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VANISHING AND NON-NEGATIVITY OF THE FIRST NORMAL HILBERT

COEFFICIENT

LINQUAN MA AND PHAM HUNG QUY

Dedicated to Professor Ngo Viet Trung on the occasion of his 70th birthday

Abstract. Let (R,m) be a Noetherian local ring such that R̂ is reduced. We prove that, when R̂ is

S2, if there exists a parameter ideal Q ⊆ R such that ē1(Q) = 0, then R is regular and ν(m/Q) ≤ 1.

This leads to an affirmative answer to a problem raised by Goto-Hong-Mandal [10]. We also give

an alternative proof (in fact a strengthening) of their main result. In particular, we show that if R̂

is equidimensional, then ē1(Q) ≥ 0 for all parameter ideals Q ⊆ R, and in characteristic p > 0, we

actually have e∗1(Q) ≥ 0. Our proofs rely on the existence of big Cohen-Macaulay algebras.

1. Introduction

Let (R,m) be a Noetherian local ring of dimension d such that R̂ is reduced and let I ⊆ R be

an m-primary ideal. Then for n ≫ 0, ℓ(R/In+1) agrees with a polynomial in n of degree d, and we

have integers e0(I), . . . , ed(I) such that

ℓ(R/In+1) = e0(I)

(
n+ d

d

)
− e1(I)

(
n+ d− 1

d− 1

)
+ · · ·+ (−1)ded(I).

These integers ei(I) are called the normal Hilbert coefficients of I.

It is well-known that e0(I) is the Hilbert-Samuel multiplicity of I, which is always a positive

integer. In this paper, we are interested in the first coefficient e1(I). It was proved by Goto-Hong-

Mandal [10] that when R̂ is unmixed, e1(I) ≥ 0 for all m-primary ideals I ⊆ R (which answers a

question posed by Vasconcelos [30]). They proposed a further problem in [10, Section 3] regarding

the vanishing of e1(I) and the regularity of the normalization of R. Since any m-primary ideal I

is integral over a parameter ideal when the residue field is infinite, to study e1(I) we may assume

that I = Q is a parameter ideal (i.e., it is generated by a system of parameters). In this paper, we

prove the following main result which will lead to an affirmative answer to the question proposed

in [10]. This theorem is also a generalization of the main result of [27].

Theorem 1.1 (Theorem 3.7). Let (R,m) be a Noetherian local ring such that R̂ is reduced and S2.

If e1(Q) = 0 for some parameter ideal Q ⊆ R, then R is regular and ν(m/Q) ≤ 1.

In [7], it was shown that when R has characteristic p > 0, for n ≫ 0, ℓ(R/(In+1)∗) also agrees

with a polynomial of degree d and one can define the tight Hilbert coefficients e∗0(I), . . . , e
∗
d(I) in

Key words and phrases. normal Hilbert polynomial, normal Hilbert coefficients, tight Hilbert coefficients, regular

local rings, big Cohen-Macaulay algebras.
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a similar way (see Section 2 for more details). It is easy to see that e1(I) ≥ e∗1(I). We strengthen

the main result of [10] in characteristic p > 0 by showing that e∗1(Q) ≥ 0 for any parameter ideal

Q ⊆ R under mild assumptions.

Theorem 1.2 (Corollary 3.3). Let (R,m) be an excellent local ring of characteristic p > 0 such

that R̂ is reduced and equidimensional. Then we have e∗1(Q) ≥ 0 for all parameter ideals Q ⊆ R.

Our proofs of both theorems rely on the existence of big Cohen-Macaulay algebras. In fact, we

show that the tight Hilbert coefficients e∗i (I) is a special case of what we call the BCM Hilbert

coefficients eBi (I) associated to a big Cohen-Macaulay algebra B, and the latter can be defined in

arbitrary characteristic. In this context, we will show in Theorem 3.1 that e1(Q) ≥ eB1 (Q) ≥ 0 for

all parameter ideals Q ⊆ R when B satisfies some mild assumptions. This recovers and extends

the main result of [10] in arbitrary characteristic.

Throughout this article, all rings are commutative with multiplicative identity 1. We will use

(R,m) to denote a Noetherian local ring with unique maximal ideal m. We refer the reader to [4,

Chapter 1-4] for basic notions such as Cohen-Macaulay rings, regular sequence, Euler characteristic,

integral closure, and the Hilbert-Samuel multiplicity. We refer the reader to [29, Section 07QS] for

the definition and basic properties of excellent rings. The paper is organized as follows. In Section

2 we collect the definitions and some basic results on big Cohen-Macaulay algebras and variants of

Hilbert coefficients. In Section 3 we prove our main results and we propose some further questions.
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2. Preliminaries

Recall that an element x in a ring R is integral over an ideal I ⊆ R if it satisfies an equation

of the form xn + a1x
n−1 + · · · + an−1x + an = 0, where ak ∈ Ik. The set of all elements integral

over I forms an ideal and is denoted by I, called the integral closure of I. An ideal I ⊆ R is called

integrally closed if I = I. It is well-known that an element x ∈ R is integral over I if and only if

the image of x in R/p is integral over I(R/p) for all minimal primes p, see [21, Proposition 1.1.5].

Suppose R is a Noetherian ring of prime characteristic p > 0. The tight closure of an ideal

I ⊆ R, introduced by Hochster–Huneke, is defined as follows:

I∗ := {x ∈ R | there exists c ∈ R−∪p∈Min(R)p such that cxp
e ∈ I [p

e] for all e ≫ 0}.
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An ideal I ⊆ R is called tightly closed if I = I∗. In general, tight closure is always contained in the

integral closure, that is, I∗ ⊆ I (see [15, Proposition on Page 58]). Similar to integral closure, an

element x ∈ R is in the tight closure of I if and only if the image of x in R/p is in the tight closure

of I(R/p) for all minimal primes p, see [15, Theorem on page 49].

Let R be a Noetherian complete local domain and let I ⊆ R be an ideal. The solid closure of

I, denoted by I⋆, consists of those element x ∈ R such that there exists an R-algebra S such that

HomR(S,R) 6= 0 and such that x ∈ IS. One can define solid closure of ideals in more general rings,

see [16, Definition 1.2], but we will only need this notion for complete local domains. It was shown

in [16, Theorem 5.10] that solid closure is contained in the integral closure, i.e., I⋆ ⊆ I. If R has

prime characteristic p > 0, then solid closure agrees with tight closure I⋆ = I∗, see [16, Theorem

8.6].

2.1. Big Cohen-Macaulay algebras. Let (R,m) be a Noetherian local ring. An R-algebra B, not

necessarily Noetherian, is called balanced big Cohen-Macaulay over R if every system of parameters

of R is a regular sequence on B and mB 6= B. Balanced big Cohen-Macaulay algebras exist, in

equal characteristic, this is due to Hochster-Huneke [18], and in mixed characteristic, this is proved

by André [1] (see also [12, 2, 3]). In this article, we need to compare the closure operation induced

by a balanced big Cohen-Macaulay algebra with integral closure. We begin with the following

result.

In what follows, when R → S is a (not necessarily injective) homomorphism of rings, IS ∩ R

should be interpreted as the contraction of IS to R. That is, those elements of R whose image in

S are contained in IS.

Lemma 2.1. Let (R,m) be a Noetherian local ring. Then the following conditions are equivalent:

(1) R̂ is equidimensional.

(2) There exists a balanced big Cohen-Macaulay R-algebra B such that

IB := IB ∩R ⊆ I for all m-primary ideals I ⊆ R . (†)

(3) There exists a balanced big Cohen-Macaulay R-algebra B such that IB ⊆ I for all I ⊆ R.

Proof. Since (3) ⇒ (2) is obvious, we only need to show (1) ⇒ (3) and (2) ⇒ (1). Suppose R̂

is equidimensional and let P1, . . . , Pn be the minimal primes of R̂. Let Bi be any balanced big

Cohen-Macaulay algebra over R̂/Pi. Since R̂ is equidimensional, each system of parameters of R̂

is also a system of parameters of R̂/Pi and thus Bi is a balanced big Cohen-Macaulay algebra over

R̂. It follows that B :=
∏n

i=1 Bi is a balanced big Cohen-Macaulay algebra over R̂.

Claim 2.2. (IR̂)B = IB ∩ R̂ ⊆ IR̂.

Proof of Claim. Since integral closure can be checked after modulo each minimal prime, it suffices

to show that (IR̂)B · (R̂/Pi) ⊆ I(R̂/Pi). It is easy to see (by our construction of B) that

(IR̂)B · (R̂/Pi) = (I(R̂/Pi))
Bi .
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Since Bi is a solid algebra over the complete local domain R̂/Pi by [16, Corollary 2.4], we have

(I(R̂/Pi))
Bi ⊆ (I(R̂/Pi))

⋆ ⊆ I(R̂/Pi),

where the second inclusion follows from [16, Theorem 5.10]. �

By the claim above, we have

IB ⊆ (IR̂)B ∩R ⊆ IR̂ ∩R = I,

where the last equality follows from [21, Proposition 1.6.2].

We next assume there exists a balanced big Cohen-Macaulay R-algebra B that satisfies (†). We

first note that B̂ (the m-adic completion of B) is still a balanced big Cohen-Macaulay algebra over

R̂ by [4, Corollary 8.5.3]. If I is an m-primary ideal, then we have R/I ∼= R̂/IR̂ and B/IB ∼= B̂/IB̂

(see [29, Tag 05GG]). It follows that (IR̂)B̂ = (IB)R̂ ⊆ IR̂ = IR̂ (where the last equality follows

from [21, Lemma 9.1.1]). Thus without loss of generality, we may replace R by R̂ and B by B̂

to assume R is complete. Suppose R is not equidimensional. Let P1, . . . , Pn be all the minimal

primes of R such that dim(R/Pi) = dim(R), and Q1, . . . , Qm be all the minimal primes of R

such that dim(R/Qj) < d. We pick y ∈ Q1 ∩ · · · ∩ Qm \ P1 ∪ · · · ∪ Pn. Then y is a parameter

element in R, and thus y is a nonzerodivisor on B, since B is balanced big Cohen-Macaulay.

Since y · (P1 ∩ · · · ∩ Pn) ⊆
√
0, there exists t such that yt · (P1 ∩ · · · ∩ Pn)

t = 0. It follows that

(P1 ∩ · · · ∩ Pn)
tB = 0. Hence

(P1 ∩ · · · ∩ Pn)
t ⊆ m

kB ∩R ⊆ mk

for all k by (†). Thus (P1 ∩ · · ·∩Pn)
t ⊆ ∩km

k =
√
0 by [21, Exercise 5.14], which is a contradiction.

�

Remark 2.3. In the proof of Lemma 2.1, we have proved the fact that when (R,m) is a Noetherian

complete local domain, then every balanced big Cohen-Macaulay algebra B satisfies (†). We suspect

that when (R,m) is Noetherian, complete, reduced and equidimensional, then every balanced big

Cohen-Macaulay algebra B such that Supp(B̂) = Spec(R) satisfies (†).

2.2. Hilbert coefficients. Let (R,m) be a Noetherian local ring of dimension d and let I ⊆ R be

an m-primary ideal. Then for all n ≫ 0 we have

ℓ(R/In+1) = e0(I)

(
n+ d

d

)
− e1(I)

(
n+ d− 1

d− 1

)
+ · · ·+ (−1)ded(I),

where e0(I), · · · , ed(I) are all integers, and are called the Hilbert coefficients of I.

Now suppose R⊕ It⊕ I2t2 ⊕ · · · is module-finite over the Rees algebra R[It]. For instance, by a

famous result of Rees (see [21, Corollary 9.2.1]), this is the case when R̂ is reduced. Then one can

show that for all n ≫ 0, ℓ(R/In+1) agrees with a polynomial in n and one can write

ℓ(R/In+1) = e0(I)

(
n+ d

d

)
− e1(I)

(
n+ d− 1

d− 1

)
+ · · ·+ (−1)ded(I),
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where the integers e0(Q), · · · , ed(Q) are called the normal Hilbert coefficients. It is well-known that

e0(I) = e0(I) agrees with the Hilbert-Samuel multiplicity e(I,R) of I.

We also recall the tight Hilbert coefficients studied in [7]. Again, we suppose that R̂ is reduced

and R has characteristic p > 0. Then we have

ℓ(R/(In+1)∗) = e∗0(I)

(
n+ d

d

)
− e∗1(I)

(
n+ d− 1

d− 1

)
+ · · · + (−1)de∗d(I),

for all n ≫ 0, and the integers e∗0(I), . . . , e
∗
d(I) are called the tight Hilbert coefficients, see [7] for

more details.

Now if B is a balanced big Cohen-Macaulay R-algebra that satisfies (†), then we know that

R ⊕ IBt ⊕ (I2)Bt2 ⊕ · · · is an R-algebra that is also module-finite over R[It]: the fact that it is

an R-algebra follows from the fact that (Ia)B(Ib)B ⊆ (Ia+b)B for all a, b (i.e., {(In)B}n form a

graded family of ideals), and that it is module-finite over R[It] follows because by (†), it is an

R[It]-submodule of R⊕ It⊕ I2t2 ⊕ · · · , and the latter is module-finite over R[It] (note that R[It]

is Noetherian). Based on the discussion above, one can show that for all n ≫ 0, ℓ(R/(In+1)B) also

agrees with a polynomial in n, and we write

ℓ(R/(In+1)B) = eB0 (I)

(
n+ d

d

)
− eB1 (I)

(
n+ d− 1

d− 1

)
+ · · ·+ (−1)deBd (I),

for all n ≫ 0 (see [19] for more general results). We call the integers eB0 (I), . . . , e
B
d (I) the BCM

Hilbert coefficients with respect toB. It is easy to see that eB0 (I) = e(I,R) is still the Hilbert-Samuel

multiplicity of I, and that we always have e1(I) ≥ eB1 (I) ≥ e1(I) by comparing the coefficients of

nd−1 and noting that In ⊆ (In)B ⊆ In for all n by (†).

Remark 2.4. We point out that when (R,m) is excellent and R̂ is reduced and equidimensional of

characteristic p > 0, the tight Hilbert coefficient is a particular case of BCM Hilbert coefficient. This

follows from the fact that under these assumptions, there exists a balanced big Cohen-Macaulay

algebra B such that I∗ = IB for all I ⊆ R (and any such B will satisfy (†), since tight closure

is contained in the integral closure [20, Theorem 1.3]). When R is a complete local domain this

is proved in [15, Theorem on page 250]. In general, one can take such a Bi for each complete

local domain R̂/Pi, where Pi is a minimal prime of R̂, and let B =
∏

Bi. Since R is excellent,

I∗R̂ = (IR̂)∗ (see [20, Proposition 1.5]) and as tight closure can be checked after modulo each

minimal prime, it follows that I∗R̂ = (IR̂)B and thus I∗ = IB .

Throughout the rest of this article, we will be mainly working with parameter ideals, i.e., ideals

generated by a system of parameters. As we mentioned in the introduction, this will not affect the

study of e1(I), since we can often enlarge the residue field and replace I by its minimal reduction.

3. The main results

In this section we prove our main results that eB1 (Q) (and hence e1(Q)) is always nonnegative

for a parameter ideal Q, and that e1(Q) = 0 for some parameter ideal Q implies R is regular.
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3.1. Non-negativity of ē1(Q) and eB1 (Q).

Theorem 3.1. Let (R,m) be a Noetherian local ring such that R̂ is reduced and equidimensional.

Let B be any balanced big Cohen-Macaulay R-algebra that satisfies (†). Then for all parameter

ideals Q ⊆ R we have

e1(Q) ≥ eB1 (Q) ≥ 0 ≥ e1(Q).

Remark 3.2. e1(Q) ≥ 0 was the main theorem of [10, Theorem 1.1], and 0 ≥ e1(Q) was first

proved in full generality in [26, Theorem 3.6]. Our method gives alternative proofs, and is inspired

by some work of Goto [9] (in fact the proof that e1(Q) ≤ 0 via this method is due to Goto [9], see

also [13, Theorem 1.1] for a generalization).

Corollary 3.3. Let (R,m) be an excellent local ring of characteristic p > 0 such that R̂ is reduced

and equidimensional. Then we have e∗1(Q) ≥ 0 for all parameter ideals Q ⊆ R.

Proof. This follows from Theorem 3.1 and Remark 2.4. �

Proof of Theorem 3.1. Let Q = (x1, . . . , xd) ⊆ R. Set S = R[[y1, . . . , yd]] and q = (y1−x1, . . . , yd−
xd) ⊆ S. For all n ≥ 0 we have y1, . . . , yd is a system of parameters on S/qn+1, and that

R/Qn+1 = S/(qn+1 + (y1, . . . , yd)).

We next note that

e0(Q) = e(Q,R) = χ(x1, . . . , xd;R)

= χ(x1, . . . , xd, y1, . . . , yd;S)

= χ(y1, . . . , yd, y1 − x1, . . . , yd − xd;S)

= χ(y1, . . . , yd;S/q)

= e(y1, . . . , yd;S/q),

where the equalities on the second and the fourth line follow from the fact that y1, . . . , yd and

y1 − x1, . . . , yd − xd are both regular sequences on S. Now since S/qn+1 has a filtration by
(
n+d
d

)

copies of S/q, by the additivity formula for multiplicity (see [21, Theorem 11.2.3]) we have

e(y1, . . . , yd;S/q
n+1) =

(
n+ d

d

)
e(y1, . . . , yd;S/q).

Putting these together, we have
(
n+ d

d

)
e0(Q) =

(
n+ d

d

)
e(y1, . . . , yd;S/q) = e(y1, . . . , yd;S/q

n+1),

and

ℓ(R/Qn+1) = ℓ

(
S/qn+1

(y1, . . . , yd)S/qn+1

)
.

Since y1, . . . , yd is a system of parameters of S/qn+1, we have

ℓ

(
S/qn+1

(y1, . . . , yd)S/qn+1

)
≥ e(y1, . . . , yd;S/q

n+1).
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It follows that

ℓ(R/Qn+1) ≥
(
n+ d

d

)
e0(Q),

and thus e1(Q) ≤ 0 (note that this does not require any assumption on R̂).

It remains to show that eB1 (Q) ≥ 0 (since e1(Q) ≥ eB1 (Q) always holds, see the discussion in

Section 2.2). Since eB0 (Q) = e0(Q), it is enough to show that

ℓ(R/(Qn+1)B) ≤
(
n+ d

d

)
e0(Q) (1)

for any balanced big Cohen-Macaulay algebra B. Below we will prove a slightly stronger result.

Recall that for a parameter ideal (z1, . . . , zd) of R, the limit closure is defined as (z1, . . . , zd)
limR :=

⋃
t(z

t+1
1 , . . . , zt+1

d ) : (z1z2 · · · zd)t. The limit closure does not depend on the choice of the elements

z1, . . . , zd (i.e., it only depends on the ideal (z1, . . . , zd)). This is because (z1, . . . , zd)
limR/(z1, . . . , zd)

is the kernel of the natural map R/(z1, . . . , zd) → Hd
m(R).

Claim 3.4. Set Λn+1 = {(α1, . . . , αd) ∈ Nd | αi ≥ 1 and
∑d

i=1 αi = 1 + n} and for each α =

(α1, . . . , αd) ∈ Λn+1, set Q(α) = (xα1

1 , . . . , xαd
d ). Then we have

ℓ


R/(

⋂

α∈Λn+1

Q(α)limR)


 ≤

(
n+ d

d

)
e0(Q).

Proof of Claim. Recall that we have already proved that
(
n+ d

d

)
e0(Q) = e(y1, . . . , yd;S/q

n+1).

Moreover, we always have (for example, see [23, Theorem 9])

e(y1, . . . , yd;S/q
n+1) ≥ ℓ

(
S/qn+1

(y1, . . . , yd)
limS/qn+1

)
.

Therefore it is enough to prove that

ℓ

(
S/qn+1

(y1, . . . , yd)
limS/qn+1

)
≥ ℓ


R/(

⋂

α∈Λn+1

Q(α)limR)


 . (2)

Consider z ∈ S whose image in S/qn+1 is contained in (y1, . . . , yd)
limS/qn+1 . This means there exists

some t ≥ 1 such that

(y1y2 · · · yd)tz ∈ (yt+1
1 , . . . , yt+1

d , (y1 − x1, . . . , yd − xd)
n+1)

⊆ (yt+1
1 , . . . , yt+1

d , (y1 − x1)
α1 , . . . , (yd − xd)

αd)

for each α = (α1, . . . , αd) ∈ Λn+1. This implies

z ∈ (y1, . . . , yd, (y1 − x1)
α1 , . . . , (yd − xd)

αd)limS = (y1, . . . , yd, x
α1

1 , . . . , xαd
d )limS .

But since S = R[[y1, . . . , yd]], it is straightforward to check that

(y1, . . . , yd, x
α1

1 , . . . , xαd
d )limS = (xα1

1 , . . . , xαd
d )limRS + (y1, . . . , yd)S.
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Thus if the image of z is contained in (y1, . . . , yd)
limS/qn+1 , then after modulo (y1, . . . , yd)S, z ∈

(xα1

1 , . . . , xαd
d )limR for each (α1, . . . , αd) ∈ Λn+1, i.e., z ∈ ⋂

α∈Λn+1
Q(α)limR . It follows that the

natural surjection

S/qn+1 mod (y1,...,yd)S−−−−−−−−−−−→ R/Qn+1

induces a surjection
S/qn+1

(y1, . . . , yd)
limS/qn+1

։
R⋂

α∈Λn+1
Q(α)limR

.

This clearly establishes (2) and completes the proof of claim. �

Finally, since x1, . . . , xd is a regular sequence on B, we have Q(α)limR ⊆ Q(α)B for each α.

It follows that
⋂

α∈Λn+1
Q(α)limR ⊆ ⋂

α∈Λn+1
Q(α)B . Now if x ∈ ⋂α∈Λn+1

Q(α)B , then we have

x ∈
(⋂

α∈Λn+1
Q(α)B

)
∩R. But since x1, . . . , xd is a regular sequence on B, it is not hard to check

that
⋂

α∈Λn+1
Q(α)B = Qn+1B (see [28, Remark 3.3] or [11]) and thus x ∈ Qn+1B ∩R = (Qn+1)B .

Therefore we have
⋂

α∈Λn+1
Q(α)B = (Qn+1)B . Putting these together, we have

⋂

α∈Λn+1

Q(α)limR ⊆
⋂

α∈Λn+1

Q(α)B = (Qn+1)B .

Therefore by Claim 3.4, we have

ℓ(R/(Qn+1)B) ≤
(
n+ d

d

)
e0(Q)

as wanted. �

Remark 3.5. With notation as in Theorem 3.1, we do not know whether we have

ℓ

(
S/qn+1

(y1, . . . , yd)
limS/qn+1

)
= ℓ

(
R⋂

α∈Λn+1
Q(α)limR

)
.

Remark 3.6. With notation as in Claim 3.4, fix a generating set (x1, . . . , xd) of Q, one may try

to define (Qn)lim :=
⋂

α∈Λn
Q(α)lim and call this the limit closure of Qn. However, it is not clear

to us whether this is independent of the choice of the generators x1, . . . , xd. It is also not clear to

us (even when fixing the generators (x1, . . . , xd) of Q) whether {(Qn)lim}n form a graded family of

ideals, i.e., we do not know whether (Qa)lim(Qb)lim ⊆ (Qa+b)lim for all a, b.

3.2. Vanishing of ē1(Q). In this subsection we prove our main result. Recall that for a finitely

generated R-module M , we use the notation ν(M) to denote its minimal number of generators.

Theorem 3.7. Let (R,m) be a Noetherian local ring such that R̂ is reduced and S2. If e1(Q) = 0

for some parameter ideal Q ⊆ R, then R is regular and ν(m/Q) ≤ 1.

Proof. We first note that if R is Cohen-Macaulay, then by [19, Corollary 4.9], Q is integrally closed.1

But then by the main result of [8], R is regular and ν(m/Q) ≤ 1.

1Using the language of [19], e1(Q) = 0 in a Cohen-Macaulay ring implies that the reduction number of the filtration

{Qn}n is 0, i.e., a minimal reduction of Q is equal to Q, this is saying that Q is integrally closed.
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We may assume that R is complete. We use induction on d := dim(R). If d ≤ 2, then R is

Cohen-Macaulay and we are done by the previous paragraph. Now suppose d ≥ 3 and we have

established the theorem in dimension < d. Let Q = (x1, . . . , xd), R
′ = R[t1, . . . , td]mR[t1,...,td], and

x = t1x1 + · · ·+ tdxd.

Claim 3.8. We have R′′ := R̂′/xR̂′ is reduced, equidimensional, and S2 on the punctured spectrum.

Moreover, we have e1(QR′′) = 0.

Proof. This is essentially contained in [10, Proof of Theorem 1.1] under the assumption that R is

(complete and) normal. The key ingredient is [22, Theorem 2.1]. Since [22] does not require the

normal assumption, the same proof as in [10] works in our setup. For the ease of the reader (and

also because the S2 on the punctured spectrum conclusion is not stated in [10]), we give a complete

and self-contained argument here.

First of all, since R′ is S2 and R0, we know that R′/xR′ is S1 and R0 (see [25, Lemma 10]), so

R′/xR′ and thus R′′ is reduced (as R′/xR′ is excellent). R′′ is clearly equidimensional since R̂′ is so

and x is a parameter in R̂′. To see R′′ is S2 on the punctured spectrum, it is enough to show R′/xR′

is S2 on the punctured spectrum (as R′/xR′ is excellent). Now we use a similar argument as in [25,

Lemma 10] (the idea follows from [14]): every non-maximal P ′ ∈ Spec(R′/xR′) corresponds to a

prime ideal of R′ that contracts to a non-maximal P ∈ Spec(R), thus (R′/xR′)P ′ is a localization of

RP [t1, . . . , td]/(t1x1+ · · ·+ tdxd), but at least one xi is invertible in RP (say x1 is invertible) so the

latter is isomorphic to RP [t2, . . . , td], which is S2 as RP is S2, thus R
′/xR′ is S2 on the punctured

spectrum as wanted.

It remains to show that e1(QR′′) = 0. By [21, Corollary 6.8.13], we have a short exact sequence

0 → R′/Qn ·x−→ R′/Qn+1 → R′/(x,Qn+1) → 0.

Since e1(Q) = 0, for n ≫ 0 we have

ℓ(R′/Qn+1) = e0(Q) ·
(
n+ d

d

)
+ e2(Q) ·

(
n+ d− 2

d− 2

)
+ o(nd−2),

ℓ(R′/Qn) = e0(Q) ·
(
n+ d− 1

d

)
+ e2(Q) ·

(
n+ d− 3

d− 2

)
+ o(nd−2).

It follows that

ℓ(R′/(x,Qn+1)) = e0(Q) ·
(
n+ d− 1

d− 1

)
+ o(nd−2). (3)

We next show that for all n ≫ 0, Qn(R′/xR′) = Qn(R′/xR′). Once this is proved, we will have

QnR′′ = QnR′′ for all n ≫ 0 by [21, Lemma 9.1.1] and thus (3) will tell us that

ℓ(R′′/Qn+1R′′) = e0(Q)

(
n+ d− 1

d− 1

)
+ o(nd−2).

Since x is a general element of Q, we have e0(Q) = e(Q,R′) = e(QR′′, R′′) = e0(QR′′) and so the

above equation implies that e1(QR′′) = 0 as wanted.
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To show Qn(R′/xR′) = Qn(R′/xR′) for n ≫ 0, let R′ denote the integral closure of R′[Qt, t−1]

inside R′[t, t−1]. Concretely, R′ is the Z-graded ring such that Rn = Qntn for n > 0 and R′
n = R′tn

for n ≤ 0. Consider the map

R′/(xt)R′ → R′[t, t−1]/(xt)R′[t, t−1].

If we localize at any prime ideal P of R′[Qt, t−1] that does not contain (Qt, t−1), then we note that

(R′/(xt)R′)P is integrally closed inside (R′[t, t−1]/(xt)R′[t, t−1])P . To see this, one can “unlocalize”

the ring R′, and consider the integral closure of R[t1, . . . , td][Qt, t−1] inside R[t1, . . . , td][t, t
−1], call

this ring R. If one localizes the map R/(xt)R → R[t1, . . . , td][t, t
−1]/(xt)R[t1, . . . , td][t, t

−1] at any

prime ideal that does not contain (Qt, t−1) (say it does not contain x1t), then the resulting map

is a localization of R[t2, . . . , td][Qntn, t−1][ 1
x1t

] → R[t2, . . . , td][t, t
−1][ 1

x1t
], and the former is already

integrally closed in the latter.

Since the radical of (Qt, t−1) is the unique homogeneous maximal ideal of R[Qt, t−1], it follows

that R′/(xt)R′ and the integral closure of R′[Qt, t−1]/(xt)R′[Qt, t−1] inside R′[t, t−1]/(xt)R′[t, t−1]

agree in large degree. But note that for n > 0,

[R′/(xt)R′]n ∼= Qn

xQn−1
· tn ∼= Qn

x(Qn : x)
· tn ∼= Qn

(xR′) ∩Qn
· tn ∼= Qn(R′/xR′) · tn,

where we have used [21, Corollary 6.8.13] again, while the degree n part of the integral closure of

R′[Qt, t−1]/(xt)R′[Qt, t−1] inside R′[t, t−1]/(xt)R′[t, t−1] is Qn(R′/xR′) · tn. Thus the fact that they
agree in degree n ≫ 0 is precisely saying that Qn(R′/xR′) = Qn(R′/xR′) for n ≫ 0. �

Now we come back to the proof of the theorem. Let S be the S2-ification of R′′. We have a short

exact sequence

0 → R′′ → S → S/R′′ → 0

such that S/R′′ has finite length (since R′′ is S2 on the punctured spectrum). Also note that (S, n)

is (complete) local by [17, Proposition (3.9)] and that S is reduced (since S is a subring of the

total quotient ring of R′′). Since R′′ → S is an integral extension, we have IS ∩ R′′ = I for every

ideal I ⊆ R′′ by [21, Proposition 1.6.1]. It follows that ℓR′′(S/QnS) ≥ ℓR′′(R′′/QnR′′) for all n ≥ 0.

Thus for n ≫ 0 we have

e0(QR′′)

(
n+ d

d

)
− e1(QR′′)

(
n+ d− 1

d− 1

)
+ o(nd−1)

= ℓR′′(R′′/Qn+1R′′)

≤ ℓR′′(S/Qn+1S)

= [S/n : R/m] · ℓS(S/Qn+1S)

= [S/n : R/m] ·
(
e0(QS)

(
n+ d

d

)
− e1(QS)

(
n+ d− 1

d− 1

)
+ o(nd−1)

)
.

Since S is a rank one module over R′′, we also know that

e0(QR′′) = e(QR′′, R′′) = [S/n : R/m] · e(QS,S) = [S/n : R/m] · e0(QS),
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where the second equality is the projection formula for Hilbert-Samuel multiplicity (which can be

seen by combining [21, Theorem 11.2.4 and Theorem 11.2.7]). Putting these together we have

[S/n : R/m] · e1(QS) ≤ e1(QR′′) = 0.

But since e1(QS) ≥ 0 by [10, Theorem 1.1] (see Theorem 3.1), we must have e1(QS) = 0. Now

(S, n) is a reduced complete local ring that is S2 and dim(S) = d − 1, such that e1(QS) = 0. By

our inductive hypothesis, we know that S is regular. But since S/R′′ has finite length, by the long

exact sequence of local cohomology induced by 0 → R′′ → S → S/R′′ → 0, we obtain that

H i
m(R

′′) = 0 for all i < dim(R′′) and i 6= 1, and H1
m(R

′′) ∼= S/R′′.

At this point, we consider the long exact sequence of local cohomology induced by 0 → R̂′
·x−→ R̂′ →

R′′ → 0, we get

0 = H1
m(R

′) → H1
m(R

′′) → H2
m(R

′)
·x−→ H2

m(R
′) → H2

m(R
′′) → · · · .

If d ≥ 4, then dim(R′′) ≥ 3 and thus H2
m(R

′′) = 0. Since R̂′ is S2, H
2
m(R

′) has finite length and

the above exact sequence tells us that H2
m(R

′) = 0 by Nakayama’s lemma. But then by the above

exact sequence again, we have H1
m(R

′′) = 0 and hence S/R′′ = 0. Thus R′′ ∼= S is regular. But

then R̂′ and hence R is regular as wanted.

Finally, suppose d = 3. Let B be a balanced big Cohen-Macaulay algebra of R̂′ that is m-adic

complete, then B/xB is a balanced big Cohen-Macaulay algebra of R′′. It follows that the canonical

map R′′ → B/xB factors through S.

Claim 3.9. B/xB is a balanced big Cohen-Macaulay algebra over S.

Proof of Claim. It is clear that some system of parameters of S (namely those coming from R′′)

are regular sequences on B/xB. To see that every system of parameters of S is a regular sequence

on B/xB, we first note that B/xB is m-adically complete: since B is m-adic complete, B/xB is

derived m-complete by [29, Tag 091U], take (y, z) that is a system of parameters of R′′, then as

y, z is a regular sequence on B/xB, the derived completion with respect to (y, z), which is B/xB

itself, agrees with the usual completion with respect to (y, z) by [29, Tag 0920] (equivalently, with

respect to m as
√

(y, z) = m). Hence by [4, Corollary 8.5.3], every system of parameters of S is a

regular sequence on B̂/xB ∼= B/xB. �

Note that dim(R′′) = dim(S) = 2 and S is regular, thus the long exact sequence of local

cohomology induced by 0 → R′′ → S → S/R′′ → 0 implies that H2
m(R

′′) ∼= H2
m(S). Hence we have
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the following commutative algebra:

H2
m(S)

H2
m(R

′)
·x

// H2
m(R

′) //

��

H2
m(R

′′) //
� _

φ

��

H3
m(R

′)

��

// H3
m(R

′)

��

// 0

0 = H2
m(B) // H2

m(B/xB) // H3
m(B) // H3

m(B) // 0

where the injectivity of φ follows from the fact that B/xB is a balanced big Cohen-Macaulay algebra

over S and thus faithfully flat over S (as S is regular). Chasing this diagram we find that the map

H2
m(R

′)
·x−→ H2

m(R
′) is surjective. But since R̂′ is S2, H

2
m(R

′) has finite length, thus H2
m(R

′) = 0 by

Nakayama’s lemma. Hence R̂′ is Cohen-Macaulay and thus R′′ is also Cohen-Macaulay. But then

R′′ ∼= S and so R′′ is regular and thus R̂′ is regular. Thus R is regular as wanted.

Now we have established that R is regular, we can repeat the argument in the first paragraph of

the proof to show that ν(m/Q) ≤ 1 (essentially, this follows from the main result of [8]). �

As a consequence, we answer the problem raised in [10, Section 3] for excellent rings.

Corollary 3.10. Let R be an excellent local ring such that R̂ is reduced and equidimensional.

Suppose I ⊆ R is an m-primary ideal such that e1(I) = 0. Then RN, the normalization of R, is

regular and IRN is normal (i.e., all powers of IRN are integrally closed in RN).

Proof. Replacing R by R[t]mR[t], we may assume that the residue field of R is infinite (we leave it

to the readers to check that the hypotheses and conclusions are stable under such a base change).

Let S be the S2-ification of R. We will show that the m-adic completion of Ŝ is regular. Since R is

excellent, Ŝ agrees with the S2-ification of R̂ by [17, Proposition 3.8]. Thus Ŝ is semilocal, reduced,

and S2. Since JŜ ∩ R̂ = J for every m-primary ideal J ⊆ R̂ by [21, Proposition 1.6.1], we have

ℓ
R̂
(R̂/J) ≤ ℓ

R̂
(Ŝ/JŜ).

Let n1, . . . , ns be the maximal ideals of Ŝ and let Si := (Ŝ)ni (in fact, since Ŝ is complete, we

have Ŝ ∼=
∏s

i=1 Si, and each Si is complete local, reduced, and S2). Then we have

e0(I)

(
n+ d

d

)
− e1(I)

(
n+ d− 1

d− 1

)
+ o(nd−1)

= ℓR(R/In+1) = ℓ
R̂
(R̂/In+1R̂)

≤ ℓ
R̂
(Ŝ/In+1Ŝ)

=
s∑

i=1

[Si/ni : R/m] · ℓSi(Si/In+1Si)

=

s∑

i=1

[Si/ni : R/m] ·
(
e0(ISi)

(
n+ d

d

)
− e1(ISi)

(
n+ d− 1

d− 1

)
+ o(nd−1)

)
,
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where we have used [21, Lemma 9.1.1] for the equality in the second line. Since Ŝ is a rank one

module over R̂, we also know that

e0(I) = e(IR̂, R̂) =

s∑

i=1

[Si/ni : R/m] · e(ISi, Si) =

s∑

i=1

[Si/ni : R/m] · e0(ISi),

where we have used the projection formula for the Hilbert-Samuel multiplicity (see [21, Theorem

11.2.4 and Theorem 11.2.7]). The above inequality implies that

s∑

i=1

[Si/ni : R/m] · e1(ISi) ≤ e1(I) = 0.

But since e1(ISi) ≥ 0 by [10, Theorem 1.1], we must have e1(ISi) = 0 for all i. Let Q be a minimal

reduction of I (note that Q is a parameter ideal of R, since we have reduced to the case that R has

an infinite residue field). It follows that e1(QSi) = 0 and thus by Theorem 3.7, Si is regular and

ν(ni/Q) ≤ 1. But then QSi is normal in Si. It follows that Ŝ ∼=
∏s

i=1 Si is regular, QŜ is normal

in Ŝ and in particular, QŜ = IŜ.

Since S → Ŝ ∼= R̂⊗R S is faithfully flat with geometrically regular fibers (as R is excellent). We

have S is regular and QS = IS is normal in S by [21, Theorem 19.2.1]. Finally, since S is regular,

S agrees with the normalization RN of R. �

Remark 3.11. The condition R̂ is S2 cannot be dropped in Theorem 3.7. This was already

observed in [10, Section 3]. We give a different example that is a complete local domain. Let

R = k[[x, xy, y2, y3]] where k is a field. Then the S2-ification of R is S = k[[x, y]] and we have

0 → R → S → S/R ∼= k · y → 0. Let Q = (x, y2) ⊆ R and we claim that e1(Q) = 0. To see this,

note that QS = (x, y2) ⊆ S is normal and ℓ(S/Qn+1S) = 2 ·
(
n+2
2

)
. It follows from the short exact

sequence

0 → R/Qn+1 → S/Qn+1S → k → 0

that ℓ(R/Qn+1) = 2 ·
(
n+2
2

)
− 1. In particular, e1(Q) = 0.

Recall that a Noetherian local ring (R,m) of prime characteristic p > 0 is called F -rational if

every ideal generated by a system of parameters is tightly closed. It was mentioned in [5] that

Huneke asked that when R̂ is reduced and equidimensional of prime characteristic p > 0, whether

e∗1(Q) = 0 for some system of parameters Q ⊆ R implies R is F -rational. In general, counter-

examples to the question were constructed in [5, Example 5.4 and 5.5] (in fact, the example in

Remark 3.11 is a counter-example that is a complete local domain). However, all these examples

do not satisfy Serre’s S2 condition.

Let (R,m) be a Noetherian local ring and let B be a big Cohen-Macaulay R-algebra. Recall

that R is called BCMB-rational if R is Cohen-Macaulay and the natural map Hd
m(R) → Hd

m(B)

is injective, where d = dim(R). If R is an excellent local ring of prime characteristic p > 0, then

R is F -rational if and only if R is BCMB-rational for all big Cohen-Macaulay algebra B, see [24,

Proposition 3.5].
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We propose the following conjecture relating the vanishing of eB1 (Q) and BCMB-rational singu-

larities, which modifies Huneke’s question and makes sense in all characteristics.

Conjecture 3.12. Let (R,m) be a Noetherian local ring such that R̂ is reduced and S2. Let B be

a balanced big Cohen-Macaulay R-algebra that satisfies (†). If eB1 (Q) = 0 for some parameter ideal

Q ⊆ R, then R is BCMB-rational.

In particular, if R is excellent and has characteristic p > 0 (such that R̂ is reduced and S2), and

e∗1(Q) = 0 for some parameter ideal Q ⊆ R, then R is F-rational.

We have the following partial result towards the Conjecture 3.12, which is an analog of the main

result of [27].

Proposition 3.13. Let (R,m) be a Noetherian local ring such that R̂ is reduced and equidimen-

sional. Let B be a balanced big Cohen-Macaulay R-algebra that satisfies (†). If eB1 (Q) = e1(Q) for

some parameter ideal Q ⊆ R, then R is BCMB-rational.

In particular, if R is excellent and has characteristic p > 0, and e∗1(Q) = e1(Q) for some

parameter ideal Q ⊆ R, then R is F-rational.

Proof. By Theorem 3.1, we know that eB1 (Q) = e1(Q) = 0. By the main result of [6], e1(Q) = 0

implies that R is Cohen-Macaulay. By [19, Corollary 4.9], we have QB = Q. Now we consider the

commutative diagram:

R/Q
� _

��

� � // B/QB
� _

��

Hd
m(R) // Hd

m(B)

where the injectivity of the top row follows from QB = Q, the injectivity of the left column is

because R is Cohen-Macaulay, and the injectivity of the right column is because B is balanced big

Cohen-Macaulay. Since R is Cohen-Macaulay, we know that Soc(R/Q) ∼= Soc(Hd
m(R)). Chasing the

commutative diagram we find that Hd
m(R) → Hd

m(B) injective. Therefore R is BCMB-rational. �

Remark 3.14. It is clear from the proof of Proposition 3.13 that Conjecture 3.12 holds when R is

Cohen-Macaulay, and this essentially follows from [19, Corollary 4.9].
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[2] Yves André, Weak functoriality of Cohen-Macaulay algebras, J. Amer. Math. Soc. 33 (2020), no. 2, 363–380.

[3] Bhargav Bhatt, Cohen-Macaulayness of absolute integral closures, https://arxiv.org/abs/2008.08070.

[4] Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, 39.

Cambridge University Press, Cambridge, 1993. xii+403 pp.

[5] Saipriya Dubey, Pham H. Quy and Jugal Verma, Tight Hilbert Polynomial and F-rational local rings, Res. Math.

Sci. 10 (2023), 8.

[6] L. Ghezzi, S. Goto, J. Hong, K. Ozeki, T. T. Phuong, and W. V. Vasconcelos Cohen–Macaulayness versus the

vanishing of the first Hilbert coefficient of parameter ideals, J. London. Math. Soc. 81 (2010), 679–695.



VANISHING AND NON-NEGATIVITY OF THE FIRST NORMAL HILBERT COEFFICIENT 15

[7] Kriti Goel, Jugal K. Verma and Vivek Mukundan, Tight closure of powers of ideals and tight Hilbert polynomials,

Math. Proc. Cambridge Philos. Soc. 169 (2020), no. 2, 335–355.

[8] Shiro Goto, Integral closedness of complete-intersection ideals, J. Algebra 108 (1987), 151–160.

[9] Shiro Goto, Hilbert cofficients of parameters, Proceeding of the 5th Japan-Vietnam joint seminar on commutative

algebra 2010, 1–49.

[10] Shiro Goto, Jooyoun Hong and Mousumi Mandal, The positivity of the first coefficients of normal Hilbert poly-

nomials, Proc. Amer. Math. Soc. 139 (2011), no. 7, 2399–2406.

[11] William Heinzer, Louis J. Ratliff and Kishor Shah, Parametric decomposition of monomial ideals. I, Houston J.

Math. 21 (1995), no. 1, 29–52.

[12] Raymond Heitmann and Linquan Ma, Big Cohen-Macaulay algebras and the vanishing conjecture for maps of

Tor in mixed characteristic, Algebra Number Theory 12 (2018), no. 7, 1659–1674.

[13] Futoshi Hayasaka and Eero Hyry, On the Buchsbaum–Rim function of a parameter module, J. Algebra 327

(2011), no. 1, 307–315.

[14] Melvin Hochster, Properties of Noetherian rings stable under general grade reduction, Arch. Math. (Basel) 24

(1973), 393–396.

[15] Melvin Hochster, Foundations of tight closure theory, unpublished lecture notes,

http://www.math.lsa.umich.edu/~hochster/711F07/fndtc.pdf.

[16] Melvin Hochster, Solid closure, Commutative algebra: syzygies, multiplicities, and birational algebra (South

Hadley, MA, 1992), 103–172, Contemp. Math., 159, Amer. Math. Soc., Providence, RI, 1994.

[17] Melvin Hochster and Craig Huneke, Indecomposable canonical modules and connectedness, Commutative algebra:

syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), 197–208, Contemp. Math., 159, Amer.

Math. Soc., Providence, RI, 1994.

[18] Melvin Hochster and Craig Huneke, Applications of the existence of big Cohen-Macaulay algebras, Adv. Math.

113 (1995), no. 1, 45–117.

[19] Sam Huckaba and Thomas Marley, Hilbert coefficients and the depths of associated graded rings J. London Math.

Soc., 56 (1997), no. 1, 64–76.

[20] Craig Huneke, Tight closure, parameter ideals, and geometry. In Six lectures on commutative algebra (Bellaterra,

1996), volume 166 of Progr. Math., pages 187–239. Birkhäuser, Basel, 1998.
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