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A B S T R A C T

The increasing growth of data volume, and the consequent explosion in demand for computational power,
are affecting scientific computing, as shown by the rise of extreme data scientific workflows. As the need
for computing power increases, quantum computing has been proposed as a way to deliver it. It may
provide significant theoretical speedups for many scientific applications (i.e., molecular dynamics, quantum
chemistry, combinatorial optimization, and machine learning). Therefore integrating quantum computers into
the computing continuum constitutes a promising way to speed up scientific computation. However, the
scientific computing community still lacks the necessary tools and expertise to fully harness the power of
quantum computers in the execution of complex applications such as scientific workflows. In this work, we
describe the main characteristics of quantum computing and its main benefits for scientific applications, then
we formalize hybrid quantum–classical workflows, explore how to identify quantum components and map
them onto resources. We demonstrate concepts on a real use case and define a software architecture for a
hybrid workflow management system.
1. Introduction

Scientific computing is a branch of computer science spanning dif-
ferent disciplines (i.e., biology, chemistry, engineering), whose goal is
the development of standardized and accurate simulations of different
phenomena. Scientific computation is typically modeled by scientific
workflows, whose execution is managed by Workflow Management
Systems (WMSs) (e.g., Pegasus [1], ASKALON [2], Airflow [3]). The
mportance of scientific workflows has been proven by the Nobel-Prize-
inning research on gravitational waves, which employed LIGO data
nalysis workflows managed by Pegasus WMS1 [4], and their broad
pplicability to critical fields [5] such as drug design [6], material
sciences [7], and simulations of the spread of Covid-19 [8]. The increas-
ng complexity of scientific workflows calls for increasing computing
ower, which is provided by HPC clusters [9].
Current HPC systems are faced with the end of Moore’s law [10].

his means that we cannot increase the computing power at the same
ate as before. Consequently, HPC researchers are considering alter-
ative forms of computing to satisfy the increasing demands of sci-
ntific applications, enabling the transition to Post-Moore scientific
omputing [11].

∗ Corresponding author.
E-mail address: vincenzo@ec.tuwien.ac.at (V. De Maio).

1 Nobel Prize-winning discovery on gravitational waves came about with contributions from USC scientists.

In the landscape of Post-Moore computing, quantum computing
promises substantial performance improvement [12,13]. Quantum com-
puting can increase application performance, due to the proven theo-
retical speedup for different scientific problems [14,15] and its native
modeling of many scientific phenomena [16]. However, despite the
theoretical speedup, the current state-of-the-art hardware is bound
by the following shortcomings (1) limited availability of hybrid re-
sources, (2) susceptibility of qubits to noise and errors in the Noisy
Intermediate-Scale Quantum (NISQ) devices [17–19], (3) limited tech-
nical capabilities and engineering shortcomings at the hardware level:
several requirements, such as highly-controllable qubits (high-fidelity
state preparation and qubit register initialization), large counts of
quantum gates (for e.g. deeper quantum circuits have higher CNOT
(controlled-NOT) counts, which contribute to larger error rates as
compared to single-qubit gates) operating within the coherence limits
of the qubits (for e.g. shorter gate times and efficiency), and consider-
ably large circuit depths (starting from qubit initialization to the final
measurement). In order to run quantum algorithms (cryptosystems-
based algorithms, such as Shor’s integer factorization algorithm for
breaking the RSA-2048 scheme [20]) require large-scale logical qubit
devices or alternatively physical qubits and quantum gates ranging
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between thousands to millions [21], and (4) challenges in suppressing
errors, for e.g. protecting entanglement between logical qubits [22]
(fault-tolerant quantum computation) arising due to the lack of fault-
tolerant logical algorithms/quantum error correction (QEC) schemes at
the experimental level.

A broad category of workflows tasks can be propelled by utiliz-
ing quantum processors. These range from (a) accelerators that are
interoperable with classical architectures, resulting in hybrid quantum–
classical systems [23] or neuromorphic architectures [24], (b) stochas-
tic and probabilistic sampling methods such as Monte Carlo (MC)
estimation, (c) Programmable array of qubits, for synthetic simula-
tion of other quantum systems, also known as quantum simulators,
e.g., quantum phases of matter and critical dynamics of many-body
systems [25,26].

In the field of gate-based NISQ, the most influential paradigm sub-
class of hybrid models are the Variational Quantum Algorithms (VQAs)
[27], where classical and quantum hardware are tightly copuled and
cooperate in the achievement of a specific task. VQAs are turning out to
be one of the much anticipated workhorses in the hybrid computation
arena. These include fluid dynamics, quantum chemistry simulations,
for e.g., accurate calculations of electronic structure using Hartree–Fock
methods [28]. Molecular dynamics (MD) is another highly suitable use-
case, for e.g., simulating weakly bound, coarse-grained intermolecular
interactions and groundstate determination [29].

In this work, we investigate the problem of executing scientific
workflows on hybrid quantum–classical ecosystems. First, we identify
and formalize the main actors involved in the process. Based on our
model, we design a hybrid quantum–classical workflow starting from
a classical molecular dynamics workflow designed for Pegasus WMS.
Then, we provide an idea of how to allow the execution of scientific
workflows on hybrid quantum–classical systems and identify challenges
and possible solutions. Finally, we provide an outlook on the field and
identify possible trends for future research in the area.

We focus on scientific applications, which provide major oppor-
tunities for quantum modeling and quantum speedup [23]. Also, we
consider Pegasus [1], a well-known WMS, as the reference architecture
for WMSs.

The paper is organized as follows: first, we analyze related work
in Section 2, then we provide the theoretical foundations of our work
in Section 3 (Appendixes provide additional background in quantum
computing). In Section 4, we provide the definition of hybrid quantum–
classical workflows and how to transform a classic workflow into a
hybrid quantum–classical workflows. In Section 5, we describe our
molecular dynamics simulation use case as a running example of the
transformation from classical to hybrid quantum–classical workflows.
We then describe our vision of hybrid workflow execution in Section 6,
hile in Section 7 we identify the challenges that must be tackled to

enable it. Finally, we conclude our paper in Section 8.

2. Related work

Quantum computing has been first theorized by Feynman [30].
Advantages and ideas for quantum supremacy over superconducting
qubits are described in [31], while [32] describes the circuit-based
model of computation. Similarly, [33] focuses on ion-traps, while [34]
describes D-Wave quantum annealers.

In [35], a first study on how to transform classical workflows
into hybrid quantum-classical workflows is performed. In particular,
it focuses on machine learning applications [36] and also describes
methods for the identification of quantum candidates and splitting
scientific applications between classical and quantum hardware. Appli-
cations of quantum computing to scientific applications can be found
in many domains, ranging from drug design [37], molecular dynam-
ics [38], financial modeling [39], manufacturing industry [40], lin-
ear optimization [41], and healthcare [42]. In the above examples,
scientific workflows are not considered.
347
VQAs, one of the typical applications of hybrid classic–quantum sys-
tems, are described in [43]. In [44], different applications of VQAs are
described. Still in the context of variational quantum algorithms, [45]
focuses on photonic quantum platforms, while [46,47] focus on the
variational quantum eigensolver, that is a common task in scientific
computations. Applications of VQAs can be found in different sci-
entific applications, such as molecular dynamics [38], accelerating
machine learning workloads [15] and combinatorial optimization [43].
However, few works address the integration of VQAs in scientific
workflows.

Efforts in standardizing hybrid applications are performed also from
a software engineering perspective. In [48], a survey about the state of
the art in quantum software engineering is performed. Works like [49]
focus on the software development cycle for quantum applications.
Other approaches [50,51] focus on automatic synthesis of quantum
programs.

Classical workflow management systems such as Pegasus, ASKALON,
and DagsHub2 are described respectively in [2,52]. Execution of work-
flows in hyper-heterogeneous architectures is described in [53]. Also,
[54] proposes a characterization of workflow management systems for
data-intensive applications. Support for quantum workflow is provided
in tools such as Orquestra [55] and Covalent [56]. In this work, we
provide guidelines on how to adapt existing classical scientific work-
flows into hybrid quantum–classical scientific workflows and how to
extend existing classical WMS to integrate both quantum and classical
hardware.

We extend the outlined works by focusing on the integration of
quantum machines in the execution of HPC applications. We generalize
the concept of hybrid quantum–classical workflows, defining differ-
ent execution models for hybrid quantum–classical applications and
validating our findings on a real-world molecular dynamics simula-
tion workflow. Based on our findings, we identify open challenges
and possible solutions for the integration of quantum devices in HPC
applications.

3. Background

3.1. Scientific workflows

Scientific Applications in different domains (i.e., finance, biology,
chemistry, engineering) can be decomposed in elementary tasks (i.e., ag-
gregate data from different sources, average a set of samples, apply a
method to a specific dataset). Tasks can be combined into workflows,
represented as directed acyclic graphs (DAGs) [2,52,57] where nodes
represent the tasks and edges model data and control dependencies
between tasks.

Definition 3.1 (Scientific Workflows). A workflow 𝑊 can be formally
defined as a DAG 𝑊 = (𝑇 ,𝐸), such that 𝑇 is a set of tasks and 𝐸 the
set of edges, with 𝐸 ⊂ 𝑇 × 𝑇 .

Workflows modeling scientific applications are called scientific work-
flows. Workflows and tasks can be stored in public repositories (i.e., Pe-
gasus workflow gallery3), allowing re-use of validated code, repeatabil-
ity of simulation, (possibility to easily repeat the setup and execution
of a simulation), which increases confidence in simulation’s results,
and reproducibility of computation (possibility to reproduce and verify
results of computation), creating opportunity for new insights and
reducing measurements errors. Also, workflows are fundamental for
the development of standardized, robust, and accurate simulations of
different phenomena.

2 https://dagshub.com/
3 https://pegasus.isi.edu/workflow_gallery/

https://dagshub.com/
https://pegasus.isi.edu/workflow_gallery/
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3.2. Workflow management systems

Execution of scientific workflows on HPC infrastructures requires
different software layers, to enable (1) scheduling of workflow tasks
onto different computing resources, (2) management of data, includ-
ing intermediate data products (either streaming data, or scientific
datasets), (3) interoperation between different heterogeneous resources
(e.g., Cloud/Edge nodes, academic clusters), and (4) fault tolerance
(e.g., checkpointing of execution, re-execution of tasks).

3.3. Quantum computing

Recent years have seen a major boom in the areas of quantum
information processing and quantum technologies. The huge surge
in academic interest and industrial investment in quantum happened
more or less after the seminal publication by Google Inc. on Quan-
tum supremacy using a programmable superconducting processor [31].
long with neuromorphic computing architectures, quantum compu-
ation, and quantum simulation have emerged as some of the most
romising paradigms in alternative computing architectures. Multiple
uantum platforms based on superconducting qubits like the IBMQ
niversal quantum computer [58], programmable atomic arrays [26],
trapped-ion quantum computers [33], D-Wave 2000Q and 5000Q quan-
tum annealers [34] exist today with the promise of accelerating a wide
ange of problems that would typically be impossible to solve or sim-
late on a classical (hardware and software) computers. Some of these
nclude Shor’s groundbreaking integer factorization algorithm [20]
ffering superpolynomial speedup, Harrow–Hassidim–Lloyd (HHL) al-
orithm for solving a large system of sparse matrices with exponential
peedup [41], and accelerated linear algebra computations like matrix
ultiplication [59]. Other highly relevant domains include combinato-
ial optimization (NP-hard problems), finance, machine learning [60–
2], battery design, new novel molecule and drug discovery, quantum
aterials, grid power management to name a few.
Although the potential to accelerate time to solution using quantum
achines is huge, quantum computation is still in its very beginning,
uffering from many hardware and software imperfections. Currently,
he technology for initial state preparation of quantum registers, precise
ubit control, high-fidelity quantum gate preparation, and measure-
ent of qubits involves a high level of uncertainty. These can be traced
ainly to ultra-precise engineering bottlenecks and environmental er-
ors induced by decoherence. For example, the measured fidelity of 2
illion samples on the 53-qubit Sycamore chip fabricated by Google
nc. [31,63], described in terms of the linear cross-entropy benchmark
(XEB), is only at a level of 0.2 % [13,31]. This does not keep up with
he performance of classical simulators, which can be exponentially
omplex, but provide higher fidelity compared to quantum devices.

.4. Hybrid quantum–classical systems

Hybrid quantum–classical systems define a new class of comput-
ng paradigms combining the computing capacities of near-term noisy
uantum processors and classical co-processors working in conjunc-
ion to solve large-scale scientific problems. The main advantage of
sing this approach is that it allows the exploitation of the many
trengths of classical processors for multiple tasks (e.g., convex op-
imization, error correction, data pre/post-processing) while at the
ame time utilizing the capabilities of quantum machines for other
pecific tasks [23]. The motivation behind hybrid ecosystems is to
rchestrate quantum algorithms with classical routines which are more
uited and efficient on classical processors (for e.g. classical optimizers
or back-propagation computation, data entry, graphics, data pre/post-
rocessing etc.). This allows for the distribution of larger workloads to
lassical devices, thereby mitigating the burden on error-prone quan-
um hardware, which is leveraged for specialized and targetted tasks
for instance, quantum phase estimation (QPE), cryptographic schemes,
348
Fig. 1. Schematics of Hybrid Quantum–Classical Systems.

operator quantum expectation value computation, optimization, etc.).
This strategic integration yields a substantial reduction in the utiliza-
tion time of the quantum resources, enhancing the efficacy of task
executions. Fig. 1 describes the hybrid system pipeline: In step 1, data
is pre-processed on the classical system for further encoding onto the
quantum registers; in Step 2, the quantum state is prepared based
on preprocessed input (typically done using data encoding schemes),
Step 3, manipulates a quantum circuit; in step 4, the quantum state is
measured and post-processed in step 5.

Data Encoding For Quantum Devices: Classical data in its raw
form cannot be processed on quantum devices. Desired initial quantum
state preparation necessitates converting and encoding the input classi-
cal vector (tensor) data in a suitable representation as quantum data for
embedding, storing the quantum information in the QPUs, and perform-
ing quantum operations via quantum algorithms. Porting classical data
sets onto quantum devices can be achieved efficiently using multiple
DATA ENCODING schemes [64,65]. In general, choosing a particular
ata encoding method depends on the use case (model/algorithm de-
endent). Some of the well-known encoding frameworks are (i) Basis
ncoding, (ii) qRAM Encoding, (iii) Angle Encoding, (iv) Amplitude
ncoding, etc.
Parametrized Quantum Circuits: Parametrized quantum circuits

PQCs) or variational circuits are basically quantum algorithms that
ary certain variables (real/complex valued vectors) or parameters,
ften denoted as 𝝑. PQCs like any other quantum circuit consists
f, (1) Initialized qubit register (cf. Appendix B, Appendix B.3 with
ppropriate quantum state preparation, (2) a quantum circuit with
cascade of quantum logic gates (cf. Appendix C and Appendix D)
(𝝑), parametrized by a set of parameters 𝝑 (3) classical optimizers
ugmenting the PQCs and, (4) measurements and resets.
Variational Quantum Algorithms (VQAs) are one of the most

mportant paradigms in hybrid quantum–classical systems and are
rime candidates for quantum advantage. VQAs can be defined as
ybrid quantum–classical algorithms, wherein a parametrized quantum
ircuit is iteratively optimized via classical optimization algorithms.
he schematic diagram Fig. 1 shows that the black box performs VQA
xecutions. The black box can be decomposed into two major blocks,
amely the quantum block and a classical block, interconnected by an
nderlying adaptive feedback-loop mechanism.

• Quantum System: A Noisy-Intermediate-Scale-Quantum (NISQ) de-
vice that at the low level prepares highly entangled parametrized
quantum states and performs
quantum-subroutines using PQCs (variational circuits). For e.g.
this block executes a forwardpass by computing the quantum
expectation value of certain physical observables
/operators (matrices) and the measured quantum state yields the
corresponding parameter values which are stored in the memory

at every intermediate step.
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• Classical System: A classical optimizer which receives the quan-
tum outputted parameters and executes iterative optimization,
(for e.g. gradient descent) by optimizing the cost (loss) function
landscape. Calling gradients functions for parameter 𝝑𝑖 update is
done using
back-propagation (accumulated gradients). The data flow in this
stage corresponds to passing the updated parameters loop back
into quantum circuit for further quantum function calls (gate
operations) and initiate subsequent control flow steps.

Other Hybrid Algorithm Frameworks Apart from VQAs, there are
ther classes of hybrid algorithms, typically analog-based, that leverage
xisting quantum architectures. These include hybrid forms of quantum
nnealing, such as hybrid solvers in D-WAVE machines for solving
rbitrary structure QUBO problems (quadratic models, such as Binary
uadratic Models (BQMs), Constrained Quadratic Models (CQMs) or
nconstrained Quadratic Models, Discrete Quadratic Models (DQMs))
tc.).4 Frameworks such as iterated adiabatic reverse annealing which
re quantum annealing-based techniques embedded in a classical loop
ave also been useful in tackling multiple scientific and industrial use
ases [66]. Some more ongoing developments in the hybrid algorithms
ectors are Quantum Neuromorphic Computing, wherein brain-inspired
lassical neural network architectures are conjoined with quantum
ardware to offer computational advantage [24].

. From classical to hybrid workflows

In this section, we provide the main definitions of what is needed
o enable our vision of hybrid workflow execution, focusing on hybrid
orkflows and then on hybrid WMSs.

.1. Hybrid workflows

We extend the definition of classical workflows by adding a set
f quantum tasks 𝑄 to Definition 3.1. Quantum tasks 𝑞 ∈ 𝑄 that can
e executed only by quantum machines. Also, quantum tasks in our
orkflow definition are functionally equivalent [67] to some tasks in 𝑇 .
ecause of the undecidability of the program equivalence problem [67],
e assume that the user defines a mapping function 𝑓 ∶ 𝑇 ↦ 𝑄 that
aps a classical task into its quantum equivalent. Multiple quantum

4 https://docs.dwavesys.com/docs/latest/doc_leap_hybrid.html
349
tasks can be available for different classical tasks: for example, for
the classical task of computing a matrix eigenvalue, either HHL [68]
r VQE [44] algorithm can be used, depending on available quantum
ardware. As a consequence, 𝑓 is surjective, but not injective. We
efine quantum candidates tasks as tasks for which there is a quantum
ask, namely,

𝑡 ∈ 𝑇 ∶ 𝑓 (𝑡) ≠ ∅, 𝑡 is a quantum candidate. (1)

e define the set 𝑇 ′ as the set of quantum candidates. We assume that
′ ⊆ 𝑇 . If a task 𝑡′ is a quantum candidate, we add a decision node
etween 𝑡′ predecessor and connect it to 𝑡′ and all other tasks 𝑞 ∈ 𝑓 (𝑡′).
ifferent execution paths will be executed according to conditions or
pecified by the decision node. An example of a condition could be, for
xample, to execute the quantum task if quantum hardware is available.
he set of decision nodes is defined as 𝐷. Fig. 2 provides an example
f how to transform a classical workflow into a hybrid workflow.
We distinguish three types of quantum tasks, that are described in

ig. 3 together with their control and data flow: circuit execution, task
xecution (Fig. 3(b), and hybrid execution. A circuit execution (Fig. 3(a))
epresents a single execution of a quantum circuit, where a single
ampling of the result of execution is performed. Examples of this
omputation can be simple algorithms, such as the simulation of a
oin toss. The result of a task execution, instead, is the most frequent
esult among 𝑠 samplings of the execution of a quantum circuit and
epresents the execution of typical quantum algorithms such as Grover
nd Deutsch-Jozsa. This model can also be applied to the quantum
ubroutines of hybrid algorithms, such as Shor’s algorithm [20]. Fi-
ally, a hybrid execution (Fig. 3(c)) represents computations involving
nteraction between classical and quantum hardware, similar to what
appens with Variational Quantum Algorithms [44], where a quantum
tate modeling the solution to a specific problem is modeled as a
arametrized quantum circuit with a vector of parameters 𝛩⃗, whose
ptimal values are found by optimizers running on classical hardware.
inally, we define hybrid workflows as follows:

efinition 4.1 (Hybrid Workflows). We define hybrid workflows as
= (𝑇 ,𝑄,𝐸,𝐷, 𝑓 ), where:

• 𝑇 is the set of classical tasks, where 𝑇 ′ ⊂ 𝑇 is the set of quantum
candidates;

• 𝑄 is the set of quantum tasks;
• 𝐷 is the set of decision nodes, where |𝐷| = |𝑇 ′

|;

• 𝐸 ⊂ (𝑇 ∪𝑄 ∪𝐷) × (𝑇 ∪𝑄 ∪𝐷) is the set of edges;

https://docs.dwavesys.com/docs/latest/doc_leap_hybrid.html
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Fig. 3. Types of Quantum Tasks.
• 𝑓 is the function mapping tasks in 𝑇 ′ in one or more quantum
tasks in 𝑄.

. A molecular dynamics use case

MD is one of the most popular scientific applications executed on
odern HPC systems. MD simulations reproduce the accurate dynamics
time evolution of molecular systems) at a given pressure and temper-
ture by iteratively computing interatomic forces and atom dynamics
ver short time steps. The trajectories generated by these simulations
nable a better understanding of conformations and molecular mecha-
isms. In particular, a trajectory is a series of frames, i.e. sets of atomic
oordinates stored at fixed infinitesimal time steps [69].
The quantum adaptation of MD applications builds over a similar

pipeline as put forth in the recent works of [69,70]; dealing with in-situ
and in-transit analytics of MD simulations on state-of-the-art supercom-
puters. Our hybrid workflows can be efficiently integrated with the
in-situ and in-transit analysis of the data and meta-data generated by
MD simulations.

Here, we provide a high-level description of the hybrid workflows
pertaining to the aforementioned use case. The motivation to focus on
this particular use case is as follows: (a) MD simulations/analyses are
a very active field in the distributed deep learning and HPC scientific
computing communities with widespread applications to industry. (b)
It consists of a purely quantum-based algorithm stack (see Section 5.2)
followed by an additional variational hybrid algorithm stacks (VQEs)
on the quantum algorithm returned output (see ). (c) It is elusive to
find applications such as in [69,70], that offer one-to-one mapping of
the entire classical problem (two major compute-intensive tasks) on
a hybrid ecosystem and capture the essence of the hybrid workflow
pipeline.

Our initial observation was that specific tasks of the in-situMD simu-
lations, for e.g., collective variables (CVs) generation, can be leveraged
using state-of-the-art quantum algorithms and quantum subroutines in-
stead of merely parallelizing workloads using GPU accelerator facilities.
Just in the way GPUs, TPUs, and FPGAs serve as indispensable tools
for accelerated linear algebra for variable dimension tensor calculations
(matrix-matrix, matrix–vector, vector-vector multiply), the same logic
also carries over to devices based on quantum architectures. It is clear
from the current status of quantum computers that a complete MD
350
application cannot be executed on the rudimentary NISQ quantum
hardware. Thus, we need to identify the best-suited parts (subspaces)
of the workflows that can be accelerated multifold using quantum
processing units (QPUs). Moreover, the utilization time of quantum
devices should be kept low-key, in order to prevent noise-induced
quantum errors and imperfections of quantum hardware.

Fig. 4(a) visualizes the target MD application with quantum can-
didates highlighted. After reading input from the user, the application
reads a trajectory file, which provides information about the molecule
structure, and identifies the atom segments that have to be considered
in our calculations. For each pair of atom segments, the application
performs parallel computations to calculate 𝐵𝐼𝐽 matrices. The CV that
we will use in this work is the Largest Eigenvalue of the Bipartite Matrix
(LEBM). The bipartite matrices are used as an input for the LEBM
calculation. At the end of this process, results for different 𝐵𝐼𝐽 are
collected and analyzed.

Starting from classical MD workflow (Fig. 4(a)), by applying the
procedure described in Fig. 2 we obtain the resulting Hybrid Quantum–
Classical workflow described in Fig. 4(b). These quantum–classical
(hybrid) counterparts of the purely classical MD workflows were first
conducted and benchmarked on a 5-qubit IBM Q devices [38]. In the
next sections, we describe each step in detail.

5.1. Identification of quantum candidates

Strategies for pinning down suitable quantum candidates in a use
case is to a large extent problem/model/system dependent. In a hybrid
workflow environment, this basically boils down to choosing from a
limited set of available quantum and hybrid quantum–classical algo-
rithms that could potentially outperform known classical algorithms.

In the MD simulation landscape, compute-intensive data analysis
of time-evolving molecular systems can be systematically solved by
designing a suite of collective variables (CVs) [70]. Collective variables
(CVs) are a set of statistical metrics that capture relevant molecular
motions enabling efficient monitoring of rare events in huge molecular
structures and chains [71]. Technically, CVs can also be defined as a
function of the atomic coordinates in one frame that helps to recon-
struct the free-energy surface for enhanced sampling. Since trajectories
are reduced to time series of a small number of such CVs, simulated

molecular processes are much more amenable to interpretation and
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urther analysis. Ideally, a CV can be as simple as the distance be-
ween two atoms or can involve complex mathematical operations on
large number of atoms. For example, in the domain of Metadynam-
cs [72], scientists use well-chosen collective variables (CVs) to capture
mportant molecular motions in the region of interest.
The works in [69,70] demonstrated that collective variables could

e extracted using Euclidean distance matrices and bipartite distance
atrices.
The Euclidean distance matrix 𝐷 and the bipartite distance matrix

IJ have three fundamental properties: they are symmetric, diago-
al elements are zeros, and off-diagonal elements are strictly posi-
ive [70]. After calculating matrices 𝐷 and 𝐵, we focus on calculating
he molecular system’s CVs.
Potential quantum candidates for MD-based experiments were cho-

en in accordance to:
(i) Replacing classical routines that are compute-intensive with

quivalent quantum algorithms that guarantee a theoretical speedup.
task 𝑡 ∈ 𝑇 is defined as compute-intensive if at least 70% of its
xecution time is spent in performing floating point operations (i.e., no
ata staging, I/O, and communication).
(ii) Capturing the electronic properties and molecular time-evolution

f the system which in turn can be used for efficient computation of
ollective variables (CVs),
(iii) Most importantly, whether there exists such a quantum al-

orithm and routine, that is available to the user for successful im-
lementation of the use case. If not, then engineering quantum al-
orithms/quantum circuits with a considerably shallow circuit depth,
with a modest qubit register size and quantum gates crammed into the
ircuits) such that the problem can be efficiently simulated on NISQ
ardware.
The two classical tasks that exactly satisfy all the aforementioned

equirements in our use case are:
(a) Distance (bipartite) matrix generation between different 𝐶𝛼

toms in the molecular system (cf. Target Task 1 5.2) for details), which
s calculated using SWAP test;
351
(b) Calculating target CV corresponding to largest eigenvalues of the
ipartite matrices (LEBM) and distance matrices using hybrid quantum
lgorithms (cf. Target Task 2 ) for details). We use Variational Quantum
igensolvers (VQEs) [73] for eigenvalue estimation.

.2. Mapping from classical to hybrid workflow

In Fig. 4(b) we show the hybrid workflow resulting from the trans-
ormation of the classical MD workflow depicted in Fig. 4(a), following
he transformation procedure described in Fig. 2. Since we have two
uantum candidates, we add two decision nodes, 𝐷0 and 𝐷1. Decision
odes are responsible for selecting target implementation, depending
n whether quantum hardware is available, and performing data encod-
ng from classical to quantum domain. We analyze the implementation
f each algorithm in the next sections, together with the control and
ata flow of target hybrid MD simulation.
Target Task 1: Quantum algorithm for distance matrix genera-

ion & computing structural change evolution
It was shown in [74] that quantum computers possess the power to
anipulate large numbers of high-dimensional vector/tensor datasets.
ypically, vector operations involving vector (tensor) dot products,
orms, overlaps, etc., feature in supervised and unsupervised machine-
earning tasks. For our MD analytics use case, CVs described by dis-
ance/bipartite matrices constitute some of the most compute-intensive
outines. Classical algorithms running on classical devices typically
equire polynomial time in the number of vectors and the dimension of
he space to solve these tasks. For an 𝑁-dimensional vector space, their
ime complexity grows linear in N, i.e., (𝙽). Quantum computers, on
he contrary, can remarkably achieve this feat in time (𝚕𝚘𝚐𝙽), owing
o their intrinsic capabilities to efficiently manipulate high-dimensional
ectors embedded in large tensor product spaces [74].
The reason for this exponential speed-up can be argued as follows:

lassical data (typically vectors or tensors), expressed in terms of 𝑁-
imensional complex-valued vectors can be encoded through amplitude



Future Generation Computer Systems 158 (2024) 346–366S.S. Cranganore et al.

I
u
f


d
v

t
c
c
(

q
i
s
o
w
i
d

Q
p
o
d
f
L
v
o
s
e
o
t

t

Fig. 5. Quantum integrated MD workflows for distance matrix computations.
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encoding onto merely 𝚕𝚘𝚐𝟸(𝙽) qubits, thus requiring only logarithmic
in the size of the classical data-set. This data stored in a quantum ran-
dom access memory (qRAM) whose mapping takes (𝚕𝚘𝚐𝟸𝙽) steps [75].
n this converted quantum form, data post-processing can be done
sing multiple quantum algorithms like the quantum Fourier trans-
orms [76], matrix inversion methods [41], etc., with time-complexity
(𝚙𝚘𝚕𝚢(𝚕𝚘𝚐𝙽)). Thus, distance estimation and inner product opera-

tions between post-processed vectors belonging to N-dimensional vec-
tor spaces take merely time (𝚕𝚘𝚐𝙽)

[74]. Moreover, as per [77], sampling post-processed vectors and
istance or inner-product determination between these post-processed
ectors is an exponentially hard task.
Inspired by the aforementioned (theoretical) exponential
quantum speedup, we make use of quantum algorithms to generate

he proxies for modeling molecular structure time-evolution, i.e., Eu-
lidean distance matrices 𝐷 and bipartite distance matrices 𝐵IJ. These
an be efficiently generated via a quantum sub-routine called the SWAP
also called C-SWAP) test.
The high-level workflow description of the Target Task 1 with

uantum integrated architectures is depicted in Fig. 5. We can see that
ts execution resembles the control and data flow of a job execution, as
hown in Fig. 3(b). Typically, it requires manual re-direction of tasks
nto quantum devices for generating distance matrices. The proposed
orkflow schematics is a quantum adaptation (counterpart) of the
n situ or in transit integrated classical workflows used for molecular
ynamics (MD) analytics, originally introduced in [78].
Target Task 2: Largest Eigenvalues of Bipartite Matrix Hybrid

uantum–Classical algorithm for Eigenvalue Determination: It was first
osited in the works of Johnston et al. [78,79] that the measurement
f largest eigenvalues of the bipartite matrices 𝐵IJ or the Euclidean
istance matrices 𝐷𝐼 can serve as collective variables (CVs) and suffices
or monitoring structural changes in the conformation of 𝐼 relative to 𝐽 .
ater, this idea was extrapolated in [69,70], wherein the largest eigen-
alues of each one of these matrices were computed without retaining
ther frames in memory. Nevertheless, with ever-increasing molecule
izes, numerical linear algebra calculations such as eigenvalue and
igenspectrum (typically using numerical diagonalization techniques)
r singular value decomposition (SVD) computations may fall short due
o the saturating computational power of classical (HPC) systems.
Hybrid quantum–classical systems offer a possibility to alleviate

he aforementioned bottleneck by semi-utilizing quantum devices as
352
ccelerators orchestrated by classical optimization protocols for pa-
ameter updates. The variational quantum eigensolver (VQE) [43,45,
7] form an important subset of the variational quantum algorithms
VQAs), that computes the eigenvalues of typically large Hermitian
atrices 𝐴̂ (see Appendix F) using the Rayleigh–Ritz variational ap-
roach [80]. This heuristic algorithm was developed with a strong
ocus on solving the ground state of many-body interacting quantum
ystems (strongly correlated) using iterative numerical optimization.
ultiple highly complex systems appearing in quantum chemistry re-
ain in-tractable even for the capabilities of current leading-edge
igh-performance computing (HPC) systems. Augmenting NISQ devices
r the near-future quantum devices to operational support given by su-
ercomputers increases the hopes for a faster convergence to solutions
or such large-scale chemistry target applications based on quantum
imulations. [44,81,82]
The LEBM computation of the target matrices 𝐵IJ or 𝐷 falls as a

itting use-case for the variational quantum eigensolver engine. The
achinery is described in detail in Appendix F. Initially one begins
ith an ansatz wavefunction (trial state) outputted from a parametrized
uantum circuit. The core principle operating under the hood is it-
ratively updating the wavefunction parameter whilst minimizing the
ost function Eq. (2)(𝜽) by employing a classical optimizer. This cost
function is typically chosen to be the quantum expectation value of a
given Hermitian matrix with respect to the parametrized wavefunction
|𝛹 (𝜽)⟩. The input to the VQE engine is either the C-SWAP quantum-
subroutine generated bipartite matrix or generated bipartite matrices
generated using classical machines. (which is Pauli encoded, since it is
a Hermitian in nature cf. Appendix E), the corresponding function to
minimize reads,

𝜗∗ = argmin
𝜽

𝐶(𝜽) = ⟨𝜓(𝜽)|𝐵̂IJ|𝜓(𝜽)⟩, (2)

The goal is to approach the sets of LEBM as close to the actual values,
i.e., the values calculated on a classical machine. However, since VQE
performs iterative optimization of a cost function 𝐶 (Eq. (2)), it can
approach the exact value only after multiple executions or iterative
loops [44]. To this end, we define the error function that we use to
quantify the VQE benchmarks.

Our quantum-enhanced MD simulations were conducted on a 5
qubit IBMQ hardware. The maximum permissible matrix dimension
possible with our requested quantum resources was a restrictive 16 × 16
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Fig. 6. Quantum workflows for variational quantum eigensolvers.
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dimensional distance matrix blocks 𝐸IJ that feature in the bipartite ma-
trix. The corresponding VQE scientific workflow for molecular-dynamics
(MD) target applications (cf. Appendix F for detailed mathematical
description) is depicted in Fig. 6, which resembles hybrid execution
on Fig. 3(c).

Cost function optimization. For the 𝐵̂IJ, we define its classical LEBM
𝛬𝑐 (𝐵𝐼𝐽 ) and its quantum counterpart calculated using VQE using a
specific initially chosen hyperparameter setting 𝛱 as 𝛬𝑣𝑞𝑒(𝐵̂IJ,𝛱). We
construct a figure of merit to compare VQE results obtained from
different architectures, quantified by a Mean Square Error (MSE). For
a set of matrices, 𝐵̂ = {𝐵0

𝐼𝐽 , 𝐵
1
𝐼𝐽 ,… , 𝐵𝑛𝐼𝐽 }, we define

𝐸𝑟𝑟(𝐵̂,𝛱) =
∑

𝑖∈[0,|𝐵̂|]

(𝛬𝑐(𝐵𝑖𝐼𝐽 ) − 𝛬𝑣𝑞𝑒(𝐵̂
𝑖
IJ,𝛱))2

|𝐵̂|
(3)

as the MSE between the classical and quantum eigenvalues, calculated
using hyperparameters 𝛱 .

Data-driven hyperparameters selection. It is important to note that the
VQE executions can be largely improved by opting for different hy-
perparameter 𝛱 tuning schemes that are available on the IBM Qiskit
API. In practice, VQE execution results are affected by tuning hy-
perparameters and converge to the optimal value after the user pins
down a suitable configuration after taking into account possible error-
mitigation strategies. Therefore, a grid-search-based algorithm forms
an important part of the so-called data-driven methods which will be
used to identify the most suitable hyperparameters setting. In [38], we
describe a method to select a suitable set of hyperparameters for VQE.

5.3. Generalizing hybrid WMSs

The rapid progress of quantum facilities has led to a surge in chal-
lenges across various application domains. Consequently, generalizing
the hybrid workflow frameworks to accommodate diverse applica-
tions is necessary. A comprehensive overview is depicted in Fig. 2,
353

t

which could encapsulate a broad spectrum of techniques and be em-
bedded at various stages in a generalized hybrid ecosystem. These
encompass (a) Hamiltonian simulation and analog/single ancilla Linear
Combination of Unitaries (LCU) [83] methodology for ground state
preparation, (b) Graph-based combinatorial optimization employing
quantum-approximate-optimization algorithms (QAOA) [84], (c) Quan-
tum Fourier Transformations (QFT) and Quantum Phase Estimation
techniques (QPE) as alternatives to Variational Quantum Eigensolvers
(VQEs), (d) Classical machine learning (ML) assisting quantum algo-
rithms [85], (e) Quantum machine learning (QML) workloads such
as quantum support vector machines (QSVMs) [86], Quantum Kernel-
based ML (QKE) methods [15,87], and (f) Simulations of quantum
amiltonians for determining electronic state energies [37,88]. The
ollowing sections build over this generalized scheme.

.3.1. Hybrid data/control flow
In a Hybrid Workflow Engine (HWE), characterizing the control

nd data flows becomes highly relevant. Since the control flows (defin-
ng execution paths) and data flows (information movement through
omputations) are highly interlinked, it is necessary to demarcate and
ifferentiate these two flows systematically. In such intertwined work-
oad sharing environments arising in variational quantum algorithms
etween
quantum–classical components, WMSs become highly non-trivial.

ere we relate/map the conducted quantum MD computational exper-
ments to the formally defined hybrid workflows from Section 4.1.
The data and the control flow are handled by the decision nodes,

hose flow is described in Fig. 7. The goal of decision nodes is to
anage the control and data flow of the hybrid workflow, based on
re-defined conditions for execution on quantum hardware. Decision
odes collect data about the available quantum and classical hardware
hrough the monitoring layer. Also, available quantum tasks are fetched
y the quantum task repository, following indications provided by
nnotations. Afterward, performance is evaluated for each task on

he available hardware, by applying a specific hardware performance
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model. Performance models can be either defined as a single metric,
i.e., quantum volume [89] or total quantum factor [90], or exploit
achine learning-based approaches such as [91]. Based on the results
f the hardware performance models, a specific condition is evaluated
o make a decision. Based on the condition, the classical or the quantum
ask is executed. If the quantum task is executed, classical data has to be
ncoded into the quantum domain by applying different data encoding
ethods. After execution on quantum hardware, post-processing is
pplied to mitigate the effects of quantum noise. Finally, the output
f the task, either classical or quantum, can be used by the subsequent
orkflow task.
Similar approaches to the selection of quantum tasks have been

roposed. For example, [92] proposes NISQAnalyzer, a method for
selecting the most suitable quantum machine among a set of avail-
able superconducting quantum hardware and Qiskit implementations,
while [93] focuses on the execution of quantum services on Amazon
BraKet. In [91], these ideas are further explored considering also
ion-traps architecture and different programming frameworks. How-
ever, different hardware, for the same algorithm might require differ-
ent implementations and different programming models. An example
is photonics hardware, where Measurement-Based Quantum Comput-
ing [94] provides better performance [95]. Therefore, we propose an
pproach where a joint selection of algorithm implementation and
arget quantum hardware is performed.
In the next sections, we analyze control and data flow in detail.

ontrol-flow modeling for hybrid systems. Control-flow modeling
deals with deconstructing the order of operations in a computer pro-
gram and dictates the sequence in which computational tasks need
to be executed [96]. In the case of hybrid quantum–classical appli-
cations, execution paths can be bifurcated into the classical control
flow pipeline (pertaining to classical flows and smaller sub-flows)
and quantum control flow pipeline (related to quantum flows and
sub-flows) respectively.

Classical side of quantum computation: Typically, the classical
ontrol flow dependencies involve:

1. Initializing set of variational parameters of the quantum circuit.
2. Spawning multiple quantum circuits and processes simultane-
ously.

3. Delegating (directing) user-defined quantum tasks 𝑄 onto the
quantum processors and controlling the execution order of one
or several quantum candidates.

4. Executing classical programs in concert with quantum routines
(e.g., for iterative optimization algorithms).

5. Measurement of quantum states and classical parameter feed-
back. Lastly, generating the final output after multiple iterations
(checking convergence to solution) and data post-processing.

ata-flow modeling for hybrid systems. Data-flow analysis on the other
and deals with collecting information about the possible set of values
alculated at various stages in a computer program and describes the
nformation passage within a workflow [96]. Data generation, feature
xtraction, data transformation, data storage, and exchange of input
nd output data within the workflows are some examples.
Classical Data flow modeling:

1. Preprocessing input classical data, implementing feature extrac-
tion methods on classical datasets, and developing suitable forms
of data encoding schemes for QPU embedding.

2. Postprocessing results after quantum measurements, mitigating
readout errors and extracting useful information.

Quantum Data flow modeling:

1. Quantum data flows concerns with quantum parallelism aris-
ing due to multi-qubit states |𝛹⟩ ∈ (C2)⊗𝑑 within a quantum
register and the flow of entanglement prepared via controlled
354
Fig. 7. Decision Node.

gate sequence applications. (for e.g., multi-QPU interactions and
managing multi-QPU communication). This may be necessary to
communicate a computational state between QPUs or to prepare
both registers in a mutually entangled state. These operations
require the presence of a quantum network, which uses quan-
tum physical systems to communicate quantum states between
registers) [97].

2. Exchanging data within the several spawned quantum circuits or
subparts of the different circuits.

6. Hybrid workflow management systems

6.1. Software components

In this section, we describe the main software components that
are necessary to enable the execution of tasks into hybrid quantum–
classical systems. The main components are also depicted in Fig. 8.

Hardware Catalog contains information about available hardware
in underlying hybrid computing systems, including not only which
hardware is available, but also different characteristics (i.e., CPU
power, storage capacity, network throughput). This component is com-
mon in many other WMSs, such as Pegasus [52]. Hardware-specific
implementations of the hardware catalog are available in different
quantum hardware with Cloud frontends, i.e., IBM Quantum, Amazon
BraKet, Google Quantum AI, and Azure Quantum. The main difference
between these services is that, while IBM and Google have their own
quantum devices, Amazon provides an interface to access quantum
devices from other vendors, e.g., Rigetti, Quantinuum, and Pasqal.
Azure Quantum, instead, proposes a hybrid solution, exposing the same
interface not only for Microsoft devices but also for devices of other
vendors. The first step towards the integration of quantum hardware
in the hardware catalog would first of all require the design of APIs to
interconnect these services with WMS hardware catalog. Existing ap-
proaches described in [91–93] are currently not integrated into WMS,
targeting only specific frameworks (e.g., Qiskit and IBM Quantum [92]
or Amazon BraKet [93]) or specific hardware, e.g., superconducting
and ion-traps [91]. Also, information about the characteristics of avail-
able hardware, also known as quantum hardware descriptors, should
be exposed. Typical descriptors are a number of available qubits,
qubits topology, and error rate. Moreover, since quantum computers
at the time could not be used concurrently, information about the
queueing status should be exposed. In some cases, such as IBM, also
other performance metrics that are specific to quantum, i.e., Circuit
Layer Operations per Second (CLOPS) or Quantum Volume [89], can
be exposed. However, such metrics might not be directly applicable
to other types of hardware, i.e., from other vendors or relying on
different technologies, such as, for example, ion-traps, photonics, or
neutral atoms.

Quantum Task Repository includes the implementation of differ-

ent quantum tasks, in different software variants depending on the
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Fig. 8. Quantum Workflow Management System.
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available quantum machines. Tasks can be implemented in graphical
languages, such as ZX-Calculus [98], different high-level programming
frameworks (e.g., Qiskit, PennyLane, Q#), or in low-level languages
such as OpenQASM (quantum assembler).5 Examples of quantum task
repositories are provided by the IBM Quantum Lab, BraKet git reposi-
tory,6 Cirq Quantumlib github,7 Microsoft Quantum github.8 However,
each one of these repositories targets specific frameworks and devices.
A generic quantum task repository should include implementations
for different devices available in the hardware catalog. Also, each
task should be labeled to describe its goal (i.e., unstructured search,
optimization), as well as its input and output. Compilation of selected
tasks will then be performed in the subsequent transpilation layer.

Classic–Quantum Mapper is responsible for identifying a mapping
of classic tasks into equivalent quantum tasks. This can be performed
by means of code classification [99,100], using labels defined in the
Quantum Task Repository, or by applying circuit synthesis methods,
such as [50,51] if no corresponding quantum task is found. Currently,
the mapping of quantum candidates into quantum tasks is performed
manually by the application developer. One could think of exploiting
code classification approaches [99]

Transpilation Layer is responsible for transpile, i.e., adapting the
high-level definition of quantum circuits that define the quantum tasks
in the quantum tasks repository, to the target quantum architecture.
This step is necessary because the definition of the circuit might not
fit the topology of the underlying architecture. To address this issue,
a sequence of operations is applied to the circuit definition to reorga-
nize qubits and quantum gates. Transpilers are available in different
frameworks, such as Qiskit, PennyLane, and Q#. However, they are
mostly designed for circuit-based quantum computing. Work available
for measurement-based quantum computing [101], that allows to fully
exploit photonics quantum devices is at the moment still at the ex-
perimental phase. In the future, we should be able to have universal
transpilers, capable of optimizing for different computational models
depending on available quantum hardware.

Hybrid Monitoring Layer is designed to collect data about the exe-
cution of both quantum and classical hardware. On classical hardware,
there are many methods to collect either low-level metrics about the
systems (e.g., CPU, bandwidth) or aggregated metrics (e.g. reliability),
ranging from distributed [102] and centralized [103] monitoring ap-
proaches. To enable monitoring of hybrid quantum–classical systems,
the existing monitoring layer provided by existing WMS should be inte-
grated with API provided by existing quantum framework (i.e., Amazon

5 https://github.com/openqasm/openqasm
6 https://github.com/amazon-braket
7 https://github.com/quantumlib/Cirq
8
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https://github.com/microsoft/Quantum m
BraKet, IBM Quantum, Xanadu) to expose to the workflow developer
the hardware descriptors collected by quantum computers, described in
the hardware catalog. The implementation of the monitoring service for
each provider is related to the underlying framework: for example, in
IBM Quantum, it is provided by the runtime service, that allows keeping
track of the state of a submitted quantum job by querying the state of
a Job object. Similar approaches are available on PennyLane and Q#.

Hybrid Intercommunication Layer constitutes the API that al-
lows communication between quantum and classical hardware. This
layer allows data encoding, offloading of data and computation to
quantum hardware, retrieving measurements, and performing error
correction. Currently, such features are framework-specific and there-
fore depend on the available API between each framework and the
hardware vendors.

6.2. Hybrid workflows execution

Fig. 8 summarizes how we envision the execution of hybrid work-
lows. First, the user submits a scientific workflow using the WMS
nterface. Workflow tasks are then selected by the WMS scheduler,
ased on its scheduling policy. Based on the workflows annotations,
he scheduler knows if the current 𝑡 task is a classical or a quantum
task. If 𝑡 is classical, the scheduler will select target machine based
n (1) task requirements, (2) availability of hardware resources (based
n input hardware catalog), and (3) task-related cost function, which
akes in input task 𝑡 and machine 𝑚 and outputs a score, which defines
hether it is convenient to execute 𝑡 on machine 𝑚 and it is used
y the scheduler for its decisions. Execution is then performed on the
dentified machine 𝑚, and the results of task 𝑡 are forwarded to the user
r to the following tasks that require them as input.
If 𝑡 is a quantum task, the first thing to do is to verify whether a

uantum target, i.e., an equivalent quantum algorithm for the quantum
andidate, is available in WMS quantum codebase. If no equivalent
uantum target is found, the workflows continue its execution by
cheduling the classical task on the available classical hardware; oth-
rwise, according to the logic implemented in the decision node, the
MS can decide either to (1) select a quantum algorithm among the
vailable quantum targets, or (2) execute the classical implementation
f the task. In the first case, execution depends on the quantum task
ype (as defined in Fig. 3(b)), in the latter, execution proceeds as in
lassical workflows.

.3. Assumptions and limitations

Description of quantum task repository, as well as transpilation as

apper, are focused on the quantum circuit model, that is typical

https://github.com/openqasm/openqasm
https://github.com/amazon-braket
https://github.com/quantumlib/Cirq
https://github.com/microsoft/Quantum
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of superconducting machines used by the most common quantum
hardware platforms (e.g., IBM Quantum, Amazon BraKet) and also by
ion-trapped machines (e.g., AQT). However, different technologies are
available for quantum hardware, such as photonics quantum machines
(e.g., Xanadu). While each circuit can be also executed on photon-
ics hardware, these machines proved to have the best performance
with measurement-based model [94], therefore circuit synthesis and
mapping might not guarantee the best performance.

Another issue is related to the code classification-based approach
since we assume that there is a label for each classical task that
allows us to map it to its quantum counterpart. As a consequence, this
approach is inherently dependent on the source code corpus that we
use to train the model.

Concerning hardware descriptors, we mostly focus on definitions
provided by IBM Qiskit, such as quantum volume and CLOPS, whose
definition is based on superconducting IBM machines. While these
metrics could be extracted also for other types of hardware employing
the circuit-based model, they might not be applicable to annealers or
photonics.

7. Challenges

Based on our vision of execution of hybrid workflows, we identify
the challenges that must be addressed to realize our vision of hybrid
quantum–classical workflows.

7.1. Quantum hardware descriptors

As already mentioned in Section 6, hardware descriptors should
be part of the hardware catalog, to characterize different available
quantum hardware and to perform decisions on whether to allocate.
The first challenge is to identify descriptors that can be used to de-
scribe quantum hardware: while on classical CPUs we have well-known
descriptors (e.g., CPU frequency, RAM frequency, and memory, avail-
able storage), quantum hardware cannot be characterized using the
same descriptors, due to the inherently different computational model.
Also, there are different hardware technologies available for quantum
computers (e.g., superconducting, neutral-atoms, ion-traps, photonics,
and annealers), which makes it difficult to identify the descriptors most
impacting the performance of quantum computing.

To address this challenge, first of all, in-depth empirical studies are
required to identify the most impacting parameters. Empirical studies
require also the definition of purposely designed benchmarks, similar
to [31,34,104]. Based on data collected from the benchmarking, we can
identify a subset of descriptors that is of interest for a specific quantum
hardware. Descriptors can be also composed of aggregated hardware
parameters, such as quantum volume [89], that is used by IBM Qiskit.

Moreover, applications need to be able to target different QPUs
automatically depending on the problem type, involving minimal code
modifications. Hence, a QPU agnostic development allows greater free-
dom and efficiency in hybrid ecosystems. Recently, a framework named
MQT Predictor [91] that automates quantum device selection and ac-
cording to compilation of quantum algorithms for suitable hardware,
execution has been proposed. This toolkit9 offers a) prediction method,
based on Supervised Machine Learning, which without performing
any compilation predicts the most suitable hardware specific to the
application in consideration. b) A reinforcement learning (RL) based
method producing device-specific quantum circuit compilers. The com-
pilation passes from several compiler tools are combined by learning
(trained) optimized sequences of those passes (following a mix-and-
match compiler pass) with respect to a customizable fidelity.

9 https://github.com/cda-tum/mqt-predictor
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7.2. Performance models

Performance models should be able to predict different performance
metrics (i.e., running time, error rate) taking as input (1) a quan-
tum task, and (2) a target quantum hardware where the input task
should be executed. Such performance models are also required by
WMS schedulers to decide where to allocate input tasks. Performance
models should be based on values of identified hardware descriptors to
facilitate the integration of different architectures. The main challenges
in designing performance models lie in the difference between quantum
architectures, which makes it difficult to design a generalized model
that can be applied to different hardware. Also, since quantum error
variates with time, depending on different environmental factors [19],
performance models should be automatically updated when a change
in hardware descriptors is detected.

Existing performance models have been designed for different quan-
tum hardware [105], targeting specific applications, without consider-
ing applications’ performance with relation to values of typical hard-
ware descriptors.

7.3. Optimization of hybrid workflows

Optimization of hybrid workflows embraces different phases of
workflow execution, depending on the type of quantum tasks: for
circuits, optimization focuses on adaptation of circuits to the underlying
qubit topology, or to perform gate-level optimization on the circuit
(i.e., removing redundant parts). Also, on the classical side, data en-
coding has to be optimized for the underlying classical architecture.
Concerning variational quantum algorithms, as shown by [38,44], op-
timization requires setting different hyperparameters, both on classical
(i.e., optimizer parameters, cost function) and on the quantum side
(i.e., circuit structure). Optimizations should be applied at the time of
workflow execution.

Since data encoding methods require different algebraic operations
on input data [106], optimization could include typical operations used
in HPC to improve mathematical computations, or even the use of
specific hardware (i.e., GPUs, FPGAs) that are known to perform well
for these operations. For optimization of circuits according to the un-
derlying hardware, deep-learning-based approaches [107] or structural
optimization approaches [108,109] can be considered. Finally, for vari-
ational quantum algorithms, hyperparameter optimization approaches
can be applied, as discussed by [38].

7.4. Error mitigation

Current NISQ architectures are subject to noise, due to environmen-
tal factors and technological limitations [19]. Considering the effect of
noise on the output of quantum algorithms, the typical approach in
hybrid systems is to perform error mitigation on classical hardware.
Different approach are available, either ML-based [110,111] or based
on error correction codes [112]. In both cases, designing a model
for error correction requires deep knowledge of the target hardware,
and collecting different error metrics. Once error metrics have been
identified, since error is constantly varying over time, data about such
metrics have to be constantly collected in order to timely update the
error model. Finally, the model should be updated timely, as soon as
error goes above a given threshold.

To address these challenges, first of all, different methods to con-
stantly monitor quantum hardware-induced errors and readout error
mitigation strategies [113] must be implemented. Moreover readout
Error mitigation strategies for quantum workflows ha Then, techniques
based on reinforcement learning, such as described in [114,115]. These
methods can be also improved by applying FPGAs [112] or Edge AI
methods, such as [116]. Updates of the model could be triggered by

staleness control methods, similar to [117].

https://github.com/cda-tum/mqt-predictor
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7.5. Integration within WMSs

The final challenge is to integrate quantum machines into the
HPC continuum. At the moment, different frameworks are available to
manage quantum hardware, (i.e., Qiskit, BraKet, Pennylane). In order
to fully exploit available quantum machines, a WMS should be capable
of communicating with different frameworks, integrating all function-
alities that are required for the execution of hybrid workflows (i.e., data
encoding, transpilation, error mitigation). Each of these functionalities
should be integrated with the HPC infrastructure without affecting
performance of workflow execution.

8. Conclusion and outlook

In this work, we describe the main components that would be
needed for the execution of scientific workflows in hybrid ecosystems.
Our investigation starts from the study of an MD use case, where we
describe a pipeline that starts with the identification of the quantum
candidates and the equivalent quantum tasks. Based on this analysis,
we describe a possible architecture for a hybrid WMS, identifying
software components that would facilitate the integration of classical
and quantum architectures. Finally, we identify the challenges that
need to be addressed for the execution of hybrid workflows.

In the future, we plan to further investigate the integration of
quantum architectures in HPC, considering different types of archi-
tectures (i.e., photonic, annealers) and different programming mod-
els (i.e., measurement-based instead of gate-based). Also, we plan
to extend this study on different scientific use cases, including the
development of performant software stacks.
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Appendix A. Mathematical prerequisites for quantum computing

Definition A.1 (Hermitian Matrices/Operators). Let 𝐴 ∈𝑀𝑛,𝑛(C), i.e., 𝐴
is a square matrix with complex entries 𝑎𝑖𝑗 . The matrix 𝐴 is said to
be Hermitian (self-adjoint) if 𝐴 is invertible and the matrix elements
atisfy the condition,

𝑖𝑗 = 𝑎𝑗𝑖

Where 𝑎 denotes its complex conjugate. Hence, a Hermitian matrix
is equivalent to its transpose complex conjugate (also represented in
quantum computing as a † subscript). A succinct matrix representation
used in quantum computing is, 𝐴 = 𝐴† ∶= 𝐴

𝑇
.

Definition A.2 (Unitary Matrices/Operators). Let 𝑈 ∈ 𝑀𝑛,𝑛(C). A Uni-
tary matrix 𝑈 satisfies the following condition,

𝑈−1 = 𝑈† ∶= 𝑈
𝑇

Hence, the inverse of a Unitary matrix is its transposed complex conju-
gate (also, known as Hermitian conjugate)

Tensor product: Let A be an 𝑚 × 𝑛 matrix and B be a 𝑝 × 𝑞 matrix,

𝐴 =
⎡

⎢

⎢

⎣

𝑎11 𝑎12 … 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑚1 … 𝑎𝑚𝑛

⎤

⎥

⎥

⎦

, 𝐵 =
⎡

⎢

⎢

⎣

𝑏11 𝑏12 … 𝑏1𝑞
⋮ ⋱ ⋮
𝑏𝑝1 … 𝑏𝑝𝑞

⎤

⎥

⎥

⎦

.

The tensor product C of matrix A and B is an 𝑚𝑝×𝑛𝑞 dimensional matrix
of the form,

𝐶 =
⎡

⎢

⎢

⎣

𝑎11𝐵 𝑎12𝐵 … 𝑎1𝑛𝐵
⋮ ⋱ ⋮

𝑎𝑚1𝐵 … 𝑎𝑚𝑛𝐵

⎤

⎥

⎥

⎦

≡
⎡

⎢

⎢

⎣

𝑎11𝑏11 𝑎11𝑏12 … 𝑎12𝑏11 … 𝑎1𝑛𝑏1𝑞
⋮ ⋱⋮

𝑎𝑚1𝑏11 𝑎𝑚1𝑏12 … 𝑎𝑚2𝑏11 … 𝑎𝑚𝑛𝑏𝑝𝑞

⎤

⎥

⎥

⎦

.

Qubit tensor product state: The total degrees of freedom of a qubit
composite is given by the Tensor product between qubit states.
Consider a set of degrees of freedom associated with an 𝑛 dimensional
Hilbert space,

H1 = 𝑠𝑝𝑎𝑛
{

|0⟩, |1⟩,… ., |𝑛 − 1⟩
}

,

and another set of degrees of freedom associated with an 𝑚 dimensional
Hilbert space,

H2 = 𝑠𝑝𝑎𝑛
{

|0⟩, |1⟩,… ., |𝑚 − 1⟩
}

.

Thus, all possible superposition states of these two qubit-conjoined
Hilbert space is given by the tensor product,

H = H1 ⊗H2 (A.1)

This tensor-product space is spanned by orthonormal basis vectors,

{|𝑗⟩⊗ |𝑘⟩ ∶= |𝑗, 𝑘⟩ ∶ 𝑗 = 0, 1,… ., 𝑛 − 1; 𝑘 = 0, 1,… ., 𝑚 − 1}

Thus, an arbitrary state vector |𝛷⟩ in this composite Hilbert space
1 ⊗ 2 can be expanded in its computational basis (superposition
state) reads,

|𝛷⟩ =
𝑛−1
∑

𝑗=0

𝑚−1
∑

𝑘=0
𝛾𝑗,𝑘|𝑗⟩⊗ |𝑘⟩, (A.2)

where, the coefficients (amplitudes) 𝛾𝑗,𝑘 ∈ C. Using the tensor (Kro-
necker) product machinery, one can now formally define a quantum

register. The Hilbert space of an 𝑛-qubit initialized quantum register
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⟨

H⊗𝑛 is the n-fold tensor product state of a single qubit Hilbert space
H = C2, i.e.,

(C2)⊗𝑛 ∶= C2 ⊗⋯ .. ⊗ C2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑛-copies

(A.3)

with the basis span of Eq. (B.6) being,

 ∶=
{

|𝑖0⟩⊗⋯ . ⊗ |𝑖𝑛 − 1⟩ ∶= |𝑖0,… , 𝑖𝑁−1⟩ ∶ 𝑖0,… , 𝑖𝑛−1 ∈ {0, 1}
}

The tensor product basis can be regarded as column vectors for e.g., |0⟩
⊗⋯ . ⊗ |0⟩ ∶= |0, 0,… , 0⟩ =

[

1, 0, ....., 0
]𝑇 , . . . , |1⟩⊗⋯ . ⊗ |1⟩ ∶=

|1, 1,… , 1⟩ =
[

0, 0, ....., 1
]𝑇

Theorem 1 (Schmidt Decomposition). Let {H1H2,… ,H𝑛} be Hilbert spaces
of dimensions 𝑝1, 𝑝2,… , 𝑝𝑛 respectively. Assume that 𝑝𝑛 ≥ 𝑝𝑛−1 ≥ ⋯ . ≥ 𝑝1.
For any state in this composite (multi-partite) system, i.e, |𝜉⟩ ∈ H1 ⊗
H2.... ⊗ H𝑛, there exist orthonormal states {|𝜙1⟩,… , |𝜙𝑝1 ⟩} ⊂ H1, …,
{|𝜓1⟩,… , |𝜓𝑝𝑛 ⟩} ⊂ H𝑛 such that for real non-negative scalar coefficients
𝜆𝑖 ∈ R,

|𝜉⟩ =
𝑟
∑

𝑖=1
𝜆𝑖|𝜙⟩𝑖 ⊗⋯ .. ⊗ |𝜓⟩𝑖.

Where, 𝜆𝑖 are the Schmidt coefficients, and |𝜙𝑙⟩, . . . ., |𝜓𝑙⟩ are the corre-
sponding entangled states of the composite (multi-partite) system. The num-
ber of non-zero Schmidt coefficients 𝑟 determines the degree of entanglement
between the multiple subsystems.

Appendix B. Quantum programming model

B.1. Quantum information processing and quantum computation

Development of quantum software stacks, quantum compilers, and
development in the domains of quantum software engineering requires
at least a basic understanding of quantum physics and quantum in-
formation processing. This section is an introduction to the program-
ming model for quantum computation, which is especially intended for
computer scientists, computer software engineers, and computational
scientists who intend to migrate parts of their classical software onto
quantum devices.

B.2. Qubit

The basic unit of information, reflecting an on and off state of
classical computers are the classical bits which can take the values 0
and 1 only. The basic building blocks of quantum computing are known
as the quantum bits or in short qubits.

In the case of a single qubit the associated Hilbert space is H = C2.
Thus, a qubit is a linear combination of orthonormal (vectors) basis
states (superposition), denoted in the Dirac notation as |0⟩ and |1⟩.
Thus the state of a qubit is a vector in a two-dimensional complex
vector space [76]. Thus, |𝛹⟩ can be expanded in the orthonormal basis
states as,

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩, (B.1)

where,

|0⟩ =
[

1
0

]

and |1⟩ =
[

0
1

]

(B.2)

𝛼, 𝛽 ∈ C. These complex coefficients are also called probability ampli-
tudes. Since probabilities must add to 1 (normalization condition), the
inner-product of the state |𝜓⟩ with itself (norm squared of the vector)
ust be equal to 1. Hence, it is equivalent to the condition that

𝜓||𝜓⟩ ∶= ‖𝜓‖2 = 1, (B.3)
358
Fig. B.9. Bloch sphere representation of the qubit. The red-colored vector (arrow) is
the state |𝟎⟩, while the green-colored vector is state |𝟏⟩. The orange vector indicates an
intermediate state and the colored points correspond to the qubit rotations (infinitely
many possibilities to rotate the vector) on the Bloch sphere.

where the state ⟨𝜓| ∈ H∗ belongs to the dual vector space. This is
equivalent to saying that the complex coefficients satisfy a unit norm
condition, i.e.,

|𝛼|2 + |𝛽|2 = 1. (B.4)

An actual measurement process determines the value of the qubit,
which is obtained via the amplitude probability squared. The measure-
ment procedure yields a classical result either corresponding to a 0 or
1 bit value. Thus, the measurement of |0⟩ is obtained by squaring the
probability amplitude of its complex coefficient, i.e. |𝛼|2, whereas |1⟩ is
measured by computing |𝛽|2. From Eq.(2) it is clear that the state vector
|𝜓⟩ is constrained on a unit sphere 𝐒2 = {𝐱 ∈ R3 ∶ ‖𝐱‖ = 1}. Thus the
geometric representation of a qubit is the so-called Bloch-sphere
representation (The Bloch sphere was generated using the QuTiP [118]
package).

In the Bloch sphere representation, see Fig. B.9, the state vector |𝜓⟩
can be expressed in terms of the spherical polar coordinate basis reads,

|𝜓⟩ = 𝑐𝑜𝑠 𝜗
2
|0⟩ + 𝑒𝑖𝜑𝑠𝑖𝑛 𝜗

2
|1⟩, (B.5)

where, 0 ≤ 𝜗 ≤ 𝜋 and 0 ≤ 𝜑 ≤ 2𝜋. Thus, the state (Bloch) vector |𝜓⟩
can assume any of the infinitely many orientations on the Bloch-sphere.
This signifies the tremendous power of information processing using
quantum, since, the qubit on the Bloch sphere can exist as an infinite co-
herent superposition of all the states on the unit-sphere simultaneously!
This is in stark contrast to classical information processing wherein, the
classical bits can only assume either of the two Boolean values 𝟶 or 𝟷
at a particular time instant [76].

B.3. Quantum registers

In classical computers, multiple bits are combined to form a (clas-
sical) register. In the same way, a sequence of 𝑛 initialized qubits
cascaded together forms the storage-device, and is called the quantum
register or a qubit register. Thus, an arbitrary state vector |𝛹⟩ of the
composite n-qubit quantum register is a tensor product state living
in a very huge Hilbert space (C2)⊗𝑛. It allows an expansion in its
computational basis (orthonormal) states as,

|𝛹⟩ = 𝛼 |0⟩⊗⋯⊗ |0⟩+𝛼 |0⟩⊗⋯⊗ |1⟩+𝛼 |1⟩⊗⋯⊗ |1⟩. (B.6)
0,0..,0 0,0..,1 1,1..,1
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Where, the symbol ⊗ corresponds to the mathematical operation of
a Tensor product (see Appendix A). From here on, we will use a more
compact notation for |𝑖0⟩⊗ |𝑖1⟩⊗⋯⊗ |𝑖𝑛−1⟩ = |𝑖0, 𝑖1,… , 𝑖𝑛−1⟩.

Since a single qubit Hilbert (state) space is H = C2, correspondingly,
an 𝑛-qubit quantum register corresponds to an n-fold tensor product of
the single qubit state space, i.e.,

(C2)⊗𝑛 ∶= C2 ⊗⋯ .. ⊗ C2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑛-copies

(B.7)

Introducing a more succinct notation, the n-qubit quantum register,
Eq. (B.6) can be written as,

|𝛹⟩ =
2𝑛−1
∑

𝑖=0
𝛼𝑖|𝑖⟩ (B.8)

where, 𝑖0, 𝑖1,… , 𝑖𝑛−1 in |𝑖0,… ., 𝑖𝑛−1⟩ represent the binary notation of
𝑖. The complex coefficients, 𝛼𝑖0 ,….,𝑖𝑛−1 ≡ 𝛼𝑖 ∈ C. The normalization
ondition,
𝑛−1
∑

𝑖=0
|𝛼𝑖|

2 = 1,

.4. Quantum entanglement and quantum parallelism

This subsection delves into two pivotal phenomena of quantum
hysics, namely quantum entanglement, or just entanglement and quan-
um parallelism, which play fundamental roles in the fields of quantum
omputation quantum information processing, and quantum communi-
ation protocols [119].

• Quantum entanglement: In quantum computers, a pair or multiple
qubits can be correlated with each other over long distances
owing to the property of quantum entanglement. In an entangled
quantum system, the state of one qubit cannot be described
independently of the state of the other irrespective of their spa-
tial separation. Thus, these states are not separable (no tensor
product representation) and cannot be written as a tensor prod-
uct state. The degree of entanglement between the composite
systems can be quantified using the Schmidt decomposition (see
Appendix A for definition). Manipulating the state of one of the
qubits instantaneously changes the state of the other one in a
predictable way. Thus, quantum entanglement enables the users
to create complex quantum circuits (cf. Appendix C), wherein
an operation on a single qubit instantaneously affects the state
of another qubit that it is correlated with. Entanglement en-
ables quantum computers to perform parallel computations by
adding additional qubits resulting in an exponential increase in
its number-crunching capabilities.

• Quantum parallelism: Entanglement also influences the superpo-
sition of multiple qubits by allowing them to be in a joint su-
perposition state, leading to another intrinsic feature of quantum
processors, namely, quantum parallelism [120,121]. It is evident
from Eq. (B.6) that a quantum register with 𝑛-qubits is in a
quantum superposition of 2𝑛 states, ie., all classical alternatives
at once. Hence, one can simultaneously manipulate all the 2𝑛

possibilities that exist in this huge extended vector space.

.5. Quantum logic gates, quantum circuit model and quantum algorithms

Quantum (logic) gate architectures are the quantum analogs of
lassical logic gates. A quantum gate 𝑈̂ is represented as a unitary
perator (matrix) is a generalization of rotation on complex vector
paces. An n-qubit quantum register The unitary operator transfor-
ations are inner-product (or norm) preserving. By definition, these
nitary operator inverse is its own transposed complex conjugate, also
alled Hermitian conjugate (see Appendix A), i.e.,

̂ ̂ † ̂ † ̂
359

𝑈 = 𝑈 𝑈 = 1.
he 𝑈† quantum gate reverses the computation by undoing the gate
perator. Thus, in quantum devices, there exists another unique feature
f reversible computation using the inverse Unitary operators that is not
ossible in classical architectures.

.5.1. Quantum circuit model:
The initialized quantum register together with the qubit operation

roducing single or multi-qubit quantum gate sequences form the basic
uilding blocks of a quantum circuit. There are multiple quantum
ates that one uses to perform computations on the state vector. Some
f the most frequently used single qubit gates in quantum information
rocessing and computation are the so-called, PAULI gates (operators)
𝐼 , 𝑋, 𝑌 , 𝑍}, the HADAMARD gate 𝐻 and the 𝑃 -gate (see Appendix B).
A quantum algorithm is a collection of unitary quantum gates that

re assembled to successively perform one or many unitary transfor-
ations (computations) on a quantum register, in order to achieve a
pecific computational task. In short, these perform targeted rotations
operations) on a single qubit or a quantum register by mapping it onto
nother state on the Bloch-sphere. Thus quantum gates perform linear
nitary transformations (manipulation) on an input quantum register
𝑅⟩ and map them onto an output quantum register |𝑄⟩ as follows,

̂
|𝑅⟩ = |𝑄⟩ ∶=

𝑁
∑

𝑖=1
𝛼𝑖0 ,…,𝑖𝑁−1

|𝑖0,… ., 𝑖𝑁−1⟩ (B.9)

he result of the quantum algorithm 𝑈 is obtained by measuring the
uantum register |𝑄⟩ with a probability |𝛼𝑖0 ,..,𝑖𝑁−1

|

2. Due to the prob-
bilistic nature of the quantum processing units (QPUs), over different
xecutions of 𝑈 followed by a measurement to determine the result
ields different bit-strings according to their probabilities. This is to
ay that a single execution of a quantum algorithm is like performing a
andom experiment. Thus, an algorithm is typically executed multiple
imes, producing a probability density function (probability distribu-
ion) of results rather than a single value. The most probable result
n this statistical sample space corresponds to the actual result of the
uantum algorithm.

ppendix C. Unitary quantum logic gates

ingle qubit gate operations.

X gate: The Pauli-X gate is the quantum analog of the classical
NOT gate. It performs a bit flip (NOT) operation |𝑥⟩ ↦ |¬𝑥⟩.

The matrix representation of the X-gate reads,

𝑋 =
[

0 1
1 0

]

,

and the quantum circuit and truth table is,

Z gate: The Pauli-Z gate is the sign Flip gate following the
operation, |𝑥⟩ ↦ (−1)𝑥|𝑥⟩.

he matrix representation of the Z-gate reads,

𝑍 =
[

1 0
0 −1

]

,

with the quantum circuit and truth table being,
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Y gate: The Pauli-Y gate performs a rotation by 𝜋 around the
y-axis.

he matrix representation of the Y-gate reads,

=
[

0 −𝑖
𝑖 0

]

,

ith the quantum circuit and truth table being,

𝑰 gate: The Identity gate 𝐼 leaves all states unchanged,

he matrix representation of the Identity gate reads,

=
[

1 0
0 1

]

,

ith the quantum circuit and truth table being,

One of the most important and fundamental single qubit gate is the
ADAMARD gate,

H gate: The Hadamard gate creates an equal superposition state of
the computational basis. It maps the state |𝑥⟩ ↦ 1

√

2
(|0⟩+(−1)𝑥|1⟩).

The Hadamard gate prepares a superposition state, i.e.,

|0⟩ = 1
√

2

[

1 1
1 −1

] [

1
0

]

= 1
√

2

[

1
1

]

=
|0⟩ + |1⟩

√

2
∶= |+⟩ (C.1)

|1⟩ = 1
√

2

[

1 1
1 −1

] [

0
1

]

= 1
√

2

[

1
−1

]

=
|0⟩ − |1⟩

√

2
∶= |−⟩ (C.2)

P gate: The phase (shift) gate P are single qubit gates that induces
a phase on the computational basis, i.e. maps the state |𝑥⟩ ↦
𝑒𝑖𝜙𝑥|𝑥⟩,

𝑃 (𝜑)|0⟩ =
[

1 0
0 𝑒𝑖𝜑

] [

1
0

]

=
[

1
0

]

= |0⟩ (C.3)

(𝜑)|1⟩ =
[

1 0
0 𝑒𝑖𝜑

] [

0
1

]

= 𝑒𝑖𝜑
[

0
1

]

= 𝑒𝑖𝜑|1⟩ (C.4)

wo qubit gate operations.

CNOT gate: The CNOT or the Controlled-X gate is a 2-qubit
gate which flips the second qubit (target qubit) if and only if the
first qubit (control qubit) is state |1⟩. It is the quantum analog of
the classical XOR gate and maps the state |𝑥, 𝑦⟩ ↦ |𝑥 ⊕ 𝑦⟩, where
the symbol ⊕ denotes the XOR logic operation.

The matrix representation of the controlled-X gate reads,

0⟩⟨0|I + |1⟩⟨1|𝑋 =

⎡

⎢

⎢

⎢

⎢

1 0 0 0
0 1 0 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

360

⎣

0 0 1 0
⎦

The quantum circuit and the corresponding truth (logic) table is
shown below,

CNOT

|𝑥⟩ |𝑥⟩

|𝑦⟩ |𝑥 ⊕ 𝑦⟩

Input Qbits Output Qbits
|00⟩ |00⟩
|01⟩ |01⟩
|10⟩ |11⟩
|11⟩ |10⟩

CZ gate: The controlled Z gate is a 2-qubit gate flips the sign
of the state |11⟩, while leaving the other states unaffected, ie.,
|𝑥, 𝑦⟩ ↦ (−1)𝑥|𝑥, 𝑦⟩

The matrix representation of the controlled-Z reads,

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤

⎥

⎥

⎥

⎥

⎦

,

and the corresponding quantum circuit and truth table are also pre-
sented below,

SWAP gate: The 2-qubit SWAP gate swaps the qubit states and
maps a state |𝑎, 𝑏⟩ ↦ |𝑏, 𝑎⟩.

he permutation matrix representation reads,

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

(C.5)

hile the quantum circuit representation and truth table is,

SWAP

|𝑥⟩ |𝑦⟩

|𝑦⟩ |𝑥⟩

Input Qbits Output Qbits
|00⟩ |00⟩
|01⟩ |10⟩
|10⟩ |01⟩
|11⟩ |11⟩

Pauli Group: Pauli matrices generate a discrete group closed under
multiplication, called the Pauli group 𝑃𝑛. The set 𝑃𝑛 consists of n-
fold tensor product of the Pauli operators (Pauli strings) multiplied by
a factor 𝛾 ∈ {±1,±𝑖} accounting to 16-elements. An example of the
Pauli group for 𝑛 = 2, are the 2-fold tensor product of the Pauli gates,
𝛾𝐼 ⊗ 𝐼, 𝛾𝐼 ⊗ 𝑋, 𝛾𝐼 ⊗ 𝑌 , 𝛾𝐼 ⊗ 𝑍, 𝛾𝑋 ⊗ 𝐼, 𝛾𝑋 ⊗𝑋,… .𝛾𝑍 ⊗ 𝑍}.

efinition C.1. Given a subset 𝐻 of a group (or semigroup) 𝐺, its
ormalizer 𝑁(𝐻) = 𝑁𝐺(𝐻) is the subgroup of 𝐺 consisting of all
lements 𝑔 ∈ 𝐺 such that for each ℎ ∈ 𝐻 there is a ℎ′ ∈ 𝐻 such
hat 𝑔ℎ = ℎ′𝑔. In a more succinct form, the normalizer subgroup reads

𝐺(𝐻) =
{

𝑔 ∈ 𝐺|𝑔𝐻𝑔−1 = 𝐻
}

.

Given a subset 𝑆 of (the underlying set of) a group 𝐺, its normalizer
(𝑆) = 𝑁𝐺(𝑆) is the subgroup of 𝐺 consisting of all elements 𝑔 ∈ 𝐺
uch that 𝑔𝑆 = 𝑆𝑔, i.e., for each 𝑠 ∈ 𝑆 there is 𝑠′ ∈ 𝑆 such that 𝑔𝑠 = 𝑠′𝑔.
Clifford gates: The Clifford group on n qubits, 𝑛, are the set of

unitary operations that normalize the Pauli group 𝑃𝑛. That is, 𝑈 ∈ 𝑛 if
† ⋃
𝑈𝑝𝑈 ∈ 𝑃𝑛, ∀𝑝 ∈ 𝑃𝑛. The Clifford gates are unitary operators in 𝑛≥1 𝑛.



Future Generation Computer Systems 158 (2024) 346–366S.S. Cranganore et al.

C

⎡
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⎢
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⎣

r
.

T

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

A quantum circuit constructed merely out of Clifford gates is called the
Clifford circuit [122]. It performs qubit operations on some designated
set of initialized qubits, while preserving the state of remaining the
ancilla qubits. The Clifford gate set consists of three gates, namely, the
CNOT (controlled-NOT), the Hadamard gate 𝐻 and the Phase gate 𝑃 .

.1. Three and multi-qubit gate operations

TOFFOLI gate: The CCNOT (controlled-controlled NOT gate) or
the TOFFOLI gate is a three qubit universal reversible quantum
gate. If the first two qubits are in state |1⟩, then it flips the last
qubit state, i.e., |𝑥, 𝑦, 𝑧⟩ ↦ |𝑥, 𝑦, 𝑧 ⊕ (𝑥 ∧ 𝑦)⟩

The Toffoli gate in its matrix form reads,

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The three qubit Toffoli gate has an equivalent quantum circuit
epresentation solely in terms of two qubit gates 𝐻 , 𝑇 and 𝑇 †. and are
Also, the truth table of this quantum logic gate are presented below,

CCNOT

≡

𝑇

𝑇 𝑇 †

𝐻 𝑇 † 𝑇 𝑇 † 𝑇 𝐻

Input Qbits Output Qbits
|000⟩ |000⟩
|001⟩ |001⟩
|010⟩ |010⟩
|011⟩ |011⟩
|100⟩ |100⟩
|101⟩ |101⟩
|110⟩ |111⟩
|111⟩ |110⟩

FREDKIN gate: The CSWAP (controlled-swap gate) is a three qubit
universal reversible quantum gate. If and only if the first qubit
state is state |1⟩, it leaves the first qubit unchanged and swaps the
last two bits.

he Fredkin gate in its permutation matrix form reads,

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

.

361

0 0 0 0 0 0 0 1 ⎦
The three qubit Fredkin gate has an equivalent quantum circuit that
can be solely constructed in terms of CNOT, 𝑉&𝑉 † qubit gates [123].
Here,

𝑉 =
[

0 1
1 0

]

1
2
,

is the square-root of the Pauli 𝑋 gate. Infact, the FREDKIN gate
is just the TOFFOLI gate with two CNOTs on its either sides. The
corresponding truth table for the FREDKIN gate is presented below,

C-SWAP

|𝑥⟩ |𝑥⟩

|𝑦⟩ |𝑦⟩

|𝑧⟩ |𝑧 ⊕ 𝑥⟩

≡

C-SWAP

𝑉 𝑉 𝑉 †

Input Qbits Output Qbits
|000⟩ |000⟩
|001⟩ |001⟩
|010⟩ |010⟩
|011⟩ |011⟩
|100⟩ |100⟩
|101⟩ |110⟩
|110⟩ |101⟩
|111⟩ |111⟩

Appendix D. Engineering complex quantum circuits

Entangled states: Separable quantum state can be expanded in
its computational basis as, |𝛹⟩ = |𝜓0⟩⊗ |𝜓1⟩⊗⋯ .⊗ |𝜓𝑛−1⟩. Whereas, an
Entangled quantum state |𝜁⟩ cannot be decomposed into tensor product
states, i.e., |𝜁⟩ ≠ |𝜉0⟩ ⊗ |𝜉1⟩ ⊗ ⋯ . ⊗ |𝜉𝑛−1⟩. The most simple and
maximally entangled quantum states can be achieved by entangling 2-
qubits in 4 different manners, also known as the Bell states or EPR
(Einstein–Podolski–Rosen) states,

|𝛷+
⟩ =

|00⟩ + |11⟩
√

2
, |𝛷−

⟩ =
|00⟩ − |11⟩

√

2
,

|𝛹+
⟩ =

|01⟩ + |10⟩
√

2
, |𝛹−

⟩ =
|01⟩ − |10⟩

√

2
,

We demonstrate the preparation of the |𝛷+
⟩ state via a quantum circuit.

|0⟩ 𝐻
|00⟩+|11⟩

√

2
|0⟩

In the 3-qubit case, there exists non bi-separable classes of entangled
states in quantum computing are for e.g., the 3-qubit Greenberger-
-Horne--Zeilinger (GHZ) state [124],

|𝐆𝐇𝐙⟩ = 1
√

(|000⟩ + |111⟩)

2
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|0⟩ 𝐻

|000⟩+|111⟩
√

2|0⟩

|0⟩

another highly important entangled 3-qubit state that is inequiva-
ent to the GHZ state is the W state [125],

|𝐖⟩ = 1
√

3
(|001⟩ + |010⟩ + |100⟩)

ppendix E. Matrix size

The symmetric bipartite matrix 𝐵𝐼𝐽 can be partitioned into a block
matrix form.

𝐵IJ =
(

0𝑛×𝑛 𝐸IJ
𝐸𝑇IJ 0𝑛×𝑛

)

(E.1)

The diagonal entries of the bipartite block matrix contains the zero
matrix. The off-diagonal entries 𝐸IJ (𝑛× 𝑛 matrix) and its transpose 𝐸𝑇IJ
contain as entries the Euclidean distances 𝑑𝑖𝑗 as defined in Eq. (E.3).
The Euclidean distance (metric) is a function defined on vector space
V,

𝑑 ∶ V × V ↦ R.

Therefore, the block matrix 𝐸IJ takes values only over the field R. The
matrix representation is given by,

𝐸IJ =

⎛

⎜

⎜

⎜

⎝

𝑑11𝑖𝑗 ⋯ 𝑑1𝑛𝑖𝑗
⋮ ⋱ ⋮
𝑑𝑛1𝑖𝑗 ⋯ 𝑑𝑛𝑛𝑖𝑗

⎞

⎟

⎟

⎟

⎠

. (E.2)

For given two segments 𝐼 and 𝐽 , the Euclidean metric between 𝐶𝛼
carbon atoms 𝑖 and 𝑗 reads,

𝑑𝑖𝑗 = 𝑑(𝑖, 𝑗) =
√

(𝑖𝑥 − 𝑗𝑥)2 + (𝑖𝑦 − 𝑗𝑦)2 + (𝑖𝑧 − 𝑗𝑧)2. (E.3)

Theorem 2. Input bipartite distance matrix 𝐵𝐼𝐽 is a Hermitian matrix.

roof. Let 𝐵𝐼𝐽 ∈ R2𝑛 × R2𝑛, with 𝑛 ∈ N. Note that from Eq. (E.1),

†
IJ =

(

0𝑛×𝑛 𝐸IJ
𝐸
𝑇
IJ 0𝑛×𝑛

)𝑇

=
(

0𝑛×𝑛 𝐸IJ
𝐸𝑇IJ 0𝑛×𝑛

)𝑇

= 𝐵IJ

ence, 𝐵IJ is a real symmetric matrix. Since, every real symmet-
ic matrix is an Hermitian matrix (operator), 𝐵IJ is an Hermitian
perator. □

Thus, the set of eigenvalues 𝛬 of the bipartite distance matrix all
elong in R. Thus, the Hermitian bipartite matrix 𝐵̂IJ qubit encoding
via mapping on to Pauli operators) without any further manipulation.

ppendix F. C-SWAP test methodology for 𝑪𝜶 atom distance esti-
ation

First introduced in the context of quantum fingerprinting [126]. The
rocedure for engineering the SWAP test circuit involves, (i) Entangling
ubit registers consisting of the mapped classical data with an ancil-
ary/helper qubit |0⟩ and, (ii) estimating the inner product between
wo different states through repeated measurements of the ancillary
ubit. Thus, this quantum algorithm measures the so-called fidelity,
hich is nothing but the inner product or overlap between two different
uantum states. The fidelity 𝐹 between two normalized quantum states
𝜙⟩, |𝜓⟩ is mathematically expressed as, 𝐹 (𝜙, 𝜓) = |⟨𝜙||𝜓⟩|2 ∈ [0, 1].
Hence, the higher the fidelity, the closer are the quantum states to
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each other, i.e, 𝐹 (𝜙, 𝜓) = 1, meaning the quantum states are parallel
while 𝐹 (𝜙, 𝜓) = 0 meaning orthogonal quantum states.

From an application point of view, this quantum routine has been
integrated into larger quantum circuits to achieve the target tasks. For
example, it has been used as a primary engine for speeding-up matrix
multiplications boiling down to merely (𝑁2) [59] time-complexity.
Moreover it has been extensively used in the domains of quantum
machine learning and big-data analysis (also sometimes called quantum
big data) due to its exponential speedup offered in calculating distances
between huge amounts of vector (tensor) datasets [74,85,127].

Circuit description. We initialize an ancillary (helper) qubit |0⟩, two
quantum registers |𝜓⟩ and |𝜙⟩. The initial state of combined tensor
product is

|𝛹𝐴⟩ = |0⟩⊗ |𝜙⟩⊗ |𝜓⟩, (F.1)

Encoded into the states |𝜙⟩ and |𝜓⟩ are classical data atom coordi-
nates using the AMPLITUDE encoding method. In amplitude encoding,
a classical vector or tensor, 𝑋 =

[

𝑥1, 𝑥2,… , 𝑥𝑛
]𝑇 ∈ R𝑁 is mapped onto

the quantum device by implementing the following algorithm written
as a pseudocode:
Algorithm 1 Amplitude Encoding Schema

Input: Classical data, 𝑋 =
[

𝑥0, 𝑥1, ..., 𝑥𝑝−1
]𝑇 ∈ R𝑝, number of qubits 𝑛.

Result: Quantum data with coefficients of 𝑋 ∈ R𝑝
encoded as amplitudes of the state-vector 𝑋 ↦ |𝑄𝑋⟩ =

1
||𝐱||2

∑𝑛−1
𝑖=0 𝑥𝑖|𝑖⟩

1: 𝑝← LEN(𝑋)
2: if ⌈𝑙𝑜𝑔2(𝑛)⌉ − 𝑝 = 0 then
3: 𝑄𝑋 ← 𝑋 {Calculate magnitude (norm) squared of 𝑋}
4: 𝑄𝑋 ↦ |𝑄𝑋⟩ =

1
||𝑋||

2
∑𝑛−1
𝑖=0 𝑥𝑖|𝑖⟩

5: end if
6: if ⌈𝑙𝑜𝑔2(𝑛)⌉ − 𝑝 = (𝑘 − 1) then
7: 𝑄𝑋 ←

[

𝑥0, 𝑥1, ..., 𝑥𝑝−1
p-entries

, 0, ....., 0
(k-1) -entries

]𝑇

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑝 + (𝑘 − 1) = 𝑛

{Pad the vector 𝑋 with (𝑘−1)

0’s to convert to dimension 𝑛.}
8: 𝑄𝑋 ↦ |𝑄𝑋⟩ =

1
||𝑋||

2

(
∑𝑝−1
𝑖=0 𝑥𝑖|𝑖⟩+

∑𝑛−1
𝑖=𝑝 0|𝑖⟩

)

{Calculate magnitude
(norm) squared of 𝑋}

9: end if
10: return |𝑄𝑋⟩

Thus, an 𝑛-dimensional classical data vector (tensor) can be effi-
ciently encoded into the wavefunction (state vector), requiring merely
⌈𝚕𝚘𝚐𝟸(𝚗)⌉ qubits [106]. Here, we describe the methodology to adapt the
SWAP test quantum circuit [106,126,127] for 𝐶𝛼 atoms distance matrix
calculations.

F.0.1. Problem size and qubit mapping
Input matrix size: While on classical architectures the amount of

atoms and segments we can process is dependent on the amount of
RAM available in the system, in the quantum machines we are limited
by the amount of qubits of the machine. As per the limitation of the
target machines, we limit our input size, i.e. the length of amino acid
segments used to generate the distance or bipartite matrix. For a chosen
segment of length 𝑘 (consisting of k atoms), the Euclidean distance
matrix 𝐷 (within the same segment) is a 𝑘 × 𝑘 symmetric matrix with
diagonal entries as zeros. The constructed bipartite distance matrices
𝐵IJ (between two separate segments) is a 2k × 2k dimensional matrix
with a k × k block matrices 𝐸IJ (cf. Appendix E).

Exploiting symmetries of the input CVs leads to a significant di-
mensional reduction on the matrix sizes, making it feasible to encode
smaller input sizes onto quantum devices. In our case, it suffices to cal-
culate only 𝑘(𝑘+1)

2 unique entries of 𝐷 and 𝑘2 entries for the block matrix
of 𝐸 of the 2𝑘×2𝑘 sized 𝐵 (since the other block is just the transpose
IJ IJ
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Fig. F.10. C-SWAP quantum subroutine implementation for distance matrix
generation.

of the matrix cf. Appendix E) respectively. Due to such dimensional
reduction properties intrinsic to our MD system, it becomes viable to
cut-down the input system size for our Target Task I and Target Task
II on the NISQ hardware.

The quantum state preparation for the 𝐶𝛼 atom coordinates done via
pseudocode 1 is depicted in the Data Encoding block in Fig. F.10.

Let the position vectors (classical data) corresponding to two differ-
nt atoms be denoted as 𝑢, 𝑣. Then the qubits can initialized with the
tate amplitudes (coefficients), in such a way that:

𝜙⟩ = 1
√

𝑊
(‖𝑢‖|0⟩ − ‖𝑣‖|1⟩), (F.2a)

𝜓⟩ = 1
√

2
(|𝑢, 0⟩ + |𝑣, 1⟩), (F.2b)

with ‖𝑢‖, ‖𝑣‖ being the Euclidean norm of the coordinates and 𝑊 =
‖𝑢‖2 + ‖𝑣‖2. The corresponding amplitude-encoded vectors read,

𝑢⟩ =
𝑁−1
∑

𝑖=0

𝑢𝑖
‖𝑢‖

|𝑖⟩, (F.3a)

𝑣⟩ =
𝑁−1
∑

𝑖=0

𝑣𝑖
‖𝑣‖

|𝑖⟩ (F.3b)

Since each qubit has two possible states, the number of coordinates of
the classical vector data must necessarily be 2𝑛 [106]. The real-time
oordinates of 𝐶𝛼 atoms whose positions vectors evolves as a function
f time 𝑡, {𝑥𝑖(𝑡), 𝑦𝑖(𝑡), 𝑧𝑖(𝑡)}1≤𝑖≤𝑛 ∈ R3. These three-dimensional position
ector 𝑢 must be padded with a 0 as the fourth coordinate. This leads
o a vector of the form

(

𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 0
)

with 22 = 4 coordinates. This
llows a suitable encoding scheme onto a 2-qubit quantum register.
In Fig. F.10, the 3-qubit quantum register |𝜓⟩ = |𝑄1, 𝑄2, 𝑄3⟩,

initialized as |0, 0, 0⟩ is then encoded with the concatenated atom-pair
coordinates values10 (𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2, 0, 0) ∈ R8. Here, it is clear
that 𝟶 padding is required for embedding, since three qubits are only
capable of storing a vector of dimension 23 = 8.

The is followed by an application of the HADAMARD gate H (cf.
Appendix B) on the ancillary qubit. Implementing controlled swap
operation, is performed using the three-qubit FREDKIN gate (cf. Ap-
pendix B) on the other two registers. The ancillary qubit works like a
control bit. The total state of the system after these two gate operations
is,

|𝛹𝐵⟩ =
1
√

2

(

|0, 𝜓, 𝜙⟩ + |1, 𝜙, 𝜓⟩
)

. (F.4)

he application of another Hadamard gate on the ancillary qubit |0⟩
yields
1
2
|0⟩(|𝜙, 𝜓⟩ + |𝜓, 𝜙⟩) + 1

2
|1⟩(|𝜙, 𝜓⟩ + |𝜓, 𝜙⟩).

10 For the sake of brevity, we drop the time-dependence of the atom
oordinates.
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On applying the Hadamard gate, the probability of measuring state ′0′,
i.e., of control qubit yields,

𝑃𝑟(0) = 1
2
+ 1

2
|⟨𝜙||𝜓⟩|2.

Euclidean distances 𝑑(𝑖, 𝑗) between 𝐶𝛼 atoms can be obtained using
qs.(((F.2)), ((F.3))).

(𝑢, 𝑣)2 = 2 𝑊 |⟨𝜙||𝜓⟩|2 = 4 𝑊 (𝑃𝑟(0) − 0.5). (F.5)

Our simulations comprised of a similar strategy as put-forth in [126].
ere, we perform a single execution for each 𝐶𝛼 atom pair using the

SWAP test subroutine. Hence, a total number of 𝑛 repeated circuit
executions were required for calculating the distances between 𝑛 atom
pairs using the quantum architecture.

Appendix G. The variational quantum eigensolver machinery

G.1. The mathematics of VQE

The theoretical groundwork for VQE starts with the variational
Rayleigh–Ritz functional. Given a Hamiltonian (Hermitian operator)
𝐻̂ and a initial trial wavefunction with respect to some vector-valued
parameter 𝝑 is |𝛹 (𝝑)⟩ (ansatz wavefunction). The Rayleigh–Ritz vari-
ational principle [80] sets an optimized upper bound for the ground
state energy 𝐸0 (lowest possible expectation/average value) associated
with the Hamiltonian,11 𝐸0, i.e.,

𝐸0 ∶= ⟨𝐻̂⟩𝝑 ≤
⟨𝛹 (𝝑)| ̂𝐻(𝝑)|𝛹 (𝝑)⟩

⟨𝛹 (𝝑)||𝛹 (𝝑)⟩
. (G.1)

The VQE machinery finds a parameterization of the wavefunction |𝛹⟩,
such that the expectation value of the Hermitian operator 𝐻̂ is
inimized and approaches closer to the lowest eigenvalue 𝐸0 after
uccessive iterative optimization steps [46].
A PQC consisting of an initialized qubit register and a set of unitary

uantum gates, can only perform a series of unitary transformations
nd measurements. Inorder to execute such a minimization (optimiza-
ion) task as described in Eq. (G.1) using quantum circuits, the user
must define a so-called ansatz wavefunction (trial eigenvector) |𝛹 (𝝑)⟩.
An initial generic parametrized unitary quantum gate 𝑈 (𝝑) applied
onto an initialized qubit register state, say 𝑈 (𝝑)|0⟩⊗𝑁 = |𝛹 (𝝑)⟩ (∀
𝝑 ∈ (−𝜋, 𝜋]) generates the ansatz wavefunction.

The Hamiltonian 𝐻̂ (Hermitian Matrices in general) can be encoded
onto the Pauli operators multiplied by weights (linear combination of
elements in the Pauli group), i.e.,

𝐻̂ =
∑

𝛼
𝑤𝑎𝑃𝑎, ∀𝑃𝑎 ∈ 𝑛. (G.2)

Here, 𝑤𝑎 are the set of weights (coefficients) and 𝑃𝑎 are Pauli strings in
𝑛respectively [46]. In the Pauli decomposed version, Eq. (G.3) Thus
the VQE optimization problem, designed using the quantum circuit
reads,

𝐸𝑉 𝑄𝐸 = min
𝜃
⟨𝟎|𝑈†(𝜽)𝐻̂𝑈 (𝜽)|𝟎⟩ = min

𝜽


∑

𝑎
𝑤𝑎⟨𝟎|𝑈†(𝜽)𝑃𝑎𝑈 (𝜽)|𝟎⟩. (G.3)

The iterative optimization of Eq. (G.3) is similar to the one that one
encounters in machine learning, thus, is also known as the cost (loss)
function in Hybrid systems.

Thus, the quantum expectation values need to be executed on a
quantum device. By contrast, operations like summation of the expecta-
tion values in Eq. (G.3) and the iterative optimization, for e.g., gradient-
escent (parameter update à la machine learning) of each of the terms
n 𝐸𝑉 𝑄𝐸 = min𝜽

∑

𝑎𝑤𝑎𝐸𝑝𝑎 , is carried out using classical optimization
lgorithms. This clearly depicts the workload sharing pipeline between
lassical and quantum devices in hybrid frameworks.

11 The expectation value of a matrix 𝑂̂ with respect to a vector |𝜙⟩ is defined
⟨𝜙|𝑂̂|𝜙⟩ .
as
⟨𝜙||𝜙⟩



Future Generation Computer Systems 158 (2024) 346–366S.S. Cranganore et al.
References

[1] E. Deelman, K. Vahi, M. Rynge, R. Mayani, R.F. da Silva, G. Papadimitriou, M.
Livny, The evolution of the pegasus workflow management software, Comput.
Sci. Eng. 21 (4) (2019) 22–36, http://dx.doi.org/10.1109/MCSE.2019.2919690.

[2] M. Wieczorek, R. Prodan, T. Fahringer, Scheduling of scientific workflows in
the ASKALON grid environment, Acm Sigmod Rec. 34 (3) (2005).

[3] S. Haines, Workflow orchestration with apache airflow, in: Modern Data
Engineering with Apache Spark: A Hands-on Guide for Building Mission-Critical
Streaming Applications, Springer, 2022, pp. 255–295.

[4] B.P. Abbott, et al., LIGO Scientific and Virgo Collaboration Collaboration,
GW170104: Observation of a 50-solar-mass binary black hole coalescence at
redshift 0.2, Phys. Rev. Lett. 118 (2017) 221101, http://dx.doi.org/10.1103/
PhysRevLett.118.221101, URL: https://link.aps.org/doi/10.1103/PhysRevLett.
118.221101.

[5] I.J. Taylor, E. Deelman, D.B. Gannon, M. Shields, et al., Workflows for
E-Science: Scientific Workflows for Grids, Vol. 1, Springer, 2007.

[6] Q. Vanhaelen, P. Mamoshina, A.M. Aliper, A. Artemov, K. Lezhnina, I. Ozerov,
I. Labat, A. Zhavoronkov, Design of efficient computational workflows for in
silico drug repurposing, Drug Discov. Today 22 (2) (2017) 210–222.

[7] H.S. Stein, J.M. Gregoire, Progress and prospects for accelerating materials
science with automated and autonomous workflows, Chem. Sci. 10 (42) (2019)
9640–9649.

[8] J. Ozik, J.M. Wozniak, N. Collier, C.M. Macal, M. Binois, A population data-
driven workflow for COVID-19 modeling and learning, Int. J. High Perform.
Comput. Appl. 35 (5) (2021) 483–499.

[9] B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams,
P. Addesso, R.X. Adhikari, V.B. Adya, et al., GW170104: Observation of a 50-
solar-mass binary black hole coalescence at redshift 0.2, Phys. Rev. Lett. 118
(22) (2017) http://dx.doi.org/10.1103/physrevlett.118.221101.

[10] J. Shalf, The future of computing beyond Moore’s law, Phil. Trans. R. Soc. A
378 (2166) (2020) 20190061.

[11] S. Ashby, P. Beckman, J. Chen, P. Colella, B. Collins, D. Crawford, J. Dongarra,
D. Kothe, R. Lusk, P. Messina, et al., The opportunities and challenges of
exascale computing, in: Summary Report of the Advanced Scientific Computing
Advisory Committee (ASCAC) Subcommittee, 2010, pp. 1–77.

[12] J.A. Ang, D.J. Mountain, New horizons for high-performance computing,
Computer 55 (12) (2022) 156–162.

[13] Y.A. Liu, X.L. Liu, F.N. Li, H. Fu, Y. Yang, J. Song, P. Zhao, Z. Wang, D. Peng,
H. Chen, C. Guo, H. Huang, W. Wu, D. Chen, Closing the "quantum supremacy"
gap: Achieving real-time simulation of a random quantum circuit using a new
sunway supercomputer, in: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’21, Association
for Computing Machinery, New York, NY, USA, 2021, http://dx.doi.org/10.
1145/3458817.3487399.

[14] P. Givi, A.J. Daley, D. Mavriplis, M. Malik, Quantum speedup for aeroscience
and engineering, AIAA J. 58 (8) (2020) 3715–3727.

[15] Y. Liu, S. Arunachalam, K. Temme, A rigorous and robust quantum speed-up
in supervised machine learning, Nat. Phys. 17 (9) (2021) 1013–1017.

[16] W.-L. Chang, J.-C. Chen, W.-Y. Chung, C.-Y. Hsiao, R. Wong, A.V. Vasilakos,
Quantum speedup and mathematical solutions of implementing bio-molecular
solutions for the independent set problem on IBM quantum computers, IEEE
Trans. NanoBiosci. 20 (3) (2021) 354–376.

[17] S. Aaronson, Read the fine print, Nat. Phys. 11 (4) (2015) 291–293.
[18] B. Cheng, X.-H. Deng, X. Gu, Y. He, G. Hu, P. Huang, J. Li, B.-C. Lin, D. Lu, Y.

Lu, C. Qiu, H. Wang, T. Xin, S. Yu, M.-H. Yung, J. Zeng, S. Zhang, Y. Zhong,
X. Peng, F. Nori, D. Yu, Noisy intermediate-scale quantum computers, Front.
Phys. 18 (2) (2023) 21308.

[19] J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2 (2018)
79, http://dx.doi.org/10.22331/q-2018-08-06-79.

[20] P. Shor, Algorithms for quantum computation: discrete logarithms and factoring,
in: Proceedings 35th Annual Symposium on Foundations of Computer Science,
1994, pp. 124–134, http://dx.doi.org/10.1109/SFCS.1994.365700.

[21] C. Gidney, M. Ekerå, How to factor 2048 bit RSA integers in 8 hours using 20
million noisy qubits, Quantum 5 (2021) 433, http://dx.doi.org/10.22331/q-
2021-04-15-433.

[22] W. Cai, X. Mu, W. Wang, J. Zhou, Y. Ma, X. Pan, Z. Hua, X. Liu, G. Xue, H. Yu,
H. Wang, Y. Song, C.-L. Zou, L. Sun, Protecting entanglement between logical
qubits via quantum error correction, Nat. Phys. (2024).

[23] S.A. Stein, R. L’Abbate, W. Mu, Y. Liu, B. Baheri, Y. Mao, G. Qiang, A. Li, B.
Fang, A hybrid system for learning classical data in quantum states, in: 2021
IEEE International Performance, Computing, and Communications Conference,
IPCCC, IEEE, 2021, pp. 1–7.

[24] D. Marković, J. Grollier, Quantum neuromorphic computing, Appl. Phys. Lett.
117 (15) (2020) 150501, http://dx.doi.org/10.1063/5.0020014.

[25] A. Keesling, A. Omran, H. Levine, H. Bernien, H. Pichler, S. Choi, R. Samajdar,
S. Schwartz, P. Silvi, S. Sachdev, P. Zoller, M. Endres, M. Greiner, V. Vuletić,
M.D. Lukin, Quantum Kibble–Zurek mechanism and critical dynamics on a
programmable Rydberg simulator, Nature 568 (7751) (2019) 207–211.
364
[26] S. Ebadi, T.T. Wang, H. Levine, A. Keesling, G. Semeghini, A. Omran, D.
Bluvstein, R. Samajdar, H. Pichler, W.W. Ho, S. Choi, S. Sachdev, M. Greiner, V.
Vuletić, M.D. Lukin, Quantum phases of matter on a 256-atom programmable
quantum simulator, Nature 595 (7866) (2021) 227–232, http://dx.doi.org/10.
1038/s41586-021-03582-4.

[27] M. Cerezo, A. Arrasmith, R. Babbush, S.C. Benjamin, S. Endo, K. Fujii, J.R.
McClean, K. Mitarai, X. Yuan, L. Cincio, P.J. Coles, Variational quantum
algorithms, Nat. Rev. Phys. 3 (9) (2021) 625–644.

[28] G.A. Quantum, Collaborators*, F. Arute, K. Arya, R. Babbush, D. Bacon, J.C.
Bardin, R. Barends, S. Boixo, M. Broughton, B.B. Buckley, D.A. Buell, B. Burkett,
N. Bushnell, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, S. Demura,
A. Dunsworth, E. Farhi, A. Fowler, B. Foxen, C. Gidney, M. Giustina, R.
Graff, S. Habegger, M.P. Harrigan, A. Ho, S. Hong, T. Huang, W.J. Huggins,
L. Ioffe, S.V. Isakov, E. Jeffrey, Z. Jiang, C. Jones, D. Kafri, K. Kechedzhi,
J. Kelly, S. Kim, P.V. Klimov, A. Korotkov, F. Kostritsa, D. Landhuis, P.
Laptev, M. Lindmark, E. Lucero, O. Martin, J.M. Martinis, J.R. McClean, M.
McEwen, A. Megrant, X. Mi, M. Mohseni, W. Mruczkiewicz, J. Mutus, O.
Naaman, M. Neeley, C. Neill, H. Neven, M.Y. Niu, T.E. O’Brien, E. Ostby, A.
Petukhov, H. Putterman, C. Quintana, P. Roushan, N.C. Rubin, D. Sank, K.J.
Satzinger, V. Smelyanskiy, D. Strain, K.J. Sung, M. Szalay, T.Y. Takeshita, A.
Vainsencher, T. White, N. Wiebe, Z.J. Yao, P. Yeh, A. Zalcman, Hartree-Fock
on a superconducting qubit quantum computer, Science 369 (6507) (2020)
1084–1089, http://dx.doi.org/10.1126/science.abb9811.

[29] L.W. Anderson, M. Kiffner, P.K. Barkoutsos, I. Tavernelli, J. Crain, D. Jaksch,
Coarse-grained intermolecular interactions on quantum processors, Phys. Rev.
A 105 (2022) 062409, http://dx.doi.org/10.1103/PhysRevA.105.062409, URL:
https://link.aps.org/doi/10.1103/PhysRevA.105.062409.

[30] R.P. Feynman, Simulating physics with computers, Internat. J. Theoret. Phys.
21 (6) (1982) 467–488.

[31] F. Arute, K. Arya, R. Babbush, D. Bacon, J.C. Bardin, R. Barends, R. Biswas, S.
Boixo, F.G.S.L. Brandao, D.A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R.
Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney,
M. Giustina, R. Graff, K. Guerin, S. Habegger, M.P. Harrigan, M.J. Hartmann, A.
Ho, M. Hoffmann, T. Huang, T.S. Humble, S.V. Isakov, E. Jeffrey, Z. Jiang, D.
Kafri, K. Kechedzhi, J. Kelly, P.V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa,
D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J.R. McClean, M.
McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman,
M. Neeley, C. Neill, M.Y. Niu, E. Ostby, A. Petukhov, J.C. Platt, C. Quintana,
E.G. Rieffel, P. Roushan, N.C. Rubin, D. Sank, K.J. Satzinger, V. Smelyanskiy,
K.J. Sung, M.D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z.J. Yao,
P. Yeh, A. Zalcman, H. Neven, J.M. Martinis, Quantum supremacy using a
programmable superconducting processor, Nature 574 (7779) (2019) 505–510,
http://dx.doi.org/10.1038/s41586-019-1666-5.

[32] F. Leymann, J. Barzen, The bitter truth about gate-based quantum algorithms
in the NISQ era, Quantum Sci. Technol. 5 (4) (2020) 044007, http://dx.doi.
org/10.1088/2058-9565/abae7d.

[33] D. Kielpinski, C. Monroe, D.J. Wineland, Architecture for a large-scale ion-trap
quantum computer, Nature 417 (6890) (2002) 709–711, http://dx.doi.org/10.
1038/nature00784.

[34] D. Willsch, M. Willsch, C.D. Gonzalez Calaza, F. Jin, H. De Raedt, M. Svensson,
K. Michielsen, Benchmarking advantage and D-wave 2000q quantum annealers
with exact cover problems, Quantum Inf. Process. 21 (4) (2022) 141, http:
//dx.doi.org/10.1007/s11128-022-03476-y.

[35] B. Weder, J. Barzen, M. Beisel, F. Leymann, Analysis and rewrite of quantum
workflows: Improving the execution of hybrid quantum algorithms, in: CLOSER,
2022, pp. 38–50.

[36] D. Vietz, J. Barzen, F. Leymann, B. Weder, Splitting quantum-classical scripts
for the generation of quantum workflows, in: International Conference on
Enterprise Design, Operations, and Computing, Springer, 2022, pp. 255–270.

[37] Y. Cao, J. Romero, A. Aspuru-Guzik, Potential of quantum computing for drug
discovery, IBM J. Res. Dev. 62 (6) (2018) 6:1-6:20.

[38] S.S. Cranganore, V.D. Maio, I. Brandic, T.M.A. Do, E. Deelman, Molecular
dynamics workflow decomposition for hybrid classic/quantum systems, in: 18th
IEEE International Conference on E-Science, E-Science 2022, Salt Lake City, UT,
USA, October 11-14, 2022, IEEE, 2022, pp. 346–356.

[39] R. Orús, S. Mugel, E. Lizaso, Quantum computing for finance: Overview and
prospects, Rev. Phys. 4 (2019) 100028.

[40] J. Clarke, N. Thomas, J. Roberts, R. Pilliarisetty, Z. Yoscovits, R. Caudillo,
H. George, K. Singh, D. Michalak, P. Amin, et al., Quantum computing
within the framework of advanced semiconductor manufacturing, in: 2016 IEEE
International Electron Devices Meeting, IEDM, IEEE, 2016, 13.1.1–13.1.3.

[41] A.W. Harrow, A. Hassidim, S. Lloyd, Quantum algorithm for linear systems
of equations, Phys. Rev. Lett. 103 (2009) 150502, http://dx.doi.org/10.1103/
PhysRevLett.103.150502, URL: https://link.aps.org/doi/10.1103/PhysRevLett.
103.150502.

[42] R. Ur Rasool, H.F. Ahmad, W. Rafique, A. Qayyum, J. Qadir, Z. Anwar,
Quantum computing for healthcare: A review, Future Internet 15 (3) (2023)
94.

[43] J.R. McClean, J. Romero, R. Babbush, A. Aspuru-Guzik, The theory of varia-
tional hybrid quantum-classical algorithms, New J. Phys. 18 (2) (2016) 023023,
http://dx.doi.org/10.1088/1367-2630/18/2/023023.

http://dx.doi.org/10.1109/MCSE.2019.2919690
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb2
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb2
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb2
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb3
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb3
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb3
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb3
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb3
http://dx.doi.org/10.1103/PhysRevLett.118.221101
http://dx.doi.org/10.1103/PhysRevLett.118.221101
http://dx.doi.org/10.1103/PhysRevLett.118.221101
https://link.aps.org/doi/10.1103/PhysRevLett.118.221101
https://link.aps.org/doi/10.1103/PhysRevLett.118.221101
https://link.aps.org/doi/10.1103/PhysRevLett.118.221101
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb5
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb5
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb5
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb6
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb6
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb6
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb6
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb6
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb7
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb7
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb7
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb7
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb7
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb8
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb8
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb8
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb8
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb8
http://dx.doi.org/10.1103/physrevlett.118.221101
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb10
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb10
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb10
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb11
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb11
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb11
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb11
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb11
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb11
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb11
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb12
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb12
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb12
http://dx.doi.org/10.1145/3458817.3487399
http://dx.doi.org/10.1145/3458817.3487399
http://dx.doi.org/10.1145/3458817.3487399
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb14
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb14
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb14
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb15
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb15
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb15
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb16
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb16
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb16
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb16
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb16
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb16
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb16
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb17
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb18
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb18
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb18
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb18
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb18
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb18
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb18
http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.22331/q-2021-04-15-433
http://dx.doi.org/10.22331/q-2021-04-15-433
http://dx.doi.org/10.22331/q-2021-04-15-433
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb22
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb22
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb22
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb22
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb22
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb23
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb23
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb23
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb23
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb23
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb23
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb23
http://dx.doi.org/10.1063/5.0020014
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb25
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb25
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb25
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb25
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb25
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb25
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb25
http://dx.doi.org/10.1038/s41586-021-03582-4
http://dx.doi.org/10.1038/s41586-021-03582-4
http://dx.doi.org/10.1038/s41586-021-03582-4
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb27
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb27
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb27
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb27
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb27
http://dx.doi.org/10.1126/science.abb9811
http://dx.doi.org/10.1103/PhysRevA.105.062409
https://link.aps.org/doi/10.1103/PhysRevA.105.062409
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb30
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb30
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb30
http://dx.doi.org/10.1038/s41586-019-1666-5
http://dx.doi.org/10.1088/2058-9565/abae7d
http://dx.doi.org/10.1088/2058-9565/abae7d
http://dx.doi.org/10.1088/2058-9565/abae7d
http://dx.doi.org/10.1038/nature00784
http://dx.doi.org/10.1038/nature00784
http://dx.doi.org/10.1038/nature00784
http://dx.doi.org/10.1007/s11128-022-03476-y
http://dx.doi.org/10.1007/s11128-022-03476-y
http://dx.doi.org/10.1007/s11128-022-03476-y
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb35
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb35
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb35
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb35
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb35
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb36
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb36
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb36
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb36
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb36
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb37
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb37
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb37
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb38
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb38
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb38
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb38
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb38
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb38
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb38
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb39
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb39
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb39
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb40
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb40
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb40
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb40
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb40
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb40
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb40
http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://dx.doi.org/10.1103/PhysRevLett.103.150502
https://link.aps.org/doi/10.1103/PhysRevLett.103.150502
https://link.aps.org/doi/10.1103/PhysRevLett.103.150502
https://link.aps.org/doi/10.1103/PhysRevLett.103.150502
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb42
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb42
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb42
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb42
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb42
http://dx.doi.org/10.1088/1367-2630/18/2/023023


Future Generation Computer Systems 158 (2024) 346–366S.S. Cranganore et al.
[44] M. Cerezo, A. Arrasmith, R. Babbush, S.C. Benjamin, S. Endo, K. Fujii, J.R.
McClean, K. Mitarai, X. Yuan, L. Cincio, et al., Variational quantum algorithms,
Nat. Rev. Phys. 3 (9) (2021) 625–644.

[45] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P.J. Love, A.
Aspuru-Guzik, J.L. O’Brien, A variational eigenvalue solver on a photonic
quantum processor, Nature Commun. 5 (1) (2014) 4213.

[46] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant, L. Wossnig,
I. Rungger, G.H. Booth, J. Tennyson, The Variational Quantum Eigensolver: a
review of methods and best practices, 2021, http://dx.doi.org/10.48550/ARXIV.
2111.05176, arXiv. URL: https://arxiv.org/abs/2111.05176.

[47] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant, L. Wossnig, I.
Rungger, G.H. Booth, J. Tennyson, The Variational Quantum Eigensolver: A
review of methods and best practices, Phys. Rep. 986 (2022) 1–128.

[48] M. De Stefano, F. Pecorelli, D. Di Nucci, F. Palomba, A. De Lucia, Software
engineering for quantum programming: How far are we? J. Syst. Softw. 190
(2022) 111326.

[49] B. Weder, J. Barzen, F. Leymann, D. Vietz, Quantum software development
lifecycle, in: Quantum Software Engineering, Springer, 2022, pp. 61–83.

[50] T. Atkinson, A. Karsa, J. Drake, J. Swan, Quantum program synthesis: Swarm
algorithms and benchmarks, in: Genetic Programming: 22nd European Confer-
ence, EuroGP 2019, Held As Part of EvoStar 2019, Leipzig, Germany, April
24–26, 2019, Proceedings. Vol. 22, Springer, 2019, pp. 19–34.

[51] M.G. Davis, E. Smith, A. Tudor, K. Sen, I. Siddiqi, C. Iancu, Towards optimal
topology aware quantum circuit synthesis, in: 2020 IEEE International Confer-
ence on Quantum Computing and Engineering, QCE, 2020, pp. 223–234, URL:
https://api.semanticscholar.org/CorpusID:227221311.

[52] Pegasus workflow management system. [Online] https://pegasus.isi.edu/.
[53] V. De Maio, D. Kimovski, Multi-objective scheduling of extreme data scientific

workflows in Fog, Future Gener. Comput. Syst. 106 (2020) 171–184.
[54] R. Silva, R. Filgueira, I. Pietri, M. Jiang, R. Sakellariou, E. Deelman, A char-

acterization of workflow management systems for extreme-scale applications,
Future Gener. Comput. Syst. 75 (2017) 228–238.

[55] Orquestra. [Online]. https://zapata.ai/EarlyAccess/.
[56] Covalent: A unified platform for Accelerated Computing. [Online] https://www.

covalent.xyz/.
[57] DAGsHub: the home for data science collaboration. [Online] https://dagshub.

com/.
[58] S. Leontica, F. Tennie, T. Farrow, Simulating molecules on a cloud-based 5-

qubit IBM-Q universal quantum computer, Commun. Phys. 4 (1) (2021) 112,
http://dx.doi.org/10.1038/s42005-021-00616-1.

[59] X.-D. Zhang, X.-M. Zhang, Z.-Y. Xue, Quantum hyperparallel algorithm for
matrix multiplication, Sci. Rep. 6 (1) (2016) 24910, http://dx.doi.org/10.1038/
srep24910.

[60] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, S. Lloyd, Quantum
machine learning, Nature 549 (7671) (2017) 195–202, http://dx.doi.org/10.
1038/nature23474.

[61] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-
Maranto, L. Zdeborová, Machine learning and the physical sciences, Rev. Mod.
Phys. 91 (2019) 045002, http://dx.doi.org/10.1103/RevModPhys.91.045002,
URL: https://link.aps.org/doi/10.1103/RevModPhys.91.045002.

[62] Y. Liu, S. Arunachalam, K. Temme, A rigorous and robust quantum speed-
up in supervised machine learning, Nat. Phys. 17 (9) (2021) 1013–1017,
http://dx.doi.org/10.1038/s41567-021-01287-z.

[63] A. Zlokapa, S. Boixo, D. Lidar, Boundaries of quantum supremacy via random
circuit sampling, 2020, arXiv:2005.02464.

[64] M. Weigold, J. Barzen, F. Leymann, M. Salm, Encoding patterns for quantum
algorithms, IET Quantum Commun. 2 (4) (2021) 141–152, http://dx.doi.org/
10.1049/qtc2.12032.

[65] R. LaRose, B. Coyle, Robust data encodings for quantum classifiers, Phys. Rev.
A 102 (2020) 032420, http://dx.doi.org/10.1103/PhysRevA.102.032420, URL:
https://link.aps.org/doi/10.1103/PhysRevA.102.032420.

[66] A. Callison, N. Chancellor, Hybrid quantum-classical algorithms in the noisy
intermediate-scale quantum era and beyond, Phys. Rev. A 106 (2022)
010101, http://dx.doi.org/10.1103/PhysRevA.106.010101, URL: https://link.
aps.org/doi/10.1103/PhysRevA.106.010101.

[67] K. Shashidhar, M. Bruynooghe, F. Catthoor, G. Janssens, Functional equivalence
checking for verification of algebraic transformations on array-intensive source
code, in: Design, Automation and Test in Europe, Vol. 2, 2005, pp. 1310–1315,
http://dx.doi.org/10.1109/DATE.2005.163.

[68] M. Zhang, L. Dong, Y. Zeng, N. Cao, Improved circuit implementation of the
HHL algorithm and its simulations on QISKIT, Sci. Rep. 12 (1) (2022) 13287.

[69] T.M.A. Do, L. Pottier, S. Caíno-Lores, R. Ferreira da Silva, M.A. Cuendet,
H. Weinstein, T. Estrada, M. Taufer, E. Deelman, A lightweight method for
evaluating in situ workflow efficiency, J. Comput. Sci. 48 (2021) 101259, URL:
https://www.sciencedirect.com/science/article/pii/S1877750320305573.

[70] M. Taufer, S. Thomas, M. Wyatt, T.M. Anh Do, L. Pottier, R.F. da Silva,
H. Weinstein, M.A. Cuendet, T. Estrada, E. Deelman, Characterizing in situ
and in transit analytics of molecular dynamics simulations for next-generation
supercomputers, in: 2019 15th International Conference on EScience, EScience,
2019, pp. 188–198, http://dx.doi.org/10.1109/eScience.2019.00027.
365
[71] A. Kitao, N. Go, Investigating protein dynamics in collective coordinate space,
Curr. Opin. Struct. Biol. 9 (2) (1999) 164–169.

[72] A. Barducci, M. Bonomi, M. Parrinello, Metadynamics, WIREs Comput. Mol.
Sci. 1 (5) (2011) 826–843, http://dx.doi.org/10.1002/wcms.31, URL: https:
//wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.31.

[73] S. Wei, H. Li, G. Long, A full quantum eigensolver for quantum chemistry
simulations, Research 2020 (2020) http://dx.doi.org/10.34133/2020/1486935,
URL: https://spj.science.org/doi/abs/10.34133/2020/1486935.

[74] S. Lloyd, M. Mohseni, P. Rebentrost, Quantum algorithms for supervised and
unsupervised machine learning, 2013, http://dx.doi.org/10.48550/ARXIV.1307.
0411, arXiv. URL: https://arxiv.org/abs/1307.0411.

[75] V. Giovannetti, S. Lloyd, L. Maccone, Quantum random access memory, Phys.
Rev. Lett. 100 (2008) 160501, http://dx.doi.org/10.1103/PhysRevLett.100.
160501, URL: https://link.aps.org/doi/10.1103/PhysRevLett.100.160501.

[76] M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information:
10th Anniversary Edition, Cambridge University Press, 2010, http://dx.doi.org/
10.1017/CBO9780511976667.

[77] S. Aaronson, BQP and the polynomial hierarchy, 2009, http://dx.doi.org/10.
48550/ARXIV.0910.4698, arXiv. URL: https://arxiv.org/abs/0910.4698.

[78] T. Johnston, B. Zhang, A. Liwo, S. Crivelli, M. Taufer, In situ data analytics
and indexing of protein trajectories, J. Comput. Chem. 38 (16) (2017) 1419–
1430, http://dx.doi.org/10.1002/jcc.24729, URL: https://onlinelibrary.wiley.
com/doi/abs/10.1002/jcc.24729.

[79] T. Johnston, B. Zhang, A. Liwo, S. Crivelli, M. Taufer, In situ data analytics
and indexing of protein trajectories, J. Comput. Chem. 38 (16) (2017) 1419–
1430, http://dx.doi.org/10.1002/jcc.24729, URL: https://onlinelibrary.wiley.
com/doi/abs/10.1002/jcc.24729.

[80] W. Ritz, Über eine neue Methode zur Lösung gewisser Variationsprobleme
der mathematischen Physik, J. Reine Angew. Math. 135 (1909) 1–61, URL:
http://eudml.org/doc/149295.

[81] M. Broughton, G. Verdon, T. McCourt, A.J. Martinez, J.H. Yoo, S.V. Isakov, P.
Massey, R. Halavati, M.Y. Niu, A. Zlokapa, E. Peters, O. Lockwood, A. Skolik, S.
Jerbi, V. Dunjko, M. Leib, M. Streif, D.V. Dollen, H. Chen, S. Cao, R. Wiersema,
H.-Y. Huang, J.R. McClean, R. Babbush, S. Boixo, D. Bacon, A.K. Ho, H. Neven,
M. Mohseni, TensorFlow quantum: A software framework for quantum machine
learning, 2021, arXiv:2003.02989.

[82] R. Babbush, D.W. Berry, J.R. McClean, H. Neven, Quantum simulation of
chemistry with sublinear scaling in basis size, Npj Quantum Inf. 5 (1) (2019)
92, http://dx.doi.org/10.1038/s41534-019-0199-y.

[83] Quantum Inf. Process. 12 (11 & 12) (2012) http://dx.doi.org/10.26421/qic12.
11-12.

[84] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization
algorithm, 2014, arXiv:1411.4028.

[85] N. Wiebe, A. Kapoor, K.M. Svore, Quantum algorithms for nearest-neighbor
methods for supervised and unsupervised learning, Quantum Info. Comput. 15
(3–4) (2015) 316–356, Incorporated.

[86] P. Rebentrost, M. Mohseni, S. Lloyd, Quantum support vector machine for
big data classification, Phys. Rev. Lett. 113 (2014) 130503, http://dx.doi.
org/10.1103/PhysRevLett.113.130503, URL: https://link.aps.org/doi/10.1103/
PhysRevLett.113.130503.

[87] V. Havlíček, A.D. Córcoles, K. Temme, A.W. Harrow, A. Kandala, J.M. Chow,
J.M. Gambetta, Supervised learning with quantum-enhanced feature spaces,
Nature 567 (7747) (2019) 209–212.

[88] L. Clinton, T. Cubitt, B. Flynn, F.M. Gambetta, J. Klassen, A. Montanaro, S.
Piddock, R.A. Santos, E. Sheridan, Towards near-term quantum simulation of
materials, Nature Commun. 15 (1) (2024) 211.

[89] A.W. Cross, L.S. Bishop, S. Sheldon, P.D. Nation, J.M. Gambetta, Validating
quantum computers using randomized model circuits, Phys. Rev. A 100 (3)
(2019) 032328.

[90] E.A. Sete, W.J. Zeng, C.T. Rigetti, A functional architecture for scalable quantum
computing, in: 2016 IEEE International Conference on Rebooting Computing,
ICRC, IEEE, 2016, pp. 1–6.

[91] N. Quetschlich, L. Burgholzer, R. Wille, MQT predictor: Automatic device
selection with device-specific circuit compilation for quantum computing, 2023,
arXiv:2310.06889.

[92] M. Salm, J. Barzen, U. Breitenbücher, F. Leymann, B. Weder, K. Wild, The
NISQ analyzer: Automating the selection of quantum computers for quantum
algorithms, in: Proceedings of the 14th Symposium and Summer School
on Service-Oriented Computing, SummerSOC 2020, Springer International
Publishing, 2020, pp. 66–85, http://dx.doi.org/10.1007/978-3-030-64846-6_5.

[93] J. Garcia-Alonso, J. Rojo, D. Valencia, E. Moguel, J. Berrocal, J.M. Murillo,
Quantum software as a service through a quantum API gateway, IEEE Internet
Comput. 26 (1) (2022) 34–41, http://dx.doi.org/10.1109/MIC.2021.3132688.

[94] H.J. Briegel, D.E. Browne, W. Dür, R. Raussendorf, M. Van den Nest,
Measurement-based quantum computation, Nat. Phys. 5 (1) (2009) 19–26.

[95] H. Zhang, A. Wu, Y. Wang, G. Li, H. Shapourian, A. Shabani, Y. Ding,
Oneq: A compilation framework for photonic one-way quantum computation,
in: Proceedings of the 50th Annual International Symposium on Computer
Architecture, 2023, pp. 1–14.

http://refhub.elsevier.com/S0167-739X(24)00159-6/sb44
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb44
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb44
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb44
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb44
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb45
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb45
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb45
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb45
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb45
http://dx.doi.org/10.48550/ARXIV.2111.05176
http://dx.doi.org/10.48550/ARXIV.2111.05176
http://dx.doi.org/10.48550/ARXIV.2111.05176
https://arxiv.org/abs/2111.05176
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb47
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb47
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb47
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb47
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb47
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb48
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb48
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb48
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb48
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb48
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb49
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb49
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb49
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb50
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb50
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb50
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb50
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb50
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb50
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb50
https://api.semanticscholar.org/CorpusID:227221311
https://pegasus.isi.edu/
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb53
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb53
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb53
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb54
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb54
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb54
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb54
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb54
https://zapata.ai/EarlyAccess/
https://www.covalent.xyz/
https://www.covalent.xyz/
https://www.covalent.xyz/
https://dagshub.com/
https://dagshub.com/
https://dagshub.com/
http://dx.doi.org/10.1038/s42005-021-00616-1
http://dx.doi.org/10.1038/srep24910
http://dx.doi.org/10.1038/srep24910
http://dx.doi.org/10.1038/srep24910
http://dx.doi.org/10.1038/nature23474
http://dx.doi.org/10.1038/nature23474
http://dx.doi.org/10.1038/nature23474
http://dx.doi.org/10.1103/RevModPhys.91.045002
https://link.aps.org/doi/10.1103/RevModPhys.91.045002
http://dx.doi.org/10.1038/s41567-021-01287-z
http://arxiv.org/abs/2005.02464
http://dx.doi.org/10.1049/qtc2.12032
http://dx.doi.org/10.1049/qtc2.12032
http://dx.doi.org/10.1049/qtc2.12032
http://dx.doi.org/10.1103/PhysRevA.102.032420
https://link.aps.org/doi/10.1103/PhysRevA.102.032420
http://dx.doi.org/10.1103/PhysRevA.106.010101
https://link.aps.org/doi/10.1103/PhysRevA.106.010101
https://link.aps.org/doi/10.1103/PhysRevA.106.010101
https://link.aps.org/doi/10.1103/PhysRevA.106.010101
http://dx.doi.org/10.1109/DATE.2005.163
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb68
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb68
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb68
https://www.sciencedirect.com/science/article/pii/S1877750320305573
http://dx.doi.org/10.1109/eScience.2019.00027
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb71
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb71
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb71
http://dx.doi.org/10.1002/wcms.31
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.31
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.31
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.31
http://dx.doi.org/10.34133/2020/1486935
https://spj.science.org/doi/abs/10.34133/2020/1486935
http://dx.doi.org/10.48550/ARXIV.1307.0411
http://dx.doi.org/10.48550/ARXIV.1307.0411
http://dx.doi.org/10.48550/ARXIV.1307.0411
https://arxiv.org/abs/1307.0411
http://dx.doi.org/10.1103/PhysRevLett.100.160501
http://dx.doi.org/10.1103/PhysRevLett.100.160501
http://dx.doi.org/10.1103/PhysRevLett.100.160501
https://link.aps.org/doi/10.1103/PhysRevLett.100.160501
http://dx.doi.org/10.1017/CBO9780511976667
http://dx.doi.org/10.1017/CBO9780511976667
http://dx.doi.org/10.1017/CBO9780511976667
http://dx.doi.org/10.48550/ARXIV.0910.4698
http://dx.doi.org/10.48550/ARXIV.0910.4698
http://dx.doi.org/10.48550/ARXIV.0910.4698
https://arxiv.org/abs/0910.4698
http://dx.doi.org/10.1002/jcc.24729
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.24729
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.24729
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.24729
http://dx.doi.org/10.1002/jcc.24729
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.24729
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.24729
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.24729
http://eudml.org/doc/149295
http://arxiv.org/abs/2003.02989
http://dx.doi.org/10.1038/s41534-019-0199-y
http://dx.doi.org/10.26421/qic12.11-12
http://dx.doi.org/10.26421/qic12.11-12
http://dx.doi.org/10.26421/qic12.11-12
http://arxiv.org/abs/1411.4028
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb85
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb85
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb85
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb85
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb85
http://dx.doi.org/10.1103/PhysRevLett.113.130503
http://dx.doi.org/10.1103/PhysRevLett.113.130503
http://dx.doi.org/10.1103/PhysRevLett.113.130503
https://link.aps.org/doi/10.1103/PhysRevLett.113.130503
https://link.aps.org/doi/10.1103/PhysRevLett.113.130503
https://link.aps.org/doi/10.1103/PhysRevLett.113.130503
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb87
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb87
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb87
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb87
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb87
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb88
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb88
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb88
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb88
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb88
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb89
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb89
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb89
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb89
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb89
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb90
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb90
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb90
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb90
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb90
http://arxiv.org/abs/2310.06889
http://dx.doi.org/10.1007/978-3-030-64846-6_5
http://dx.doi.org/10.1109/MIC.2021.3132688
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb94
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb94
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb94
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb95
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb95
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb95
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb95
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb95
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb95
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb95


Future Generation Computer Systems 158 (2024) 346–366S.S. Cranganore et al.
[96] W. Hasselbring, M. Wojcieszak, S. Dustdar, Control flow versus data flow in
distributed systems integration: Revival of flow-based programming for the
industrial internet of things, IEEE Internet Comput. 25 (4) (2021) 5–12, http:
//dx.doi.org/10.1109/MIC.2021.3053712.

[97] K.A. Britt, T.S. Humble, High-performance computing with quantum processing
units, J. Emerg. Technol. Comput. Syst. 13 (3) (2017) http://dx.doi.org/10.
1145/3007651.

[98] J. van de Wetering, ZX-calculus for the working quantum computer scientist,
2020, arXiv preprint arXiv:2012.13966.

[99] H. Ohashi, Y. Watanobe, Convolutional neural network for classification of
source codes, in: 2019 IEEE 13th International Symposium on Embedded
Multicore/Many-Core Systems-on-Chip, MCSoC, IEEE, 2019, pp. 194–200.

[100] Y. Chen, Overview of research on code annotation evolution and classification,
in: ICETIS 2022; 7th International Conference on Electronic Technology and
Information Science, VDE, 2022, pp. 1–4.

[101] F. Zilk, K. Staudacher, T. Guggemos, K. Fürlinger, D. Kranzlmüller, P. Walther,
A compiler for universal photonic quantum computers, in: 2022 IEEE/ACM
Third International Workshop on Quantum Computing Software, QCS, IEEE,
2022, pp. 57–67.

[102] X. Zhang, T. Wang, Elastic and reliable bandwidth reservation based on
distributed traffic monitoring and control, IEEE Trans. Parallel Distrib. Syst.
33 (12) (2022) 4563–4580.

[103] S. Sanchez, A. Bonnie, G. Van Heule, C. Robinson, A. DeConinck, K. Kelly, Q.
Snead, J. Brandt, Design and implementation of a scalable hpc monitoring sys-
tem, in: 2016 IEEE International Parallel and Distributed Processing Symposium
Workshops, IPDPSW, IEEE, 2016, pp. 1721–1725.

[104] K. Jałowiecki, P. Lewandowska, Ł. Pawela, PyQBench: a Python library for
benchmarking gate-based quantum computers, 2023, arXiv:2304.00045.

[105] T. Lubinski, S. Johri, P. Varosy, J. Coleman, L. Zhao, J. Necaise, C.H.
Baldwin, K. Mayer, T. Proctor, Application-oriented performance benchmarks
for quantum computing, IEEE Trans. Quantum Eng. 4 (2023) 1–32, http:
//dx.doi.org/10.1109/TQE.2023.3253761.

[106] M. Schuld, F. Petruccione, Supervised Learning with Quantum Computers, first
ed., Springer Publishing Company, 2018, Incorporated.

[107] T. Fösel, M.Y. Niu, F. Marquardt, L. Li, Quantum circuit optimization with deep
reinforcement learning, 2021, arXiv:2103.07585.

[108] J.-H. Bae, P.M. Alsing, D. Ahn, W.A. Miller, Quantum circuit optimization using
quantum Karnaugh map, Sci. Rep. 10 (1) (2020) 15651.

[109] M. Ostaszewski, E. Grant, M. Benedetti, Structure optimization for parameter-
ized quantum circuits, Quantum 5 (2021) 391, http://dx.doi.org/10.22331/q-
2021-01-28-391.

[110] L. Domingo, G. Carlo, F. Borondo, Taking advantage of noise in quantum
reservoir computing, Sci. Rep. 13 (1) (2023) 8790.

[111] D.F. Locher, L. Cardarelli, M. Müller, Quantum error correction with quantum
autoencoders, Quantum 7 (2023) 942, http://dx.doi.org/10.22331/q-2023-03-
09-942.

[112] V. Sivak, A. Eickbusch, B. Royer, S. Singh, I. Tsioutsios, S. Ganjam, A. Miano,
B. Brock, A. Ding, L. Frunzio, et al., Real-time quantum error correction beyond
break-even, Nature 616 (7955) (2023) 50–55.

[113] M. Beisel, J. Barzen, F. Leymann, F. Truger, B. Weder, V. Yussupov,
Configurable readout error mitigation in quantum workflows, Electronics
11 (19) (2022) http://dx.doi.org/10.3390/electronics11192983, URL: https://
www.mdpi.com/2079-9292/11/19/2983.

[114] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy
optimization algorithms, 2017, arXiv:1707.06347.

[115] S. Guadarrama, A. Korattikara, O. Ramirez, P. Castro, E. Holly, S. Fishman,
K. Wang, E. Gonina, N. Wu, E. Kokiopoulou, L. Sbaiz, J. Smith, G. Bartók,
J. Berent, C. Harris, V. Vanhoucke, E. Brevdo, TF-Agents: A library for
reinforcement learning in TensorFlow, 2018, Online. URL: https://github.com/
tensorflow/agents. (Accessed 16 August 2023).

[116] V.D. Maio, A. Aral, I. Brandic, A roadmap to post-Moore era for distributed
systems, in: C. Georgiou, E.M. Schiller, A. Ali-Eldin, A. Iosup (Eds.), Applied
’22: Proceedings of the 2022 Workshop on Advanced Tools, Programming
Languages, and PLatforms for Implementing and Evaluating Algorithms for
Distributed Systems, Salerno, Italy, 25 July 2022, ACM, 2022, pp. 30–34.

[117] A. Aral, M. Erol-Kantarci, I. Brandic, Staleness control for edge data analytics,
Proc. ACM Meas. Anal. Comput. Syst. 4 (2) (2020) 38:1–38:24, http://dx.doi.
org/10.1145/3392156.

[118] J.R. Johansson, P.D. Nation, F. Nori, QuTiP: An open-source python framework
for the dynamics of open quantum systems, Comput. Phys. Comm. 183 (8)
(2012) 1760–1772.

[119] M. Huber, J.I. de Vicente, Structure of multidimensional entanglement in multi-
partite systems, Phys. Rev. Lett. 110 (2013) 030501, http://dx.doi.org/10.1103/
PhysRevLett.110.030501, URL: https://link.aps.org/doi/10.1103/PhysRevLett.
110.030501.

[120] J. Bub, Quantum information and computation, in: Philosophy of Physics,
in: Handbook of the Philosophy of Science, North-Holland, Amsterdam,
2007, pp. 555–660, URL: https://www.sciencedirect.com/science/article/pii/
B9780444515605500099.
366
[121] Front matter, in: Quantum Communication, Quantum Networks, and Quantum
Sensing, Academic Press, 2022, p. iii, URL: https://www.sciencedirect.com/
science/article/pii/B9780128229422010013.

[122] D. Grier, L. Schaeffer, The classification of clifford gates over qubits, Quantum
6 (2022) 734, http://dx.doi.org/10.22331/q-2022-06-13-734.

[123] J.A. Smolin, D.P. DiVincenzo, Five two-bit quantum gates are sufficient to im-
plement the quantum fredkin gate, Phys. Rev. A 53 (1996) 2855–2856, http://
dx.doi.org/10.1103/PhysRevA.53.2855, URL: https://link.aps.org/doi/10.1103/
PhysRevA.53.2855.

[124] T. Monz, P. Schindler, J.T. Barreiro, M. Chwalla, D. Nigg, W.A. Coish, M.
Harlander, W. Hänsel, M. Hennrich, R. Blatt, 14-Qubit entanglement: Creation
and coherence, Phys. Rev. Lett. 106 (2011) 130506, http://dx.doi.org/10.1103/
PhysRevLett.106.130506, URL: https://link.aps.org/doi/10.1103/PhysRevLett.
106.130506.

[125] W. Dür, G. Vidal, J.I. Cirac, Three qubits can be entangled in two inequivalent
ways, Phys. Rev. A 62 (2000) 062314, http://dx.doi.org/10.1103/PhysRevA.
62.062314, URL: https://link.aps.org/doi/10.1103/PhysRevA.62.062314.

[126] H. Buhrman, R. Cleve, J. Watrous, R. de Wolf, Quantum fingerprinting,
Phys. Rev. Lett. 87 (2001) 167902, http://dx.doi.org/10.1103/PhysRevLett.87.
167902, URL: https://link.aps.org/doi/10.1103/PhysRevLett.87.167902.

[127] D. Kopczyk, Quantum machine learning for data scientists, 2018, arXiv:1804.
10068.

Sandeep Suresh Cranganore received the M.Sc. degree in
theoretical physics from the University of Cologne, Ger-
many. He is currently pursuing his Ph.D. in theoretical
quantum physics at Forschungszentrum Juelich GmbH and
the University of Cologne. Additionally, he is also pursuing
a M.Sc. degree in Logic and Computation at the Technical
University of Vienna. His research interests are focused
on quantum many-body physics, quantum optimal control,
high-performance computing (HPC), deep learning and their
applications in quantum computing and technologies.

Vincenzo De Maio is a postdoctoral researcher in Vienna
University of Technology. He got his Ph.D. in 2016 at the
University of Innsbruck with a thesis on energy modeling
for Cloud data centers. His main research interests range
from Cloud Computing, Edge Computing, IoT, Scientific
Computing, Sustainable Computing, and Hybrid Quantum–
Classical Systems. Since 2023, he is lecturer for the class
of ‘‘Hybrid Quantum–Classical Systems’’, for the master
program in Computer Science at TU Wien.

Ivona Brandic is a Full Professor at the TU Wien. In
2015, she was awarded the FWF START prize, the highest
Austrian award for early career researchers. She received
her Ph.D. degree in 2007 from Vienna University of Tech-
nology. In 2011, she received the Distinguished Young
Scientist Award from the Vienna University of Technology
for her project on the Holistic Energy Efficient Hybrid
Clouds. Her main research interests are cloud computing,
large scale distributed systems, energy efficiency, hybrid
quantum–classical systems and near real time analytics.

Ewa Deelman received her Ph.D. in Computer Science from
the Rensselaer Polytechnic Institute in 1998. Following a
postdoc at the UCLA Computer Science Department she
joined the University of Southern California’s Information
Sciences Institute (ISI) in 2000, where she is serving as a
Research Director and is leading the Science Automation
Technologies Center. She is also a Research Professor at
the USC Computer Science Department and an AAAS, IEEE,
and USC/ISI Fellow. The USC/ISI Science Automation Tech-
nologies Center explores the interplay between automation
and the management of scientific workflows that include
resource provisioning and data management, considering
reproducibility and open science.

http://dx.doi.org/10.1109/MIC.2021.3053712
http://dx.doi.org/10.1109/MIC.2021.3053712
http://dx.doi.org/10.1109/MIC.2021.3053712
http://dx.doi.org/10.1145/3007651
http://dx.doi.org/10.1145/3007651
http://dx.doi.org/10.1145/3007651
http://arxiv.org/abs/2012.13966
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb99
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb99
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb99
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb99
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb99
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb100
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb100
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb100
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb100
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb100
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb101
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb101
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb101
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb101
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb101
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb101
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb101
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb102
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb102
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb102
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb102
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb102
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb103
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb103
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb103
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb103
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb103
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb103
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb103
http://arxiv.org/abs/2304.00045
http://dx.doi.org/10.1109/TQE.2023.3253761
http://dx.doi.org/10.1109/TQE.2023.3253761
http://dx.doi.org/10.1109/TQE.2023.3253761
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb106
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb106
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb106
http://arxiv.org/abs/2103.07585
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb108
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb108
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb108
http://dx.doi.org/10.22331/q-2021-01-28-391
http://dx.doi.org/10.22331/q-2021-01-28-391
http://dx.doi.org/10.22331/q-2021-01-28-391
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb110
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb110
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb110
http://dx.doi.org/10.22331/q-2023-03-09-942
http://dx.doi.org/10.22331/q-2023-03-09-942
http://dx.doi.org/10.22331/q-2023-03-09-942
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb112
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb112
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb112
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb112
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb112
http://dx.doi.org/10.3390/electronics11192983
https://www.mdpi.com/2079-9292/11/19/2983
https://www.mdpi.com/2079-9292/11/19/2983
https://www.mdpi.com/2079-9292/11/19/2983
http://arxiv.org/abs/1707.06347
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb116
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb116
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb116
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb116
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb116
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb116
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb116
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb116
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb116
http://dx.doi.org/10.1145/3392156
http://dx.doi.org/10.1145/3392156
http://dx.doi.org/10.1145/3392156
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb118
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb118
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb118
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb118
http://refhub.elsevier.com/S0167-739X(24)00159-6/sb118
http://dx.doi.org/10.1103/PhysRevLett.110.030501
http://dx.doi.org/10.1103/PhysRevLett.110.030501
http://dx.doi.org/10.1103/PhysRevLett.110.030501
https://link.aps.org/doi/10.1103/PhysRevLett.110.030501
https://link.aps.org/doi/10.1103/PhysRevLett.110.030501
https://link.aps.org/doi/10.1103/PhysRevLett.110.030501
https://www.sciencedirect.com/science/article/pii/B9780444515605500099
https://www.sciencedirect.com/science/article/pii/B9780444515605500099
https://www.sciencedirect.com/science/article/pii/B9780444515605500099
https://www.sciencedirect.com/science/article/pii/B9780128229422010013
https://www.sciencedirect.com/science/article/pii/B9780128229422010013
https://www.sciencedirect.com/science/article/pii/B9780128229422010013
http://dx.doi.org/10.22331/q-2022-06-13-734
http://dx.doi.org/10.1103/PhysRevA.53.2855
http://dx.doi.org/10.1103/PhysRevA.53.2855
http://dx.doi.org/10.1103/PhysRevA.53.2855
https://link.aps.org/doi/10.1103/PhysRevA.53.2855
https://link.aps.org/doi/10.1103/PhysRevA.53.2855
https://link.aps.org/doi/10.1103/PhysRevA.53.2855
http://dx.doi.org/10.1103/PhysRevLett.106.130506
http://dx.doi.org/10.1103/PhysRevLett.106.130506
http://dx.doi.org/10.1103/PhysRevLett.106.130506
https://link.aps.org/doi/10.1103/PhysRevLett.106.130506
https://link.aps.org/doi/10.1103/PhysRevLett.106.130506
https://link.aps.org/doi/10.1103/PhysRevLett.106.130506
http://dx.doi.org/10.1103/PhysRevA.62.062314
http://dx.doi.org/10.1103/PhysRevA.62.062314
http://dx.doi.org/10.1103/PhysRevA.62.062314
https://link.aps.org/doi/10.1103/PhysRevA.62.062314
http://dx.doi.org/10.1103/PhysRevLett.87.167902
http://dx.doi.org/10.1103/PhysRevLett.87.167902
http://dx.doi.org/10.1103/PhysRevLett.87.167902
https://link.aps.org/doi/10.1103/PhysRevLett.87.167902
http://arxiv.org/abs/1804.10068
http://arxiv.org/abs/1804.10068
http://arxiv.org/abs/1804.10068

	Paving the way to hybrid quantum–classical scientific workflows
	Introduction
	Related Work
	Background
	Scientific Workflows
	Workflow Management Systems
	Quantum Computing
	Hybrid Quantum–Classical Systems

	From Classical to Hybrid Workflows
	Hybrid Workflows

	A Molecular Dynamics Use Case
	Identification of Quantum candidates
	Mapping from Classical to Hybrid Workflow
	Generalizing Hybrid WMSs
	Hybrid Data/Control Flow


	Hybrid Workflow Management Systems
	Software Components
	Hybrid Workflows Execution
	Assumptions and Limitations

	Challenges
	Quantum Hardware Descriptors
	Performance Models
	Optimization of Hybrid Workflows
	Error Mitigation
	Integration within WMSs

	Conclusion and Outlook
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Mathematical prerequisites for quantum computing
	Appendix B. Quantum Programming Model
	Quantum information processing and quantum computation
	Qubit
	Quantum registers
	Quantum Entanglement and Quantum Parallelism
	Quantum Logic Gates, Quantum Circuit Model and Quantum Algorithms
	Quantum Circuit Model:


	Appendix C. Unitary Quantum Logic Gates
	Three and Multi-qubit gate operations

	Appendix D. Engineering complex quantum circuits
	Appendix E. Matrix Size
	Appendix F. C-SWAP test methodology for Cα atom distance estimation
	Problem Size and Qubit Mapping

	Appendix G. The Variational Quantum Eigensolver Machinery
	The mathematics of VQE

	References


