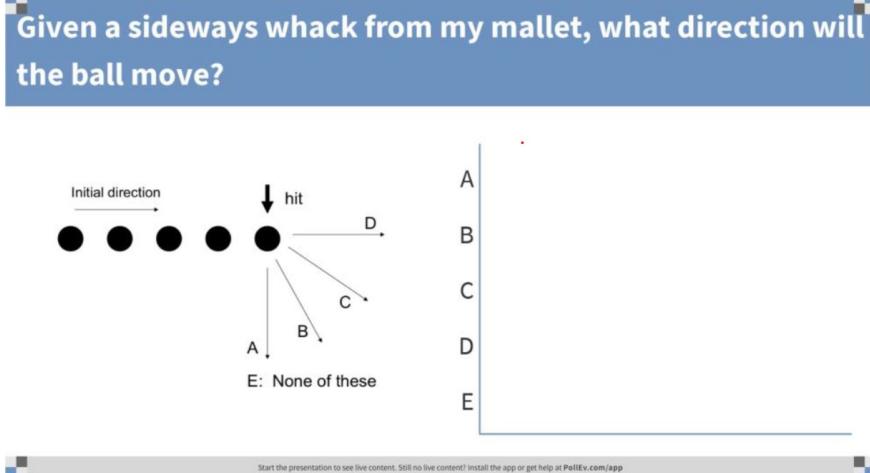
728 Before diving into the details of the analysis, we summarize three important things that happen in
729 the portion of the interaction displayed in Figure 7 between two students, Peppa and Science, and
730 the LA. First, Peppa named two gaps that became focal questions for the interaction (Fig. 7, Boxes
731 A and B): restating the problem as she started to grapple with it (Fig. 7, Box A) and wondering
732 about which reactants will be affected because some are gases and some are solids (Fig. 7, Box
733 B). Second, LA Ayaoba drew on Peppa’s initial hypotheses in response to the first focal question
734 to pose her own question of how pressure affects voltage (Fig. 7, Box C). Third, these three
735 questions were addressed simultaneously as the students drew on ideas related to increasing the
736 pressure and effects on gases and introduced new ideas related to molecular level change and
737 kinetics to address their gaps in a more complex and mechanistic way (Fig. 7, Box D).

738 In our analysis, we found extensive continuity and discourse change established during this
739 interaction. Continuity-within (Fig. 7, Arrows i and ii) was evidenced by LA Ayaoba’s question
740 (Fig. 7, Box C) referring back to Peppa’s original hypothesis (Fig. 7, Box A) and by how the
741 students picked up specific ideas (brown text in Fig. 7, Box D) from Gaps 1 and 2 (Fig 7, Boxes
742 A and B). Continuity-across (represented by a single box spanning multiple gaps) was established
743 by students Science and Peppa attending to all three gaps simultaneously (Box D) creating a
744 continuous relationship between the state of matter and the impact of pressure on voltage.

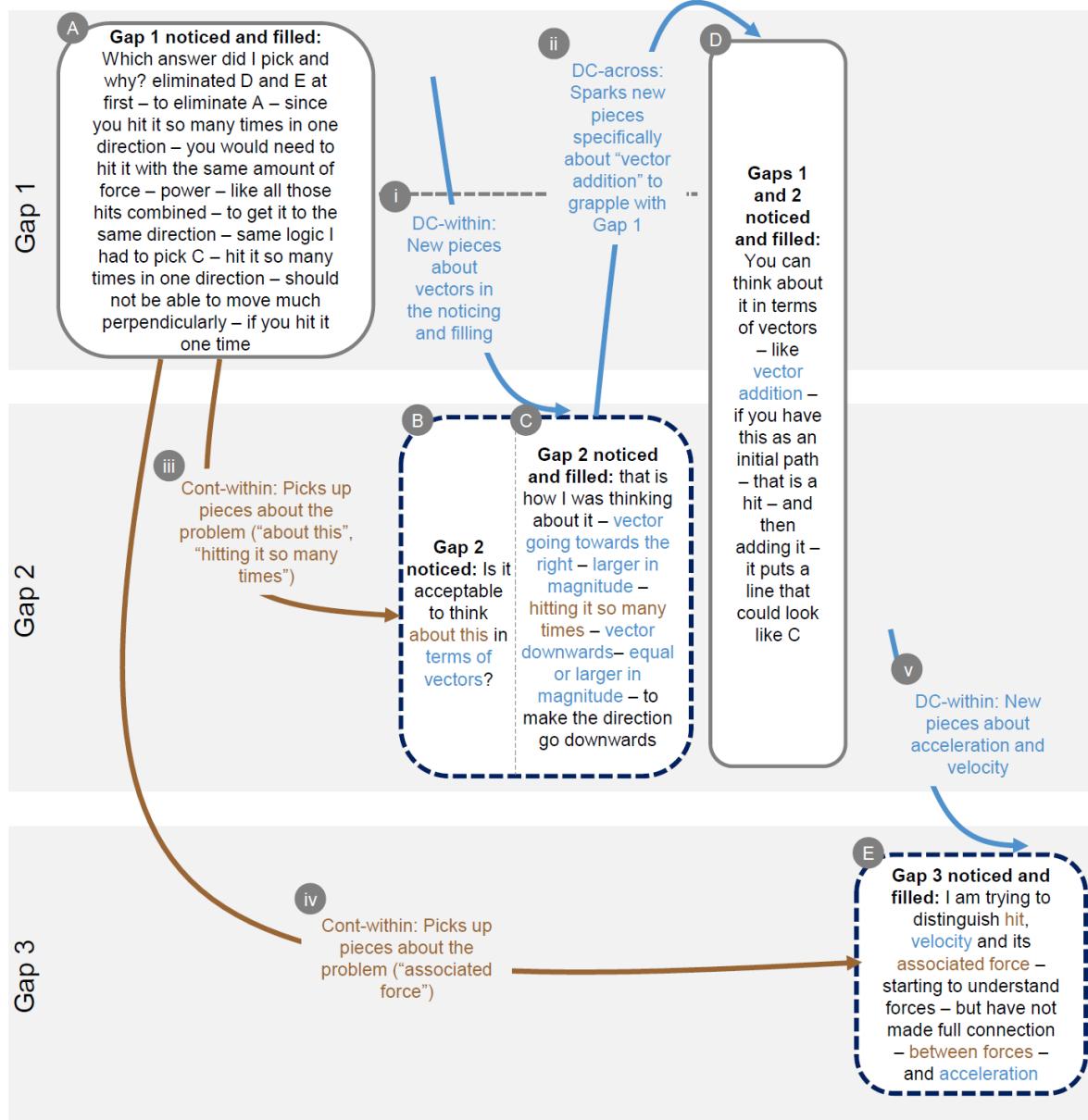
745 With regards to discourse change, we saw three sources of discourse change. First, DC-within
746 (Fig. 7, Arrow iv) happened when LA Ayaoba opened Gap 4 (Fig. 7, Box C) and introduced a new
747 “how” piece, which introduced a mechanistic aspect that was new to the interaction. DC-within
748 (Fig. 7, Arrow iii) also occurred because Peppa brought in “the ideal gas law” while filling Gaps
749 1, 2 and 4 simultaneously (Fig. 7, Box D), which was sparked by her earlier idea of considering
750 “factors only affecting the gas” during Gap 2 (Fig. 7, Box B). DC-across came from LA Ayaoba’s

751 question (Fig. 7, Arrow v). Posing Gap 4 as a how question led to new pieces that provided a
752 mechanistic explanation about how molecules hit each other (blue pieces in Fig. 7, Box D), which
753 not only answered Gap 4 directly, but also justified why it only affected the gas (filling Gap 2) and
754 why it was product-favored (filling Gap 1).

755 Analytically, this example illustrates that our DC and continuity codes provide a layer of analysis
756 that can be used in conjunction with the gaps and relations coding already established in the PEA
757 literature. The DC and continuity codes allow us to track the mechanism of how in-the-moment
758 learning progresses in detail, by attending to how needs develop and are interrelated during the
759 conversation, and how earlier parts of an encounter influence later parts. Conceptually, the
760 presence of DC and continuity was evidenced directly in the discourse (Hamza & Wickman, 2013;
761 Karlsson et al., 2020; Kelly et al., 2012; Östman & Öhman, 2022; Wickman, 2006; Wickman &
762 Östman, 2002), which suggests that the students were collaboratively learning, refining and
763 making sense of their mechanistic explanation for how voltage changes. Second, it showed how
764 the contingent needs and the encounter's particularities drove learning. Here, the original two gaps
765 lingered throughout the interaction—the need to make them intelligible persisted and was
766 transformed through being continually revisited. By having those gaps as anchors in the
767 interaction, continuity was established, because the same relations were leveraged repeatedly as
768 they were reckoned with and consolidated. They also served as a space for establishing discourse
769 change, as the students made sense of new ideas and tried to figure out how they related to these
770 overarching gaps. New gaps that were opened gave the students new entry points to think about
771 these lingering needs, and the students collaboratively sought for the best and most coherent
772 solution. By coming into contact with new discourse, meanings were transformed and negotiated:
773 our original definition of in-the-moment learning.


774 *4.2 Identifying different kinds of learning*

775 The second feature of our analytical framework on learning was the ability to identify and
776 characterize different types and objects of learning. This is vital, because in classroom interactions,
777 students draw on heterogeneous prior experiences and learn much more than scientific content,
778 including how to navigate interpersonal tensions and struggles (Keen & Sevian, 2022; Sohr et al.,
779 2018), how to engage in the community and practices of science (e.g., Ford, 2008; Grimes et al.,
780 2019; Lave & Wenger, 1991), and how their personal histories are or are not valued as meaningful
781 learning resources in the classroom (e.g., Appleby et al., 2021; González-Howard & Suárez, 2021;
782 Karlsson et al., 2020; Lyon, 2023; Suárez, 2020). Below, we will show how our framework begins
783 to identify some different ways in which in-the-moment learning can progress by contrasting two
784 examples with the one presented in 4.1. The first shows learning that is conceptual like the previous
785 example but progresses in a different way, and the second one demonstrates the learning of norms
786 rather than specific disciplinary substance.


787 To compare and contrast these different ways of learning, let us first revisit how learning
788 progressed in the example in 4.1. In this example, learning occurred through a mechanism of
789 revisiting and revising relations that were established to fill earlier gaps and as-of-yet unintelligible
790 needs related to their conceptual understanding. As the group worked through the problem, they
791 returned to the focal gaps Peppa identified. This established continuity (students drew on insights
792 from other needs addressed throughout the interaction) to spark discourse change (they built on
793 those insights to develop new ideas). This demonstrates one mechanism of in-the-moment
794 learning: revisiting and continually making sense of lingering needs that are conceptual in nature.

795 *4.2.1 Identifying different mechanisms for conceptual learning*

796 In contrast to learning as revisiting, learning in the example below occurred through a mechanism
797 of exploring, in which the driver of learning was to understand how ideas new to the interaction,
798 e.g., from other parts of class, related to the encounter at hand. These new ideas were introduced
799 by opening more general gaps, leading to an exploration of how it related to the task at hand.
800 Noticing and filling these gaps often served the purpose of establishing continuity *beyond* the
801 encounter to the rest of class by introducing discourse change *within* the encounter.

802 In this interaction, a group of students working with LA Physics in an in-person physics class at
803 Institution B was trying to figure out what direction a ball would go in if it was hit three times (see
804 Figure 8). To illustrate the exploring mechanism, the analysis is depicted in Figure 9 and relevant
805 parts of the transcript are excerpted in Table S3 (Supporting Information 3). Both should be read
806 using the same conventions as in 4.1.

807
808 **Figure 8.** Problem context for the interaction with LA Physics presented in 4.2.1.
809

810

811 **Figure 9.** Diagram depicting our analysis of an interaction involving a group working with LA Physics. Gaps are
 812 shown in Boxes. Continuity and discourse change codes are depicted over arrows. Brown arrows represent continuity
 813 codes, and brown text represents pieces associated with those codes (picked up from earlier parts of the encounter).
 814 Blue arrows represent discourse change codes, and blue text represents pieces associated with those codes (new ideas
 815 introduced to the encounter).

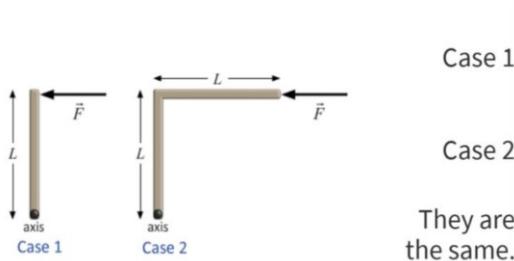
816

817 In our presentation of the exploring activity below, we attend to what happened with two gaps;
 818 thus, in Figure 9, we have included the continuity and discourse change codes that relate to both
 819 Gaps 2 and 3. To summarize the interaction, the group of four (Elle, Blueberry, Tate, and Box)

820 had already figured out and come to consensus on an answer, which Elle recapped for the LA (Fig.
821 9, Box A). This gave space for Blueberry to begin more generally exploring how different concepts
822 from class (e.g., vectors and acceleration) related to the problem they were working on, which she
823 did by opening two new gaps (Fig. 9, Boxes B and E).

824 Applying our framework to analyze this excerpt, we see similarities in Gaps 2 and 3 (Fig. 9, Boxes
825 B and E) that relate to how the learning progressed. Gap 2 established continuity-within by picking
826 up the idea of the problem in general and the piece about the number of hits (Fig. 9, Arrow iii) to
827 figure out how it related to vectors, which established DC-within (Fig. 9, Arrow i). Gap 3
828 established continuity-within by picking up the pieces of hit and force from Gap 1 (Fig. 9, Arrow
829 iv) to figure out how it related to velocity and acceleration, which established DC-within (Fig. 9,
830 Arrow v). After being noticed, the continuity and discourse change analysis diverges for the two
831 gaps. For Gap 2, DC-across is sparked when it allows the group to re-engage with thinking about
832 Gap 1 through the lens of vector addition (Fig. 9, Arrow ii). Gap 3, however, has no across codes
833 associated; it is never attended to, but rather lingers throughout the rest of the interaction.

834 This excerpt illustrates how the exploring mechanism differs from the revisiting mechanism
835 (illustrated by Ayaoba's group). In this example, learning occurred when gaps were opened to
836 introduce a new idea, causing DC-within as other students picked up those ideas and expanded on
837 them. When Tate and Box noticed and filled Gap 2, they centered their discourse around
838 Blueberry's new idea of vector addition while keeping their argument continuous with Elle's
839 original argument for choice C. These new gaps made the encounter explicitly continuous with
840 pieces from class that were not originally part of their problem space, such as vector addition,
841 velocity, and acceleration. Exploring was made visible in our coding by high levels of continuity-
842 within and DC-within, as the new gaps built on earlier pieces and introduced new pieces to grapple


843 with that specific gap question. In the revisiting mechanism exemplified in 4.1, learning instead
844 occurred by making continuity across needs that arose during the encounter, and leveraging new
845 connections established during the encounter to make sense of lingering gaps. This was made
846 visible in our coding by high levels of all four codes, as students grappled with both new questions
847 (within codes) and how those questions caused them to revisit and revise their reasoning (across
848 codes). This demonstrates *how* the mechanism of establishing continuity and discourse change
849 may vary. In addition to this variation, *what* was made continuous could also vary in different
850 interactions, as will be shown in the next section.

851 *4.2.2 Identifying different objects of learning*

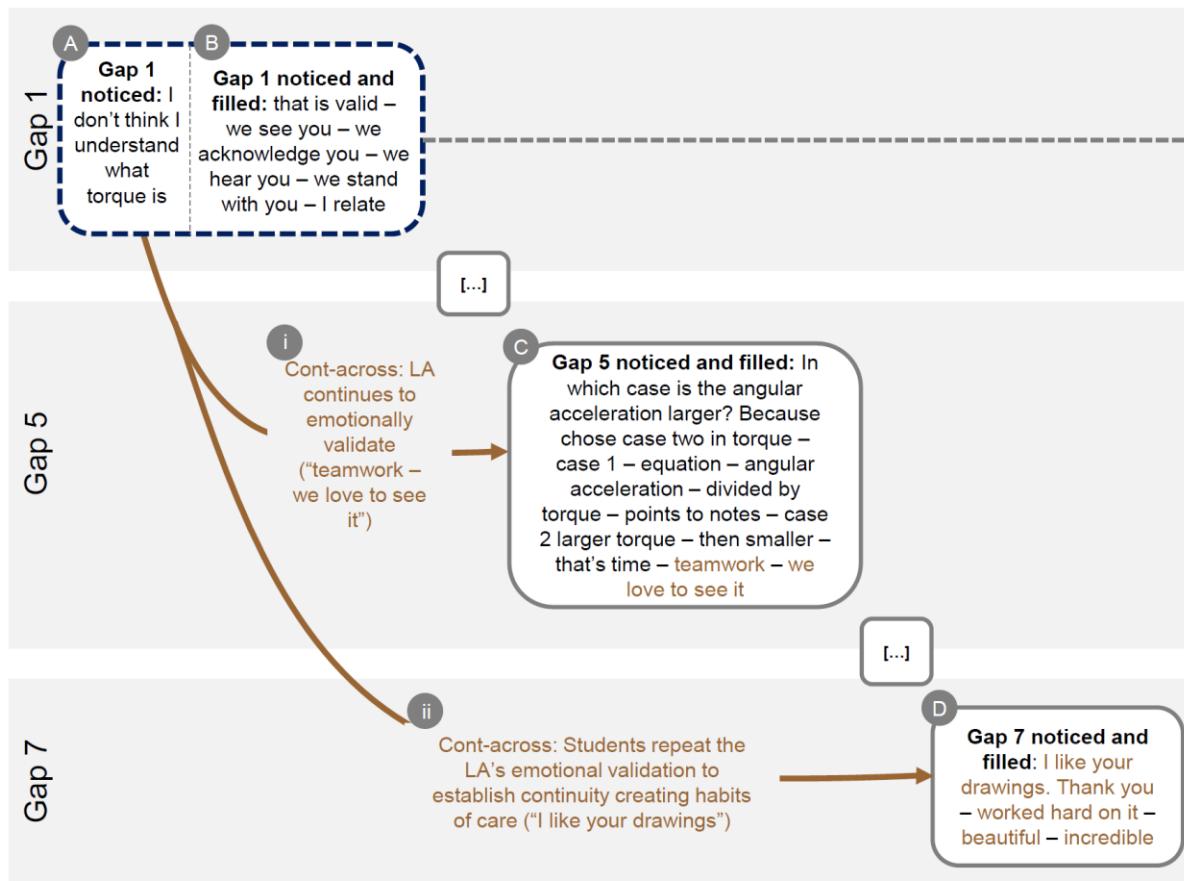
852 In addition to conceptual learning, evidence emerged from the data that we can identify in-the-
853 moment learning of things other than conceptual understanding, e.g., learning of norms for
854 collaborative work such as habits of care, normalizing expression of uncertainty, and norms of
855 taking an activity seriously or not. These norms were introduced by filling gaps with pieces that
856 were aesthetic rather than conceptual (Wickman, 2006), in which needs were met by making space
857 for non-conceptual pieces and relations that could be, but were not limited to, expressions of
858 emotions, confusions, and verbal validation (Keen & Sevian, 2022; Park et al., 2016; Sohr et al.,
859 2018).

860 In the interaction below from an in-person physics class, LA Haseen was working with a group of
861 four students (Vega, Graph, Bucket, and Goldie), who regularly worked together in class and were
862 tasked with answering a problem about torque (Figure 10). To illustrate how we saw the learning
863 of norms, we have shown selected Gaps in Figure 11 and excerpted relevant parts of the transcript
864 in Table S4 (Supporting Information 3). Both should be read using the same conventions as in 4.1.
865 The gap under analysis is Gap 1.

In which of the cases shown is the torque provided by the applied force about the rotation axis biggest? In both cases the magnitude and direction of the applied force is the same.

Case 1

Case 2


They are the same.

866

867

868

Figure 10. Problem context for the interaction with LA Haseen presented in 4.2.2.

869

870 **Figure 11.** Diagram depicting our analysis of an interaction involving a group working with LA Haseen. Gaps are
871 shown in Boxes. Brown arrows represent continuity codes, and brown text represents pieces associated with those
872 codes (picked up from earlier parts of the encounter).

873 We summarize the interaction as follows: LA Haseen joined the group mid-way through their
874 problem solving, and student Vega caught her up on what they had been doing by sharing a
875 confusion in a light-hearted way (Figure 11, Box A). The LA and the other students warmly
876 validated her confusion (Figure 11, Box B). This spirit of camaraderie and emotional validation
877 recurred as the group continued to grapple with the problem, fostering a norm of socioemotional
878 care when grappling with conceptual challenges (Figure 11, Boxes C and D).

879 Applying our framework to this excerpt, we see extensive aesthetic continuity. Continuity-across
880 was established when the spirit of emotional validation established by LA Haseen and Graph in
881 Gap 1 (Fig. 11, Box B) was picked up in two later moments (Fig. 11, Arrows i and ii). First, the
882 LA verbally validated the group's collaboration in how they corrected each other (Fig. 11, Box C,
883 Arrow i); second, Goldie opened an aesthetic gap as she went out of her way to lift up and
884 compliment Vega's sketch of her reasoning (Fig. 11, Box D, Arrow ii). These changes demonstrate
885 how socioemotional validation became a norm of their learning encounter. In Gaps 1 and 5,
886 emotional validation was used to establish relations to help fill gaps (Fig. 11, Boxes B and C),
887 where the collaboration and socioemotional pieces occurred alongside the disciplinary learning. In
888 Gap 7 (Fig. 11, Box D), Goldie opened a gap whose purpose was validation and thus changed the
889 nature of the role that validation played from occurring alongside conceptual sensemaking, to also
890 being a meaningful object of in-the-moment learning in the encounter itself.

891 This example illustrates how continuity was established by repeating emotional validation and
892 support. This in turn established norms related to how the group interacted with each other and
893 emotionally validated their uncertainty—which was also a goal the instructor had established for
894 his class. Capturing this learning of habits of care is of particular interest because emotional
895 experiences can support disciplinary learning (e.g., Appleby et al., 2021; Park et al., 2016;

896 Wickman, 2006; Wickman et al., 2022). We saw this kind of non-conceptual learning in several
897 other ways, which were often aligned with the instructor's goals for the class, such as repeating
898 and normalizing expressions of uncertainty, but could also conflict with what the instructor wanted
899 for their students, such as establishing a norm of dismissing others' questions. In an example of
900 the latter, a group of students working on the problem in Figure 6 established a discursive norm
901 around how gaps were closed. One student established a new relation that "things – go crazy,"
902 which he expressed in a joking and dismissive tone. He used this relation to close two gaps opened
903 by other students, one related to how heat would increase products ("hot things – go crazy") and
904 one related to the effect of pH ("electrons – going a little crazy"). Repeating this phrase established
905 continuity of this relation and of closing the current line of inquiry, which led to the group attending
906 to something else completely. Although students often engage with non-canonical ideas in fruitful
907 ways, in this example the relation of "things – going crazy" was used to close sensemaking around
908 a gap, and created a norm that the activity was not meant to be taken seriously. For both this group
909 and the group with Haseen, the students were learning ways of speaking related to how they work
910 with each other and the concepts. While learning through the mechanism of exploring and
911 revisiting were related to conceptual continuity and discourse change, in-the-moment learning can
912 also be related to norms of collaborative work. What is learned during interaction can thus go
913 beyond conceptual learning and includes learning of how to interact with each other and the
914 disciplinary substance.

915 The preceding three interactions illustrate that our framework can identify different types of in-
916 the-moment learning in two important ways: identifying different mechanisms for the progression
917 of in-the-moment learning and identifying different objects of learning during these encounters.
918 Both revisiting and exploring had similar objects, in that they were both geared toward developing

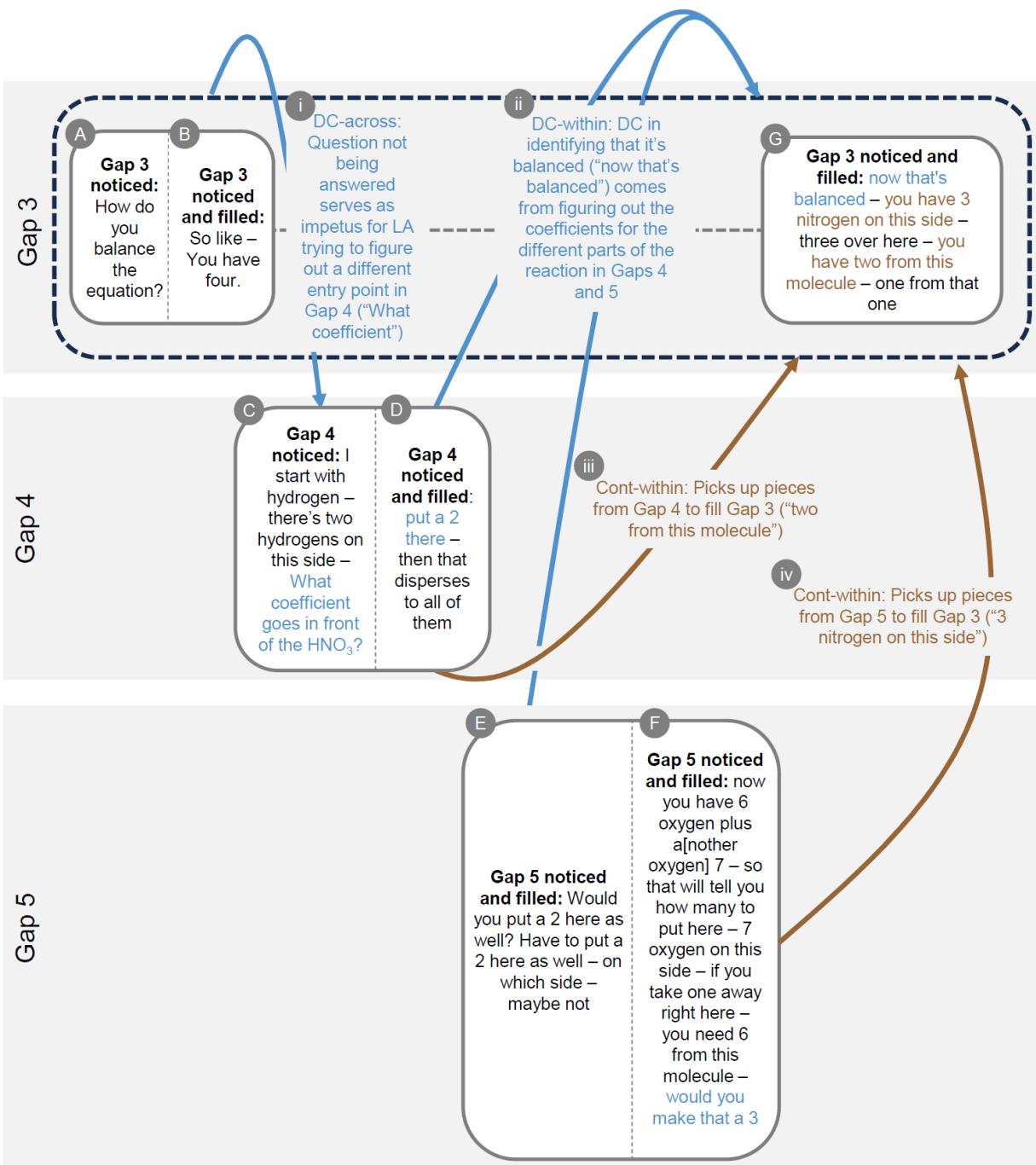
919 conceptual understanding, either within the encounter by bringing in new pieces to make sense of
920 a lingering need (revisiting) or beyond the encounter by explicitly naming a need to connect what
921 students were doing to the other things they were learning in class (exploring). The learning of
922 norms, however, had a different object, in that what the students learned was not related to course
923 content, but rather to the ways they should interact with each other and the scientific content. All
924 three also had different mechanisms that were described through the DC and continuity codes.
925 Revisiting occurred through high levels of all 4 codes, because the purpose of this learning was to
926 think about how emerging gaps changed how the students thought about already present needs.
927 Exploring occurred through continuity-within and across, and DC-within, but not necessarily DC-
928 across, because the purpose was to think about new ideas through the lens of what they had been
929 discussing rather than applying those new ideas to earlier gaps. The learning of norms occurred
930 through establishing continuity within and across gaps because the purpose was to develop and
931 establish certain habits of speaking. This also meant it was not characterized by discourse change,
932 because the norms were established through continuity. These analyses show that we can
933 distinguish different ways in-the-moment learning progresses, as well as different objects of in-
934 the-moment learning. In addition to the three mechanisms we presented here (revisiting, exploring,
935 and learning of norms), we also found two other common mechanisms for learning in our dataset
936 that were conceptual in nature: *elaborating*, in which learning was driven by the need to make
937 sense of each other's ideas (characterized by high continuity-within and -across, and high DC-
938 within); and *stepwise*, in which learning was driven by identifying and filling needs before moving
939 onto the next gap (characterized by low continuity-across and DC-across, and high DC-within),
940 similar to the subsequent gap pattern presented in Walsh et al., 2022. Additionally, these
941 mechanisms commonly coexisted within a single encounter.

942 4.3 Making learning comparable across interactions

943 The final feature of our analytical framework was the ability to make interactions comparable,
944 while remaining sensitive to context. In previous sections, we saw that DC and continuity codes
945 were able to help elucidate different in-the-moment learning mechanisms. Below, we use an
946 interaction with the same learning mechanism as the example in 4.1 (revisiting) to explore what a
947 comparison to the example in 4.1 through the lens of our framework reveals.

948 In the interaction from a hybrid chemistry course at Institution A, a pair of students was working
949 with LA Orange on a problem in which they needed to balance an equation (Figure 12). The
950 analysis is depicted in Figure 13, and the relevant transcript excerpt is provided in Table S5
951 (Supporting Information 3). The gap under analysis is Gap 3.

Balanced Equation:


Average concentrations of HNO_3 in a big city such as Los Angeles are close to 1.0 mg ($1 \text{ mg} = 1 \times 10^{-6} \text{ g}$) per m^3 . Determine the concentration of NO_2 in g/m^3 that is involved in the production of HNO_3 in this environment.

- A $7.36 \times 10^{-7} \text{ g}/\text{m}^3$
- B $1.1 \times 10^{-6} \text{ g}/\text{m}^3$
- C $1.6 \times 10^{-8} \text{ g}/\text{m}^3$
- D $2.4 \times 10^{-8} \text{ g}/\text{m}^3$

952

953 **Figure 12.** Problem context for the interaction with LA Orange presented in 4.3. Note that we provided the balanced
954 equation for the reader's clarity; however, it was not initially a part of the problem.

955

956

957 **Figure 13.** Diagram depicting our analysis of an interaction involving a group working with LA Orange. Gaps are
 958 shown in Boxes. Continuity and discourse change codes are depicted over arrows. Brown arrows represent continuity
 959 codes, and brown text represents pieces associated with those codes (picked up from earlier parts of the encounter).
 960 Blue arrows represent discourse change codes, and blue text represents pieces associated with those codes (new ideas
 961 introduced to the encounter).

962

963 In this excerpt from the interaction, LA Orange opened Gap 3 to guide one of the students, Lola,
964 toward figuring out how to balance the equation (Fig. 13, Box A). When Lola hesitated to answer,
965 LA Orange and Lola worked through Gaps 4 and 5 (Fig. 13, Boxes C and E) related to balancing
966 specific atoms and molecules, which they leveraged to answer the lingering Gap 3 (Fig. 13, Box
967 G). This mechanism of revisiting an earlier, still lingering gap with new connections aligns with
968 the revisiting mechanism described in 4.1 In the discussion that follows, we elaborate on how our
969 analytical framework provides evidence for this comparison.

970 In our analysis, there were high levels of continuity and discourse change. Gap 3 (Fig. 13, Box A)
971 was the focal gap the group continued to return to. Continuity-within (Fig. 13, Arrows iii and iv)
972 was established when LA Orange picked up pieces from Gaps 4 and 5 (Fig. 13, Boxes D and F) to
973 fill Gap 3 (Fig. 13, Box G). Picking up these pieces not only answered the question of whether the
974 equation is balanced, but also created continuity between the contingent sub-gaps related to very
975 specific molecules, and the broader question of what it means to balance an equation (“now that’s
976 balanced – you have 3 nitrogen on this side”). Continuity-across was not established by Gap 3 in
977 the excerpt of the discussion displayed in Figure 13, but the balanced equation was later used when
978 the group worked on the conversion (establishing continuity-across at a later point, not represented
979 in this figure due to space).

980 With regards to DC, there are high levels that come from how the gaps relate to each other. DC-
981 within was established when the group returned to Gap 3 because identifying that the chemical
982 equation was balanced (Fig. 13, Box G) came from figuring out the coefficients for the different
983 parts of the reaction in Gaps 4 and 5 (Fig. 13, Arrow ii). DC-across was sparked by Gap 3 and
984 served as the reason Gaps 4 and 5 were opened in the first place: LA Orange tried to figure out

985 different entry points to think about the problem (Fig. 13, Arrow i) in response to Lola's difficulty
986 explaining how the equation balances (Fig. 13, Box B).

987 Similar to the interaction with LA Ayaoba (Section 4.1), LA Orange's group returned to an
988 established overarching gap. Returning to this gap created an opportunity for learning to occur, by
989 leveraging the relations from other gaps, establishing continuity, and using them to spark new gaps
990 that led to discourse change. Thus, the mechanism by which learning occurred was similar, with
991 high levels of discourse change and continuity. However, these two interactions were also quite
992 different—Ayaoba's interaction was highly student-centered (see Table S2 in Supporting
993 Information 3 for the transcript showing who made which contribution) and focused on making
994 sense of the connections between different conceptual ideas. Students drove gap revisiting, as they
995 tried to identify other ideas from class that could help them make the connection between voltage,
996 pressure, and the molecular-level mechanism. The interaction with LA Orange and Lola, on the
997 other hand, was LA-centered (see Table S5 in Supporting Information 3 for the transcript showing
998 who made which contribution) and focused on figuring out how to balance equations, both in
999 general and for the specific problem. The LA guided the interaction, identified questions that could
1000 be used as entry points to address the main question, and primarily drove the discourse change.
1001 Lola was still engaged in the learning, contributing relations, and identifying needs. From a
1002 pragmatic perspective, the presence of discourse change and continuity was evidence for learning
1003 in the group as a whole.

1004 Analytically, this suggests that although these two interactions were quite different, the learning,
1005 as operationalized through discourse change and continuity, was similar. Through the lens of our
1006 analytical framework, we identified the core similarity in the learning mechanism between them.

1007 Conceptually, identifying core similarities highlights that learning as a phenomenon is distinct
1008 from other types of discourse (Odden & Russ, 2019). The two examples represented different kinds
1009 of discourse. Peppa, Science, and LA Ayaoba were trying to figure out the connections between
1010 different concepts, identifying new pieces that could help them bridge understandings. This could
1011 be described as sensemaking, a “dynamic process of building or revising an explanation in order
1012 to ‘figure something out’” (Odden & Russ, pp.191-192). Sensemaking, as we discussed in the
1013 introduction, is a distinct discursive activity often tied with learning (Kapon, 2017; Lo & Ruef,
1014 2020; Odden & Russ, 2019). LA Orange and Lola, however, were not focused on building an
1015 explanation. Rather, they were focused on figuring out how to balance the equation, trying out
1016 different coefficients until they had successfully solved that part of the problem. This discourse
1017 might instead be described as a kind of algorithmic problem solving or mathematical manipulation,
1018 in which they tested different values until they reached the solution (Karch & Sevian, 2022;
1019 Rodriguez et al., 2020; Sevian & Couture, 2018). Despite these differences, both encounters
1020 proceeded through similar learning mechanisms of establishing discourse change and continuity
1021 by returning to lingering gaps.

1022 *5. Conclusion and Implications*

1023 For these four examples, we have demonstrated that a microanalysis with our framework
1024 operationalizes learning directly through discourse, is sensitive to different mechanisms for and
1025 objects of learning, and can make different types of learning comparable. This kind of
1026 microanalysis adds to the literature that aims to bridge the gap between detailed interaction
1027 analyses and studies that focus on assessable learning outcomes. It does so by creating a lens that
1028 can be used to understand how learning occurs in classroom encounters. It also extends the use of
1029 PEA (e.g., Hamza & Wickman, 2013; Karlsson et al., 2020; Lidar et al., 2006, 2010; Lundqvist et

1030 al., 2009; Manneh et al., 2018; Piqueras & Achiam, 2019) by adding an analytic layer that allows
1031 us to track the mechanism of in-the-moment learning in detail through tracking discourse change
1032 and continuity.

1033 We contribute to the pragmatic and sociocultural body of literature on learning (Engeström, 2000;
1034 Kelly et al., 2012; Östman & Öhman, 2022; Vygotsky & Cole, 1978; Wertsch, 1998; Wickman &
1035 Östman, 2002) an additional tool for analyzing learning. Pragmatic philosophies conceptualize
1036 learning as the formation and acquisition of habits that allow learners to cope with the world (Kelly
1037 et al., 2012; Wickman & Östman, 2002) as they carry practices from one situation to the next. In
1038 our work, we can see how this process occurs through the negotiation of needs from moment to
1039 moment, as learners navigate what pieces to make continuous and when to introduce new ideas.
1040 In contrast to other works that frame processes of knowing and learning as situated in the mind
1041 and affected by context (Hutchison & Hammer, 2010; Rodriguez et al., 2020; Russ et al., 2012;
1042 Sevian & Couture, 2018), our work frames knowing and learning as action and a transactional
1043 process of continual change (Keen, 2021; Östman & Öhman, 2022; Wertsch, 1998).

1044 Although our framework may be valuable for certain kinds of learning, there are several limitations
1045 to note. In this study, we did not attend to important interpersonal dynamics such as racialized and
1046 gendered dynamics (e.g., Ryu & Sikorski, 2019) and sociopolitical dimensions (Suárez et al., 2023)
1047 that influence how students learn. We only attended to discourse, which means that the experiences
1048 of silent students who may be learning but not verbally participating is opaque using this lens. We
1049 suggest that to capture these dynamics, it may be necessary to combine our analysis with additional
1050 analytical frameworks that attend to them directly. For example, initial work led by the third author
1051 found that it is possible to understand the learning experiences of silent students, when PEA is
1052 combined with another analytical framework (Shi & Tan, 2020). Her findings suggest that silent

1053 students are not passive learners, and that their participation may be disproportionately affected by
1054 LAs' pedagogical moves (Pierre-Louis, Karch, & Caspari-Gnann, 2022). Karlsson and
1055 collaborators' (2020) work focusing on translanguaging students' marginalizing experiences in
1056 Swedish classrooms demonstrates the promise of combining PEA with other lenses to unpack
1057 specific experiences. This limitation of our study speaks to a possibility for future work that attends
1058 more deeply to these social dynamics, namely to understand who is learning what and why, and
1059 whether there are power-mediated asymmetries in student learning.

1060 There are many possibilities for future work using our framework. Some researchers may seek to
1061 answer the age-old question, "Are my students actually learning in class?" An analysis of active
1062 learning classroom video data using our framework, similar to how we did here, may shed light
1063 on the nature of learning during classroom interactions, and when and how those interactions are
1064 effective or ineffective. Researchers who are concerned with certain types of learning could use
1065 different secondary lenses to examine the data. For example, researchers concerned with the role
1066 emotions play on disciplinary learning (e.g., Appleby et al., 2021; Park et al., 2016) could
1067 interrogate how socioemotional gaps contribute to the rest of the interaction.

1068 One part of our team's future work will triangulate interaction videos with other sources of data to
1069 understand how aspects of a classroom activity system drive learning in the classroom. For
1070 example, in section 4.3, we discussed how revisiting played out in dramatically different ways in
1071 two different classroom contexts. Preliminary analysis of interviews with LAs, students, and
1072 classroom instructors suggests this may be due to professors having different classroom rules
1073 (Karch et al., 2023). For example, Prof. Lemur, who taught chemistry at University B, had an
1074 explicit rule that LAs should not be authoritative in interactions with students. This may help
1075 explain why the learning in the interaction with LA Ayaoba was more student-centered than that

1076 in the interaction with LA Orange, whose supervising instructor did not have the same rule. This
1077 analysis can shed light on how classroom rules and expectations shape what drives learning in
1078 interactions.

1079 Another limitation of our present study is that we attended to how discourse change and continuity
1080 were established collectively rather than attending to LA and student contributions separately. In
1081 the encounters presented in this paper, the LAs played different roles in shaping how learning in
1082 the interaction proceeded. For example, LA Ayaoba (4.1) rarely contributed new relations;
1083 however, her questions may have prompted the students to elaborate on their thinking, which
1084 contributed to discourse change. In contrast, LA Orange (4.3) directed the learning, driving
1085 discourse change both by adding her own pieces and prompting them from the student. The
1086 influence the LA had on student in-the-moment learning ranged widely in our dataset; other
1087 dynamics we observed included the LA interacting similarly to student (posing genuine questions
1088 and being positioned as a meaning-maker) and even not speaking at all. In each of these cases,
1089 both the LA and students contribute to the learning, because both contribute to the discourse—the
1090 interactions only progress the way they do because those specific individuals are interacting in that
1091 specific group in that specific moment. However, we acknowledge that the power relationships
1092 between LAs and students shape the role those contributions play in creating meaning. Our team's
1093 future work will build on the framework presented here to attend specifically to how LA actions
1094 influence student in-the-moment learning.

1095 There are also several implications for practice. For example, our focus on continuity and discourse
1096 change provides a lens for what LAs and other instructors can pay attention to when working with
1097 students. We have used an activity based on a simplified version of this framework in LA training.
1098 In the activity, LAs analyze a transcript to identify how gaps are opened and by whom, to reflect

1099 on how LA facilitation relates to and impacts student discourse. It may be possible to use this lens
1100 in a similar way for training other instructors. In the K-12 and college noticing literature, there is
1101 an increasing call for instructors to notice more openly, e.g., to pay attention to what students say
1102 without looking at it through the lens of canonical correctness (e.g., Dini et al., 2020; Gehrtz et al.,
1103 2022). However, a common critique by instructors is that they do not know what they should be
1104 looking for and then fall back into old habits. Our framework could provide a lens through which
1105 instructors pay attention to student conversation. Noticing continuity and discourse change still
1106 centers student thinking, because it does not call for noticing specific content, while providing an
1107 actionable lens through which instructors attend to student conversation.

1108 In summary, our work speaks to how centering student needs in conversation allows us to attend
1109 to conceptual learning without relying on correctness. By being attentive to and centering students'
1110 perspective, i.e., what they saw as what needed to be made intelligible, and how they articulated
1111 that in the noticing of gaps, we were able to identify many different needs students experience in
1112 their encounters (Sohr et al., 2018), and thus some of what it is they are learning. By being sensitive
1113 to and making deliberate space for relations and pieces beyond conceptual and cognitive pieces
1114 (Wickman, 2006), we were able to identify and parse the co-existence of the learning of norms
1115 and conceptual learning (Appleby et al., 2021). Our framework contributes to the literature a lens
1116 to see and recognize learning in the moment of its happening and make it comparable across
1117 interactions.

1118

1119

1120

1121

1122 **Acknowledgements**

1123 The authors gratefully acknowledge our funding sources, NSF DUE 2000603, the Tufts Institute
1124 for Research on Learning and Instruction (IRLI) Summer Scholars Program, and the Tufts Visiting
1125 and Early Research Scholars' Experiences (VERSE) Program. Any opinions, findings,
1126 conclusions, and recommendations expressed in this material are those of the authors and do not
1127 necessarily reflect the views of the National Science Foundation. We also thank the Caspari group
1128 members for their contribution to data collection and helpful conversations, Hannah Sevian,
1129 Clarissa Keen, and Steven Cullipher for their contributions to supporting data collection, and
1130 Nicole Graulich and Resa Kelly for constructive feedback on our manuscript. Finally, we are
1131 grateful to the learning assistants, students, and instructors who participated in the study and whose
1132 insight and collaboration was vital to conducting the research.

1133

1134 **Conflict of Interest Statement**

1135 All authors declare that they have no conflicts of interest.

1136

1137 **Availability of data and materials**

1138 Data used for this study are available upon reasonable request to the corresponding author.

1139

1140 **References**

1141 Airey, J., & Linder, C. (2009). A disciplinary discourse perspective on university science
1142 learning: Achieving fluency in a critical constellation of modes. *Journal of Research in
1143 Science Teaching*, 46(1), 27–49. <https://doi.org/10.1002/tea.20265>

1144 Almahrouqi, A., & Scott, P. (2012). Classroom Discourse and Science Learning. In D. Jorde & J.
1145 Dillon (Eds.), *Science Education Research and Practice in Europe: Retrospective and
1146 Prospective* (pp. 291–307). SensePublishers. https://doi.org/10.1007/978-94-6091-900-8_12

1148 Alzen, J. L., Langdon, L., & Otero, V. (2017). The Learning Assistant model and DFW rates in
1149 introductory physics courses. In L. Ding, A. Traxler, & Y. Cao (Eds.), *2017 Physics
1150 Education Research Conference Proceedings* (pp. 36–39). American Association of
1151 Physics Teachers.

1152 Alzen, J. L., Langdon, L. S., & Otero, V. K. (2018). A logistic regression investigation of the
1153 relationship between the Learning Assistant model and failure rates in introductory
1154 STEM courses. *International Journal of STEM Education*, 5(1), 1-12.
1155 <https://doi.org/10.1186/s40594-018-0152-1>

1156 Appleby, L., Dini, V., Withington, L., LaMotte, E., & Hammer, D. (2021). Disciplinary
1157 significance of social caring in postsecondary science, technology, engineering, and
1158 mathematics. *Physical Review Physics Education Research*, 17(2), 1-16.

1159 Barrasso, A. P., & Spiliotis, K. E. (2021). A scoping review of literature assessing the impact of
1160 the learning assistant model. *International Journal of STEM Education*, 8(1), 1-18.
1161 <https://doi.org/10.1186/s40594-020-00267-8>

1162 Barron, B. (2003). When smart groups fail. *Journal of the Learning Sciences*, 12, 307–359.

1163 https://doi.org/10.1207/S15327809JLS1203_1

1164 Barton, A. C., & Tan, E. (2009). Funds of knowledge and discourses and hybrid space. *Journal*
1165 *of Research in Science Teaching*, 46(1), 50–73. <https://doi.org/10.1002/tea.20269>

1166 Bennett, J., Hogarth, S., Lubben, F., Campbell, B., & Robinson, A. (2010). Talking Science: The
1167 research evidence on the use of small group discussions in science teaching. *International*
1168 *Journal of Science Education*, 32(1), 69–95. <https://doi.org/10.1080/09500690802713507>

1169 Berland, L. K., Schwarz, C. V., Krist, C., Kenyon, L., Lo, A. S., & Reiser, B. J. (2016).
1170 Epistemologies in practice: Making scientific practices meaningful for students. *Journal*
1171 *of Research in Science Teaching*, 53(7), 1082-1112.

1172 Bianchini, J. A. (1997). Where knowledge construction, equity, and context intersect: Student
1173 learning of science in small groups. *Journal of Research in Science Teaching*, 34(10),
1174 1039–1065. [https://doi.org/10.1002/\(SICI\)1098-2736\(199712\)34:10<1039::AID-](https://doi.org/10.1002/(SICI)1098-2736(199712)34:10<1039::AID-)
1175 TEA5>3.0.CO;2-S

1176 Brookes, D. T., Yang, Y., & Nainabasti, B. (2021). Social positioning in small group interactions
1177 in an investigative science learning environment physics class. *Physical Review Physics*
1178 *Education Research*, 17(1), 1–13.

1179 <https://doi.org/10.1103/PhysRevPhysEducRes.17.010103>

1180 Carlos, C. M. L., Maggiore, N. M., Dini, V., Caspari-Gnann, I. (2023). Characterizing
1181 facilitation practices of learning assistants: An authoritative-to-dialogic
1182 spectrum. *International Journal of STEM Education*, 10, Article
1183 38. <https://doi.org/10.1186/s40594-023-00429-4>

1184 Chinn, C. A., & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A
1185 theoretical framework for evaluating inquiry tasks. *Science Education*, 86(2), 175–218.
1186 <https://doi.org/10.1002/sce.10001>

1187 Cian, H. (2021). Sashaying Across Party Lines: Evidence of and Arguments for the Use of
1188 Validity Evidence in Qualitative Education Research. *Review of Research in Education*,
1189 45(1), 253–290. <https://doi.org/10.3102/0091732X20985079>

1190 Clements, T. P., Friedman, K. L., Johnson, H. J., Meier, C. J., Watkins, J., Brockman, A. J., &
1191 Brame, C. J. (2022). “It made me feel like a bigger part of the STEM community”:
1192 Incorporation of Learning Assistants Enhances Students’ Sense of Belonging in a Large
1193 Introductory Biology Course. *CBE—Life Sciences Education*, 21(2), 1–13.
1194 <https://doi.org/10.1187/cbe.21-09-0287>

1195 Creswell, J. W., & Miller, D. L. (2000). Determining Validity in Qualitative Inquiry. *Theory Into
1196 Practice*, 39(3), 124–130. https://doi.org/10.1207/s15430421tip3903_2

1197 Dewey, J. (1938). *Experience and education*. Touchstone, Simon and Schuster.

1198 Dini, V., Sevian, H., Caushi, K., & Orduña Picón, R. (2020). Characterizing the formative
1199 assessment enactment of experienced science teachers. *Science Education*, 104(2), 290–
1200 325.

1201 Engeström, Y. (2000). Activity theory as a framework for analyzing and redesigning work.
1202 *Ergonomics*, 43(7), 960–974. <https://doi.org/10.1080/001401300409143>

1203 Engle, R. A., & Conant, F. R. (2002). Guiding principles for fostering productive disciplinary
1204 engagement: Explaining an emergent argument in a community of learners classroom.
1205 *Cognition and Instruction*, 20, 399–483. https://doi.org/10.1207/S1532690XCI2004_1

1206 Ford, M. (2008). Disciplinary authority and accountability in scientific practice and learning.

1207 *Science Education*, 92(3), 404–423. <https://doi.org/10.1002/sce.20263>

1208 Ford, M. J., & Forman, E. A. (2006). Redefining disciplinary learning in classroom contexts. In

1209 J. Green & A. Luke (Eds.), *Review of Research in Education 30, 2006: Rethinking*

1210 *Learning: What Counts as Learning and What Learning Counts* (Vol. 30, pp. 1–32).

1211 Amer Educational Research Assoc. <https://doi.org/10.3102/0091732X030001001>

1212 Gehrtz, J., Brantner, M., & Andrews, T. C. (2022). How are undergraduate STEM instructors

1213 leveraging student thinking? *International Journal of STEM Education*, 9(1), 1–20.

1214 <https://doi.org/10.1186/s40594-022-00336-0>

1215 González-Howard, M., & Suárez, E. (2021). Retiring the term English language learners:

1216 Moving toward linguistic justice through asset-oriented framing. *Journal of Research in*

1217 *Science Teaching*, 58(5), 749–752. <https://doi.org/10.1002/tea.21684>

1218 Graham, T., Berry, J., & Rowlands, S. (2013). Are ‘misconceptions’ or alternative frameworks

1219 of force and motion spontaneous or formed prior to instruction? *International Journal of*

1220 *Mathematical Education in Science and Technology*, 44(1), 84–103.

1221 <https://doi.org/10.1080/0020739X.2012.703333>

1222 Grimes, P., McDonald, S., & van Kampen, P. (2019). “We’re getting somewhere”: Development

1223 and implementation of a framework for the analysis of productive science discourse.

1224 *Science Education*, 103(1), 5–36. <https://doi.org/10.1002/sce.21485>

1225 Hammer, D., Goldberg, F., & Fargason, S. (2012). Responsive teaching and the beginnings of

1226 energy in a third grade classroom. *Review of science, mathematics and ICT*

1227 *education*, 6(1), 51-72.

1228 Hamza, K. M., & Wickman, P.-O. (2008). Describing and analyzing learning in action: An
1229 empirical study of the importance of misconceptions in learning science. *Science
1230 Education*, 92(1), 141–164. <https://doi.org/10.1002/sce.20233>

1231 Hamza, K. M., & Wickman, P.-O. (2013). Supporting students' progression in science:
1232 Continuity between the particular, the contingent, and the general. *Science Education*,
1233 97(1), 113–138. <https://doi.org/10.1002/sce.21042>

1234 Hartikainen, S., Rintala, H., Pylväs, L., & Nokelainen, P. (2019). The Concept of Active
1235 Learning and the Measurement of Learning Outcomes: A Review of Research in
1236 Engineering Higher Education. *Education Sciences*, 9(4), 1-19.
1237 <https://doi.org/10.3390/educsci9040276>

1238 Herrera, X., Nissen, J., & Van Dusen, B. (2018). Student outcomes across collaborative-learning
1239 environments. In A. Traxler, Y. Cao, & S. F. Wolf (Eds.), *Physics Education Research
1240 Conference Proceedings* (pp. 1–4). American Association of Physics Teachers.

1241 Hutchison, P., & Hammer, D. (2010). Attending to student epistemological framing in a science
1242 classroom. *Science Education*, 94(3), 506–524. <https://doi.org/10.1002/sce.20373>

1243 Jornet, A., Roth, W.-M., & Krane, I. (2016). A Transactional Approach to Transfer Episodes.
1244 *Journal of the Learning Sciences*, 25(2), 285–330.
1245 <https://doi.org/10.1080/10508406.2016.1147449>

1246 Kapon, S. (2017). Unpacking Sensemaking. *Science Education*, 101(1), 165–198.
1247 <https://doi.org/10.1002/sce.21248>

1248 Karch, J.M., Mashhour, S., & Caspari-Gnann, I. *Using Cultural Historical Activity Theory to
1249 Characterize Different Enactments of the LA Model*, Paper presented at the National
1250 Association of Research in Science Teaching, Chicago, IL, April 18-21 2023.

1251 Karch, J.M. & Sevian, H. (2022). Development of a framework to capture abstraction in physical
1252 chemistry problem solving. *Chemistry Education Research & Practice*, 23(1), 55-77.

1253 Karlsson, A., Nygård Larsson, P., & Jakobsson, A. (2020). The continuity of learning in a
1254 translanguaging science classroom. *Cultural Studies of Science Education*, 15(1), 1–25.
1255 <https://doi.org/10.1007/s11422-019-09933-y>

1256 Keen, C. (2021). *Deconstructing Productive Struggle Within the Undergraduate Chemistry*
1257 *Laboratory Activity System* [Doctoral dissertation, University of Massachusetts Boston].
1258 https://scholarworks.umb.edu/doctoral_dissertations/740

1259 Keen, C., & Sevian, H. (2022). Qualifying domains of student struggle in undergraduate general
1260 chemistry laboratory. *Chemistry Education Research and Practice*, 23(1), 12–37.
1261 <https://doi.org/10.1039/D1RP00051A>

1262 Kelly, G. J., McDonald, S., & Wickman, P.-O. (2012). Science Learning and Epistemology. In
1263 B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), *Second International Handbook of*
1264 *Science Education* (pp. 281–291). Springer Netherlands. https://doi.org/10.1007/978-1-4614-020-7_20

1266 Kiste, A., E. Scott, G., Bukenberger, J., Markmann, M., & Moore, J. (2017). An examination of
1267 student outcomes in studio chemistry. *Chemistry Education Research and Practice*,
1268 18(1), 233–249. <https://doi.org/10.1039/C6RP00202A>

1269 Knight, J. K., Wise, S. B., Rentsch, J., & Furtak, E. M. (2015). Cues Matter: Learning Assistants
1270 Influence Introductory Biology Student Interactions during Clicker-Question
1271 Discussions. *CBE—Life Sciences Education*, 14(4), 1-14. <https://doi.org/10.1187/cbe.15-04-0093>

1273 Koretsky, M. D., Vauras, M., Jones, C., Iiskala, T., & Volet, S. (2021). Productive Disciplinary
1274 Engagement in High- and Low-Outcome Student Groups: Observations From Three
1275 Collaborative Science Learning Contexts. *Research in Science Education*, 51(1), 159–
1276 182. <https://doi.org/10.1007/s11165-019-9838-8>

1277 Kornreich-Leshem, H., Benabentos, R., Hazari, Z., Potvin, G., & Kramer, L. (2022). The
1278 cognitive and affective roles of learning assistants in science, technology, engineering,
1279 and mathematics college classrooms: An exploration of classroom experiences and
1280 students' metacognitive awareness and disciplinary identity. *Science Education*, 106(3),
1281 545–572. <https://doi.org/10.1002/sce.21703>

1282 Lave, J., & Wenger, E. (1991). *Situated learning: Legitimate peripheral participation*.
1283 Cambridge University Press. <https://doi.org/10.1017/CBO9780511815355>

1284 Lee, J.-K., Aini, R. Q., Sya'bandari, Y., Rusmana, A. N., Ha, M., & Shin, S. (2021). Biological
1285 Conceptualization of Race. *Science & Education*, 30(2), 293–316.
1286 <https://doi.org/10.1007/s11191-020-00178-8>

1287 Lemke, J. L. (1990). *Talking Science: Language, Learning, and Values*. Ablex Publishing
1288 Corporation. <https://eric.ed.gov/?id=ED362379>

1289 Lidar, M., Almqvist, J., & Östman, L. (2010). A pragmatist approach to meaning making in
1290 children's discussions about gravity and the shape of the earth. *Science Education*, 94(4),
1291 689–709. <https://doi.org/10.1002/sce.20384>

1292 Lidar, M., Lundqvist, E., & Östman, L. (2006). Teaching and learning in the science classroom:
1293 The interplay between teachers' epistemological moves and students' practical
1294 epistemology. *Science Education*, 90(1), 148–163. <https://doi.org/10.1002/sce.20092>

1295 Lo, M. T., & Ruef, J. L. (2020). Student or Teacher? A Look at How Students Facilitate Public
1296 Sensemaking during Collaborative Groupwork. *Journal of Urban Mathematics
1297 Education*, 13(1), 15–33.

1298 Lundqvist, E., Almqvist, J., & Östman, L. (2009). Epistemological norms and companion
1299 meanings in science classroom communication. *Science Education*, 93(5), 859–874.
1300 <https://doi.org/10.1002/sce.20334>

1301 Lyon, E. G. (2023). Reframing formative assessment for emergent bilinguals: Linguistically
1302 responsive assessing in science classrooms. *Science Education*, 107(1), 203–233.
1303 <https://doi.org/10.1002/sce.21760>

1304 Manneh, I. A., Rundgren, C.-J., Hamza, K. M., & Eriksson, L. (2018). Tutor-student interaction
1305 in undergraduate chemistry: A case of learning to make relevant distinctions of molecular
1306 structures for determining oxidation states of atoms. *International Journal of Science
1307 Education*, 40(16), 2023–2043. <https://doi.org/10.1080/09500693.2018.1517423>

1308 Miller, P. M., Carver, J. S., Shinde, A., Ratcliff, B., & Murphy, A. N. (2013). Initial replication
1309 results of learning assistants in university physics. *AIP Conference Proceedings*, 1513(1),
1310 30–33. <https://doi.org/10.1063/1.4789644>

1311 National Research Council. (2011). *A Framework for K-12 Science Education: Practices,
1312 Crosscutting Concepts, and Core Ideas*. National Academies Press.
1313 <https://doi.org/10.17226/13165>

1314 Odden, T. O. B., & Russ, R. S. (2019). Defining sensemaking: Bringing clarity to a fragmented
1315 theoretical construct. *Science Education*, 103(1), 187–205.
1316 <https://doi.org/10.1002/sce.21452>

1317 Oh, P. S., Ha, H., & Yoo, Y. J. (2022). Epistemological messages in a modeling-based
1318 elementary science classroom compared with a traditional classroom. *Science Education*,
1319 106(4), 797–829. <https://doi.org/10.1002/sce.21724>

1320 Östman, L., & Öhman, J. (2022). A transactional methodology for analysing learning. *Mind*,
1321 *Culture, and Activity*, 1–17. <https://doi.org/10.1080/10749039.2022.2042029>

1322 Otero, V., Pollock, S., & Finkelstein, N. (2010). A physics department's role in preparing
1323 physics teachers: The Colorado learning assistant model. *American Journal of Physics*,
1324 78(11), 1218–1224. <https://doi.org/10.1119/1.3471291>

1325 Otero, V., Pollock, S., McCray, R., & Finkelstein, N. (2006). Who Is Responsible for Preparing
1326 Science Teachers? *Science*, 313(5786), 445–446.
1327 <https://doi.org/10.1126/science.1129648>

1328 Park, J., Song, J., & Abrahams, I. (2016). Unintended Learning in Primary School Practical
1329 Science Lessons from Polanyi's Perspective of Intellectual Passion. *Science & Education*,
1330 25(1), 3–20. <https://doi.org/10.1007/s11191-015-9788-0>

1331 Pierre-Louis, J.R., Karch, J.M., & Caspari-Gnann, I. *Using practical epistemology analysis to
1332 address the individuality among students' in-the-moment learning in introductory
1333 chemistry and physics*, Poster presented at the National Meeting of the American
1334 Chemical Society, San Diego, CA, March 20-24, 2022.

1335 Piqueras, J., & Achiam, M. (2019). Science museum educators' professional growth: Dynamics
1336 of changes in research-practitioner collaboration. *Science Education*, 103(2), 389–417.
1337 <https://doi.org/10.1002/sce.21495>

1338 Rodriguez, J.-M. G., Bain, K., & Towns, M. H. (2020). The Role of Epistemology and Epistemic
1339 Games in Mediating the Use of Mathematics in Chemistry: Implications for Mathematics

1340 Instruction and Research on Undergraduate Mathematics Education. *International*
1341 *Journal of Research in Undergraduate Mathematics Education*, 6(2), 279–301.
1342 <https://doi.org/10.1007/s40753-019-00110-8>

1343 Russ, R. S., Lee, V. R., & Sherin, B. L. (2012). Framing in cognitive clinical interviews about
1344 intuitive science knowledge: Dynamic student understandings of the discourse
1345 interaction. *Science Education*, 96(4), 573–599. <https://doi.org/10.1002/sce.21014>

1346 Ryu, M., & Sikorski, T.-R. (2019). Tracking a learner's verbal participation in science over time:
1347 Analysis of talk features within a social context. *Science Education*, 103(3), 561–589.
1348 <https://doi.org/10.1002/sce.21493>

1349 Saldaña, J. (2013). *The Coding Manual for Qualitative Researchers* (2nd ed.). Sage.

1350 Scott, P. H., Mortimer, E. F., & Aguiar, O. G. (2006). The tension between authoritative and
1351 dialogic discourse: A fundamental characteristic of meaning making interactions in high
1352 school science lessons. *Science Education*, 90(4), 605–631.
1353 <https://doi.org/10.1002/sce.20131>

1354 Sedova, K., Sedlacek, M., Svaricek, R., Majcik, M., Navratilova, J., Drexlerova, A., Kychler, J.,
1355 & Salamounova, Z. (2019). Do those who talk more learn more? The relationship
1356 between student classroom talk and student achievement. *Learning and Instruction*, 63,
1357 1-11. <https://doi.org/10.1016/j.learninstruc.2019.101217>

1358 Sellami, N., Shaked, S., Laski, F. A., Eagan, K. M., & Sanders, E. R. (2017). Implementation of
1359 a Learning Assistant Program Improves Student Performance on Higher-Order
1360 Assessments. *CBE—Life Sciences Education*, 16(4), 1–10.
1361 <https://doi.org/10.1187/cbe.16-12-0341>

1362 Sevian, H., & Couture, S. (2018). Epistemic games in substance characterization. *Chemistry*
1363 *Education Research and Practice*, 19(4), 1029–1054.
1364 <https://doi.org/10.1039/C8RP00047F>

1365 Shi, M., & Tan, C. Y. (2020). Beyond Oral Participation: A Typology of Student Engagement in
1366 Classroom Discussions. *New Zealand Journal of Educational Studies*, 55(1), 247–265.
1367 <https://doi.org/10.1007/s40841-020-00166-0>

1368 Siry, C., Ziegler, G., & Max, C. (2012). “Doing science” through discourse-in-interaction:
1369 Young children’s science investigations at the early childhood level. *Science Education*,
1370 96(2), 311–326. <https://doi.org/10.1002/sce.20481>

1371 Sohr, E. R., Gupta, A., & Elby, A. (2018). Taking an escape hatch: Managing tension in group
1372 discourse. *Science Education*, 102(5), 883–916. <https://doi.org/10.1002/sce.21448>

1373 Suárez, E. (2020). “Estoy Explorando Science”: Emergent bilingual students problematizing
1374 electrical phenomena through translanguaging. *Science Education*, 104(5), 791–826.
1375 <https://doi.org/10.1002/sce.21588>

1376 Suárez, E., Quan, G., Hammer, D., & Atkins, L. (2023). Learning in Interaction: Interacting
1377 Scales of Research. In M. F. Tasar & P. R. L. Heron (Eds.), *The International Handbook
1378 of Physics Education Research: Learning Physics* (pp. 13-11-13-32). AIP Publishing.

1379 Talanquer, V., & Pollard, J. (2010). Let’s teach how we think instead of what we know. *Chemistry*
1380 *Education Research and Practice*, 11(2), 74-83.

1381 Talbot, R. M., Hartley, L. M., Marzetta, K., & Wee, B. S. (2015). Transforming Undergraduate
1382 Science Education With Learning Assistants: Student Satisfaction in Large-Enrollment
1383 Courses. *Journal of College Science Teaching*, 44(5), 24–30.

1384 Theobald, E. J., Hill, M. J., Tran, E., Agrawal, S., Arroyo, E. N., Behling, S., Chambwe, N.,

1385 Cintrón, D. L., Cooper, J. D., Dunster, G., Grummer, J. A., Hennessey, K., Hsiao, J.,

1386 Iranon, N., Jones, L., Jordt, H., Keller, M., Lacey, M. E., Littlefield, C. E., ... Freeman,

1387 S. (2020). Active learning narrows achievement gaps for underrepresented students in

1388 undergraduate science, technology, engineering, and math. *Proceedings of the National*

1389 *Academy of Sciences*, 117(12), 6476–6483. <https://doi.org/10.1073/pnas.1916903117>

1390 Van Dusen, B., & Nissen, J. (2020). Associations between learning assistants, passing

1391 introductory physics, and equity: A quantitative critical race theory investigation.

1392 *Physical Review Physics Education Research*, 16(1), 1–15.

1393 <https://doi.org/10.1103/PhysRevPhysEducRes.16.010117>

1394 Van Dusen, B., White, J.-S. S., & Roualdes, E. (2016). The Impact of Learning Assistants on

1395 Inequities in Physics Student Outcomes. In D. L. Jones, L. Ding, & A. Traxler (Eds.),

1396 *2016 Physics Education Research Conference Proceedings* (pp. 360–363). American

1397 Association of Physics Teachers. <https://doi.org/10.1119/perc.2016.pr.085>

1398 Vygotsky, L. S., & Cole, M. (1978). *Mind in society: Development of higher psychological*

1399 *processes*. Harvard university press.

1400 Walsh, K. H., Karch, J. M., & Caspari-Gnann, I. (2022). In-the-moment Learning of Organic

1401 Chemistry During Interactive Lectures Through the Lens of Practical Epistemology

1402 Analysis. In N. Graulich & G. Shultz (Eds.), *Student Reasoning in Organic Chemistry*.

1403 Royal Society of Chemistry, (pp. 151-158).

1404 Wertsch, J. V. (1998). *Mind as action*. Oxford university press.

1405 White, J.-S. S., Van Dusen, B., & Roualdes, E. A. (2016). The Impacts of Learning Assistants on

1406 Student Learning of Physics. In D. L. Jones, L. Ding, & A. Traxler (Eds.), *Physics*

1407 *Education Research Conference Proceedings* (pp. 384–387). arXiv.

1408 <https://doi.org/10.48550/arXiv.1607.07469>

1409 Wickman, P.-O. (2004). The practical epistemologies of the classroom: A study of laboratory

1410 work. *Science Education*, 88(3), 325–344. <https://doi.org/10.1002/sce.10129>

1411 Wickman, P.-O. (2006). *Aesthetic Experience in Science Education: Learning and Meaning-Making as Situated Talk and Action*. Routledge. <https://doi.org/10.4324/9781410615756>

1413 Wickman, P.-O., & Östman, L. (2002). Learning as discourse change: A sociocultural

1414 mechanism. *Science Education*, 86(5), 601–623. <https://doi.org/10.1002/sce.10036>

1415 Wickman, P.-O., Prain, V., & Tytler, R. (2022). Aesthetics, affect, and making meaning in

1416 science education: An introduction. *International Journal of Science Education*, 44(5),

1417 717–734. <https://doi.org/10.1080/09500693.2021.1912434>

1418 Zhang, J., Tian, Y., Yuan, G., & Tao, D. (2022). Epistemic agency for costructuring expansive

1419 knowledge-building practices. *Science Education*, 106(4), 890–923.

1420 <https://doi.org/10.1002/sce.21717>

1421 Zhang, Y. (2008). Classroom discourse and student learning. *Asian Social Science*, 4(9), 80–83.

1422

1423

1424