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We provide high-probability bounds on the condition number of random feature matrices. In particular,
we show that if the complexity ratio N/m, where N is the number of neurons and m is the number of
data samples, scales like log−1(N) or log(m), then the random feature matrix is well-conditioned. This
result holds without the need of regularization and relies on establishing various concentration bounds
between dependent components of the random feature matrix. Additionally, we derive bounds on the
restricted isometry constant of the random feature matrix. We also derive an upper bound for the risk
associated with regression problems using a random feature matrix. This upper bound exhibits the double
descent phenomenon and indicates that this is an effect of the double descent behaviour of the condition
number. The risk bounds include the underparameterized setting using the least squares problem and
the overparameterized setting where using either the minimum norm interpolation problem or a sparse
regression problem. For the noiseless least squares or sparse regression cases, we show that the risk
decreases as m and N increase. The risk bound matches the optimal scaling in the literature and the
constants in our results are explicit and independent of the dimension of the data.

Keywords: random feature models; conditioning; restricted isometry property; double descent.

1. Introduction

Random feature methods are essentially two-layer shallow networks whose single hidden layer is
randomized and not trained [32,33]. They can be used for various learning tasks, including regression,
interpolation, kernel-based classification, etc. Studying their behaviour not only results in a deeper
understanding of kernel machines but could also yield insights into more complex models, such as very
wide or deep neural networks.

Consider x ∈ R
d to be the input vector and W = [ωi,j] ∈ R

d×N to be a random weight matrix,
where each column of the matrix W is sampled from some prescribed probability density ρ(ω). Then
the random feature map is defined by φ(WTx) ∈ C

N , where φ : R → C is some Lipschitz activation
function applied element-wise to the input. The resulting two-layer network withN neurons is defined by
y = CTφ(WTx) ∈ C

dout , where the final layer C ∈ C
N×dout needs to be trained for a given problem. The

analysis of these models with respect to the dimensionality, stability, testing error, etc. often depends
on the extreme singular values (or the condition number) of the matrix A := φ(XTW) ∈ C

m×N ,
where X = [x1, . . . xm] ∈ R

d×m is a collection of m random samples of the input variable. In
particular, for regression or interpolation, knowledge of the condition number of A can yield control
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over the error as well as reveal the landscape of the testing error as a function of the model complexity
ratio N/m.

The testing error (or risk) of random feature models have been of recent interest [39,17,20,26,34,36],
in particular, with a goal of quantifying the number of features needed to obtain a given learning rate.

In [34], it was shown that the random feature model yields a test error of O(N− 1
2 + m− 1

2 ) when trained

on Lipschitz loss functions. Thus if m � N then the generalization error is O(N− 1
2 ) for large N. In

[35], a comparison between the test error using kernel ridge regression with both the full kernel matrix
and a column subsampled kernel matrix (related to Nyström’s method) suggests that the number of
columns (and rows) should be roughly the square root of the number of original samples in order to
obtain their learning rate. The squared loss case was considered in [20,36], providing risk bounds when
the random feature model is trained via ridge regression. In [36], it was shown that for f in an RKHS,

using N = O(
√
m logm) is sufficient to achieve a test error of O(m− 1

2 ) with a random feature method.
The results in [35,36] use similar technical assumptions on the kernel and the second moment operator,
e.g. a certain spectral decay rate on second moment operator, which may be difficult to verify. Note that
for the ridge regression results, the penalty parameter λ = λ(m) often must remain positive and thus
such results do not include interpolation. In [39], the risk was analysed for a regularized model with the

target function in an RKHS, noting that to achieve N−1 + m− 1
2 one must place explicit assumptions on

the decay rate of the spectrum of the kernel operator, see also [3]. In [26], an investigation of the kernel
ridge regression and the random feature ridge regression problems in terms of the N, m and d was given.
The main result suggests that an ‘optimal’ choice for the complexity ratio N/m depends on an algebraic
scaling in N, m and d.

In the overparameterized setting, minimum norm regression problems are often used, either by
minimizing the �2 or �1 norm with a data fitting constraint. The �1 problem can be used to obtain a low
complexity random feature model in the highly overparameterized setting and was proposed and studied
in [17] (see also [40] for a related algorithmic approach). By solving the �1 basis pursuit denoising
problem with a random feature matrix, test error bounds were obtained as a function of the sparsity, N,
m and d. It is worth noting that in the dense case, i.e. when the sparsity equals N and m � N2 up to log

terms, the test error scales like N−1 + m− 1
2 up to log terms, thus the method achieves the upper bounds

provided by other methods but utilizes a different computational approach.
The min-norm interpolation problem (or the ridgeless limit as λ → 0+) has received recent attention

for random featuremethods [4,5,8,18,21,26,27,38]. In [4,38], the test error for general ridge and ridgeless
regression problems is shown to be controlled by the condition number, or the related notion of effective
rank, of the random design matrix. It was shown in [26] that the min-norm interpolators are optimal
among all kernel methods in the overparameterized regime.

In some settings, overparameterized random feature models can produce lower test error even though
they have large complexity. However, choosing N and m only using the risk bounds could lead to an
insufficient picture of the parameter landscape for random feature models or neural network. In modern
learning, the graph of the test error as a function of the model’s complexity (i.e. relative number of
neurons) has two valleys. The first is when the number of parameters is relatively small; this is the
underparameterized regime where the model has small complexity and small risk. As the complexity
reaches the interpolation threshold (N = m), the risk tends to peak and then begins to decay again as
the number of parameters continues to increase well into the overparameterized regime. This is referred
to as the double descent phenomenon [1,5–7] and has had several recent results, specifically, in the
characterization of the test error as a function of the complexity ratio [1,2,5–7,19,26,27]. A direct analysis
of the double descent curves for random feature regression [26,27] showed that in the overparameterized
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regime, taking N/m = O(1) can lead to suboptimal results which can be corrected if N/m → ∞. To
achieve near optimal test errors, they suggest setting N � m1+δ for small δ > 0.

1.1 Some related work

Some of the earlier results in the literature on randommatrix theory for some related problems focused on
random kernel matrices in the form Ki,j = φ(xTi xj), specifically, characterizing the spectrum of square
matrices depending on one random variable x [10,12,13]. In [9,18,28–30], the asymptotic behaviour
of asymmetric rectangular random matrices A = φ(XTW) was studied, in particular, to quantify the
limiting distribution on the spectrum of the Gram matrix AA∗. In [25] the asymptotic behaviour of the
resolvent operator of the Gram matrix was studied, where W is random but X is deterministic. Using
concentration arguments, [23,25] analysed the spectrum of the Gram matrix of random feature maps in
the high-dimensional setting where N grows like m. Precise asymptotics for the random feature ridge
regression model in the large m, N and d limit and a characteristic of the test error as a function of
the dimensional parameters were given in [24]. They also showed the existence of a phase transition
with respect to N/m at the interpolation threshold. In [22], the authors studied the multiple-descent
curve for the scaling d = mα , where α ∈ (0, 1). They observed non-monotonic behaviour in the test
error as a function of the sample size m. The results in [22] rely on the restricted lower isometry of
the kernels, showing that (with high probability) the empirical kernel matrix has a certain number of
non-zero eigenvalues with a lower bound.

1.2 Our contributions

In this work, we provide high-probability bounds on the conditioning of the random feature matrix
A = φ(XTW) for N neurons, m samples and with dimension d. In particular, when the N/m scales
like log(m) (overparametrized) or log−1(N) (underparameterized), the singular values of A concentrate
around 1 and thus with high probability the condition number of the random feature matrix is small. In
addition, the guarantees break down in the interpolation region where we prove that the system is ill-
conditioned. When N = m, as the number of features (or equivalently the number of samples) increases
the conditioning at the interpolation regime worsens. This transition between the conditioning states
coincides with the phase transition in the double descent curves (the risk) for random feature regression.
As an additional application of our results, we show that the condition number can be used to obtain state-
of-the-art test error bounds for a particular class of target functions. We highlight some comparisons with
other works below.

• Our theoretical results are related to other random matrix results, such as [9,18,25,28–30]; however,
we quantify the behaviour of the random feature matrix for both finite and large N andm and provide
both sample and feature complexity bounds. Our results give a simple scaling between N and m that
yields well-conditioned random feature matrices.

• We connect the conditioning of the random matrix to the double descent curves and provide another
characterization of the underparameterized and overparameterized regions, compared with [26,27].
Specifically, our results show that the complexity ratio N/m needs to be only logarithmically far
from the interpolation threshold to have small risk, rather than algebraically far. Our results support
similar conclusions to [26,27].

• We provide non-asymptotic bounds, i.e. N, m and d are finite, and the bounds explicitly relate the
scaling between these quantities. In our work, the weights and data can be unbounded. In [27], the
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focus is on the case for N,m, d → ∞ where the weights and data are assumed to be uniformly
distributed and bounded. In addition, our work also includes the sparse recovery regime (specifically
the restricted isometry property (RIP) condition), which has not been studied in previous random
feature works.

• The proofs give explicit values for the constants used in our bounds and thus our results hold up to
additive terms, for example, compared with the results of [36] which are based on overall rates. Our
bounds improve for high-dimensional data, since the constants are independent of the dimension d.

• The analysis in [17] established the structure of the random feature matrix using a coherence estimate
(for sparse regression in the overparameterize regime). A coherence bound leads to a non-optimal
quadratic scaling (up to log terms) between m and N (or the sparsity s). Our results directly estimate
the restricted isometry constant thus yielding a linear scaling (up to log terms) between m and

N (or s). A complete proof is given in C and is one of the key theoretical contributions of this

work. This difference allows for a more precise characterization of the underparameterized and
overparameterized regimes, i.e. it shows that the complexity ratio only needs to scale by log factors
rather than polynomials. Our results also match the transition point N = m seen in [24,26,27] and
the linear scaling considered in [30]. Our RIP result allows for the use of random feature models in
sparse regression which is novel in this field.

• We establish risk bounds for random feature regression without the need for assumptions on the
spectrum of the second moment operator or kernel [35,36]. We also improve the bounds in the sparse
setting [17]. Similar results hold for other conditioning-based methods, such as greedy solvers. Our
risk bounds include the effects of noise on the measurements, with the assumption that the noise is
bounded (or bounded with high probability, e.g. normally distributed).

1.3 Notation

Let R be the set of all real number and C be the set of all complex number where i =
√

−1 denotes the
imaginary unit. Define the set [N] to be all natural numbers smaller thanN, i.e. {1, 2, . . . ,N}. Throughout
the paper, we denote vectors ormatriceswith bold letters, and denote the identitymatrix of size n×n by In.
For two vectors x, y ∈ C

d, the inner product is denoted by 〈x, y〉 =
∑d

j=1 xjyj, where x = [x1, . . . , xd]
T

and y = [y1, . . . , yd]
T . For a vector x ∈ C

d, we denote by ‖x‖p the �p-norm of x and for a matrix

A ∈ C
m×N the (induced) p-norm is written as ‖A‖p. For a matrix A ∈ C

m×N , its transpose is denoted

as AT and its conjugate transpose is denoted as A∗. Lastly, let N (µ,Σ) be the normal distribution with
mean vectorµ ∈ R

d and covariance matrixΣ ∈ R
d×d. IfA ∈ C

m×N is full rank, then the pseudo-inverse
is A† = A∗(AA∗)−1 if m f N or A† = (A∗A)−1A∗ if m g N. The condition number with respect to the
2-norm of a matrix A is defined by κ(A) := ‖A‖2‖A†‖2. Denote the k-th eigenvalue of the matrixM by
λk(M).

2. Empirical behaviour

The double descent phenomena appears in both the condition number for random matrices and the risk
associated with the corresponding regression problem. In Fig. 1, we examine the behaviour of the risk
and the condition number of the Gram matrix as a function of the complexity N/m, where N is the
column size, i.e. the number of features, and m is the row size, i.e. the number of samples. Let d be the
dimension of each sample. We set d = 3 and m = 100, and vary the number of features N ∈ [500].
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FIG. 1. Double Descent of the Condition Number and Risk. The condition number and risk curves are plotted as a function of
the complexity ratio N/m. The curves are rescaled for visualization purposes, where the units are multiples of 2.9 × 103 for the
risk and 4.8× 104 for the condition number. Each of the graphs display the double descent phenomena corresponding to the same
complexity regions. In each plot, the global minima of the risk is obtained in the overparameterized regime N/m > 1 where the
linear system remains well-conditioned as N grows.

The weights of the random feature matrix are sampled from N (0, 0.1) and the 100 training points are
sampled from N (0, 1). The target function for the �2 regression problem is linear f (x) = bTx, where
the components of b ∈ R

d are randomly sampled from the uniform distribution U[0, 1]d, which differs
from the randomness used in the weights. The outputs on the training samples have either zero noise
or additive gaussian noise with 10% SNR (as indicated on the graphs). The training is done using the
psuedo-inverse, i.e. the least squares problem or the min-norm interpolator depending on the complexity
ratio. The empirical risk is measured on 1000 testing samples from N (0, 1). For each N, the risk and
condition numbers are averaged over 10 random trials. Each curve in Fig. 1 is rescaled so that the values
are within the same range, noting that the minimum value of the condition number is 1 before rescaling.
In each case, the double descent of the condition number and the empirical risk coincides with the same
complexity regimes. Specifically, both peak at the interpolation threshold N/m = 1 with large values
obtained within a certain width of this threshold, which was also observed for this problem in [11]. It
is worth noting that in these three experiments, using Fourier features [32–34] with and without noise
or using ReLU features, the global minima of the risk is obtained in the overparameterized regime, i.e.
when N/m > 1.

In Fig. 2, the probability density function associated with the singular values of the normalized
random feature matrix in the underparameterized and overparameterized regimes is plotted using
different complexity scales N/m. The curves in Fig. 2 are normalized to have their maxima equal to
1 and are estimated using a smooth density approximation over 10 trials. In both plots, the red curves
indicate the interpolation threshold N/m = 1 and are the transition boundaries between the two regimes
(i.e. between the two plots). The weights and data are sampled from N (0, 1). In this experiment we
set d = 50 and m = 3d = 150, and vary the number of features N based on the logarithmic scalings
indicated on the graphs. In Fig. 2, the corresponding linear system is well conditioned when the support
of the probability density is bounded away from the endpoints of the interval. Empirically, this is the
case (with high probability) for the log and log-cubed scaling.

The choice of scalings in the plots is to provide empirical support for the theoretical results
in Section 3, specifically, that a logarithmic scaling is sufficient to obtain a bound on the extreme
singular values. In addition, there is an observable symmetry between the (estimated) probability density
functions in the underparameterized and overparameterized regimes using the same scaling (with m and
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FIG. 2. Probability Density Functions for the Singular Values: The (normalized) smooth estimations of the probability density
functions associated with the singular values of the normalized random feature matrix in the underparameterized (left) and
overparameterized (right) regimes are plotted. The red curves indicate the interpolation case N/m = 1 and are the transition
boundaries between the two plots.

N switched). The symmetry is not exact, partly due to rounding in order to obtain integer values forN, but
the plots in Fig. 2 show that the overparameterized and underparameterized systems are well-conditioned
when using the same functional scaling.

3. Condition number of random feature maps and insights

In this section, we discuss the bounds on the extreme singular values of the random feature matrix A =
φ(XTW) where the elements of the matricesW and X are randomly drawn from normal distributions.

3.1 Main result

Before discussing the results, we state themain assumption that is used throughout the paper. Specifically,
the data and weights are normally distributed and the random feature matrix is built using Fourier
features. This assumption is not necessary for the conclusions in this work; however, they simplify
expressions for the constants and the parameter scalings.

ASSUMPTION 1. The data samples {xj}j∈[m] are drawn from N (0, γ 2Id) and the set of random feature

weights {ωk}k∈[N] are drawn from N (0, σ 2Id). The random feature matrix A ∈ C
m×N is defined

component-wise by aj,k = φ(xj,ωk), where φ(x,ω) = exp(i〈x,ω〉).

THEOREM 1. [Conditioning in Three Regimes] Assume that the data {xj}j∈[m], weights {ωk}k∈[N] and
random feature matrix A ∈ C

m×N satisfy Assumption 1.

(a) (Underparameterized Regime m > N) If the following conditions hold:

m g Cη−2N log

(

2N

δ

)

(3.1)

√
δ η (4γ 2σ 2 + 1)

d
4 g N, (3.2)
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for some η, δ > 0, then with probability at least 1 − 2δ we have

∣

∣

∣

∣

λk

(

1

m
A∗A

)

− 1

∣

∣

∣

∣

f 3η,

for all k ∈ [N].

(b) (Overparameterized Regime m < N) If the following conditions hold:

N g Cη−2m log

(

2m

δ

)

√
δ η (4γ 2σ 2 + 1)

d
4 g m,

for some η, δ > 0, then with probability at least 1 − 2δ we have

∣

∣

∣

∣

λk

(

1

N
AA∗

)

− 1

∣

∣

∣

∣

f 3η,

for all k ∈ [m].

(c) (Interpolation Threshold) If m = N g 2, then the eigenvalues satisfy

E λmin

(

1

N
A∗A

)

f
(

1 −
1

N

) 1
2 1

(4γ 2σ 2 + 1)d/4
+

1

N

Eλmax

(

1

N
A∗A

)

g 2 −
1

N
,

where the expectation is with respect to {xj}j∈[m] and {ωk}k∈[N].
The universal constant C > 0 is no greater than 4 if min{m,N} > 25.

The proof of Theorem 1 is given in Section 5.
Theorem 1 provides a characterization of the behaviour of the condition number of the random feature

matrix as a function of complexity N/m, with respect to any dimension d. If the parameter η is chosen
to satisfy η < 1/3, then the eigenvalues of the normalized Gram matrices are strictly between 0 and 2.
Moreover, in the extreme cases, when m 
 N or m � N, then η can be small and the eigenvalues of the
normalized Grammatrices will concentrate near 1. If the random feature matrix is square and we assume
that the complexity bound m = N f (4γ 2σ 2 + 1)d/4 holds, then by applying Markov’s inequality the
minimum eigenvalue of the matrix N−1A∗A satisfies

P

(

λmin

(

1

N
A∗A

)

g N− 1
2

)

f 2N− 1
2 .

On the other hand, the largest eigenvalue of N−1A∗A must be larger than 1, since columns of this
matrix are of norm 1. Therefore, at the interpolation threshold, the Grammatrix becomes ill-conditioned.
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Altogether, Theorem 1 shows that the conditioning of the random feature matrix exhibits the double
descent phenomena.

One interesting consequence of Theorem 1 is that the random feature matrix does not need
regularization to be well-conditioned. This was also observed in [31] for random matrices A, where
ai,j are drawn randomly from some probability distribution and for kernel matrices A = K(XTX), i.e.
symmetric systems.

REMARK 1. The symmetry in the conditions for the overparameterized and underparameterized regimes
is inherited from the assumption that the weights and samples use the same distribution (with different
variances). The results can be extended to uniform or sub-gaussian random sampling for x or ω and other
feature maps, which will lead to similar overall conditions but break this type of symmetry.

REMARK 2. In several of the theoretical results, the smaller of the dimensional parameter (N,m or sparsity

s) must be less than
√

δ η (4γ 2σ 2 + 1)
d
4 . If we set the parameters to δ = 0.01, η = 1/4 and γ , σ = 2,

then for d g 44 the complexity limitation is on the exascale. If one wants the inner product 〈x,ω〉 to
be order 1 (for example, dividing the variance d), then after rescaling we get

(

4γ 2σ 2/d + 1
)d/4

, which
is like exp(γ 2σ 2) for large d. Thus in the rescaled case in high dimensions, if γ σ =

√
46, then the

complexity limitation is on the exascale. On the other hand, for small γ σ the complexity bounds can
place a severe limitation on the smaller of the dimensional parameters.

4. Generalization error using the condition number

With the control on the condition number, we can provide bounds on the generalization error (or risk)
associated with regression problems using random feature matrices in both the underparameterized and
overparameterized settings. We show that the double descent phenomena on the risk is a consequence of
the double descent phenomena on the condition number.

4.1 Set-up and notation

The analysis for the generalization error will follow the set-up from [17,32–34]. For a probability density
ρ (associated with the random weights ω) inRd and an activation function φ : Rd×R

d → C, a function
f : Rd → C has finite ρ-norm with respect to φ if it belongs to the class [32]

F(φ, ρ) :=
{

f (x) =
∫

Rd
α(ω)φ(x;ω)dω : ‖f‖ρ := sup

ω

∣

∣

∣

∣

α(ω)

ρ(ω)

∣

∣

∣

∣

< ∞
}

.

The regression problem is to find an approximation of a target function f ∈ F(φ, ρ), that is, given a set
of random weights {ωk}k∈[N], we train

f �(x) =
N
∑

k=1

c
�
k φ(x,ωk) (4.1)

using (xj, yj), where yj = f (xj) + ej and ej is the measurement noise, for j ∈ [m]. Let A ∈ C
m×N be

the matrix with aj,k = φ(xj,ωk) for j ∈ [m] and k ∈ [N]; the training problem is equivalent to finding

c ∈ C
N such that Ac ≈ y, where y = [y1, . . . , ym]

T ∈ C
m.



CONDITIONING OF RANDOM FOURIER FEATURE MATRICES 9

ASSUMPTION 2. The measurement noise {ej}j∈[m] is bounded by some constant E, i.e. ‖ej‖∞ f E.

Assumption 2 can be extended to random noise. For example, if ej ∼ N (0, ν2Id) andm g 2 log
(

δ−1
)

then with probability at least 1−δ the noise is bounded by |ej| f 2ν for all j ∈ [m]. This does not change
our technical arguments except for an additional δ term in the probability bounds.

4.2 Underparameterized regime, least squares problem

In the underparameterized (overdetermined) regime where we have more data samples than features, the
coefficient c� are trained via the least squares problem:

c� ∈ argmin
c∈RN

‖Ac− y‖2,

where c� = [c�1, . . . , c
�
N]

T and the (trained) approximation is given by

f �(x) =
N
∑

k=1

c
�
k φ(x,ωk). (4.2)

Using the condition number of A, we can control the risk

R( f �) := ‖ f − f �‖2
L2(dμ)

=
∫

Rd

∣

∣ f (x) − f �(x)
∣

∣

2
dμ(x),

with high probability, where μ is defined by the sampling measure for the data x (see Assumption 1).

THEOREM 2. [Least Squares Risk Bound m > N] For any f ∈ F(φ, ρ), let the data {xj}j∈[m],
weights {ωk}k∈[N] and random feature matrix A ∈ C

m×N satisfy Assumption 1, and let the noise satisfy
Assumption 2. If for some η, δ > 0 the following conditions hold:

m g Cη−2N log

(

2N

δ

)

√
δη
(

4γ 2σ 2 + 1
) d

4 g N,

where C > 0 is a universal constant independent of the dimension d; then with probability at least 1−8δ
the following risk bound holds:

R(f �) f 16K(η)

(

1 + Nm− 1
2 log

1
2

(

1

δ

))

(ε2‖f‖2ρ + E2), (4.3)
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where K(η) := 1+3η
1−3η and

ε =
2

√
N

⎛

⎝1 + 4γ σd

√

1 +
√

12

d
log

(m

δ

)

+

√

1

2
log

(

1

δ

)

⎞

⎠ .

The proof of Theorem 2 is given in Appendix D. Note that K(η) is an upper bound for the condition
number of the matrix m−1A∗A using Theorem 1.

REMARK 3. In the noiseless case, the risk bound that appears in Theorem 2 scales likeO
(

N−1 + m− 1
2

)

,

where the order hides the dimension, parameters and constants.

4.3 Overparameterized regime, min-norm interpolator

In the overparameterized (underdetermined) regime, we have more features than data, and thus popular
models for training the coefficient vector c� rely on minimizing ‖c�‖p under the constraint that Ac� − y

is zero or small. First, we consider training c� using the min-norm interpolation problem:

c� ∈ argmin
Ac=y

‖c‖2. (4.4)

The solution is given by c� = A†y where the psuedoinverse A† = A∗(AA∗)−1, noting that the inverse of
the Gram matrix exists with high probability under the conditions of Theorem 1. This is also referred to
as the ridgeless case, since c� = A†y can be viewed as the ridgeless limit of the coefficients, c�λ, which
are obtained by the ridge regression problem

c
�
λ = argmin

c∈RN

1

m
‖Ac− y‖22 + λ‖c‖22, (4.5)

i.e. the vector obtained when λ → 0+. With f � defined as (4.2), we have the following result analogous
to Theorem 2.

THEOREM 3. [Min-Norm Risk Bound m < N] For any f ∈ F(φ, ρ), let the data {xj}j∈[m], weights
{ωk}k∈[N] and random feature matrix A ∈ C

m×N satisfy Assumption 1, and let the noise satisfy
Assumption 2. If for some η, δ > 0 the following conditions hold:

N g Cη−2m log

(

2m

δ

)

√
δη
(

4γ 2σ 2 + 1
) d

4 g m,
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where C > 0 is a universal constant independent of the dimension d, then there exists a constant C̃ > 0
such that the following risk bound holds:

R( f �) f C̃ log
1
2

(

1

δ

)

(

m− 1
2 + K(η)m

1
2 ε2

)

‖ f‖2ρ + C̃m
1
2 K(η) log

1
2

(

1

δ

)

E2,

with probability at least 1 − 8δ, where K(η) := 1+3η
1−3η and

ε =
2

√
N

⎛

⎝1 + 4γ σd

√

1 +
√

12

d
log

(m

δ

)

+

√

1

2
log

(

1

δ

)

⎞

⎠ .

The proof of Theorem 3 is given in Appendix D. In this case,K(η) is an upper bound for the condition
number of the matrix N−1AA∗ using Theorem 1.

REMARK 4. In the noiseless case, the risk bound that appears in Theorem 3 scales like O
(

m− 1
2

)

, where

the order hides the dimension, parameters and constants.

4.4 Overparameterized regime, sparse regression

Next, we consider the sparse regression setting, where we minimize the �1 norm of the coefficients.
The goal is to obtain a subset of the features which maintain an accurate approximation to the target
function without needing to use the entire feature space, i.e. to obtain low complexity random feature
models (see [17]). This is implicitly related to methods for pruning overparameterized networks and
the lottery ticket hypothesis [15]. Specifically, it is conjectured that there are smaller subnetworks of
overparameterized randomly trained networks which are accurate representation of the target function
with lower complexity. Our results also provide an additional motivation based on the structure of the
transform of f , i.e. the decay of α(ω).

We consider the �1 basis pursuit denoising problem [14]

c� ∈ argmin
‖Ac−y‖2fξ

√
m

‖c‖1, (4.6)

where ξ is a parameter related to the noise level (taking into account model inaccuracy as well). The
constraint in (4.6) is inexact compared with the interpolation condition used in (4.4). In addition, one
cannot guarantee the existence of exact sparse solutions of Ac = y in the presence of approximation
error and measurement noise.

In this setting, we modify the approximation f � to incorporate a pruning step as done in [17]. Suppose
that c� is a solution of (4.6); we define f � by

f �(x) =
∑

k∈S�

c
�
kφ(x,ωk), (4.7)

where S� is the index set of the s-largest absolute entries of c�. This guarantees that the approximation
only depends on at most s < N random features. For any vector c, we denote by ϑs,p(c) the �p-error of



12 Z. CHEN AND H. SCHAEFFER

the best s-term approximation to c, i.e.

ϑs,p(c) := inf{‖c− c̃‖p : c̃ is s sparse}.

This is a measure of the compressibility of a vector c with respect to the �p norm and will appear in the
risk bounds as a source of error from the sparsification.

To measure the conditioning of the system with respect to sparse recovery, we define the restricted
isometry constant of a matrix A ∈ C

m×N using the notation from [14]. For an integer s f N, the s-th
RIP constant of A, denoted by δs = δs(A), is the smallest δ g 0 such that

(1 − δ)‖x‖22 f ‖Ax‖22 f (1 + δ)‖x‖22

holds for all s-sparse x. We have the following estimate of the s-RIP constant of the random feature
matrix A.

THEOREM 4. [Estimate on Restricted Isometry Constants] Assume that the data {xj}j∈[m], weights
{ωk}k∈[N] and random feature matrix A ∈ C

m×N satisfy Assumption 1. For η1, η2, δ ∈ (0, 1/2) and
some integer s g 1, if

m g C1η
−2
1 s log(δ−1)

m g C2η
−2
2 s log3(s) log(N)

√
δ η1 (4γ 2σ 2 + 1)

d
4 g N,

where C1 and C2 are universal positive constants, then with probability at least 1−2δ, the s-RIP constant

δs

(

1√
m
A
)

is bounded by f (η1, η2), where

f (η1, η2) := 3η1 + η22 +
√
2η2.

With the above theorem, we can derive the following result.

THEOREM 5. [Sparse Regression Risk Bounds] For any f ∈ F(φ, ρ), let the data {xj}j∈[m], weights
{ωk}k∈[N] and random feature matrix A ∈ C

m×N satisfy Assumption 1, and let the noise satisfy

Assumption 2. Let c� be obtained from (4.6) with ξ =
√

2(ε2‖f‖ρ + E2). If the following conditions

hold:

m g Cs log3(2s) log(N)

√
δ

10

(

4γ 2σ 2 + 1
) d

4 g N

δ g N− log3(2s),
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then with probability at least 1 − 8δ the following risk bound holds:

R( f �) f C′
(

1 + Nm− 1
2 log

1
2

(

1

δ

))

(ε2‖ f‖2ρ + E2)

+C′′
(

1 + Nm− 1
2 s−1 log

1
2

(

1

δ

))

ϑs,1(c
�)2,

where f � is defined as (4.7), c� is the vector whose components are defined by c�k = 1
N

α(ωk)
ρ(ωk)

, for k ∈ [N]
and

ε =
2

√
N

⎛

⎝1 + 4γ σd

√

1 +
√

12

d
log

(m

δ

)

+

√

1

2
log

(

1

δ

)

⎞

⎠ .

The constants C,C′,C′′ > 0 are universal constants independent of the dimension d.

The proofs are given in Appendix D. Note that in the worst case setting:

ϑs,1(c
�) f

(

1 −
s

N

)

‖ f‖ρ .

REMARK 5. The sparsity parameter s in Theorem 5 can be defined by the user since it is obtained by the
pruning step used in (4.7). When s = N, ϑN,1(c

�) = 0 and thus Theorem 3 and Theorem 5 generally
agree in terms of the risk’s dependency on ε2‖f‖2ρ and E2. On the other hand, if α(ω) decays much faster
than ρ(ω) or has small support within the support set of ρ(ω), then the vector c� will be compressible
and the sparse regression problem would be better.

5. Conditioning in three regimes

In this section, we prove Theorem 1. The proofs for Theorem 1 Part (a) and (b) depend on the matrix
Bernstein inequality Lemma A.2, and Part (c) follows from a more direct estimate on the expectation of
the eigenvalues of the Gram matrix.

Proof of Theorem 1. To prove Part (a), we bound each of the following three terms:

∣

∣

∣

∣

λk

(

1

m
A∗A

)

− 1

∣

∣

∣

∣

f
∥

∥

∥

∥

1

m
A∗A− IN

∥

∥

∥

∥

2

f
1

m

∥

∥

∥

∥

∥

m
∑

�=1

(X�X
∗
� − ExX�X

∗
�)

∥

∥

∥

∥

∥

2

+
1

m

∥

∥

∥

∥

∥

m
∑

�=1

(ExX�X
∗
� − Ex,ωX�X

∗
�)

∥

∥

∥

∥

∥

2

+ ‖L‖2 , (5.1)

by η > 0, where X� is the �-th column of A∗ and L := Ex,ω(X�X
∗
�) − IN .
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First, L is a symmetric matrix with Lj,j = 0 and

Lj,k = Ex,ω[exp(i〈x�,ωk − ωj〉)] = (2γ 2σ 2 + 1)−
d
2 ,

for j, k ∈ [N], j �= k. Let z be a unit vector, then by Hölder’s inequality

|〈Lz, z〉| =

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

j,k=1
j �=k

(

1

2γ 2σ 2 + 1

) d
2

zj zk

∣

∣

∣

∣

∣

∣

∣

∣

f
(

1

2γ 2σ 2 + 1

) d
2

‖z‖21

f N

(

1

2γ 2σ 2 + 1

) d
2

f N

(

1

4γ 2σ 2 + 1

) d
4

f
√

δη,

where assumption (3.2) was used in the last inequality. Therefore, the third term in (5.1) is bounded by
‖L‖2 f

√
δη f η.

Next, define the random variable Z by

Z(ω1, . . . ,ωN) := ‖Ex(X�X
∗
�) − Ex,ω(X�X

∗
�)‖2.

Since Ex(X�X
∗
�) depends only on {ωk}k∈[N], the random variable Z is independent of data {xj}j∈[m].

Note that Z is the norm of a dependent random matrix, and thus we cannot guarantee an exponential
concentration rate and instead we apply Markov’s inequality. The second moment of Z is bounded by

Eω(Z(ω1, . . . ,ωN)2) = Eω‖Ex(X�X
∗
�) − Ex,ω(X�X

∗
�)‖22

f Eω‖Ex(X�X
∗
�) − Ex,ω(X�X

∗
�)‖2F

=
∑

j,k=1
j �=k

Eω

∣

∣

∣

∣

∣

exp

(

−
γ 2

2
‖ωk − ωj‖22

)

−
(

1

2γ 2σ 2 + 1

) d
2

∣

∣

∣

∣

∣

2

=
∑

j,k=1
j �=k

(

Eω exp
(

−γ 2‖ωk − ωj‖22
)

−
(

1

2γ 2σ 2 + 1

)d
)

f N2
(

1

4γ 2σ 2 + 1

) d
2

.
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By Markov’s inequality and the complexity assumption (3.2),

Pω(Z(ω) g η) f Pω

(

Z(ω) g
N
√

δ

(

1

4γ 2σ 2 + 1

) d
4
)

f
δ(4γ 2σ 2 + 1)

d
2

N2
Eω(Z(ω)2)

f δ.

This implies that with probability at least 1 − δ with respect to the draw of {ωk}k∈[N], we have
‖Ex(X�X

∗
�) − Ex,ω(X�X

∗
�)‖2 f η.

Next, we condition the remaining term in (5.1) on the draw of {ωk}k∈[N] where we have shown that
‖Ex(X�X

∗
�) − Ex,ω(X�X

∗
�)‖2 f η. Specifically, define the random matrices {Y�}�∈[m] by

Y� = X�X
∗
� − Ex(X�X

∗
�),

where each Y� depends only on {x�}�∈[m], conditioned on the given draw of {ωk}k∈[N]. The matrix Y�

satisfies (Y�)j,j = 0 and (Y�)j,k = exp(i〈x�,ωk − ωj〉) − exp(−γ 2‖ωk − ωj‖22/2) for j, k ∈ [N], j �= k.
The norms are bounded by

‖Y�‖2 f max
j∈[N]

N
∑

k=1
k �=j

|ei〈x�,ωk−ωj〉 − e−
γ 2

2 ‖ωk−ωj‖22 | f 2N � ∈ [m],

using Gershgorin’s theorem. By the previous results, we have

‖ExX�X
∗
�‖2 f ‖ExX�X

∗
� − Ex,ωX�X

∗
�‖2 + ‖Ex,ωX�X

∗
�‖2

f η + ‖IN + L‖2
f 2η + 1

and thus

∥

∥

∥

∥

∥

m
∑

�=1

Ex(Y
2
�)

∥

∥

∥

∥

∥

2

f
m
∑

�=1

∥

∥

∥Ex(Y
2
�)

∥

∥

∥

2

f
m
∑

�=1

∥

∥

∥NEx(X�X
∗
�) − (ExX�X

∗
�)

2
∥

∥

∥

2

f
m
∑

�=1

(

N‖Ex(X�X
∗
�)‖2 + ‖Ex(X�X

∗
�)‖22

)

f m[N(1 + 2η) + (1 + 2η)2],
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noting that X∗
�X� = N. Applying Lemma A.2 (by setting the parameters in the theorem’s statement to

σ 2 = m
(

5
3N + 25

9

)

and K = 2N and assuming that η f 1
3 ) yields

Px

(

1

m

∥

∥

∥

∥

∥

m
∑

�=1

(X�X
∗
� − ExX�X

∗
�)

∥

∥

∥

∥

∥

2

g η

)

= Px

(∥

∥

∥

∥

∥

m
∑

�=1

Y�

∥

∥

∥

∥

∥

2

g mη

)

f 2N exp

(

−
mη2

10
3 N + 50

9 + 4Nη
3

)

.

If m g 4Nη−2 log (2N/δ) (assuming N > 25), then with probability at least 1 − δ with respect to the
draw of {xj}j∈[m], we have m−1‖

∑m
�=1 X�X

∗
� −

∑m
�=1 ExX�X

∗
�‖2 f η.

Altogether, (5.1) is bounded by

∣

∣

∣

∣

λk

(

1

m
A∗A

)

− 1

∣

∣

∣

∣

f 3η,

with probability at least (1 − δ)2 g 1 − 2δ if the conditions in the previous steps are satisfied.
For Part (b), note that the samples {xj}j∈[m] and the weights {ωk}k∈[N] take real values and their

distributions are symmetric about 0. Therefore, the feature matrixA = [aj,k] where aj,k := exp(i〈xj,ωk〉)
and its conjugate transposeA∗ = [ak,j] where ak,j = exp(−i〈ωk, xj〉) have the same distribution. Arguing
similarly as in the proof of Part (a) proves Part (b) as well. Essentially, one can consider the systemwhere
the meaning of ω and x is switched.

For Part (c), consider the case when m = N. The matrix N−1A∗A can be written as the following
rank-1 decomposition:

1

N
A∗A =

1

N

N
∑

�=1

X�X
∗
� ,

whereX� is the �-th column ofA∗. Since theGrammatrix,N−1A∗A, is Hermitianwe can use the Rayleigh
quotient to bound the maximum eigenvalue from below by

λmax

(

1

N
A∗A

)

g
1

N
〈A∗Av, v〉 for all v ∈ C

N with ‖v‖2 = 1.
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Thus setting v = 1√
N
X1 yields

λmax

(

1

N
A∗A

)

g
1

N2

N
∑

�=1

X∗
1X�X

∗
�X1

=
1

N2

(

N2 +
N
∑

�=2

X∗
1X�X

∗
�X1

)

= 1 +
1

N2

N
∑

�=2

N
∑

j,k=1

exp(i〈x1 − x�,ωj − ωk〉)

= 1 +
(N − 1)N

N2
+

1

N2

N
∑

�=2

N
∑

j,k=1
j �=k

exp(i〈x1 − x�,ωj − ωk〉).

Taking the expectation on both sides yields

Eλmax

(

1

N
A∗A

)

g 2 −
1

N
+

(N − 1)2

N

(

1
√

4γ 2σ 2 + 1

)d

g 2 −
1

N
,

where we used the characteristic function of the normal distribution.
Similarly, for the smallest eigenvalue, we have

λmin

(

1

N
A∗A

)

f
1

N
〈A∗Av, v〉 for all v ∈ C

N with ‖v‖2 = 1.

Since
{

X�

}

�∈[N] are vectors in n-dimensional space CN , we can find a unit vector u = [u1, . . . , uN]
T ∈

C
N such that u is orthogonal to span

(

{

X�

}

�∈[N−1]

)

and thus

λmin

(

1

N
A∗A

)

f
1

N
〈A∗Au,u〉

f
1

N
u∗XNX

∗
Nu

=
1

N

N
∑

j,k=1

ujuk exp(i〈xN ,ωk − ωj〉).

The vector u depends on
{

X�

}

�∈[N−1], thus the components uj for j ∈ [N] are random variables depending
on {xj}j∈[N−1] and weights {ωk}�∈[N] but are independent of xN . By taking the expectation on both sides
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and applying the Fubini’s theorem, we bound the expectation on the minimum eigenvalue by

Eλmin

(

1

N
A∗A

)

f
1

N
+

1

N
E

∑

j �=k
ujuk exp(i〈xN ,ωk − ωj〉)

=
1

N
+

1

N
Eω1,...,ωN ,x1,...,xN−1

∑

j �=k
ujukExN [exp(i〈xN ,ωk − ωj〉)]

=
1

N
+

1

N
Eω1,...,ωN ,x1,...,xN−1

∑

j �=k
ujuk exp

(

−
γ 2

2
‖ωk − ωj‖22

)

f
1

N
+

1

N
Eω1,...,ωN

√

∑

j �=k
exp

(

−γ 2‖ωk − ωj‖22
)

f
1

N
+

1

N

√

∑

j �=k
Eω1,...,ωN exp

(

−γ 2‖ωk − ωj‖22
)

f
1

N
+
(

1 −
1

N

) 1
2
(

1

4γ 2σ 2 + 1

) d
4

,

where in the fourth line we use the Cauchy–Schwarz inequality to bound

∑

j �=k
ujuk exp

(

−
γ 2

2
‖ωk − ωj‖22

)

f
√

∑

j �=k
|uj|2|uk|2

√

∑

j �=k
exp(−γ 2‖ωk − ωj‖22)

f
√

‖u‖42
√

∑

j �=k
exp(−γ 2‖ωk − ωj‖22)

f
√

∑

j �=k
exp(−γ 2‖ωk − ωj‖22),

and in the fifth line we use the Jensen’s inequality. This completes the proof. �

6. Discussion

We analyse the double descent phenomenon [6] for random feature regression by relating it to the
condition number of asymmetric rectangular random matrices and deriving high-probability bounds
on the extreme singular values. The technical arguments rely on random matrix theory, specifically,
deriving a concentration bound on eigenvalues of the Gram matrix (or the restricted isometry constants)
for the various complexity setting. The bounds improve on previous results in the literature and give
a refined picture of the test error landscape as function of the complexity. In the interpolation regime,
we directly derive a lower bound on the condition number, showing that the linear system becomes
ill-conditioned when N = m. We provide risk bounds which are controlled by the conditioning of the
random feature matrix, thereby relating the generalization error with the conditioning of the system. The
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risk bounds include the least squares, min-norm interpolation and sparse regression problems. While
our analysis focused on Fourier features with normally distributed weights and samples in order to
provide neater bounds, the proofs could be extended to other features and probability distributions.
For example, if we change the feature map, the constants in our results would need to include the L∞

norm of the new activation function. Additionally, using other probability distributions (e.g. uniform
or subgaussian) would lead to changes in the constants and slight changes in the scalings. When W
and X are sampled from different distributions, the symmetry between the underparameterized and
overparameterized results breakdown but the main conclusions should still hold (i.e. constants may
change, but the overall scaling should remain valid).

The connections between random feature models and fully trained neural networks are rich, and
the precise translation of our results in this setting is left as a future discussion. For deep networks,
weight initialization and normalization can help to avoid the issue of vanishing gradients. That is, if the
Jacobian of the hidden layers are close to being an isometry then the network is stable in the dynamical
sense [16,29,37,41]. Based on our results, since the spectrum of random feature maps concentrate near 1,
one could show that randomization helps to provide dynamic stability within each layer of a deep neural
network.

A consequence of the theory presented in this work is that the random feature matrix does not need
regularization to be well-conditioned. This is in align with the results in previous works. Thus the risk
bounds in the noiseless case can decrease to zero without adding a penalty to the training problem.
However, it may be the case that regularization improves generalization in the presence of noise and
outliers. We leave a more detailed analysis of unconstrained regularized methods (for example, the ridge
regression problem) with noisy data for future work.
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A. Key Lemmata

In this section we present some lemmata that are used in the proof of our main results.
We first introduce a characterization of RIP constant and some notation. For a subset S ⊂ [N], let

AS denote the submatrix of A consisting of only the columns indexed by the set S. The s-th RIP constant
δs(A) can be characterized by the maximization problem

δs(A) = max
S⊂[N],card(S)=s

‖A∗
SAS − Is‖2.

To measure the sparsity, we denote ‖z‖0 to be the number of non-zero entries of the vector z. Let Ds,N
be the union of all unit balls of dimension s in the ambient dimension N i.e.

Ds,N := {z ∈ C
N : ‖z‖2 f 1, ‖z‖0 f s},

define the following seminorm on CN×N :

|||B||| := sup
z∈Ds,N

|〈Bz, z〉|,

and thus the RIP constant δs(A) =
∣

∣

∣

∣

∣

∣A∗A− IN
∣

∣

∣

∣

∣

∣ [14].
The following lemma is crucial to the proof of Theorem 4. This is an improvement over Lemma

12.36 in [14].
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LEMMA A.1. Let X1, . . . ,Xm be vectors in C
N with ‖X�‖∞ f 1 for all � ∈ [m]. For p, q g 1 such

that 1/p+ 1/q = 1, we have

E

∣

∣

∣

∣

∣

∣
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∣
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∣

∣

∣
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ε�X�X
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∣

∣
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∣

∣
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∣

f Cs
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2p m

1
2q

√

qs log2(s) log
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q
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∣
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∣

∣

∣
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∣
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m
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�=1

X�X
∗
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

) 1
2p

, (A.1)

where ε� for � ∈ [m] are independent Rademacher random variables and C > 0 is a universal constant.
The remaining lemmata are used throughout this work.
LEMMA A.2. [Corollary 8.15 from [14]] Let {X�}�∈[m] by a set of CN×N independent mean-zero self-

adjoint random matrices, assume that ‖X�‖2 f K almost surely for all � ∈ [m] and define

σ 2 :=

∥

∥

∥

∥

∥

m
∑

�=1

E(X2
�)

∥

∥

∥

∥

∥

.

Then, for all t > 0,

P

(∥

∥

∥

∥

∥

m
∑

�=1

X�

∥

∥

∥

∥

∥

2

g t

)

f 2N exp

(

−
t2

2σ 2 + 2Kt
3

)

.

LEMMA A.3. [Theorem 8.42 and Remark 8.43(c) from [14]] Let F be a countable set of functions
f : C

N → R. Let X� for � ∈ [m] be independent random vector in C
N such that Ef (X�) = 0 and

f (X�) f K a.s. for all � ∈ [m] and for all f ∈ F for some constant K > 0 and let

Z = sup
f∈F

∣

∣

∣

∣

∣

m
∑

�=1

f (X�)

∣

∣

∣

∣

∣

.

Let σ 2
� be non-zero such that E[

(

f (X�)
)2
] f σ 2

� for all f ∈ F and � ∈ [m]. Then, for all t > 0,

P (Z g EZ + t) f exp

(

−t2/2
∑m

�=1 σ 2
� + 2KEZ + tK/3

)

.

LEMMA A.4. [Theorem 9.24 in [17]] Suppose that the 2s-RIP constant of the matrix A ∈ C
m×N

satisfies

δ2s(A) f
4

√
41

,
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then for any vector c∗ ∈ C
N satisfying y = Ac∗ + e with e f ξ

√
m, a minimizer c� of the BP problem

(4.6) approximates the vector c∗ with the error bounds

‖c∗ − c�‖1 f C′κs,1(c
∗) + C

√
sξ

‖c∗ − c�‖2 f C′ κs,1(c
∗)

√
s

+ Cξ ,

where C,C′ > 0 are some constants. If we let S� be the index set of the s largest (in magnitude) entries
of c�, then we have

‖c∗ − c�|S�‖2 f C′ κs,1(c
∗)

√
s

+ Cξ + 4ϑs,2(c
∗).

LEMMA A.5. [Lemma 8 in [17]] Suppose that xj for j ∈ [m] are sampled from the normal distribution

N (0, γ 2Id). Let B
d(R) be the �2-ball centred at 0 with radius R > 0. Then for δ ∈ (0, 1), the probability

of xj ∈ B
d(R) for all j ∈ [m] is at least 1 − δ provided that

R g γ

√

d +
√

12d log
(m

δ

)

.

LEMMA A.6. [Lemma 9 in [17]] Fix confidence parameter δ > 0 and accuracy parameter ε > 0.
Suppose f ∈ F(φ, ρ) where φ(x,ω) = exp(i〈x,ω〉) and ρ is a probability distribution with finite second
moment used for sampling the random weights ω. Consider a set X ⊂ R

d with diameter R = sup
x∈X

‖x‖.

If the following holds:

N g
4

ε2

(

1 + 4R
√

E‖ω‖22 +

√

1

2
log

(

1

δ

)

)2

,

then with probability at least 1 − δ with respect to the draw of ωk for k ∈ [N], the following holds:

sup
x∈X

|f (x) − f �(x)| f ε‖f‖ρ ,

where

f �(x) =
N
∑

k=1

c�k exp(i〈x,ωk〉), with c�k :=
α(ωk)

Nρ(ωk)
. (A.2)

LEMMA A.7. [Lemma 1 in [17]] Fix the confidence parameter δ > 0 and accuracy parameter ε > 0.
Suppose f ∈ F(φ, ρ) where φ(x,ω) = exp(i〈x,ω〉) and ρ is a probability distribution with finite second
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moment used for sampling the random weights ω. Suppose

N g
1

ε2

(

1 +

√

2 log

(

1

δ

)

)2

,

then with probability at least 1 − δ with respect to the draw of ωj for j ∈ [N], the following holds:

‖ f − f �‖L2(dμ) f ε‖ f‖ρ ,

where f � is defined as in (A.2).

B. Proof of Lemma A.1

The proof of Lemma A.1 relies on Dudley’s inequality. First, we introduce some notation. A stochastic
process is a collection {Xt}t∈T of random variables indexed by some set T . The process {Xt}t∈T is called
centerd if EXt = 0 for all t ∈ T . The pseudometric d associated with {Xt}t∈T is defined as

d(s, t) =
√

E|Xs − Xt|2, s, t ∈ T .

A centred process is called subgaussian if

E exp(θ(Xs − Xt)) f exp(θ2d(s, t)2/2), s, t ∈ T ,

for some θ > 0. For a set T , the covering number N (T , d, δ) is the smallest integer N such that there
exists a set A ⊂ T with cardinality N and min

s∈A
d(t, s) f δ for all t ∈ T .

LEMMA A.8. [Dudley’s inequality, Theorem 8.23 in [14]] Let {Xt}t∈T be a centred subgaussian
process with associated pseudometric d. Then for any t0 ∈ T ,

E sup
t∈T

Xt f 4
√
2
∫ Δ(T)/2

0

√

log(N (T , d, u))du

E sup
t∈T

|Xt| f 4
√
2
∫ Δ(T)/2

0

√

log(2N (T , d, u))du,

where Δ(T) = supt∈T
√

E|Xt|2.

Proof of Lemma A.1. By the definition of |||·|||,

E := E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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∣

∣
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∑
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∗
�

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= E sup
z∈Ds,N

∣

∣

∣

∣

∣

m
∑

�=1

ε�|〈X�, z〉|2
∣

∣

∣

∣

∣

.

To bound the expectation of the supremum of this Rademacher process, we will apply Lemma A.8. We
need to estimate the covering number N (Ds,N , d, t) with d being the pseudometric associated with the
stochastic process.
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For z1, z2 ∈ Ds,N ,

d(z1, z2) =

√

√

√

√

m
∑
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|〈X�, z1〉|2 − |〈X�, z2〉|2
)2

=

√

√

√

√
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f
(
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) 1
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f 2 sup
z∈Ds,N
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|〈X�, z〉|2p
) 1

2p
(

m
∑
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|〈X�, z1 − z2|2q
) 1

2q

, (B.1)

where we use Hölder’s inequality in the fourth line with some p, q g 1 such that 1/p + 1/q = 1. Note
that for any z ∈ Ds,N and X� we have

|〈X�, z〉| f ‖X�‖∞‖z‖1 f
√
s.

Therefore,

sup
z∈Ds,N

(

m
∑

�=1

|〈X�, z〉|2p
) 1

2p

f s
p−1
2p sup

z∈Ds,N

(

m
∑
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|〈X�, z〉|2
) 1

2p

.

Introduce the seminorm ‖ · ‖X,q on C
N

‖z‖X,q :=
(

m
∑

�=1

|〈X�, z〉|2q
) 1

2q

,

and let

R := sup
z∈Ds,N

(

m
∑

�=1

|〈X�, z〉|2
) 1

2p

=
(∣

∣

∣

∣
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∣
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∣
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∣
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∣

) 1
2p

,
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we have d(z1, z2) f 2Rs
p−1
2p ‖z1 − z2‖X,q for all z1, z2 ∈ Ds,N . The quantity Δ(Ds,N) is bounded by

Δ(Ds,N) = sup
z∈Ds,N

d(z, 0) f 2Rs
p−1
2p sup

z∈Ds,N
‖z‖X,q f 2Rs

p−1
2p m

1
2q

√
s.

Apply Lemma A.8 we have

E f 4
√
2
∫ Δ(Ds,N )/2

0

√

log(2N (Ds,N , d, u))du

f 8
√
2Rs

p−1
2p

∫ m
1
2q

√
s

0

√

log(2N (Ds,N , ‖ · ‖X,q, t))dt. (B.2)

Now we estimate the covering numberN (Ds,N , ‖ · ‖X,q, t). We first consider small t. For any z1, z2 ∈
Ds,N , z1 − z2 is at most 2s-sparse, therefore,

|〈X�, z1 − z2〉| f
√
2s‖z1 − z2‖2.

This shows that ‖ · ‖X,q f m
1
2q

√
2s‖ · ‖2. Proposition C.3 from [14] then gives

N (Ds,N , ‖ · ‖X,q, t) f
∑

S⊂[N],card(S)=s
N (Bs‖·‖2 , ‖ · ‖2,

t

m
1
2q

√
2s

)

f
(

N

s

)

⎛

⎝1 +
3m

1
2q

√
s

t

⎞

⎠

2s

f
(

eN

s

)s
⎛

⎝1 +
3m

1
2q

√
s

t

⎞

⎠

2s

, (B.3)

where Bs‖·‖2 is the unit �
2-ball in C

s. Thus,

log(2N (Ds,N , ‖ · ‖X,q, t)) f 2s

⎛

⎝log

(

eN

s

)

+ log

⎛

⎝1 +
3m

1
2q

√
s

t

⎞

⎠

⎞

⎠ . (B.4)

For large t, if we define the norm | · |1 on C
N as

|z|1 =
N
∑

j=1

|Re(zj)| + |Im(zj)|.

Then it follows from Hölder’s inequality that

Ds,N ⊂
√
2sBN|·|1 = {z ∈ C

N : |z|1 f
√
2s}.
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We then use Maurey’s empirical method to estimate N (BN|·|1 , ‖ · ‖X,q, t). Note that the set BN|·|1 is the

convex hull of {±ej,±iej : j ∈ [N]}. If we enumerate these vectors as {vj}j∈[4N], then for any z ∈ BN|·|1 ,

there are non-negative {λj}j∈[4N] with
∑4N

j=1 λj = 1 such that z =
∑4N

j=1 λjvj. For this z, we define a
random variable Y which takes value vj with probability λj and let Y1, . . . ,YM be i.i.d. copies, whereM
is a positive integer to be determined. Since EY = z, if we let

y =
1

M

M
∑

k=1

Yk, (B.5)

by symmetrization we have

E‖y− z‖X,q =
1

M
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.

Here we use the fact that the seminorm ‖ · ‖X,q is convex. By the definition of ‖ · ‖X,q, we have
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where we use Fubini’s theorem and Jensen’s inequality in the second line, Khintchine’s inequality
(Corollary 8.7 in [14]) in the third line and the fact that |〈X�,Yk〉| f ‖X�‖∞ f 1 in the fourth line.
The constant C1 is universal. We now have the bound

E‖y− z‖X,q f
C2√
M
m

1
2q

√
q,

for some universal constant C2. Therefore, for this z ∈ BN|·|1 , we can find a y of the form (B.5) such that

‖z− y‖X,q f C2m
1
2q

√
q/

√
M. Thus for any t > 0, if

M g
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1
q q

t2
,
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for some universal C3, then ‖z− y‖X,q f t. Let
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1
q q
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¨ ,
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has cardinality at most
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, (B.6)

for some universal constant C4. With the estimate (B.4) and (B.6) and let α > 0, the integral in (B.2) can
be bounded by
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Choose α = m
1
2q we have
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1
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√
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√
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1
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for some universal constant C5. Thus,

E f 8
√
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1
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√
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∣

∣

∣

∣
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∣

∣
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∣
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∣

) 1
2p

,

where C6 is some universal constant. This concludes the proof. �

C. Proof of Theorem 4

Proof of Theorem 4. Parts of the proof follow from the general idea of the proof of Theorem 12.32 in
[14]; however, many key steps differ since random feature matrices do not form orthogonal systems and
since the elements of a random feature matrix are not independent.

Denote the �-th column of A∗ by X� = [φ(x�;ω1), . . . ,φ(x�;ωN)]T ∈ C
N . Then A∗A =

m
∑

�=1
X�X

∗
�

and the s-th RIP constant δs
(

1√
m
A
)

is bounded by

δs
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1
√
m
A

)
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∣

∣

∣
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∣
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∣
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∣

∣
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+ |||L|||,

where L ∈ C
N×N is a matrix with Lj,j = 0 and Lj,k = (2γ 2σ 2 + 1)−

d
2 for j, k ∈ [N], j �= k.

For any z ∈ Ds,N

|〈Lz, z〉| =
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∣

∣
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∣

∣
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) d
2

,

and using the complexity assumption yields

|||L||| f s(2γ 2σ 2 + 1)−
d
2 f η1.
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Note that by the definition of |||·|||, |||B||| f ‖B‖2 for any self-adjoint matrix B. From the proof of
Theorem 1, we have
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∣

∣

∣

∣Ex(X�X
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�) − Ex,ω(X�X

∗
�)
∣

∣

∣
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∣ f η1 with probability at least 1 − δ with respect to
the draw of {ω�}�∈[N] if the complexity assumption holds.

For the remaining arguments, we will use that
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∣

∣
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∣ f η1 conditioned on
the given draw of {ωk}k∈[N]. Note that |||·||| is a convex function (since it is a seminorm) and thus
symmetrization yields
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,

where we introduce the Rademacher random variables ε� for � ∈ [m] which are independent of data and
weights. Applying Fubini’s theorem and Lemma A.1, we obtain
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where we use the fact that 1/p + 1/q = 1 in the fifth line and Jensen’s inequality together with the
estimate
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in the last inequality. Choosing p = 1 + 1/ log(s), q = 1 + log(s), we have s
p−1
2p f s

1
2 log(s) < 2, and the

above inequality becomes
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√
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Next we use Bernstein’s inequality for suprema of an empirical process (Lemma A.3) to show that
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where D∗
s,N is a countable dense subset of Ds,N , which exists since Ds,N is the finite union of separable

sets (unit balls in Cs as a subspace of CN with its norm).
For z ∈ D∗

s,N , define the random variable fz(X�) = 〈(X�X
∗
� −Ex(X�X

∗
�))z, z〉. Note thatExfz(X�) = 0.

To apply Lemma A.3, we must first show that fz(X�) is bounded and compute its variance. The random
variables fz(X�) for � ∈ [m] are uniformly bounded by 2s since
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where S = supp(z). The variance of fz(X�) for � ∈ [m] is bounded by
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using the fact that ‖X�,S‖22 = s and the estimate
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for some η2 ∈ (0, 1/2), then
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where in the last inequality we use Lemma A.3 with K = 2s,
∑m

�=1 σ 2
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if the conditions in the theorem are satisfied, which completes the proof. �
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D. Proofs of Generalization Theorems from Section 4

The proofs of Theorem 2, Theorem 3 and Theorem 5 follow a similar structure inwhichwe show that each
trained vector c� is close to the best φ approximation c� from [34,35]. To relate the coefficient vectors
to the risk, we utilize the conditioning result, Theorem 1, over a finite set of samples to approximate
the risk by a new discrete system, as done in Theorem 1 from [17]. Since the proofs of Theorem 2 and
Theorem 3 are similar, we present them together.

Proof of Theorem 2 and Theorem 3. We will work directly with the L2 norm, which can be decomposed
into two parts:

‖ f − f �‖L2(dμ) f ‖ f − f �‖L2(dμ) + ‖ f � − f �‖L2(dμ),

by triangle inequality. The approximation f � is defined in (4.2) and the best φ-based approximation f � is
defined by
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c�k φ(x,ωk) =
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N
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α(ωk)

ρ(ωk)
φ(x,ωk), (D.1)

with c�k = N−1 α(ωk)
ρ(ωk)

for all k ∈ [N]. If the condition onN in LemmaA.7 is satisfied, thenwith probability
at least 1 − δ

‖ f − f �‖L2(dμ) f ε‖ f‖ρ .

To bound ‖ f � − f �‖L2(dμ), we use McDiarmid’s inequality and argue similarly as in Lemma 2 from
[17]. Let {zj}j∈[m] be i.i.d. random variables sampled from the distribution μ and independent from the

{xj}j∈[m] and {ωk}k∈[N]. Thus {zj}j∈[m] is also independent of c� and c�. We define the random variable
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thus Ez[v] = 0. Perturbing the k-th component of v yields
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By Cauchy–Schwarz inequality, for any z we have
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which holds since |φ(z,ω)| = 1. Thus the difference is bounded by
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with probability at least 1 − δ with respect to draw of {zj}j∈[m], and Ã ∈ C
m×N is the random feature

matrix with ãj,k = exp(i〈zj,ωk〉).
In the underparameterized regime where m > N, we apply Part (a) of Theorem 1 to Ã and we obtain
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with probability at least 1− 3δ. To estimate ‖c� − c�‖2, we utilize the the pseudo-inverse A† and define
the residual h = Ac� − y, so that

‖c� − c�‖2 = ‖A†y− c�‖2 = ‖A†(Ac� − h) − c�‖2
f ‖(A†A− I)c�‖2 + ‖A†‖2 ‖h‖2.

Using Hölder’s inequality and Assumption 2 on ‖e‖2, the residual is bounded by

‖h‖2 =

√

√

√

√

m
∑

j=1

(

f �(xj) − f (xj) − ej

)2
f

√

√

√

√

m
∑

j=1

(

f �(xj) − f (xj)
)2

+ ‖e‖2

f
√
m sup

‖X‖2fR
|f �(x) − f (x)| +

√
mE

f
√
m(ε‖f‖ρ + E), (D.3)

with probability 1− 2δ if conditions in Lemma A.5 and Lemma A.6 are satisfied. Therefore, the bound
becomes

‖c� − c�‖2 f ‖(A†A− I)c�‖2 +
√
m ‖A†‖2

(

ε‖f‖ρ + E
)

.

Note that when m > N, the first term ‖(A†A − I)c�‖2 = 0, since A†A = (A∗A)−1A∗A = I. Using
Theorem 1, the operator norm of the pseudo-inverse is bounded by

‖A†‖2 =
1

√

λmin(A
∗A)

=
1

√
m

1
√

λmin(m
−1A∗A)

f
1

√
m

1
√
1 − 3η

,

with probability at least 1 − 2δ and thus

‖ f − f �‖L2(dμ) f ‖ f − f �‖L2(dμ) + ‖ f � − f �‖L2(dμ)

f ε‖ f‖ρ + ‖ f � − f �‖L2(dμ)
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m
log
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1
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1
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f 2
√
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1
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4 log
1
4

(

1

δ

))

(ε‖ f‖ρ + E),

with probability at least 1 − 8δ.
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In the overparameterized regime where m < N, we apply Part (b) of Theorem 1 to Ã and the error
of ‖ f − f �‖2

L2(dμ)
is bounded by

‖ f � − f �‖2
L2(dμ)

f
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m
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∥
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with probability at least 1 − 3δ. For ‖c� − c�‖2, we have

‖c� − c�‖2 f ‖(A†A− I)c�‖2 + ‖A†‖2‖h‖2.

Note that when m < N, I − A†A is the projection onto the null space of A and thus its operator norm is
bounded by 1 and

‖c� − c�‖2 f ‖c�‖2 + ‖A†‖2 ‖h‖2 f ‖c�‖2 +
1
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1
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with probability at least 1 − 4δ, noting that
∣

∣c�k

∣

∣ = N−1
∣

∣

∣

α(ωk)
ρ(ωk)

∣

∣

∣ f N−1 ‖ f‖ρ . In this regime, the L2

generalization error is bounded by
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f ε‖ f‖ρ + 2m− 1
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with probability at least 1 − 8δ. �

Proof of Theorem 5. Following the proof of Theorem 2 and Theorem 3, we have the analogous estimate

‖ f � − f �‖2
L2(dμ)

f
1
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)

‖c� − c�|S�‖22,

with probability at least 1 − δ. We apply Theorem 4 with s replaced by 2s and if the conditions of
Theorem 4 are satisfied (for example, by setting the parameters to η1 = 0.1 and η2 = 0.2), then
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√
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A

)

f
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√
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,

with probability at least 1 − 2δ. Following the proof of Lemma 2 in [17], the first term is bounded by
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Then by the robust and stable recovery results, Lemma A.4, we have
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√
s

+ Cξ + 4ϑs,2(c
�).

Combining these two results and Lemma A.7 yields (after possibly multiple redefinitions of the
constants)
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�),

which concludes the proof. �
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