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Robotic manipulation of fabric has potential as an enabling accessibility tech-
nology for individuals with disabilities, opening up a range of employment
opportunities and helping to decrease the underemployment of this popu-
lation. This research seeks to reliably characterize wrinkles and facilitate
robotic removal of the wrinkles, with the focus on managing the outfeed of
a sewing process, facilitating employment for individuals unable to reach
behind the machine while performing sewing tasks. Outfeed management
is critical in sewing to prevent bunching and maintain sewing productivity.
To smooth out a fabric and eliminate wrinkles, the wrinkles need to be
located and characterized, and points identified where a robotic arm can
apply force on the fabric to smooth the fabric. For this purpose, we employ
a deep learning technique to detect wrinkles and use corner detection of the
fabric to determine an effective point for wrinkle removal.

CCS Concepts: « Human-centered computing — Accessibility technolo-
gies; « Computing methodologies — Deep learning approaches; Computer
vision.
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1 INTRODUCTION

The Abilities-First group at Michigan State University is explor-
ing methods to increase workforce participation for individuals
with disabilities. Our approach towards disability inclusion is com-
prehensive, focusing on augmenting individual abilities using a
range of technologies and workflow-oriented strategies. Through a
partnership with Peckham, Inc. of Lansing, MI, we are specifically
addressing the increased inclusion of individuals with disabilities in
the garment industry. Peckham is a producer of clothing and has
a corporate mandate to employ individuals with disabilities as a
significant percentage of their workforce.

Individuals with disabilities represent a large and greatly under-
utilized workforce. While these individuals represent 11.9% of the
available US workforce, their employment rate of only a little over
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19% is small compared to the 65.4% employment rate for individuals
without disabilities [2]. Individuals with disabilities are significantly
underemployed relative to the general population and this disparity
is even worse in developing countries [16]. Accessible technologies
have the potential to greatly increase employment opportunities in
a variety of industries. We are specifically addressing tasks related
to sewing.

Industrial sewing requires training and maintenance of skills.
In particular, it requires manual manipulation of fabric and hand-
eye-foot coordination. Hands guide the cloth to the machine and
machine operation is controlled by a foot pedal. We are exploring
a range of workplace augmentations to support individuals with
disabilities. This paper’s research is part of a project aimed at en-
hancing a sewing environment with robotic support, specifically
to assist in guiding the fabric. Fabric tends to bunch behind the
machine in unpredictable ways. Traditionally, the worker will use
their left hand to regularly reach behind the machine, manipulating
the fabric to ensure a smooth outfeed from the sewing operation.
This activity limits the participation of individuals who have only
one hand or arm, have insufficient mobility to reach behind the
machine, or experience pain when attempting to reach behind the
machine.

The goal of the work described in this paper is to create a robotic
assistant that can smooth the outfeed fabric. Rather than replacing
a worker with a robot, our solution seeks to utilize a robot as an
assistant in the task to allow a range of individuals with disabilities
to be employed who would not be able to complete the sewing task
in a timely manner.

Our preliminary work is focused on determining the locations of
wrinkles due to fabric bunching and determining action points and
the directions where a robot can manipulate the fabric to remove the
wrinkle. Our system is unique in its ability to operate independently
of textures, sizes, and backgrounds, addressing a gap in existing
work that does not serve varying textures and cloth sizes.

2 RELATED WORK

In recent advancements, the combination of cloth detection and
control in deformable object manipulation has seen significant inno-
vation. Researchers have developed algorithms for both recognizing
cloth states and executing precise control actions. Detection tech-
niques often utilize computer vision, with methods ranging from
deep learning-based image processing to extracting specific features
like wrinkles or folds. Control strategies leverage these detection
outputs, employing methods like reinforcement learning, path plan-
ning, or force control for effective robotic manipulation. This dual
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focus on detection and control has led to improvements in tasks like
automated folding, sorting, and sewing of textiles.

2.1 Cloth and Wrinkle Detection

Research in cloth manipulation and wrinkle detection/removal has
focused on two major activities: wrinkle detection and grasping
point determination. In order to effectively manipulate cloth to re-
move wrinkling and bunching, modeling of the cloth and its intricate
features, such as wrinkles, is required.

A prevalent method in many papers is image processing, which
includes Gabor Filtering for wrinkle analysis [17, 30], contour de-
tection using computer vision techniques [15], binary thresholding
[10], and edge detection [7]. General image processing approaches
are also employed [5, 20, 21]. Sun et al. utilize range map analysis for
wrinkle detection [24]. Our early work explored this range of tech-
niques and found them to be limited when fabric is more complex
than simple smooth and evenly colored cloth. In particular, fabric
with detailed patterns defeats most image processing methods.

A significant number of studies have utilized depth maps for de-
tecting clothes and wrinkles. Features are often extracted from Red-
Green-Blue-Depth (RGBD) images [11, 25, 28]. Notably, Zhengxin et
al. specifically extracted 3D geometric features from fabric wrinkles
using a 1/f noise function [31]. Capturing 3D point clouds is another
common approach [1, 3]. Ramisa et al. describe a method using a
Kinect sensor, initially capturing the depth and RGBD images of
wrinkled clothes, followed by applying SIFT and GDH descriptors
to these images [18]. A problem with depth-based approaches is the
requirement of expensive depth camera hardware. While a Kinect
sensor is not expensive, it is unlikely that it would hold up in a
factory setting.

To enhance detection accuracy, several studies have incorporated
deep learning techniques. Neural networks and Convolutional Neu-
ral Networks (CNNs) have been particularly effective in cloth de-
tection tasks [19, 27]. These advanced computational methods have
significantly improved the ability to detect and analyze complex
fabric structures.

None of the studies reviewed have addressed problems related to
textured images or developed an algorithm that operates indepen-
dently of the fabric’s color or texture. Our research confronts this
challenge and aims to create an algorithm that is robust in a variety
of content settings.

2.2 Cloth Manipulation

A popular strategy in robotic cloth manipulation is the use of rein-
forcement learning to adaptively refine control policies. Wu et al.
introduce Maximum Value under Placing (MVP), a method enhanc-
ing the efficiency of deformable object manipulation [29]. Few-shot
learning and sparse rewards to enhance control policy learning [10],
Deep P-Network (DPN), and Dueling Deep P-Network (DDPN) [27]
have also been utilized. Grontved et al. focus on a reinforcement
learning agent for comprehensive motion planning [7], and She-
hawy et al. apply the Deep Deterministic Policy Gradient (DDPG)
algorithm for more nuanced control [20].

Different studies have proposed methods for the effective grasp-
ing and folding of cloth. Miller et al. utilize a g-fold mechanism,
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focusing on geometric reasoning for folding polygonal cloth [15].
Bersch et al. evaluate grasping actions using a score function based
on geometric features [1] and Fontana et al. employ soft fingers at
predefined grasping points for wrinkle flattening [5]. Williamon et
al. introduce a two-phase method for cloth wrinkle and fold removal.
The first phase involves preliminary smoothing without depth data,
with the robot pulling at the cloth’s edges. The second phase re-
fines this by using depth data to target and rectify complex folds,
optimizing the grasp points, and pulling directions [28].

Several papers have incorporated sophisticated learning algo-
rithms for task execution such as the random-forest algorithm [11]
or the VisuoSpatial Foresight (VSF) framework for predictive plan-
ning in fabric smoothing and folding [9]. Saxena et al. detect optimal
grasping points using class-specific convolutional neural networks
(CNNs) [19], and Sun et al. apply heuristic-based strategies for au-
tonomously flattening wrinkles [24].

Understanding the direction and amount of force needed is cru-
cial for successful manipulation. Qiu et al. have investigated the
smoothing efficiency of a stretching direction perpendicular to the
wrinkles [17]. Sun et al. utilize different poses to grasp and ma-
nipulate garments, emphasizing the geodesic distance for gentle
handling [25].

3 METHODOLOGY

In the process of cloth flattening, our primary task is to identify
wrinkles and, for each, a corresponding line that best represents the
dominant folding of the wrinkle. Once identified, we target wrinkle
elimination through strategic actions. Specifically, we select one
of the cloth’s corners as the action point, depending on the largest
wrinkle position and orientation. The action point is a selected
location where a robot will grasp the cloth and pull it to remove the
wrinkle. The chosen corner then determines the pulling direction. In
early development, we are manually performing the pulling action.
We have a Fanuc LR/Mate robotic arm we are integrating it into
the system, as illustrated in Figure 1. This is an iterative process,
continuously focusing on the most prominent wrinkle until the
cloth is smooth.

To support and refine our methodology, we compiled a compre-
hensive dataset comprising both captured and synthetic images of
wrinkled cloth. This dataset serves as a foundation for training and
testing our wrinkle detection algorithms. We utilize deep learning
and a series of image-processing techniques. The deep learning
approach allows the system to work for a wide variety of cloth
textures, sizes, and backgrounds.

To enhance precision and flexibility, we create a binary mask of
the fabric and devise an algorithm for identifying the cloth’s four
corners. This allows us to select the most suitable action point from
these four corners.

Upon identifying the wrinkle line and corners, we calculate an
orthogonal line relative to the wrinkle line and identify the closest
corner to this orthogonal line. This step is crucial for understanding
the spatial relationship between the wrinkle and the cloth’s geome-
try, thereby guiding us to the optimal pulling direction for effective
wrinkle removal. The subsequent action involves projecting the
pulling vector onto the cloth and manually following this direction
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Fig. 1. Fanuc LR/Mate robot arm manipulating fabric
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Fig. 2. The overall workflow of our proposed method to flatten a cloth

to stretch the fabric with a human operator. We repeat this process,
continuously adjusting our strategy based on the cloth’s changing
wrinkle topology until the fabric is entirely free of wrinkles. Figure
2 illustrates the complete process flow of our proposed technique
for flattening a fabric.

3.1 Dataset Preparation

Our early work on wrinkle detection focused on the application of
conventional computer vision methods for detection of the wrinkles.
Methods as simple as thresholding [22] or ridge detection [4] work

for simple fabrics with a uniform color. However, they fail for fabrics
with patterns. This naturally moved development to the application
of deep learning approaches which could be trained to recognize
wrinkles in a wide range of fabrics. Supporting an effective machine
learning solution requires a robust and representative data set, of
hundreds to thousands of images. In our work, we have captured
and hand-annotated a couple hundred images for training data, but
capture and annotation is a tedious process and is sensitive to the
camera and lighting setup and the quality of the annotator. While
we anticipate building a larger set of captured and annotated images,
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(a) Wrinkled Cloth

(b) Wrinkle Mask

Fig. 3. A sample of synthetic data

the bulk of the training data set we are currently using is rendered
synthetic images.

A program was created that simulated cloth being dropped onto
a surface with virtual obstacles that forced the cloth to wrinkle.
50cm? cloth sheets were simulated by a 40 x 40 vertex triangle
mesh. For each generated image, a texture is selected randomly
from a library of cloth textures. The size, placement, and rotation
of the texture are randomized. A modified version of Extended
Position Based Dynamics (XPBD) [13] is used to simulate the physics
of cloth with 16.6ms time integration steps and 15 sub-steps [14].
Horizontal and vertical structural springs model the limited stretch
in fabrics. Crossed diagonal shear springs are applied to control
shearing. Translation-based bend springs are applied horizontally
and vertically over a three-vertex range to control the fabric bending
characteristics.

The cloth sheets are dropped from a height of 15¢m onto random-
ized obstacles and allowed to settle. The settled mesh is rendered
using OpenGL and simple Gouraud shading using a custom shader
that simulates an overhead light source and Lambertian illumination
[6]. The camera position is randomized so that each image has some
rotation applied and varies in size. Images require approximately
3 seconds to produce on an M1 Max-based Macbook Pro, allowing
around 2,000 images to be produced in less than two hours. For each
image, a wrinkle mask is produced based on the rendered image
depth information. Example program output is presented in Figure
3.

3.2 Cloth Wrinkle Detection

In our study, we address the challenge of wrinkle detection in fabrics,
encompassing both textured and designed fabrics as well as plain
textiles of various colors. To achieve this, we employ a deep learning
approach, the Segment Anything Model (SAM) initially proposed
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by Meta Al [12]. This model is renowned for its robustness and
versatility in segmenting a wide range of objects within images.
We use this model to compute a mask of the wrinkle. The pre-
trained SAM model is refined with the dataset that we prepared.
The dataset is divided 90%-10% for training and testing purposes. For
training, we employ Dice loss as our loss function [23], a commonly
preferred option for tasks involving masking. Dice loss is a measure
of the dissimilarity between the predicted segmentation and the
true segmentation. It is based on the size of the intersection area in
relation to the total areas of the predicted and true segmentation. The
model underwent 200 epochs of training on our synthetic dataset,
resulting in a reduction of the Dice loss from 0.51 to 0.084. To assess
the model, we have adopted the Intersection over Union (IoU) metric.
The calculation of IoU is based on Equation 1 where Agyeriqp is the
area of the overlap between the predicted mask and the ground truth
mask and Aypion is the area of the union between the predicted
mask and the ground truth mask

onerlap

IoU = (1)

Aunion
After this fine-tuning process, the model achieved an IoU score of
64.67% over the test set. The output from this model is a binary
mask, effectively highlighting the wrinkle areas against the fabric
background.

Upon obtaining the wrinkle mask, our methodology integrates
advanced computer vision techniques to further refine and analyze
these results. Initially, an opening operation is applied to the binary
mask, which serves to remove noise and isolate significant wrinkle
features. Subsequently, a contour detection algorithm is applied to
identify and quantify the wrinkles present in the fabric [26]. This
analysis includes the count of wrinkles, their respective magnitudes,
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(a) Predicted Wrinkle Mask

(b) Wrinkle Lines

Fig. 4. (a) Initially, the wrinkle mask is identified using a deep learning technique and (b) subsequently, lines that align with the wrinkles are determined

through computer vision algorithms.

L |

(a) Cloth Mask

b) Extra Corners Detected by the algorithm

(c) Filtered Corners of the Cloth

Fig. 5. (a) Initially, the cloth mask is identified using a deep learning method, (b) followed by the detection of corners using the Harris Corner Detector, (c) and
then the four corners are pinpointed by calculating the shortest distances from the four corners of the frame.

and their orientations. Figure 4 displays the identified wrinkle mask
alongside the associated wrinkle lines.

Special attention has been given to the wrinkle with the largest
area, as it typically signifies the most prominent deformation in the
fabric. We then pinpoint the start and end pixels of this principal
wrinkle and proceed to fit a line over its span. This procedure allows
us to accurately delineate the wrinkle line, providing a representa-
tion of the most significant wrinkle in each fabric sample.

3.3 Corner Detection

In our approach to corner detection, we confront the challenge posed
by the variability in image conditions, particularly those caused by

differences in lighting conditions, resolutions, backgrounds, and
other environmental factors. Traditional image processing tech-
niques, while effective under consistent conditions, often falter
when faced with such variability. To counter this, we first gen-
erate a binary mask of the clothing item. This initial step is pivotal
as it creates a controlled and uniform environment for subsequent
processing, effectively mitigating the impact of inconsistent imag-
ing conditions. To extract the cloth’s mask we use a pre-trained
segmentation model provided by Meta AI [12]. This model effec-
tively generates a binary mask. To enhance the quality of the mask
and decrease noise, an opening operation is applied consisting of
erosion followed by dilation. This step ensures that the subsequent
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corner detection is not influenced by any artifacts or noise present
in the original image.

Following the mask refinement, we employ a Harris Corner De-
tector [8], to identify potential corner points on the cloth. The Harris
Corner Detector is particularly well-suited for this task due to its
ability to detect corners based on local changes in intensity, which
correlates well with the geometrical features of the cloth. However,
as the cloth is not laid out flat, this method initially identifies numer-
ous corners, including those with wrinkles and folds, in addition
to the actual corners of the cloth. To isolate the true corners of the
cloth, we implement a distance-based filtering approach. For each
corner detected on the cloth, we calculate its Euclidean distance to
the corners of the captured image frame. The corners of the cloth
with the minimum distances to these image frame corners are then
selected as the most probable actual corners of the cloth. Figure 5
illustrates the output at each stage of the corner detection process.

3.4 Action Point and Pulling Direction Determination

To flatten a cloth, the methodology involves iteratively selecting
an action point and determining the optimal pulling direction. Ini-
tially, the most prominent wrinkle is identified, then one of the
four corners of the cloth is designated as the suitable action point,
Celosest> Which, when manipulated, would most effectively remove
the wrinkle. The pulling direction is then calculated as an angle
pointing towards the orthogonal line of the wrinkle, ensuring that
the action exerted maximally flattens the wrinkle. This process is
repeated, continually reassessing the cloth’s state and adjusting the
action point and direction accordingly.

The most suitable action point is determined through a two-step
minimization process. This task is approached by first constructing
a line through the center of the wrinkle that is orthogonal to a
line representing the target wrinkle. This line is characterized by
the equation aorx + bory + cor = 0. The orthogonal line to a given
wrinkle is determined by first calculating the slope of the wrinkle
line from its start and end points. This slope is then used to derive
the negative reciprocal for the orthogonal line’s slope, ensuring
perpendicularity. Special cases where the wrinkle line is horizontal
or vertical are handled distinctly by assigning appropriate coeffi-
cients, ensuring that the orthogonal line always effectively counters
the wrinkle’s direction. Initially, each corner C; of the cloth is con-
sidered, where i = 1,2, 3, 4, and its perpendicular distances to the
wrinkle’s orthogonal line are calculated. The two corners exhibiting
the minimum perpendicular distances are then identified through
the minimization process using Equation 2.

laorCix + borCiy + corl

[ 2 2
aor + bor

Subsequently, the focus shifts to these two selected corners. The
corner from these two that is closest to the center of the wrinkle P,
thereby having the minimum Euclidean distance, is determined and
designated as Cgjpgesy Using Equation 3.

@

{Cmin1, Cmin2} = arg min
i€1,2,3,4

Celosest = argmin (\/(Px - Cminl-,x)2 + (Py - Cmin,-,y)z) (3
i€l,2
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The pulling direction is established by constructing an orthogonal
line to the wrinkle, with the start point S at C,j,es; and the end point
E extending a fixed distance away in the direction perpendicular to
the wrinkle. Now that we have the start point s and the end point e
of the wrinkle line and the start point S and the end point E of the
orthogonal line, the critical intersection point I where the wrinkle
line and the orthogonal line meet is determined by solving Equation
4 and Equation 5.

(ey — syl + (sx —ex)Iy = (ey —5y) *sx + (sx —ex) x5y (4)

(Ey = Sy)lx + (Sx — Ex)Iy = (Ey — Sy) * Sx + (Sx — Ex) * Sy (5)

The subsequent analysis involves evaluating the orientation of
the end point of the orthogonal line E relative to the intersection
point I using two vectors SI=S—TandEIl = E - I. The lengths
of the two vectors ||SI|| and ||EI|| are computed. If ||SI|| > ||EI||, it
indicates that the end point E is closer to the wrinkle, necessitating a
change of 180° in direction. The end point is thus adjusted to ensure
the force exerted pulls the cloth away from the wrinkle, effectively
flattening it. The resulting action is visually represented by an arrow
drawn from C,jyes; pointing towards the newly determined pulling
direction as shown in Figure 6.

4 EXPERIMENTS
4.1 Sample Trial

Figure 7 illustrates the method’s iterative process. The task involves
several repetitions to smooth out a cloth. Initially, an image is taken.
The system then determines the largest wrinkle location, the action
point, and the direction to pull. As the pull proceeds, another image
is captured, and the system identifies the next most prominent
wrinkle line and the direction to pull. This cycle is repeated until
no wrinkles remain.

4.2 Wrinkle Detection

The algorithm for detecting wrinkles has undergone assessment on
images with diverse textures. The evaluation of wrinkle detection
effectiveness is based on the Recall metric. The calculation of Recall
is defined by the Equation 6.

Number of correctly predicted wrinkles
Recall =

Number of wrinkles in the ground truth ©)
A wrinkle is correctly identified if its angle meets a specific threshold
compared to the original angle. The Recall values for various chosen
textures are shown in Table 1. It is observed that images with plain
textures yield higher Recall scores in comparison to those with
complex textures.

In this study, our primary objective is to ascertain the location and
orientation of wrinkles; precise masks are not essential. Therefore,
the IoU score is not vital for our objective. For instance, Figure 8
compares the original and predicted masks of an image with an
IoU score of 33.75%. The figure demonstrates that our algorithm
is capable of adequately detecting the position and orientation of
wrinkles, which meets our requirements.
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(a) Wrinkle Line and Ccjosest

(b) The orthogonal direction

(c) The pulling direction and the action point

Fig. 6. (a) Cclosest is determined by the two-step minimization process, (b) The orthogonal direction is determined which is pointing towards the wrinkle, (c)

The direction is fixed using the position of the intersection I.

(a) First Iteration

(b) Second Iteration

(c) Flattened Cloth

Fig. 7. (a), (b), (c) illustrate the multiple iteration process of the system

4.3 Corner Detection

To assess the corner detection algorithm, we design a metric CDR
(Corner Detection Rate). A corner is considered as correctly detected
if the Euclidean distance d(true, detected) between a detected cor-
ner detected and the nearest true corner true is less than or equal
to a specified threshold. CDR is calculated by Equation 7

21 1(mingesecreq(d(true;, detected)) < threshold)

n

CDR =

Table 2 presents the CDR for various textures. While the majority
of textures exhibit relatively uniform CDR scores, a small number
of textures have resulted in marginally lower CDR scores.

4.4 Cloth Flattening

We created various types of wrinkles on clothes and conducted
iterative tests. The number of iterations needed for different types
of wrinkles are detailed in Table 3.

It is evident that inclined wrinkles require fewer iterations, as
pulling from the cloth corners is most effective for them. However,
for horizontal and vertical wrinkles, even though pulling in the
direction orthogonal to the wrinkles is employed, corners alone can-
not eliminate wrinkles in a single iteration. At least three iterations
are necessary to remove each wrinkle. In the case of mixed wrinkles,
multiple iterations are needed since pulling one corner may remove
the targeted wrinkle but simultaneously create additional wrinkles
in different directions on the cloth.
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Table 1. Some Textures with their Recall Scores

(a) Original Image

(b) Predicted Mask (c) Original Mask

Fig. 8. The prediction and ground truth mask of an image with an loU score of 33.75%

5 DISCUSSIONS

As a work in progress, we are constantly increasing our training

dataset including both real and synthetic images. Generalizing wrin-

Index Texture Number of Images Recall (%)
g
1 agg 9 83.33
2 14 86.90
3 13 57.69
4 10 90.00
5 11 90.90
6 7 57.14
7 11 93.94
8 13 57.69
9 12 80.56
10 13 65.38

kle detection requires a wide range of fabric examples. The model’s
performance was evaluated using both synthetic and captured data,
showing enhanced effectiveness with synthetic data, primarily due
to the training focus on such data. Moreover, our algorithm demon-
strates superior performance on plain, single-colored images com-
pared to textured ones, as detecting wrinkles in textured images is
comparatively challenging, even for the human eye.

Detecting the four corners of a quadrilateral-shaped cloth is chal-
lenging due to the complexity introduced by wrinkles, which can
significantly distort the perceived shape and boundaries of the cloth,
making it hard to accurately identify the corners. We are exploring a
deep learning solution to this problem to be more general, but have
had good results with our variations of the Harris Corner Detection
method as applied to the binary masks of the images. This method
works effectively for both synthetic and real data.

Detecting action points involves complex calculations and ad-
dressing various edge cases. The system reliably determines action
points and pulling directions across diverse datasets.

6 FUTURE WORK

In future iterations of our wrinkle detection and removal system,
the primary focus will be on automating the process through the
integration of robotics and reinforcement learning. Robotic manipu-
lators will replace manual handling, requiring sophisticated control
systems for precise fabric manipulation. Concurrently, reinforce-
ment learning will optimize wrinkle removal strategies, enabling
the system to adapt and improve over time. This approach aims to
enhance efficiency, accuracy, and adaptability, facilitating broader
applicability across various fabric types and settings.

7 CONCLUSION
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We propose a novel approach towards cloth flattening, focusing
on the development and implementation of methods using deep
learning and image processing irrespective of various textured and
patterned cloth. The current work lays a strong foundation for fu-
ture enhancements that promise to significantly improve its efficacy.
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Table 2. Some Textures with their CDR Scores

Index Texture CDR (%)
1 79.73
2 86.54
3 83.10
4 72.86
5 85.53
6 87.50
7 83.58
8 79.46
9 85.56
10 87.50
11 86.29
12 83.33

The advancements made in this study, particularly in wrinkle detec-
tion and the wrinkle removal technique, mark critical steps in the
application of these technologies in assistive environments. This has
the potential to create employment opportunities for individuals
with disabilities that limit their ability to engage in two-handed
tasks and open a new worker population for industries currently
facing a shortage of available workers.
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