2301.13084v2 [math.AC] 23 Aug 2024

.
.

arxiv

VANISHING AND NON-NEGATIVITY OF THE FIRST NORMAL HILBERT
COEFFICIENT

LINQUAN MA AND PHAM HUNG QUY

Dedicated to Professor Ngo Viet Trung on the occasion of his 70th birthday

ABSTRACT. Let (R, m) be a Noetherian local ring such that R is reduced. We prove that, when Ris
Sa, if there exists a parameter ideal @ C R such that &1(Q) = 0, then R is regular and v(m/Q) < 1.
This leads to an affirmative answer to a problem raised by Goto-Hong-Mandal [10]. We also give
an alternative proof (in fact a strengthening) of their main result. In particular, we show that if R
is equidimensional, then &;(Q) > 0 for all parameter ideals @ C R, and in characteristic p > 0, we

actually have e7(Q) > 0. Our proofs rely on the existence of big Cohen-Macaulay algebras.

1. INTRODUCTION

Let (R,m) be a Noetherian local ring of dimension d such that R is reduced and let I C R be
an m-primary ideal. Then for n > 0, £(R/I"*!) agrees with a polynomial in n of degree d, and we

have integers €o(I),...,€4(I) such that

(R/TFT) = 20(I) (” : d) —a() <” ;f; 1) o (21D,

These integers €;(I) are called the normal Hilbert coefficients of I.

It is well-known that €y(I) is the Hilbert-Samuel multiplicity of I, which is always a positive
integer. In this paper, we are interested in the first coefficient &, (I). It was proved by Goto-Hong-
Mandal [10] that when R is unmixed, & (I) > 0 for all m-primary ideals I C R (which answers a
question posed by Vasconcelos [30]). They proposed a further problem in [10, Section 3] regarding
the vanishing of €;(I) and the regularity of the normalization of R. Since any m-primary ideal I
is integral over a parameter ideal when the residue field is infinite, to study €;(I) we may assume
that I = @ is a parameter ideal (i.e., it is generated by a system of parameters). In this paper, we
prove the following main result which will lead to an affirmative answer to the question proposed

n [10]. This theorem is also a generalization of the main result of [27].

Theorem 1.1 (Theorem 3.7). Let (R, m) be a Noetherian local ring such that R is reduced and Ss.
Ife1(Q) = 0 for some parameter ideal @ C R, then R is reqular and v(m/Q) < 1.

In [7], it was shown that when R has characteristic p > 0, for n > 0, £(R/(I"*1)*) also agrees
with a polynomial of degree d and one can define the tight Hilbert coefficients efj(I),...,e5(I) in
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a similar way (see Section 2 for more details). It is easy to see that e;(I) > ej(I). We strengthen
the main result of [10] in characteristic p > 0 by showing that e} (Q) > 0 for any parameter ideal

@ C R under mild assumptions.

Theorem 1.2 (Corollary 3.3). Let (R,m) be an excellent local ring of characteristic p > 0 such
that R is reduced and equidimensional. Then we have €(Q) > 0 for all parameter ideals Q C R.

Our proofs of both theorems rely on the existence of big Cohen-Macaulay algebras. In fact, we
show that the tight Hilbert coefficients e} (/) is a special case of what we call the BCM Hilbert
coeflicients e? (I) associated to a big Cohen-Macaulay algebra B, and the latter can be defined in
arbitrary characteristic. In this context, we will show in Theorem 3.1 that &;(Q) > e (Q) > 0 for
all parameter ideals Q C R when B satisfies some mild assumptions. This recovers and extends
the main result of [10] in arbitrary characteristic.

Throughout this article, all rings are commutative with multiplicative identity 1. We will use
(R, m) to denote a Noetherian local ring with unique maximal ideal m. We refer the reader to [4,
Chapter 1-4] for basic notions such as Cohen-Macaulay rings, regular sequence, Euler characteristic,
integral closure, and the Hilbert-Samuel multiplicity. We refer the reader to [29, Section 07QS] for
the definition and basic properties of excellent rings. The paper is organized as follows. In Section
2 we collect the definitions and some basic results on big Cohen-Macaulay algebras and variants of

Hilbert coefficients. In Section 3 we prove our main results and we propose some further questions.
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2. PRELIMINARIES

Recall that an element x in a ring R is integral over an ideal I C R if it satisfies an equation
of the form " + a;z" ' 4+ -+ + ap_1x + a, = 0, where a; € I*. The set of all elements integral
over I forms an ideal and is denoted by I, called the integral closure of I. An ideal I C R is called
integrally closed if I = I. It is well-known that an element x € R is integral over I if and only if
the image of x in R/p is integral over I(R/p) for all minimal primes p, see [21, Proposition 1.1.5].

Suppose R is a Noetherian ring of prime characteristic p > 0. The tight closure of an ideal
I C R, introduced by Hochster—Huneke, is defined as follows:

I" :={z € R | there exists ¢ € R — Upewmin(r)P such that ca?” e 1P for all e > 0}.
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An ideal I C R is called tightly closed if I = I*. In general, tight closure is always contained in the
integral closure, that is, I* C T (see [15, Proposition on Page 58]). Similar to integral closure, an
element x € R is in the tight closure of I if and only if the image of z in R/p is in the tight closure
of I(R/p) for all minimal primes p, see [15, Theorem on page 49].

Let R be a Noetherian complete local domain and let I C R be an ideal. The solid closure of
I, denoted by I*, consists of those element = € R such that there exists an R-algebra S such that
Hompg(S, R) # 0 and such that x € I.S. One can define solid closure of ideals in more general rings,
see [16, Definition 1.2], but we will only need this notion for complete local domains. It was shown
in [16, Theorem 5.10] that solid closure is contained in the integral closure, i.e., I * CT. If R has
prime characteristic p > 0, then solid closure agrees with tight closure I* = I*, see [16, Theorem
8.6].

2.1. Big Cohen-Macaulay algebras. Let (R, m) be a Noetherian local ring. An R-algebra B, not
necessarily Noetherian, is called balanced big Cohen-Macaulay over R if every system of parameters
of R is a regular sequence on B and mB # B. Balanced big Cohen-Macaulay algebras exist, in
equal characteristic, this is due to Hochster-Huneke [18], and in mixed characteristic, this is proved
by André [1] (see also [12, 2, 3]). In this article, we need to compare the closure operation induced
by a balanced big Cohen-Macaulay algebra with integral closure. We begin with the following
result.

In what follows, when R — S is a (not necessarily injective) homomorphism of rings, IS N R
should be interpreted as the contraction of 1.5 to R. That is, those elements of R whose image in

S are contained in IS.

Lemma 2.1. Let (R,m) be a Noetherian local ring. Then the following conditions are equivalent:
(1) R is equidimensional.
(2) There exists a balanced big Cohen-Macaulay R-algebra B such that
IB .= IBN R CT for all m-primary ideals I C R . (1)
(8) There exists a balanced big Cohen-Macaulay R-algebra B such that I® C T for all I C R.

Proof. Since (3) = (2) is obvious, we only need to show (1) = (3) and (2) = (1). Suppose R
is equidimensional and let Pj,..., P, be the minimal primes of R. Let B; be any balanced big
Cohen-Macaulay algebra over ﬁ/ P,. Since R is equidimensional, each system of parameters of R
is also a system of parameters of ﬁ/ P; and thus B; is a balanced big Cohen-Macaulay algebra over
R. Tt follows that B := [I;-, B; is a balanced big Cohen-Macaulay algebra over R.

Claim 2.2. (IR)® = IBNR C IR.

Proof of Claim. Since integral closure can be checked after modulo each minimal prime, it suffices

to show that (IR)? - (R/P,) C I(R/P;). It is easy to see (by our construction of B) that

(IR)® - (R/P) = (I(R/P;))"".
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Since B; is a solid algebra over the complete local domain R/P; by [16, Corollary 2.4], we have

(I(R/P))P C (I(R/P)* C I(R/P),
where the second inclusion follows from [16, Theorem 5.10]. O
By the claim above, we have
BC(IRPNRCIRNR=T,

where the last equality follows from [21, Proposition 1.6.2].

We next assume there exists a balanced big Cohen-Macaulay R-algebra B that satisfies (). We
first note that B (the m-adic completion of B) is still a balanced big Cohen-Macaulay algebra over
R by [4, Corollary 8.5.3]. If I is an m-primary ideal, then we have R/I = R\/IR\ and B/IB = B\/IB\
(see [29, Tag 05GG]). It follows that (I ﬁ)g = (IB)R C IR = IR (where the last equality follows
from [21, Lemma 9.1.1]). Thus without loss of generality, we may replace R by R and B by B
to assume R is complete. Suppose R is not equidimensional. Let Pi,..., P, be all the minimal
primes of R such that dim(R/P;) = dim(R), and Q1,...,Q,, be all the minimal primes of R
such that dim(R/Q;) < d. We pick y € Q1N ---NQy \ PLU---UP,. Then y is a parameter
element in R, and thus y is a nonzerodivisor on B, since B is balanced big Cohen-Macaulay.
Since 3 - (P, N --- N P,) C V0, there exists t such that y* - (P, N ---N PB,)t = 0. It follows that
(PrN---NP,)'B=0. Hence

(PLN---NP)Y CmFBNRCmk

for all k by (f). Thus (P, N---NP,)! C NgmF = /0 by [21, Exercise 5.14], which is a contradiction.
O

Remark 2.3. In the proof of Lemma 2.1, we have proved the fact that when (R, m) is a Noetherian
complete local domain, then every balanced big Cohen-Macaulay algebra B satisfies (). We suspect
that when (R, m) is Noetherian, complete, reduced and equidimensional, then every balanced big

~

Cohen-Macaulay algebra B such that Supp(B) = Spec(R) satisfies (7).

2.2. Hilbert coefficients. Let (R, m) be a Noetherian local ring of dimension d and let I C R be

an m-primary ideal. Then for all n > 0 we have

/) =05 1) —am (M) 4 0

where eg(I),--- ,eq(I) are all integers, and are called the Hilbert coefficients of I.
Now suppose R ® It @® I2t2@ - - - is module-finite over the Rees algebra R[It]. For instance, by a
famous result of Rees (see [21, Corollary 9.2.1]), this is the case when R is reduced. Then one can

show that for all n > 0, ¢(R/I"*t1) agrees with a polynomial in n and one can write

(R/TTT) = 2o(1) (" : d> —a() (" . 1) e (21D,
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where the integers €9(Q), - - - ,€4(Q) are called the normal Hilbert coefficients. It is well-known that
eo(I) =€p(I) agrees with the Hilbert-Samuel multiplicity e(I, R) of I.

We also recall the tight Hilbert coefficients studied in [7]. Again, we suppose that R is reduced
and R has characteristic p > 0. Then we have

- 1> oo (1) (D),

/) = (") e ("5
for all n > 0, and the integers ej(1),...,e}(I) are called the tight Hilbert coefficients, see [7] for
more details.

Now if B is a balanced big Cohen-Macaulay R-algebra that satisfies (), then we know that
Ro IPt® (I*)P12 @ ... is an R-algebra that is also module-finite over R[It]: the fact that it is
an R-algebra follows from the fact that (I%)B(1%)B C (1%t%)® for all a,b (ie., {(I")?}, form a
graded family of ideals), and that it is module-finite over R[It] follows because by (1), it is an
R[It]-submodule of R ® Tt & I%t> @ - - -, and the latter is module-finite over R[It] (note that R[It]
is Noetherian). Based on the discussion above, one can show that for all n >> 0, £(R/(I"*1)B) also

agrees with a polynomial in n, and we write

) = (") b (M) e e

for all n > 0 (see [19] for more general results). We call the integers ef’(I),...,e%(I) the BCM
Hilbert coefficients with respect to B. It is easy to see that ef (I) = e(I, R) is still the Hilbert-Samuel
multiplicity of I, and that we always have &;(I) > eP(I) > e;(I) by comparing the coefficients of
n4=1 and noting that I"™ C (I")® C T" for all n by (1).

Remark 2.4. We point out that when (R, m) is excellent and R is reduced and equidimensional of
characteristic p > 0, the tight Hilbert coefficient is a particular case of BCM Hilbert coefficient. This
follows from the fact that under these assumptions, there exists a balanced big Cohen-Macaulay
algebra B such that I* = IP for all I C R (and any such B will satisfy (1), since tight closure
is contained in the integral closure [20, Theorem 1.3]). When R is a complete local domain this
is proved in [15, Theorem on page 250]. In general, one can take such a B; for each complete
local domain ]?2/ P;, where P; is a minimal prime of ﬁ, and let B = [[ B;. Since R is excellent,
I"R = (I E)* (see [20, Proposition 1.5]) and as tight closure can be checked after modulo each
minimal prime, it follows that I*R = (IR)® and thus I* = I5.

Throughout the rest of this article, we will be mainly working with parameter ideals, i.e., ideals
generated by a system of parameters. As we mentioned in the introduction, this will not affect the

study of €;([/), since we can often enlarge the residue field and replace I by its minimal reduction.

3. THE MAIN RESULTS

In this section we prove our main results that eZ(Q) (and hence €;(Q)) is always nonnegative

for a parameter ideal @, and that €;(Q) = 0 for some parameter ideal @) implies R is regular.
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3.1. Non-negativity of & (Q) and e (Q).

Theorem 3.1. Let (R,m) be a Noetherian local ring such that R is reduced and equidimensional.
Let B be any balanced big Cohen-Macaulay R-algebra that satisfies (t). Then for all parameter
ideals Q C R we have

21(Q) = e(Q) = 0> e1(Q).

Remark 3.2. (@) > 0 was the main theorem of [10, Theorem 1.1], and 0 > e1(Q) was first
proved in full generality in [26, Theorem 3.6]. Our method gives alternative proofs, and is inspired
by some work of Goto [9] (in fact the proof that e;(Q) < 0 via this method is due to Goto [9], see

also [13, Theorem 1.1] for a generalization).

Corollary 3.3. Let (R,m) be an excellent local ring of characteristic p > 0 such that R is reduced
and equidimensional. Then we have €5(Q) > 0 for all parameter ideals Q C R.

Proof. This follows from Theorem 3.1 and Remark 2.4. ]

Proof of Theorem 3.1. Let Q = (z1,...,24) € R. Set S = R[[y1,...,yq]] and q = (y1 — 21, ..., yqg—
x4) € S. For all n > 0 we have yi,...,yq is a system of parameters on S/q"*!, and that

R/Q™ = S/(a™ + (y1.- - -, ya))-

We next note that

eo(@)=e(Q,R) = x(z1,...,24; R)

(:Ela --yxdvylv"-vyd;s)

I
<

(yla"'ayd7yl _xla"'uyd_xd;s)

I
>

= xW1,.--,ya;5/9)
= e(y1,---,v4;5/9),

where the equalities on the second and the fourth line follow from the fact that yi,...,yq and
Y1 — T1,...,Yq — Tq are both regular sequences on S. Now since S/q"*! has a filtration by ("zlrd)

copies of S/q, by the additivity formula for multiplicity (see [21, Theorem 11.2.3]) we have

n n+d
e(yi,--.,ya;5/q +1)=< d )e(yl,---,yd;S/q)-

Putting these together, we have

(n + d> e0(Q) = <n + d>e(y1, e ya S/9) = ey, - .- ya; S/,

d d
and §/qrH!
qTL
U(R/Q"T) =2 ( > .
W) =\ G sz
Since y1,. ..,y is a system of parameters of S/q"*!, we have

§/qntl n
€<(y1 /?jd)S/qn+1> > e(yl,-..,yd;S/q +l).
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It follows that

(/e = (") al@.

and thus e (Q) < 0 (note that this does not require any assumption on R).
It remains to show that eP(Q) > 0 (since €1(Q) > eP(Q) always holds, see the discussion in
Section 2.2). Since e’ (Q) = eo(Q), it is enough to show that

/@) < (") eal@ 0

for any balanced big Cohen-Macaulay algebra B. Below we will prove a slightly stronger result.
Recall that for a parameter ideal (z1,...,zq) of R, the limit closure is defined as (21, ..., zg) ™8 =
Us(z o 25t s (2129 - - 24)f. The limit closure does not depend on the choice of the elements
21,...,2q (ie., it only depends on the ideal (z1, ..., 24)). This is because (21,...,2q)"™8/(z1,. .., 2q)
is the kernel of the natural map R/(z1,...,2q) — H(R).

Claim 3.4. Set Apy1 = {(a1,...,04) € N | o; > 1 and 2?21 a; = 1+n} and for each o =
(1, q) € Apy, set Q(a) = (217, ...,x5%). Then we have

([RICN Qayimn gﬁgﬂwwy

aeAnJrl

Proof of Claim. Recall that we have already proved that

<n ; d> eo(Q) = e(yl7 e Yds S/q""‘l)‘

Moreover, we always have (for example, see [23, Theorem 9])

S n+1
e(y1,---,ya; S/q" ) > ¢ ( /a > .

(y17 s 7yd)lims/qn+1

Therefore it is enough to prove that

/¢ S/qTL-I-l >¢| R limg 2

)=’/ Qe ) @)

(yh .. 7yd) S/ a€Mpi1
Consider z € S whose image in S/q"*! is contained in (yi, ... ,yd)lims/q"“. This means there exists
some t > 1 such that
(iy2-ya)'z € Tyt (=2, ya — 2)" )
C (y11t+17”’7y2+17(y1 _‘Tl)ala"'a(yd_xd)ad)
for each o = (a1,...,q) € Apt1. This implies
S (yla - Yds (yl - :El)aly DRI (yd - :Ed)ad)lims = (yla s 7yd7x(1117 s 7x3d)hms'

But since S = R[[y1, - .., yd]], it is straightforward to check that

(Y15 Yd, x7t, o ,xgd)hms = (z1,... ,xsd)hmRS + (Y1, -+, Yq)S.
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Thus if the image of z is contained in (yq,... ,yd)lims/q”“, then after modulo (y1,...,%4)S, Z €
(25, .., zfHime for each (ai,...,aq) € Apti, Le., Z € Noern s Q(a)mz. Tt follows that the

natural surjection

d (Y1, ya)S
S/qn+1 mo (y1 yd) N R/Qn+1
induces a surjection
S/qn+1 R
(1, ya)™sramtt Naea,,, @a)limz

This clearly establishes (2) and completes the proof of claim. O

Finally, since x1,...,xq is a regular sequence on B, we have Q(a)i™r C Q(a)P for each a.
It follows that ,en, ., Q(a)limr C Naean s Q(a)B. Now if z € Naeania Q(a)B, then we have
T € (naeAn+1 Q(a)B) N R. But since x1, ..., x4 is a regular sequence on B, it is not hard to check
that M,en,,, Q(@)B = Q"' B (see [28, Remark 3.3] or [11]) and thus z € Q""'BNR = (QHB.
Therefore we have (¢4, Q(a)? = (Q"*1)B. Putting these together, we have

ﬂ Q(a)limR C ﬂ Q(Q)B — (Qn-i-l)B'
a€Nnt1 a€lpy1
Therefore by Claim 3.4, we have
n n+d
(/@) < (") e(@

as wanted. O

Remark 3.5. With notation as in Theorem 3.1, we do not know whether we have

' S/qn—i-l _y R
(y17 s 7yd)lims/qn+1 naEAn+1 Q(a)limR ‘

Remark 3.6. With notation as in Claim 3.4, fix a generating set (z1,...,x4) of @), one may try
to define (Q™)™ := N, ca, Q)™ and call this the limit closure of Q". However, it is not clear

to us whether this is independent of the choice of the generators x1,...,x4. It is also not clear to

us (even when fixing the generators (z1,...,z4) of Q) whether {(Q™)"™},, form a graded family of
ideals, i.e., we do not know whether (Q®)™(Q%)i™ C (Q*+)i™ for all a, b.

3.2. Vanishing of &;(Q). In this subsection we prove our main result. Recall that for a finitely

generated R-module M, we use the notation v(M) to denote its minimal number of generators.

Theorem 3.7. Let (R,m) be a Noetherian local ring such that R is reduced and So. If €1(Q)=0
for some parameter ideal Q C R, then R is reqular and v(m/Q) < 1.

Proof. We first note that if R is Cohen-Macaulay, then by [19, Corollary 4.9], @ is integrally closed.!
But then by the main result of 8], R is regular and v(m/Q) < 1.

1Using the language of [19], €1(Q) = 0 in a Cohen-Macaulay ring implies that the reduction number of the filtration
{Q"}» is 0, i.e., a minimal reduction of Q is equal to @, this is saying that @ is integrally closed.
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We may assume that R is complete. We use induction on d := dim(R). If d < 2, then R is
Cohen-Macaulay and we are done by the previous paragraph. Now suppose d > 3 and we have
established the theorem in dimension < d. Let Q = (21,...,24), R = R[t1,... ,talmrjt,...1,, and
T =1t1T1 + - + tgxq.

Claim 3.8. We have R" := ﬁ/ o R is reduced, equidimensional, and So on the punctured spectrum.
Moreover, we have € (QR") = 0.

Proof. This is essentially contained in [10, Proof of Theorem 1.1] under the assumption that R is
(complete and) normal. The key ingredient is [22, Theorem 2.1]. Since [22] does not require the
normal assumption, the same proof as in [10] works in our setup. For the ease of the reader (and
also because the Sy on the punctured spectrum conclusion is not stated in [10]), we give a complete
and self-contained argument here.

First of all, since R’ is Sy and Ry, we know that R'/zR’ is S1 and Ry (see [25, Lemma 10]), so
R'/xR’ and thus R” is reduced (as R'/xR’ is excellent). R" is clearly equidimensional since R is so
and x is a parameter in R. Tosee R" is S on the punctured spectrum, it is enough to show R'/z R’
is Sy on the punctured spectrum (as R'/z R’ is excellent). Now we use a similar argument as in [25,
Lemma 10] (the idea follows from [14]): every non-maximal P’ € Spec(R'/zR’) corresponds to a
prime ideal of R’ that contracts to a non-maximal P € Spec(R), thus (R'/xR')p: is a localization of
Rplti, ... tq]/(t1x1+ - - - +tqxq), but at least one x; is invertible in Rp (say x1 is invertible) so the
latter is isomorphic to Rp(ts,...,ts], which is Sy as Rp is So, thus R'/zR’ is S3 on the punctured
spectrum as wanted.

It remains to show that & (QR") = 0. By [21, Corollary 6.8.13], we have a short exact sequence
0— R/Q" = R'/Q"+! — R'/(z,Q"+1) — 0.
Since €1(Q) = 0, for n > 0 we have

(i@ =a@- ("5 ) ra@- (") o,

/@ @ (") v (M1 7) o

It follows that

()@ ) (@ ("5 1) ot G

We next show that for all n > 0, Q"(R'/xzR') = Q"(R'/xR’). Once this is proved, we will have
Q"R" = Q"R” for all n >> 0 by [21, Lemma 9.1.1] and thus (3) will tell us that

/g —a(@)(" 1) + ot

Since z is a general element of @), we have ,(Q) = e(Q, R') = ¢e(QR",R") = g,(QR") and so the

above equation implies that €;(QR"”) = 0 as wanted.



10 LINQUAN MA AND PHAM HUNG QUY

To show Q*(R'/zR') = Q"(R'/xR’) for n > 0, let R’ denote the integral closure of R'[Qt,t™1]
inside R'[t,t~1]. Concretely, R’ is the Z-graded ring such that R,, = Q"t" for n > 0 and R}, = R't"
for n < 0. Consider the map

R'/(xt)R' — R'[t,t7']/(xt)R'[t,t 7).

If we localize at any prime ideal P of R'[Qt,t!] that does not contain (Qt,t!), then we note that
(R'/(xt)R')p is integrally closed inside (R'[t,t~1]/(zt)R'[t,t"1])p. To see this, one can “unlocalize”
the ring R’, and consider the integral closure of R[t1,...,t4][Qt,t~!] inside R[ty, ..., tq][t,t7}], call
this ring R. If one localizes the map R/(xt)R — Rl[ty,. .., tq|[t,t™']/(xt)R[t1, ..., t4][t,t”] at any
prime ideal that does not contain (Qt,t~1) (say it does not contain x1t), then the resulting map
is a localization of R[ts,...,ts][Q"t", t_l][milt] — Rlta, ..., t4][t, t_l][wilt], and the former is already
integrally closed in the latter.

Since the radical of (Qt,¢+~!) is the unique homogeneous maximal ideal of R[Qt,t], it follows
that R'/(xt)R’ and the integral closure of R'[Qt,t~']/(xt)R'[Qt,t™!] inside R'[t,t1]/(xt)R'[t,t7}]

agree in large degree. But note that for n > 0,

L YO L
Q1 W@ ) RN
where we have used [21, Corollary 6.8.13] again, while the degree n part of the integral closure of
R'[Qt, 7]/ (xt)R'[Qt,t~ "] inside R'[t,t ]/ (xt)R'[t,t~ "] is Q*(R'/xR’)-t". Thus the fact that they
agree in degree n > 0 is precisely saying that Q7(R'/zR') = Q"(R'/zR') for n > 0. O

[R'/(@t)R ] = " 2 QMR 2R 1",

Now we come back to the proof of the theorem. Let S be the So-ification of R”. We have a short

exact sequence
0—-R'"—-S—S/R'"—0

such that S/R” has finite length (since R” is So on the punctured spectrum). Also note that (S, n)
is (complete) local by [17, Proposition (3.9)] and that S is reduced (since S is a subring of the
total quotient ring of R”). Since R” — S is an integral extension, we have IS N R"” = I for every
ideal I C R" by [21, Proposition 1.6.1]. Tt follows that £z (S/Q™S) > £p:(R"/Q™R") for all n > 0.
Thus for n > 0 we have

a@r) (") —aern("E ) o

= (pe(R"/Q"FIR")
Crr(S/QHLS)
[S/n: Rjm] - £5(S/Q"T1S)

siw: v/l (w(@s)(" 5 1) ~m@s) ("5 1) Fot ).

Since S is a rank one module over R”, we also know that

IN

€(QR") = e(QR",R") = [S/n: R/m] - e(QS, ) = [S/n: R/m] - & (QS),
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where the second equality is the projection formula for Hilbert-Samuel multiplicity (which can be

seen by combining [21, Theorem 11.2.4 and Theorem 11.2.7]). Putting these together we have
[S/n: R/m]-21(QS) <e1(QR") = 0.

But since €;(QS) > 0 by [10, Theorem 1.1] (see Theorem 3.1), we must have €;(QS) = 0. Now
(S,n) is a reduced complete local ring that is So and dim(S) = d — 1, such that &,(QS) = 0. By
our inductive hypothesis, we know that S is regular. But since S/R” has finite length, by the long
exact sequence of local cohomology induced by 0 — R” — S — S/R” — 0, we obtain that

H.(R") =0 for all i < dim(R") and i # 1, and HL(R") = S/R".

At this point, we consider the long exact sequence of local cohomology induced by 0 — RETR —
R" — 0, we get

xT

0=H)(R)— H:(R") - H:(R) % H:(R') —» H:(R") — --- .

If d > 4, then dim(R") > 3 and thus H2(R") = 0. Since R is S, H2(R') has finite length and
the above exact sequence tells us that H2(R') = 0 by Nakayama’s lemma. But then by the above
exact sequence again, we have H}(R”) = 0 and hence S/R"” = 0. Thus R” = S is regular. But
then R/ and hence R is regular as wanted.

Finally, suppose d = 3. Let B be a balanced big Cohen-Macaulay algebra of R’ that is m-adic
complete, then B/x B is a balanced big Cohen-Macaulay algebra of R”. Tt follows that the canonical
map R” — B/xB factors through S.

Claim 3.9. B/xzB is a balanced big Cohen-Macaulay algebra over S.

Proof of Claim. Tt is clear that some system of parameters of S (namely those coming from R”)
are regular sequences on B/xzB. To see that every system of parameters of S is a regular sequence
on B/zB, we first note that B/zB is m-adically complete: since B is m-adic complete, B/zB is
derived m-complete by [29, Tag 091U}, take (y, z) that is a system of parameters of R”, then as
Y,z is a regular sequence on B/xzB, the derived completion with respect to (y, z), which is B/zB
itself, agrees with the usual completion with respect to (y, z) by [29, Tag 0920] (equivalently, with
respect to m as 1/(y,z) = m). Hence by [4, Corollary 8.5.3], every system of parameters of S is a
regular sequence on B//:U\B ~ B/xB. O

Note that dim(R"”) = dim(S) = 2 and S is regular, thus the long exact sequence of local
cohomology induced by 0 — R” — S — S/R" — 0 implies that H2(R") = H2(S). Hence we have
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the following commutative algebra:

HE(S)

HE(R) HR(R") —— Hg(R') — Hy(R) —= 0

! i L

0=HZ(B) — Hi(B/xB) — Hy(B) — Hy(B) —=0

T

HE(R')

where the injectivity of ¢ follows from the fact that B/xB is a balanced big Cohen-Macaulay algebra
over S and thus faithfully flat over S (as S is regular). Chasing this diagram we find that the map
H2(R') % HZ(R') is surjective. But since R is S, H2(R') has finite length, thus H2(R') = 0 by
Nakayama’s lemma. Hence R is Cohen-Macaulay and thus R” is also Cohen-Macaulay. But then
R" =~ S and so R” is regular and thus R is regular. Thus R is regular as wanted.

Now we have established that R is regular, we can repeat the argument in the first paragraph of
the proof to show that v(m/Q) <1 (essentially, this follows from the main result of [8]). O

As a consequence, we answer the problem raised in [10, Section 3| for excellent rings.

Corollary 3.10. Let R be an excellent local ring such that R is reduced and equidimensional.
Suppose I C R is an m-primary ideal such that € (I) = 0. Then RN, the normalization of R, is

regular and IRN is normal (i.e., all powers of IRN are integrally closed in RN ).

Proof. Replacing R by R[t]ygp, we may assume that the residue field of R is infinite (we leave it
to the readers to check that the hypotheses and conclusions are stable under such a base change).
Let S be the Ss-ification of R. We will show that the m-adic completion of S is regular. Since R is
excellent, S agrees with the So-ification of R by [17, Proposition 3.8]. Thus S is semilocal, reduced,
and Ss. Since J_§ AR =17 for every m-primary ideal J C R by [21, Proposition 1.6.1], we have
(a(RfT) < £(8/J3).

Let ny,...,ng be the maximal ideals of S and let S; := (S)y,, (in fact, since S is complete, we

have S = [1;_, Si, and each S; is complete local, reduced, and S3). Then we have

("5 7) ~am (") ot

= (r(R/T"T) = (5(R/I""'R)

< L5(S/ImH18)
= i[si/ni P R/m] - Lg,(Si/I"1S))
i=1

S S/ : R (éo(ISa(nZd) —51”52')(712?; 1) +0("d_1)> ’

i=1
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where we have used [21, Lemma 9.1.1] for the equality in the second line. Since S is a rank one

module over E, we also know that

S S

eo(I) = e(IR,R) =Y _[Si/n; : R/m] - e(IS;,S;) = [Si/n; : R/m] -8o(IS;),
i=1 i=1

where we have used the projection formula for the Hilbert-Samuel multiplicity (see [21, Theorem
11.2.4 and Theorem 11.2.7]). The above inequality implies that

S

i=1
But since €;(1.S;) > 0 by [10, Theorem 1.1], we must have &;(15;) = 0 for all 7. Let @ be a minimal
reduction of I (note that @ is a parameter ideal of R, since we have reduced to the case that R has
an infinite residue field). It follows that €;(Q5;) = 0 and thus by Theorem 3.7, S; is regular and
v(n;/Q) < 1. But then @S; is normal in S;. It follows that S [1;_, S; is regular, Q§ is normal

in S and in particular, Q§ =IS.
Since S -+ S~ R® r S is faithfully flat with geometrically regular fibers (as R is excellent). We
have S is regular and QS = IS is normal in S by [21, Theorem 19.2.1]. Finally, since S is regular,
S agrees with the normalization RN of R. g

Remark 3.11. The condition R is Sy cannot be dropped in Theorem 3.7. This was already
observed in [10, Section 3]. We give a different example that is a complete local domain. Let
R = k[[z,zy,y?,v%]] where k is a field. Then the So-ification of R is S = k[[z,y]] and we have
0>R—S—S/R=k-7—0. Let Q = (v,5?) C R and we claim that &(Q) = 0. To see this,
note that QS = (x,y?) C S is normal and £(S/Q"*1S5) =2 - (";2) It follows from the short exact

sequence

0— R/Q"1 — S/Q"MS -k =0
that ¢((R/Q"t1) =2 (";2) — 1. In particular, €,(Q) = 0.

Recall that a Noetherian local ring (R, m) of prime characteristic p > 0 is called F-rational if
every ideal generated by a system of parameters is tightly closed. It was mentioned in [5] that
Huneke asked that when R is reduced and equidimensional of prime characteristic p > 0, whether
e;(Q) = 0 for some system of parameters () C R implies R is F-rational. In general, counter-
examples to the question were constructed in [5, Example 5.4 and 5.5] (in fact, the example in
Remark 3.11 is a counter-example that is a complete local domain). However, all these examples
do not satisfy Serre’s S5 condition.

Let (R,m) be a Noetherian local ring and let B be a big Cohen-Macaulay R-algebra. Recall
that R is called BCMp-rational if R is Cohen-Macaulay and the natural map H4(R) — HZ(B)
is injective, where d = dim(R). If R is an excellent local ring of prime characteristic p > 0, then
R is F-rational if and only if R is BCMp-rational for all big Cohen-Macaulay algebra B, see [24,
Proposition 3.5].
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We propose the following conjecture relating the vanishing of e?(Q) and BCM g-rational singu-

larities, which modifies Huneke’s question and makes sense in all characteristics.

Conjecture 3.12. Let (R, m) be a Noetherian local ring such that R is reduced and So. Let B be
a balanced big Cohen-Macaulay R-algebra that satisfies (1). If eP(Q) = 0 for some parameter ideal
Q C R, then R is BCMpg-rational.

In particular, if R is excellent and has characteristic p > 0 (such that R is reduced and S3), and
e5(Q) = 0 for some parameter ideal Q C R, then R is F-rational.

We have the following partial result towards the Conjecture 3.12, which is an analog of the main
result of [27].

Proposition 3.13. Let (R,m) be a Noetherian local ring such that R is reduced and equidimen-
sional. Let B be a balanced big Cohen-Macaulay R-algebra that satisfies (T). If e2(Q) = e1(Q) for
some parameter ideal Q C R, then R is BCM g-rational.

In particular, if R is excellent and has characteristic p > 0, and €](Q) = e1(Q) for some

parameter ideal QQ C R, then R is F-rational.

Proof. By Theorem 3.1, we know that eP(Q) = €1(Q) = 0. By the main result of [6], e1(Q) = 0
implies that R is Cohen-Macaulay. By [19, Corollary 4.9], we have Q” = Q. Now we consider the

commutative diagram:
R/Q—— B/QB

L

H(R) — HG(B)
where the injectivity of the top row follows from QFf = Q, the injectivity of the left column is
because R is Cohen-Macaulay, and the injectivity of the right column is because B is balanced big
Cohen-Macaulay. Since R is Cohen-Macaulay, we know that Soc(R/Q) = Soc(HZ(R)). Chasing the
commutative diagram we find that H¢(R) — HX(B) injective. Therefore R is BCM g-rational. [

Remark 3.14. It is clear from the proof of Proposition 3.13 that Conjecture 3.12 holds when R is
Cohen-Macaulay, and this essentially follows from [19, Corollary 4.9].
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